1
|
Zhou HY, Wang X, Li Y, Wang D, Zhou XZ, Xiao N, Li GX, Li G. Dynamic development of microglia and macrophages after spinal cord injury. Neural Regen Res 2025; 20:3606-3619. [PMID: 39101644 PMCID: PMC11974661 DOI: 10.4103/nrr.nrr-d-24-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 08/06/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202512000-00029/figure1/v/2025-01-31T122243Z/r/image-tiff Secondary injury following spinal cord injury is primarily characterized by a complex inflammatory response, with resident microglia and infiltrating macrophages playing pivotal roles. While previous studies have grouped these two cell types together based on similarities in structure and function, an increasing number of studies have demonstrated that microglia and macrophages exhibit differences in structure and function and have different effects on disease processes. In this study, we used single-cell RNA sequencing and spatial transcriptomics to identify the distinct evolutionary paths of microglia and macrophages following spinal cord injury. Our results showed that microglia were activated to a pro-inflammatory phenotype immediately after spinal cord injury, gradually transforming to an anti-inflammatory steady state phenotype as the disease progressed. Regarding macrophages, our findings highlighted abundant communication with other cells, including fibroblasts and neurons. Both pro-inflammatory and neuroprotective effects of macrophages were also identified; the pro-inflammatory effect may be related to integrin β2 ( Itgb2 ) and the neuroprotective effect may be related to the oncostatin M pathway. These findings were validated by in vivo experiments. This research underscores differences in the cellular dynamics of microglia and macrophages following spinal cord injury, and may offer new perspectives on inflammatory mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Hu-Yao Zhou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Xia Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Yi Li
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Duan Wang
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Xuan-Zi Zhou
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Nong Xiao
- Department of Rehabilitation, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Guo-Xing Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Gang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Mooney C, Parlante A, Canarutto G, Grigoli A, Scattoni ML, Ricceri L, Jimenez-Mateos EM, Sanz-Rodriguez A, Clementi E, Piazza S, Henshall DC, Provenzano G. Deregulated mRNA and microRNA Expression Patterns in the Prefrontal Cortex of the BTBR Mouse Model of Autism. Mol Neurobiol 2025:10.1007/s12035-025-04900-x. [PMID: 40227316 DOI: 10.1007/s12035-025-04900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition caused by both genetic and environmental factors. Since no single gene variant accounts for more than 1% of the cases, the converging actions of ASD-related genes and other factors, including microRNAs (miRNAs), may contribute to ASD pathogenesis. To date, few studies have simultaneously investigated the mRNA and miRNA profiles in an ASD-relevant model. The BTBR mouse strain displays a range of behaviors with ASD-like features but little is known about the protein-coding and noncoding gene expression landscape that may underlie the ASD-like phenotype. Here we performed parallel mRNA and miRNA profiling using the prefrontal cortex (PFC) of BTBR and C57BL/6 J (B6) mice. This identified 1063 differentially expressed genes and 48 differentially expressed miRNAs. Integration of mRNA and miRNA data identified a strong inverse relationship between upregulated (DEGs) and downregulated miRNAs, and vice versa. Pathway analysis, taking account of the inverse relationship between differentially expressed miRNAs and their target mRNAs highlighted significant shared enrichment in immune signaling, myelination, and neurodevelopmental processes. Notably, miRNA changes were predicted to affect synapse-related functions but we did not find enrichment of protein-coding genes linked to cellular components or biological processes related to synapses in the PFC of BTBR mice, indicating processes may evade miRNA control. In contrast, other miRNAs were predicted to have extensive relationships with DEGs suggesting their role as potential hub coordinators of gene expression. Profiling findings were confirmed via qRT-PCR for representative protein-coding transcripts and miRNAs. Our study underscores the complex interplay between gene expression and miRNA regulation within immune and inflammatory pathways in the BTBR model, offering insights into the neurodevelopmental mechanisms of ASD. These results support the value of the BTBR mouse model and identify strategies that could adjust molecular pathways for therapeutic applications in ASD research.
Collapse
Affiliation(s)
- Catherine Mooney
- Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Computer Science, University College Dublin, Dublin, Ireland
| | - Andrea Parlante
- Computational Biology Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giulia Canarutto
- Computational Biology Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Andrea Grigoli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Maria Luisa Scattoni
- Research Coordination and Promotion Service, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Laura Ricceri
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Eva Maria Jimenez-Mateos
- Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Amaya Sanz-Rodriguez
- Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Ireland Centre for Translational Brain Science, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Elena Clementi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Silvano Piazza
- Computational Biology Unit, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - David C Henshall
- Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- FutureNeuro Research Ireland Centre for Translational Brain Science, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| |
Collapse
|
3
|
Ricard-Blum S, Couchman JR. Conformations, interactions and functions of intrinsically disordered syndecans. Biochem Soc Trans 2023:BST20221085. [PMID: 37334846 DOI: 10.1042/bst20221085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans present on most mammalian cell surfaces. They have a long evolutionary history, a single syndecan gene being expressed in bilaterian invertebrates. Syndecans have attracted interest because of their potential roles in development and disease, including vascular diseases, inflammation and various cancers. Recent structural data is providing important insights into their functions, which are complex, involving both intrinsic signaling through cytoplasmic binding partners and co-operative mechanisms where syndecans form a signaling nexus with other receptors such as integrins and tyrosine kinase growth factor receptors. While the cytoplasmic domain of syndecan-4 has a well-defined dimeric structure, the syndecan ectodomains are intrinsically disordered, which is linked to a capacity to interact with multiple partners. However, it remains to fully establish the impact of glycanation and partner proteins on syndecan core protein conformations. Genetic models indicate that a conserved property of syndecans links the cytoskeleton to calcium channels of the transient receptor potential class, compatible with roles as mechanosensors. In turn, syndecans influence actin cytoskeleton organization to impact motility, adhesion and the extracellular matrix environment. Syndecan clustering with other cell surface receptors into signaling microdomains has relevance to tissue differentiation in development, for example in stem cells, but also in disease where syndecan expression can be markedly up-regulated. Since syndecans have potential as diagnostic and prognostic markers as well as possible targets in some forms of cancer, it remains important to unravel structure/function relationships in the four mammalian syndecans.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- ICBMS, UMR 5246 CNRS, Universite Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - John R Couchman
- Biotech Research & Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
4
|
von Bohlen Und Halbach O. Neurotrophic Factors and Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:223-254. [PMID: 37962797 DOI: 10.1007/978-3-031-36159-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are highly dynamic structures that play important roles in neuronal plasticity. The morphologies and the numbers of dendritic spines are highly variable, and this diversity is correlated with the different morphological and physiological features of this neuronal compartment. Dendritic spines can change their morphology and number rapidly, allowing them to adapt to plastic changes. Neurotrophic factors play important roles in the brain during development. However, these factors are also necessary for a variety of processes in the postnatal brain. Neurotrophic factors, especially members of the neurotrophin family and the ephrin family, are involved in the modulation of long-lasting effects induced by neuronal plasticity by acting on dendritic spines, either directly or indirectly. Thereby, the neurotrophic factors play important roles in processes attributed, for example, to learning and memory.
Collapse
|
5
|
Herrero MJ, Wang L, Hernandez-Pineda D, Banerjee P, Matos HY, Goodrich M, Panigrahi A, Smith NA, Corbin JG. Sex-Specific Social Behavior and Amygdala Proteomic Deficits in Foxp2 +/- Mutant Mice. Front Behav Neurosci 2021; 15:706079. [PMID: 34421555 PMCID: PMC8374433 DOI: 10.3389/fnbeh.2021.706079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
In humans, mutations in the transcription factor encoding gene, FOXP2, are associated with language and Autism Spectrum Disorders (ASD), the latter characterized by deficits in social interactions. However, little is known regarding the function of Foxp2 in male or female social behavior. Our previous studies in mice revealed high expression of Foxp2 within the medial subnucleus of the amygdala (MeA), a limbic brain region highly implicated in innate social behaviors such as mating, aggression, and parental care. Here, using a comprehensive panel of behavioral tests in male and female Foxp2 +/- heterozygous mice, we investigated the role Foxp2 plays in MeA-linked innate social behaviors. We reveal significant deficits in olfactory processing, social interaction, mating, aggressive, and parental behaviors. Interestingly, some of these deficits are displayed in a sex-specific manner. To examine the consequences of Foxp2 loss of function specifically in the MeA, we conducted a proteomic analysis of microdissected MeA tissue. This analyses revealed putative sex differences expression of a host of proteins implicated in neuronal communication, connectivity, and dopamine signaling. Consistent with this, we discovered that MeA Foxp2-lineage cells were responsive to dopamine with differences between males and females. Thus, our findings reveal a central and sex-specific role for Foxp2 in social behavior and MeA function.
Collapse
Affiliation(s)
- Maria Jesus Herrero
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Li Wang
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - David Hernandez-Pineda
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Payal Banerjee
- Center for Genomic Medicine, Children’s National Hospital, Washington, DC, United States
| | - Heidi Y. Matos
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Meredith Goodrich
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Aswini Panigrahi
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, United States
| | - Nathan Anthony Smith
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| | - Joshua G. Corbin
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, United States
| |
Collapse
|
6
|
Zhou X, Vachon C, Cizeron M, Romatif O, Bülow HE, Jospin M, Bessereau JL. The HSPG syndecan is a core organizer of cholinergic synapses. J Cell Biol 2021; 220:212450. [PMID: 34213535 PMCID: PMC8258370 DOI: 10.1083/jcb.202011144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/13/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix has emerged as an active component of chemical synapses regulating synaptic formation, maintenance, and homeostasis. The heparan sulfate proteoglycan (HSPG) syndecans are known to regulate cellular and axonal migration in the brain. They are also enriched at synapses, but their synaptic functions remain more elusive. Here, we show that SDN-1, the sole orthologue of syndecan in C. elegans, is absolutely required for the synaptic clustering of homomeric α7-like acetylcholine receptors (AChRs) and regulates the synaptic content of heteromeric AChRs. SDN-1 is concentrated at neuromuscular junctions (NMJs) by the neurally secreted synaptic organizer Ce-Punctin/MADD-4, which also activates the transmembrane netrin receptor DCC. Those cooperatively recruit the FARP and CASK orthologues that localize α7-like-AChRs at cholinergic NMJs through physical interactions. Therefore, SDN-1 stands at the core of the cholinergic synapse organization by bridging the extracellular synaptic determinants to the intracellular synaptic scaffold that controls the postsynaptic receptor content.
Collapse
Affiliation(s)
- Xin Zhou
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| | - Camille Vachon
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| | - Mélissa Cizeron
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| | - Océane Romatif
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| | - Hannes E Bülow
- Department of Genetics and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
| | - Maëlle Jospin
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| | - Jean-Louis Bessereau
- Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique Unite Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Lyon, France
| |
Collapse
|
7
|
Hu HT, Huang TN, Hsueh YP. KLHL17/Actinfilin, a brain-specific gene associated with infantile spasms and autism, regulates dendritic spine enlargement. J Biomed Sci 2020; 27:103. [PMID: 33256713 PMCID: PMC7708131 DOI: 10.1186/s12929-020-00696-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background Dendritic spines, the actin-rich protrusions emerging from dendrites, are the subcellular locations of excitatory synapses in the mammalian brain. Many actin-regulating molecules modulate dendritic spine morphology. Since dendritic spines are neuron-specific structures, it is reasonable to speculate that neuron-specific or -predominant factors are involved in dendritic spine formation. KLHL17 (Kelch-like 17, also known as Actinfilin), an actin-binding protein, is predominantly expressed in brain. Human genetic study has indicated an association of KLHL17/Actinfilin with infantile spasms, a rare form of childhood epilepsy also resulting in autism and mental retardation, indicating that KLHL17/Actinfilin plays a role in neuronal function. However, it remains elusive if and how KLHL17/Actinfilin regulates neuronal development and brain function. Methods Fluorescent immunostaining and electrophysiological recording were performed to evaluate dendritic spine formation and activity in cultured hippocampal neurons. Knockdown and knockout of KLHL17/Actinfilin and expression of truncated fragments of KLHL17/Actinfilin were conducted to investigate the function of KLHL17/Actinfilin in neurons. Mouse behavioral assays were used to evaluate the role of KLHL17/Actinfilin in brain function. Results We found that KLHL17/Actinfilin tends to form circular puncta in dendritic spines and are surrounded by or adjacent to F-actin. Klhl17 deficiency impairs F-actin enrichment at dendritic spines. Knockdown and knockout of KLHL17/Actinfilin specifically impair dendritic spine enlargement, but not the density or length of dendritic spines. Both N-terminal Broad-Complex, Tramtrack and Bric-a-brac (BTB) domain and C-terminal Kelch domains of KLHL17/Actinfilin are required for F-actin remodeling and enrichment at dendritic spines, as well as dendritic spine enlargement. A reduction of postsynaptic and presynsptic markers at dendritic spines and altered mEPSC profiles due to Klhl17 deficiency evidence impaired synaptic activity in Klhl17-deficient neurons. Our behavioral assays further indicate that Klhl17 deficiency results in hyperactivity and reduced social interaction, strengthening evidence for the physiological role of KLHL17/Actinfilin. Conclusion Our findings provide evidence that KLHL17/Actinfilin modulates F-actin remodeling and contributes to regulation of neuronal morphogenesis, maturation and activity, which is likely relevant to behavioral impairment in Klhl17-deficient mice. Trial registration Non-applicable.
Collapse
Affiliation(s)
- Hsiao-Tang Hu
- Institute of Molecular Biology, Academia Sinica, 128, Academia Road, Section 2, Taipei, 11529, Taiwan, Republic of China
| | - Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, 128, Academia Road, Section 2, Taipei, 11529, Taiwan, Republic of China
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, 128, Academia Road, Section 2, Taipei, 11529, Taiwan, Republic of China.
| |
Collapse
|
8
|
3-O-sulfated heparan sulfate interactors target synaptic adhesion molecules from neonatal mouse brain and inhibit neural activity and synaptogenesis in vitro. Sci Rep 2020; 10:19114. [PMID: 33154448 PMCID: PMC7644699 DOI: 10.1038/s41598-020-76030-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 09/30/2020] [Indexed: 12/03/2022] Open
Abstract
Heparan sulfate (HS) chains, covalently linked to heparan sulfate proteoglycans (HSPG), promote synaptic development and functions by connecting various synaptic adhesion proteins (AP). HS binding to AP could vary according to modifications of HS chains by different sulfotransferases. 3-O-sulfotransferases (Hs3sts) produce rare 3-O-sulfated HSs (3S-HSs), of poorly known functions in the nervous system. Here, we showed that a peptide known to block herpes simplex virus by interfering with 3S-HSs in vitro and in vivo (i.e. G2 peptide), specifically inhibited neural activity, reduced evoked glutamate release, and impaired synaptic assembly in hippocampal cell cultures. A role for 3S-HSs in promoting synaptic assembly and neural activity is consistent with the synaptic interactome of G2 peptide, and with the detection of Hs3sts and their products in synapses of cultured neurons and in synaptosomes prepared from developing brains. Our study suggests that 3S-HSs acting as receptors for herpesviruses might be important regulators of neuronal and synaptic development in vertebrates.
Collapse
|
9
|
Presynaptic dysfunction in CASK-related neurodevelopmental disorders. Transl Psychiatry 2020; 10:312. [PMID: 32929080 PMCID: PMC7490425 DOI: 10.1038/s41398-020-00994-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
CASK-related disorders are genetically defined neurodevelopmental syndromes. There is limited information about the effects of CASK mutations in human neurons. Therefore, we sought to delineate CASK-mutation consequences and neuronal effects using induced pluripotent stem cell-derived neurons from two mutation carriers. One male case with autism spectrum disorder carried a novel splice-site mutation and a female case with intellectual disability carried an intragenic tandem duplication. We show reduction of CASK protein in maturing neurons from the mutation carriers, which leads to significant downregulation of genes involved in presynaptic development and of CASK protein interactors. Furthermore, CASK-deficient neurons showed decreased inhibitory presynapse size as indicated by VGAT staining, which may alter the excitatory-inhibitory (E/I) balance in developing neural circuitries. Using in vivo magnetic resonance spectroscopy quantification of GABA in the male mutation carrier, we further highlight the possibility to validate in vitro cellular data in the brain. Our data show that future pharmacological and clinical studies on targeting presynapses and E/I imbalance could lead to specific treatments for CASK-related disorders.
Collapse
|
10
|
Han KA, Um JW, Ko J. Intracellular protein complexes involved in synapse assembly in presynaptic neurons. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:347-373. [PMID: 31036296 DOI: 10.1016/bs.apcsb.2018.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The presynaptic active zone, composed of evolutionarily conserved protein complexes, is a specialized area that serves to orchestrate precise and efficient neurotransmitter release by organizing various presynaptic proteins involved in mediating docking and priming of synaptic vesicles, recruiting voltage-gated calcium channels, and modulating presynaptic nerve terminals with aligned postsynaptic structures. Among membrane proteins localized to active zone, presynaptic neurexins and LAR-RPTPs (leukocyte common antigen-related receptor tyrosine phosphatase) have emerged as hubs that orchestrate both shared and distinct extracellular synaptic adhesion pathways. In this chapter, we discuss intracellular signaling cascades involved in recruiting various intracellular proteins at both excitatory and inhibitory synaptic sites. In particular, we highlight recent studies on key active zone proteins that physically and functionally link these cascades with neurexins and LAR-RPTPs in both vertebrate and invertebrate model systems. These studies allow us to build a general, universal view of how presynaptic active zones operate together with postsynaptic structures in neural circuits.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea.
| |
Collapse
|
11
|
Guo R, Li H, Li X, Xue Z, Sun Y, Ma D, Guan Y, Li J, Tian M, Wang Y. Downregulation of neuroligin1 ameliorates postoperative pain through inhibiting neuroligin1/postsynaptic density 95-mediated synaptic targeting of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor GluA1 subunits in rat dorsal horns. Mol Pain 2018; 14:1744806918766745. [PMID: 29592780 PMCID: PMC5881971 DOI: 10.1177/1744806918766745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuroligin1 is an important synaptic cell adhesion molecule that modulates the function of synapses through protein-protein interactions. Yet, it remains unclear whether the regulation of synaptic transmission in the spinal cord by neruoligin1 contributes to the development of postoperative pain. In a rat model of postoperative pain induced by plantar incision, we conducted Western blot study to examine changes in the expression of postsynaptic membrane of neuroligin1, postsynaptic density 95 (PSD-95), and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor GluA1 and GluA2 subunits in the spinal cord dorsal horn after injury. The interaction between neuroligin1 and PSD-95 was further determined by using coimmunoprecipitation. Protein levels of neuroligin1 and GluA1, but not GluA2 and PSD-95, were significantly increased in the postsynaptic membrane of the ipsilateral dorsal horn at 3 h and 1 day after incision, as compared to that in control group (naïve). A greater amount of PSD-95 was coimmunoprecipitated with neuroligin1 at 3 h after incision than that in the control group. Intrathecal administration of small interfering RNAs (siRNAs) targeting neuroligin1 suppressed the expression of neuroligin1 in the spinal cord. Importantly, pretreatment with intrathecal neuroligin1 siRNA2497, but not scrambled siRNA or vehicle, prevented the upregulation of GluA1 expression at 3 h after incision, inhibited the enhanced neuroligin1/PSD-95 interaction, and attenuated postoperative pain. Together, current findings suggest that downregulation of spinal neuroligin1 expression may ameliorate postoperative pain through inhibiting neuroligin1/PSD-95 interaction and synaptic targeting of GluA1 subunit. Accordingly, spinal neuroligin1 may be a potential new target for postoperative pain treatment.
Collapse
Affiliation(s)
- Ruijuan Guo
- 1 Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huili Li
- 2 Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xueyang Li
- 2 Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhaojing Xue
- 1 Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuqing Sun
- 2 Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Danxu Ma
- 2 Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yun Guan
- 3 Department of Anesthesiology and Critical Care Medicine, The 1466 Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Junfa Li
- 4 Department of Neurobiology, Capital Medical University, Beijing, China
| | - Ming Tian
- 1 Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yun Wang
- 2 Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Song SH, Jang WJ, Hwang J, Park B, Jang JH, Seo YH, Yang CH, Lee S, Jeong CH. Transcriptome profiling of whisker follicles in methamphetamine self-administered rats. Sci Rep 2018; 8:11420. [PMID: 30061674 PMCID: PMC6065325 DOI: 10.1038/s41598-018-29772-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Methamphetamine (MA) is a highly addictive psychostimulant that disturbs the central nervous system; therefore, diagnosis of MA addiction is important in clinical and forensic toxicology. In this study, a MA self-administration rat model was used to illustrate the gene expression profiling of the rewarding effect caused by MA. RNA-sequencing was performed to examine changes in gene expression in rat whisker follicles collected before self-administration, after MA self-administration, and after withdrawal sessions. We identified six distinct groups of genes, with statistically significant expression patterns. By constructing the functional association network of these genes and performing the subsequent topological analysis, we identified 43 genes, which have the potential to regulate MA reward and addiction. The gene pathways were then analysed using the Reactome and Knowledgebase for Addiction-Related Gene database, and it was found that genes and pathways associated with Alzheimer's disease and the heparan sulfate biosynthesis were enriched in MA self-administration rats. The findings suggest that changes of the genes identified in rat whisker follicles may be useful indicators of the rewarding effect of MA. Further studies are needed to provide a comprehensive understanding of MA addiction.
Collapse
Affiliation(s)
- Sang-Hoon Song
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jihye Hwang
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jung-Hee Jang
- School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Young-Ho Seo
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Chae Ha Yang
- College of Oriental Medicine, Daegu Hanny University, Daegu, 42158, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
13
|
Taetzsch T, Brayman VL, Valdez G. FGF binding proteins (FGFBPs): Modulators of FGF signaling in the developing, adult, and stressed nervous system. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2983-2991. [PMID: 29902550 DOI: 10.1016/j.bbadis.2018.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/17/2018] [Accepted: 06/09/2018] [Indexed: 01/18/2023]
Abstract
Members of the fibroblast growth factor (FGF) family are involved in a variety of cellular processes. In the nervous system, they affect the differentiation and migration of neurons, the formation and maturation of synapses, and the repair of neuronal circuits following insults. Because of the varied yet critical functions of FGF ligands, their availability and activity must be tightly regulated for the nervous system, as well as other tissues, to properly develop and function in adulthood. In this regard, FGF binding proteins (FGFBPs) have emerged as strong candidates for modulating the actions of secreted FGFs in neural and non-neural tissues. Here, we will review the roles of FGFBPs in the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA.
| | - Vanessa L Brayman
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA.
| | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
14
|
Condomitti G, de Wit J. Heparan Sulfate Proteoglycans as Emerging Players in Synaptic Specificity. Front Mol Neurosci 2018; 11:14. [PMID: 29434536 PMCID: PMC5790772 DOI: 10.3389/fnmol.2018.00014] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/10/2018] [Indexed: 12/20/2022] Open
Abstract
Neural circuits consist of distinct neuronal cell types connected in specific patterns. The specificity of these connections is achieved in a series of sequential developmental steps that involve the targeting of neurites, the identification of synaptic partners, and the formation of specific types of synapses. Cell-surface proteins play a critical role in each of these steps. The heparan sulfate proteoglycan (HSPG) family of cell-surface proteins is emerging as a key regulator of connectivity. HSPGs are expressed throughout brain development and play important roles in axon guidance, synapse development and synapse function. New insights indicate that neuronal cell types express unique combinations of HSPGs and HS-modifying enzymes. Furthermore, HSPGs interact with cell type-specific binding partners to mediate synapse development. This suggests that cell type-specific repertoires of HSPGs and specific patterns of HS modifications on the cell surface are required for the development of specific synaptic connections. Genome-wide association studies have linked these proteins to neurodevelopmental and neuropsychiatric diseases. Thus, HSPGs play an important role in the development of specific synaptic connectivity patterns important for neural circuit function, and their dysfunction may be involved in the development of brain disorders.
Collapse
Affiliation(s)
- Giuseppe Condomitti
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Saied-Santiago K, Bülow HE. Diverse roles for glycosaminoglycans in neural patterning. Dev Dyn 2018; 247:54-74. [PMID: 28736980 PMCID: PMC5866094 DOI: 10.1002/dvdy.24555] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/11/2023] Open
Abstract
The nervous system coordinates the functions of most multicellular organisms and their response to the surrounding environment. Its development involves concerted cellular interactions, including migration, axon guidance, and synapse formation. These processes depend on the molecular constituents and structure of the extracellular matrices (ECM). An essential component of ECMs are proteoglycans, i.e., proteins containing unbranched glycan chains known as glycosaminoglycans (GAGs). A defining characteristic of GAGs is their enormous molecular diversity, created by extensive modifications of the glycans during their biosynthesis. GAGs are widely expressed, and their loss can lead to catastrophic neuronal defects. Despite their importance, we are just beginning to understand the function and mechanisms of GAGs in neuronal development. In this review, we discuss recent evidence suggesting GAGs have specific roles in neuronal patterning and synaptogenesis. We examine the function played by the complex modifications present on GAG glycans and their roles in regulating different aspects of neuronal patterning. Moreover, the review considers the function of proteoglycan core proteins in these processes, stressing their likely role as co-receptors of different signaling pathways in a redundant and context-dependent manner. We conclude by discussing challenges and future directions toward a better understanding of these fascinating molecules during neuronal development. Developmental Dynamics 247:54-74, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| |
Collapse
|
16
|
Abstract
Research in the last two decades has identified many synaptic organizers in the central nervous system that directly regulate the assembly of pre- and/or postsynaptic molecules, such as synaptic vesicles, active zone proteins, and neurotransmitter receptors. They are classified into secreted factors and cell adhesion molecules, such as neurexins and neuroligins. Certain secreted factors are termed extracellular scaffolding proteins (ESPs) because they are components of the synaptic extracellular matrix and serve as a scaffold at the synaptic cleft. These include Lgi1, Cbln1, neuronal pentraxins, Hevin, thrombospondins, and glypicans. Diffusible secreted factors, such as Wnts, fibroblast growth factors, and semaphorins, tend to act from a distance. In contrast, ESPs remain at the synaptic cleft and often help synaptic adhesion and/or accumulation of postsynaptic receptors. Many fundamental questions remain about when, how, and why various synaptic organizers establish and modify the vast numbers of connections during development and throughout life.
Collapse
Affiliation(s)
- Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| |
Collapse
|
17
|
Lin D, Liang Y, Jing X, Chen Y, Lei M, Zeng Z, Zhou T, Wu X, Peng S, Zheng D, Huang K, Yang L, Xiao S, Liu J, Tao E. Microarray analysis of an synthetic α-synuclein induced cellular model reveals the expression profile of long non-coding RNA in Parkinson's disease. Brain Res 2017; 1678:384-396. [PMID: 29137975 DOI: 10.1016/j.brainres.2017.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/10/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a new research focus that are reported to influence the pathogenetic process of neurodegenerative disorders. To uncover new disease-associated genes and their relevant mechanisms, we carried out a gene microarray analysis based on a Parkinson's disease (PD) in vitro model induced by α-synuclein oligomers. This cellular model induced by 25 μmol/L α-synuclein oligomers has been confirmed to show the stable, transmissible neurotoxicity of α-synuclein, a typical PD pathological marker. And several differentially expressed lncRNAs and mRNAs were identified in this model, such as G046036, G030771, AC009365.4, RPS14P3, CTB-11I22.1, and G007549. Subsequent ceRNA analysis determined the potential relationships between these lncRNAs and their associated mRNAs and microRNAs. The results of the present study widen our horizon of PD susceptibility genes and provide new pathways towards efficient diagnostic biomarkers and therapeutic targets for PD.
Collapse
Affiliation(s)
- D Lin
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Y Liang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - X Jing
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Y Chen
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - M Lei
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Z Zeng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - T Zhou
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - X Wu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - S Peng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - D Zheng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - K Huang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - L Yang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - S Xiao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - J Liu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - E Tao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|
18
|
Liang C, Kerr A, Qiu Y, Cristofoli F, Van Esch H, Fox MA, Mukherjee K. Optic Nerve Hypoplasia Is a Pervasive Subcortical Pathology of Visual System in Neonates. Invest Ophthalmol Vis Sci 2017; 58:5485-5496. [PMID: 29067402 PMCID: PMC5656421 DOI: 10.1167/iovs.17-22399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose Optic nerve hypoplasia (ONH) is the most common cause of childhood congenital blindness in developed nations, yet the fundamental pathobiology of ONH remains unknown. The objective of this study was to employ a ‘face validated' murine model to determine the timing of onset and the pathologic characteristics of ONH. Methods Based on the robust linkage between X-linked CASK haploinsufficiency and clinically diagnosed ONH, we hypothesized that heterozygous deletion of CASK (CASK(+/−)) in rodents will produce an optic nerve pathology closely recapitulating ONH. We quantitatively analyzed the entire subcortical visual system in female CASK(+/−) mice using immunohistochemistry, anterograde axonal tracing, toluidine blue staining, transmission electron microscopy, and serial block-face scanning electron microscopy. Results CASK haploinsuffiency in mice phenocopies human ONH with complete penetrance, thus satisfying the ‘face validity'. We demonstrate that the optic nerve in CASK(+/−) mice is not only thin, but is comprised of atrophic retinal axons and displays reactive astrogliosis. Myelination of the optic nerve axons remains unchanged. Moreover, we demonstrate a significant decrease in retinal ganglion cell (RGC) numbers and perturbation in retinothalamic connectivity. Finally, we used this mouse model to define the onset and progression of ONH pathology, demonstrating for the first time that optic nerve defects arise at neonatally in CASK(+/−)mice. Conclusions Optic nerve hypoplasia is a complex neuropathology of the subcortical visual system involving RGC loss, axonopathy, and synaptopathy and originates at a developmental stage in mice that corresponds to the late third trimester development in humans.
Collapse
Affiliation(s)
- Chen Liang
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Alicia Kerr
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, United States.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, United States
| | - Yangfengzhong Qiu
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, United States
| | | | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Michael A Fox
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Konark Mukherjee
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, Virginia, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States
| |
Collapse
|
19
|
Yu C, Griffiths LR, Haupt LM. Exploiting Heparan Sulfate Proteoglycans in Human Neurogenesis-Controlling Lineage Specification and Fate. Front Integr Neurosci 2017; 11:28. [PMID: 29089873 PMCID: PMC5650988 DOI: 10.3389/fnint.2017.00028] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022] Open
Abstract
Unspecialized, self-renewing stem cells have extraordinary application to regenerative medicine due to their multilineage differentiation potential. Stem cell therapies through replenishing damaged or lost cells in the injured area is an attractive treatment of brain trauma and neurodegenerative neurological disorders. Several stem cell types have neurogenic potential including neural stem cells (NSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs). Currently, effective use of these cells is limited by our lack of understanding and ability to direct lineage commitment and differentiation of neural lineages. Heparan sulfate proteoglycans (HSPGs) are ubiquitous proteins within the stem cell microenvironment or niche and are found localized on the cell surface and in the extracellular matrix (ECM), where they interact with numerous signaling molecules. The glycosaminoglycan (GAG) chains carried by HSPGs are heterogeneous carbohydrates comprised of repeating disaccharides with specific sulfation patterns that govern ligand interactions to numerous factors including the fibroblast growth factors (FGFs) and wingless-type MMTV integration site family (Wnts). As such, HSPGs are plausible targets for guiding and controlling neural stem cell lineage fate. In this review, we provide an overview of HSPG family members syndecans and glypicans, and perlecan and their role in neurogenesis. We summarize the structural changes and subsequent functional implications of heparan sulfate as cells undergo neural lineage differentiation as well as outline the role of HSPG core protein expression throughout mammalian neural development and their function as cell receptors and co-receptors. Finally, we highlight suitable biomimetic approaches for exploiting the role of HSPGs in mammalian neurogenesis to control and tailor cell differentiation into specific lineages. An improved ability to control stem cell specific neural lineage fate and produce abundant cells of lineage specificity will further advance stem cell therapy for the development of improved repair of neurological disorders. We propose a deeper understanding of HSPG-mediated neurogenesis can potentially provide novel therapeutic targets of neurogenesis.
Collapse
Affiliation(s)
- Chieh Yu
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Larisa M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Hu HT, Shih PY, Shih YT, Hsueh YP. The Involvement of Neuron-Specific Factors in Dendritic Spinogenesis: Molecular Regulation and Association with Neurological Disorders. Neural Plast 2015; 2016:5136286. [PMID: 26819769 PMCID: PMC4706964 DOI: 10.1155/2016/5136286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/26/2015] [Indexed: 12/26/2022] Open
Abstract
Dendritic spines are the location of excitatory synapses in the mammalian nervous system and are neuron-specific subcellular structures essential for neural circuitry and function. Dendritic spine morphology is determined by the F-actin cytoskeleton. F-actin remodeling must coordinate with different stages of dendritic spinogenesis, starting from dendritic filopodia formation to the filopodia-spines transition and dendritic spine maturation and maintenance. Hundreds of genes, including F-actin cytoskeleton regulators, membrane proteins, adaptor proteins, and signaling molecules, are known to be involved in regulating synapse formation. Many of these genes are not neuron-specific, but how they specifically control dendritic spine formation in neurons is an intriguing question. Here, we summarize how ubiquitously expressed genes, including syndecan-2, NF1 (encoding neurofibromin protein), VCP, and CASK, and the neuron-specific gene CTTNBP2 coordinate with neurotransmission, transsynaptic signaling, and cytoskeleton rearrangement to control dendritic filopodia formation, filopodia-spines transition, and dendritic spine maturation and maintenance. The aforementioned genes have been associated with neurological disorders, such as autism spectrum disorders (ASDs), mental retardation, learning difficulty, and frontotemporal dementia. We also summarize the corresponding disorders in this report.
Collapse
Affiliation(s)
- Hsiao-Tang Hu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Pu-Yun Shih
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Tzu Shih
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|