1
|
Taha A, Zoubi A, Ettaqy A, El-Mderssa M, Belaqziz M, Fokar M, Hamdali H, Zine-El-Abidine A, Boukcim H, Abbas Y. Environmental drivers of Euphorbia resinifera seed germination and seedling establishment for conservation purpose. BRAZ J BIOL 2024; 84:e281196. [PMID: 39319978 DOI: 10.1590/1519-6984.281196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/25/2024] [Indexed: 09/26/2024] Open
Abstract
Euphorbia resinifera O. Berg is a prickly, leafless and succulent, Moroccan endemic shrub. Field data indicate that the plant faces many challenges related to its natural regeneration and its gradual decline that can lead to a probability of extinction, at least in some areas. Successful seed germination and survival of E. resinifera seedlings during the dry period is one of the main obstacles encountered in establishing natural seedlings. With this in mind, 3080 seeds of two morphotypes of E. resinifera (M1 and M2) were harvested in the Atlas of Beni Mellal to study their germinative potential and determine suitable conditions for growth and development of the seedlings. In the laboratory, five temperatures (10 °, 15 °C, 18 °C, 25 °C, and 35 °C) and two photoperiods (12 h light/12 h dark and 24 h dark) were tested. Whereas in field research, two factors were considered: the availability of water and the type of substrate (clay, peat, and limestone). Results show a maximum germination rate of around 52% for M2 at 15 °C and 48% for M1 at 18 °C. The Monitoring of plant seedling establishment and growth revealed a high vulnerability to prolonged periods of drought. However, consolidated soil is more conducive to seedling establishment. For this species, it is therefore essential to conserve the habitat within the karst geosystem. Furthermore, the variability of this species' morphotypes and their growth form architecture shows a tendency to favor the dwarf, cushion-shaped morphotype, which is the most widespread in the study area.
Collapse
Affiliation(s)
- A Taha
- Sultan Moulay Slimane University, Polydisciplinary Faculty, Polyvalent Team in Research and Development, Beni Mellal, Morocco
- Sultan Moulay Slimane University, Faculty of Sciences and Technologies, Ecology and Sustainable Development Team, Mghila campus, Beni Mellal, Morocco
| | - A Zoubi
- Sultan Moulay Slimane University, Faculty of Sciences and Technologies, Ecology and Sustainable Development Team, Mghila campus, Beni Mellal, Morocco
| | - A Ettaqy
- Sultan Moulay Slimane University, Faculty of Sciences and Technologies, Ecology and Sustainable Development Team, Mghila campus, Beni Mellal, Morocco
| | - M El-Mderssa
- Sultan Moulay Slimane University, Polydisciplinary Faculty, Polyvalent Team in Research and Development, Beni Mellal, Morocco
| | - M Belaqziz
- Cadi Ayyad University, Water, Biodiversity and Climate Change Lab, Marrakech, Morocco
| | - M Fokar
- Texas Tech University, Center for Biotechnology and Genomics, Lubbock, Texas, USA
| | - H Hamdali
- University of Sultan Moulay Slimane, Faculty of Sciences and Technology, Laboratory of Agro-Industrial and Medical Biotechnologies, Beni, Mellal, Morocco
| | | | - H Boukcim
- Valorhiz, Montferrier sur Lez, Montpellier, France
| | - Y Abbas
- Sultan Moulay Slimane University, Polydisciplinary Faculty, Polyvalent Team in Research and Development, Beni Mellal, Morocco
| |
Collapse
|
2
|
Coello AJ, Vargas P, Cano E, Riina R, Fernández-Mazuecos M. Phylogenetics and phylogeography of Euphorbia canariensis reveal an extreme Canarian-Asian disjunction but limited inter-island colonization. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:398-414. [PMID: 38444147 DOI: 10.1111/plb.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Euphorbia canariensis is an iconic endemic species representative of the lowland xerophytic communities of the Canary Islands. It is widely distributed in the archipelago despite having diasporas unspecialized for long-distance dispersal. Here, we reconstructed the evolutionary history of E. canariensis at two levels: a time-calibrated phylogenetic analysis aimed at clarifying interspecific relationships and large-scale biogeographic patterns; and a phylogeographic study focused on the history of colonization across the Canary Islands. For the phylogenetic study, we sequenced the ITS region for E. canariensis and related species of Euphorbia sect. Euphorbia. For the phylogeographic study, we sequenced two cpDNA regions for 28 populations representing the distribution range of E. canariensis. The number of inter-island colonization events was explored using PAICE, a recently developed method that includes a sample size correction. Additionally, we used species distribution modelling (SDM) to evaluate environmental suitability for E. canariensis through time. Phylogenetic results supported a close relationship between E. canariensis and certain Southeast Asian species (E. epiphylloides, E. lacei, E. sessiliflora). In the Canaries, E. canariensis displayed a west-to-east colonization pattern, not conforming to the "progression rule", i.e. the concordance between phylogeographic patterns and island emergence times. We estimated between 20 and 50 inter-island colonization events, all of them in the Quaternary, and SDM suggested a late Quaternary increase in environmental suitability for E. canariensis. The extreme biogeographic disjunction between Macaronesia and Southeast Asia (ca. 11,000 km) parallels that found in a few other genera (Pinus, Dracaena). We hypothesize that these disjunctions are better explained by extinction across north Africa and southwest Asia rather than long-distance dispersal. The relatively low number of inter-island colonization events across the Canaries is congruent with the low dispersal capabilities of E. canariensis.
Collapse
Affiliation(s)
- A J Coello
- Departamento de Biología (Botánica), Universidad Autónoma de Madrid, Madrid, Spain
- Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | - P Vargas
- Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | - E Cano
- Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | - R Riina
- Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | - M Fernández-Mazuecos
- Departamento de Biología (Botánica), Universidad Autónoma de Madrid, Madrid, Spain
- Real Jardín Botánico (RJB), CSIC, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Martín-Hernanz S, Nogales M, Valente L, Fernández-Mazuecos M, Pomeda-Gutiérrez F, Cano E, Marrero P, Olesen JM, Heleno R, Vargas P. Time-calibrated phylogenies reveal mediterranean and pre-mediterranean origin of the thermophilous vegetation of the Canary Islands. ANNALS OF BOTANY 2023; 131:667-684. [PMID: 36594263 PMCID: PMC10147335 DOI: 10.1093/aob/mcac160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/21/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS The Canary Islands have strong floristic affinities with the Mediterranean Basin. One of the most characteristic and diverse vegetation belts of the archipelago is the thermophilous woodland (between 200 and 900 m.a.s.l.). This thermophilous plant community consists of many non-endemic species shared with the Mediterranean Floristic Region together with Canarian endemic species. Consequently, phytogeographic studies have historically proposed the hypothesis of an origin of the Canarian thermophilous species following the establishment of the summer-dry mediterranean climate in the Mediterranean Basin around 2.8 million years ago. METHODS Time-calibrated phylogenies for 39 plant groups including Canarian thermophilous species were primarily analysed to infer colonization times. In particular, we used 26 previously published phylogenies together with 13 new time-calibrated phylogenies (including newly generated plastid and nuclear DNA sequence data) to assess whether the time interval between stem and crown ages of Canarian thermophilous lineages postdates 2.8 Ma. For lineages postdating this time threshold, we additionally conducted ancestral area reconstructions to infer the potential source area for colonization. KEY RESULTS A total of 43 Canarian thermophilous lineages were identified from 39 plant groups. Both mediterranean (16) and pre-mediterranean (9) plant lineages were found. However, we failed to determine the temporal origin for 18 lineages because a stem-crown time interval overlaps with the 2.8-Ma threshold. The spatial origin of thermophilous lineages was also heterogeneous, including ancestral areas from the Mediterranean Basin (nine) and other regions (six). CONCLUSIONS Our findings reveal an unexpectedly heterogeneous origin of the Canarian thermophilous species in terms of colonization times and mainland source areas. A substantial proportion of the lineages arrived in the Canaries before the summer-dry climate was established in the Mediterranean Basin. The complex temporal and geographic origin of Canarian thermophilous species challenges the view of the Canary Islands (and Madeira) as a subregion within the Mediterranean Floristic Region.
Collapse
Affiliation(s)
- Sara Martín-Hernanz
- Department of Biodiversity and Conservation, Real Jardín Botánico de Madrid (RJB-CSIC), 28014 Madrid, Spain
- Departament of Plant Biology and Ecology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Manuel Nogales
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Luis Valente
- Naturalis Biodiversity Center, 2333 Leiden, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Mario Fernández-Mazuecos
- Department of Biology (Botany), Faculty of Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Pomeda-Gutiérrez
- Department of Biodiversity and Conservation, Real Jardín Botánico de Madrid (RJB-CSIC), 28014 Madrid, Spain
| | - Emilio Cano
- Department of Biodiversity and Conservation, Real Jardín Botánico de Madrid (RJB-CSIC), 28014 Madrid, Spain
| | - Patricia Marrero
- Department of Biodiversity and Conservation, Real Jardín Botánico de Madrid (RJB-CSIC), 28014 Madrid, Spain
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Jens M Olesen
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Ruben Heleno
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Pablo Vargas
- Department of Biodiversity and Conservation, Real Jardín Botánico de Madrid (RJB-CSIC), 28014 Madrid, Spain
| |
Collapse
|
4
|
Albaladejo RG, Martín-Hernanz S, Reyes-Betancort JA, Santos-Guerra A, Olangua-Corral M, Aparicio A. Reconstruction of the spatio-temporal diversification and ecological niche evolution of Helianthemum (Cistaceae) in the Canary Islands using genotyping-by-sequencing data. ANNALS OF BOTANY 2021; 127:597-611. [PMID: 32386290 PMCID: PMC8052925 DOI: 10.1093/aob/mcaa090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/02/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS Several biogeographical models have been proposed to explain the colonization and diversification patterns of Macaronesian lineages. In this study, we calculated the diversification rates and explored what model best explains the current distribution of the 15 species endemic to the Canary Islands belonging to Helianthemum sect. Helianthemum (Cistaceae). METHODS We performed robust phylogenetic reconstructions based on genotyping-by-sequencing data and analysed the timing, biogeographical history and ecological niche conservatism of this endemic Canarian clade. KEY RESULTS Our phylogenetic analyses provided strong support for the monophyly of this clade, and retrieved five lineages not currently restricted to a single island. The pristine colonization event took place in the Pleistocene (~1.82 Ma) via dispersal to Tenerife by a Mediterranean ancestor. CONCLUSIONS The rapid and abundant diversification (0.75-1.85 species per million years) undergone by this Canarian clade seems the result of complex inter-island dispersal events followed by allopatric speciation driven mostly by niche conservatism, i.e. inter-island dispersal towards niches featuring similar environmental conditions. Nevertheless, significant instances of ecological niche shifts have also been observed in some lineages, making an important contribution to the overall diversification history of this clade.
Collapse
Affiliation(s)
- Rafael G Albaladejo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Sara Martín-Hernanz
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
- For correspondence. E-mail
| | - J Alfredo Reyes-Betancort
- Jardín de Aclimatación de la Orotava (Instituto Canario de Investigaciones Agrarias - ICIA), Puerto de la Cruz, Santa Cruz de Tenerife, Spain
| | - Arnoldo Santos-Guerra
- Jardín de Aclimatación de la Orotava (Instituto Canario de Investigaciones Agrarias - ICIA), Puerto de la Cruz, Santa Cruz de Tenerife, Spain
| | - María Olangua-Corral
- Departamento de Biología Reproductiva y Micro-morfología, Jardín Botánico Canario ‘Viera y Clavijo’—Unidad Asociada CSIC (Cabildo de Gran Canaria), Las Palmas de Gran Canaria, Spain
| | - Abelardo Aparicio
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
5
|
Sun Y, Vargas-Mendoza CF. Population Structure, Genetic Diversity, and Evolutionary History of Kleinia neriifolia (Asteraceae) on the Canary Islands. FRONTIERS IN PLANT SCIENCE 2017; 8:1180. [PMID: 28713419 PMCID: PMC5492869 DOI: 10.3389/fpls.2017.01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Kleinia neriifolia Haw. is an endemic species on the Canarian archipelago, this species is widespread in the coastal thicket of all the Canarian islands. In the present study, genetic diversity and population structure of K. neriifolia were investigated using chloroplast gene sequences and nuclear SSR (simple sequence repeat). The differentiation among island populations, the historical demography, and the underlying evolutionary scenarios of this species are further tested based on the genetic data. Chloroplast diversity reveals a strong genetic divergence between eastern islands (Gran Canaria, Fuerteventura, and Lanzarote) and western islands (EI Hierro, La Palma, La Gomera, Tenerife), this west-east genetic divergence may reflect a very beginning of speciation. The evolutionary scenario with highest posterior probabilities suggests Gran Canaria as oldest population with a westward colonization path to Tenerife, La Gomera, La Palma, and EI Hierro, and eastward dispersal path to Lanzarote through Fuerteventura. In the western islands, there is a slight decrease in the effective population size toward areas of recent colonization. However, in the eastern islands, the effective population size increase in Lanzarote relative to Gran Canaria and Fuerteventura. These results further our understanding of the evolution of widespread endemic plants within Canarian archipelago.
Collapse
Affiliation(s)
- Ye Sun
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural UniversityGuangzhou, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | | |
Collapse
|