1
|
Calhoon D, Sang L, Ji F, Bezwada D, Hsu SC, Cai F, Kim N, Basu A, Wu R, Pimentel A, Brooks B, La K, Paulina Serrano A, Cassidy DL, Cai L, Toffessi-Tcheuyap V, Moussa ME, Uritboonthai W, Hoang LT, Kolli M, Jackson B, Margulis V, Siuzdak G, Brugarolas J, Corbin I, Pratt DA, Weiss RJ, DeBerardinis RJ, Birsoy K, Garcia-Bermudez J. Glycosaminoglycan-driven lipoprotein uptake protects tumours from ferroptosis. Nature 2025:10.1038/s41586-025-09162-0. [PMID: 40500442 DOI: 10.1038/s41586-025-09162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/15/2025] [Indexed: 06/29/2025]
Abstract
Lipids are essential components of cancer cells due to their structural and signalling roles1. To meet metabolic demands, many cancers take up extracellular lipids2-5; however, how these lipids contribute to cancer growth and progression remains poorly understood. Here, using functional genetic screens, we identify uptake of lipoproteins-the primary mechanism for lipid transport in circulation-as a key determinant of ferroptosis sensitivity in cancer. Lipoprotein supplementation robustly inhibits ferroptosis across diverse cancer types, primarily through the delivery of α-tocopherol (α-toc), the most abundant form of vitamin E in human lipoproteins. Mechanistically, cancer cells take up lipoproteins through a pathway dependent on sulfated glycosaminoglycans (GAGs) linked to cell-surface proteoglycans. Disrupting GAG biosynthesis or acutely degrading surface GAGs reduces lipoprotein uptake, sensitizes cancer cells to ferroptosis and impairs tumour growth in mice. Notably, human clear cell renal cell carcinomas-a lipid-rich malignancy-exhibit elevated levels of chondroitin sulfate and increased lipoprotein-derived α-toc compared with normal kidney tissue. Together, our study establishes lipoprotein uptake as a critical anti-ferroptotic mechanism in cancer and implicates GAG biosynthesis as a therapeutic target.
Collapse
Affiliation(s)
- Dylan Calhoon
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lingjie Sang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fubo Ji
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sheng-Chieh Hsu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nathaniel Kim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amrita Basu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Renfei Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anastasia Pimentel
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bailey Brooks
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Konnor La
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Ana Paulina Serrano
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel L Cassidy
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ling Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O'Donnell School of Public Health, University of Texas Southwestern, Dallas, TX, USA
| | - Vanina Toffessi-Tcheuyap
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maryam E Moussa
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Winnie Uritboonthai
- Scripps Center for Metabolomics, The Scripps Research Institute, La Jolla, CA, USA
| | - Linh Truc Hoang
- Scripps Center for Metabolomics, The Scripps Research Institute, La Jolla, CA, USA
| | - Meghana Kolli
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brooklyn Jackson
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gary Siuzdak
- Scripps Center for Metabolomics, The Scripps Research Institute, La Jolla, CA, USA
| | - James Brugarolas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ian Corbin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Ryan J Weiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Javier Garcia-Bermudez
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Kemberi M, Minns AF, Santamaria S. Soluble Proteoglycans and Proteoglycan Fragments as Biomarkers of Pathological Extracellular Matrix Remodeling. PROTEOGLYCAN RESEARCH 2024; 2:e70011. [PMID: 39600538 PMCID: PMC11587194 DOI: 10.1002/pgr2.70011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Proteoglycans and their proteolytic fragments diffuse into biological fluids such as plasma, serum, urine, or synovial fluid, where they can be detected by antibodies or mass-spectrometry. Neopeptides generated by the proteolysis of proteoglycans are recognized by specific neoepitope antibodies and can act as a proxy for the activity of certain proteases. Proteoglycan and proteoglycan fragments can be potentially used as prognostic, diagnostic, or theragnostic biomarkers for several diseases characterized by dysregulated extracellular matrix remodeling such as osteoarthritis, rheumatoid arthritis, atherosclerosis, thoracic aortic aneurysms, central nervous system disorders, viral infections, and cancer. Here, we review the main mechanisms accounting for the presence of soluble proteoglycans and their fragments in biological fluids, their potential application as diagnostic, prognostic, or theragnostic biomarkers, and highlight challenges and opportunities ahead of their clinical translation.
Collapse
Affiliation(s)
- Marsioleda Kemberi
- Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonEnglandUK
| | - Alexander F. Minns
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| | - Salvatore Santamaria
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| |
Collapse
|
3
|
Mongiat M, Pascal G, Poletto E, Williams DM, Iozzo RV. Proteoglycans of basement membranes: Crucial controllers of angiogenesis, neurogenesis, and autophagy. PROTEOGLYCAN RESEARCH 2024; 2:e22. [PMID: 39184370 PMCID: PMC11340296 DOI: 10.1002/pgr2.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/02/2024] [Indexed: 08/27/2024]
Abstract
Anti-angiogenic therapy is an established method for the treatment of several cancers and vascular-related diseases. Most of the agents employed target the vascular endothelial growth factor A, the major cytokine stimulating angiogenesis. However, the efficacy of these treatments is limited by the onset of drug resistance. Therefore, it is of fundamental importance to better understand the mechanisms that regulate angiogenesis and the microenvironmental cues that play significant role and influence patient treatment and outcome. In this context, here we review the importance of the three basement membrane heparan sulfate proteoglycans (HSPGs), namely perlecan, agrin and collagen XVIII. These HSPGs are abundantly expressed in the vasculature and, due to their complex molecular architecture, they interact with multiple endothelial cell receptors, deeply affecting their function. Under normal conditions, these proteoglycans exert pro-angiogenic functions. However, in pathological conditions such as cancer and inflammation, extracellular matrix remodeling leads to the degradation of these large precursor molecules and the liberation of bioactive processed fragments displaying potent angiostatic activity. These unexpected functions have been demonstrated for the C-terminal fragments of perlecan and collagen XVIII, endorepellin and endostatin. These bioactive fragments can also induce autophagy in vascular endothelial cells which contributes to angiostasis. Overall, basement membrane proteoglycans deeply affect angiogenesis counterbalancing pro-angiogenic signals during tumor progression, and represent possible means to develop new prognostic biomarkers and novel therapeutic approaches for the treatment of solid tumors.
Collapse
Affiliation(s)
- Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Gabriel Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Davion M. Williams
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Calhoon D, Sang L, Bezwada D, Kim N, Basu A, Hsu SC, Pimentel A, Brooks B, La K, Serrano AP, Cassidy DL, Cai L, Toffessi-Tcheuyap V, Margulis V, Cai F, Brugarolas J, Weiss RJ, DeBerardinis RJ, Birsoy K, Garcia-Bermudez J. Glycosaminoglycan-mediated lipoprotein uptake protects cancer cells from ferroptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593939. [PMID: 38765991 PMCID: PMC11101130 DOI: 10.1101/2024.05.13.593939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Lipids are essential for tumours because of their structural, energetic, and signaling roles. While many cancer cells upregulate lipid synthesis, growing evidence suggests that tumours simultaneously intensify the uptake of circulating lipids carried by lipoproteins. Which mechanisms promote the uptake of extracellular lipids, and how this pool of lipids contributes to cancer progression, are poorly understood. Here, using functional genetic screens, we find that lipoprotein uptake confers resistance to lipid peroxidation and ferroptotic cell death. Lipoprotein supplementation robustly inhibits ferroptosis across numerous cancer types. Mechanistically, cancer cells take up lipoproteins through a pathway dependent on sulfated glycosaminoglycans (GAGs) linked to cell-surface proteoglycans. Tumour GAGs are a major determinant of the uptake of both low and high density lipoproteins. Impairment of glycosaminoglycan synthesis or acute degradation of surface GAGs decreases the uptake of lipoproteins, sensitizes cells to ferroptosis and reduces tumour growth in mice. We also find that human clear cell renal cell carcinomas, a distinctively lipid-rich tumour type, display elevated levels of lipoprotein-derived antioxidants and the GAG chondroitin sulfate than non-malignant human kidney. Altogether, our work identifies lipoprotein uptake as an essential anti-ferroptotic mechanism for cancer cells to overcome lipid oxidative stress in vivo, and reveals GAG biosynthesis as an unexpected mediator of this process.
Collapse
Affiliation(s)
- Dylan Calhoon
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- These authors contributed equally to this work
| | - Lingjie Sang
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- These authors contributed equally to this work
| | - Divya Bezwada
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nathaniel Kim
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amrita Basu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Sheng-Chieh Hsu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anastasia Pimentel
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bailey Brooks
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Konnor La
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Ana Paulina Serrano
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel L Cassidy
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ling Cai
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern, Dallas, TX, USA
| | - Vanina Toffessi-Tcheuyap
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Cai
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Brugarolas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryan J Weiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kivanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Javier Garcia-Bermudez
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Smith DW, Azadi A, Lee CJ, Gardiner BS. Spatial composition and turnover of the main molecules in the adult glomerular basement membrane. Tissue Barriers 2023; 11:2110798. [PMID: 35959954 PMCID: PMC10364650 DOI: 10.1080/21688370.2022.2110798] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022] Open
Abstract
The glomerular basement membrane (GBM) is an important tissue structure in kidney function. It is the membrane through which filtrate and solutes must pass to reach the nephron tubules. This review focuses on the spatial location of the main extracellular matrix components of the GBM. It also attempts to explain this organization in terms of their synthesis, transport, and loss. The picture that emerges is that the collagen IV and laminin content of GBM are in a very slow dynamic disequilibrium, leading to GBM thickening with age, and in contrast, some heparan sulfate proteoglycans are in a dynamic equilibrium with a very rapid turnover (i.e. half-life measured in ~hours) and flow direction against the flow of filtrate. The highly rapid heparan sulfate turnover may serve several roles, including an unclogging mechanism for the GBM, compressive stiffness of the GBM fiber network, and/or enabling podocycte-endothelial crosstalk against the flow of filtrate.
Collapse
Affiliation(s)
- David W. Smith
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Azin Azadi
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
| | - Chang-Joon Lee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
| | - Bruce S. Gardiner
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
7
|
Noborn F, Sterky FH. Role of neurexin heparan sulfate in the molecular assembly of synapses - expanding the neurexin code? FEBS J 2023; 290:252-265. [PMID: 34699130 DOI: 10.1111/febs.16251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/21/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023]
Abstract
Synapses are the minimal information processing units of the brain and come in many flavors across distinct circuits. The shape and properties of a synapse depend on its molecular organisation, which is thought to largely depend on interactions between cell adhesion molecules across the synaptic cleft. An established example is that of presynaptic neurexins and their interactions with structurally diverse postsynaptic ligands: the diversity of neurexin isoforms that arise from alternative promoters and alternative splicing specify synaptic properties by dictating ligand preference. The recent finding that a majority of neurexin isoforms exist as proteoglycans with a single heparan sulfate (HS) polysaccharide adds to this complexity. Sequence motifs within the HS polysaccharide may differ between neuronal cell types to contribute specificity to its interactions, thereby expanding the coding capacity of neurexin diversity. However, an expanding number of HS-binding proteins have been found capable to recruit neurexins via the HS chain, challenging the concept of a code provided by neurexin splice isoforms. Here we discuss the possible roles of the neurexin HS in light of what is known from other HS-protein interactions, and propose a model for how the neurexin HS polysaccharide may contribute to synaptic assembly. We also discuss how the neurexin HS may be regulated by co-secreted carbonic anhydrase-related and FAM19A proteins, and highlight some key issues that should be resolved to advance the field.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik H Sterky
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:117-162. [DOI: 10.1007/978-3-031-12390-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Noborn F, Nilsson J, Larson G. Site-specific glycosylation of proteoglycans: a revisited frontier in proteoglycan research. Matrix Biol 2022; 111:289-306. [PMID: 35840015 DOI: 10.1016/j.matbio.2022.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/11/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
Proteoglycans (PGs), a class of carbohydrate-modified proteins, are present in essentially all metazoan organisms investigated to date. PGs are composed of glycosaminoglycan (GAG) chains attached to various core proteins and are important for embryogenesis and normal homeostasis. PGs exert many of their functions via their GAG chains and understanding the details of GAG-ligand interactions has been an essential part of PG research. Although PGs are also involved in many diseases, the number of GAG-related drugs used in the clinic is yet very limited, indicating a lack of detailed structure-function understanding. Structural analysis of PGs has traditionally been obtained by first separating the GAG chains from the core proteins, after which the two components are analyzed separately. While this strategy greatly facilitates the analysis, it precludes site-specific information and introduces either a "GAG" or a "core protein" perspective on the data interpretation. Mass-spectrometric (MS) glycoproteomic approaches have recently been introduced, providing site-specific information on PGs. Such methods have revealed a previously unknown structural complexity of the GAG linkage regions and resulted in identification of several novel CSPGs and HSPGs in humans and in model organisms, thereby expanding our view on PG complexity. In light of these findings, we discuss here if the use of such MS-based techniques, in combination with various functional assays, can also be used to expand our functional understanding of PGs. We have also summarized the site-specific information of all human PGs known to date, providing a theoretical framework for future studies on site-specific functional analysis of PGs in human pathophysiology.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Laboratory Medicine, Sundsvall County Hospital, Sweden.
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Critcher M, Huang ML. Excavating proteoglycan structure-function relationships: Modern approaches to capture the interactions of ancient biomolecules. Am J Physiol Cell Physiol 2022; 323:C415-C422. [PMID: 35759439 PMCID: PMC9359657 DOI: 10.1152/ajpcell.00222.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteoglycans are now well regarded as key facilitators of cell biology. While a majority of their interactions and functions are attributed to the decorating glycosaminoglycan chains, there is a growing appreciation for the roles of the proteoglycan core protein and for considering proteoglycans as replete protein-glycan conjugates. This appreciation, seeded by early work in proteoglycan biology, is now being advanced and exalted by modern approaches in chemical glycobiology. In this review, we discuss up-and-coming methods to unearth the fine-scale architecture of proteoglycans that modulate their functions and interactions. Crucial to these efforts is the production of chemically defined materials, including semi-synthetic proteoglycans and the in situ capture of interacting proteins. Together, the integration of chemical biology approaches promises to expedite the dissection of the structural heterogeneity of proteoglycans and deliver refined insight into their functions.
Collapse
Affiliation(s)
- Meg Critcher
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA
| | - Mia L Huang
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA.,Department of Chemistry, Scripps Research, La Jolla, CA
| |
Collapse
|
11
|
Basu A, Patel NG, Nicholson ED, Weiss RJ. Spatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human disease. Am J Physiol Cell Physiol 2022; 322:C849-C864. [PMID: 35294848 PMCID: PMC9037703 DOI: 10.1152/ajpcell.00085.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycosaminoglycans (GAGs) are long, linear polysaccharides that are ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These complex carbohydrates play important roles in many cellular processes and have been implicated in many disease states, including cancer, inflammation, and genetic disorders. GAGs are among the most complex molecules in biology with enormous information content and extensive structural and functional heterogeneity. GAG biosynthesis is a nontemplate-driven process facilitated by a large group of biosynthetic enzymes that have been extensively characterized over the past few decades. Interestingly, the expression of the enzymes and the consequent structure and function of the polysaccharide chains can vary temporally and spatially during development and under certain pathophysiological conditions, suggesting their assembly is tightly regulated in cells. Due to their many key roles in cell homeostasis and disease, there is much interest in targeting the assembly and function of GAGs as a therapeutic approach. Recent advances in genomics and GAG analytical techniques have pushed the field and generated new perspectives on the regulation of mammalian glycosylation. This review highlights the spatiotemporal diversity of GAGs and the mechanisms guiding their assembly and function in human biology and disease.
Collapse
Affiliation(s)
- Amrita Basu
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Neil G. Patel
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia,2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Elijah D. Nicholson
- 2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Ryan J. Weiss
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia,2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
12
|
Noborn F, Nikpour M, Persson A, Sihlbom C, Nilsson J, Larson G. A Glycoproteomic Approach to Identify Novel Proteoglycans. Methods Mol Biol 2022; 2303:71-85. [PMID: 34626371 DOI: 10.1007/978-1-0716-1398-6_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this chapter, we describe a glycoproteomic approach for the identification of novel chondroitin sulfate proteoglycans (CSPGs) using a combination of biochemical enrichments, enzymatic digestions, and nanoscale liquid chromatography tandem mass spectrometry (nLC-MS/MS) analysis. The identification is achieved by trypsin digestion of CSPG-containing samples, followed by enrichment of chondroitin sulfate (CS) glycopeptides by strong anion exchange chromatography (SAX). The enriched CS glycopeptides are then digested with chondroitinase ABC to depolymerize the CS polysaccharides, generating a residual hexasaccharide structure, composed of the linkage region tetrasaccharide extended with a terminal dehydrated disaccharide, still attached to the peptide. The obtained CS glycopeptides are analyzed by nLC-MS/MS, and the generated data sets are evaluated through proteomic software with adjustment in the settings to allow for glycopeptide identification. This approach has enabled the identification of several novel core proteins in human samples and in Caenorhabditis elegans. Here we specifically describe the procedure for the enrichment and characterization of CS glycopeptides from human cerebrospinal fluid (CSF).
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mahnaz Nikpour
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Andrea Persson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden. .,Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
13
|
Chen CG, Iozzo RV. Extracellular matrix guidance of autophagy: a mechanism regulating cancer growth. Open Biol 2022; 12:210304. [PMID: 34982945 PMCID: PMC8727153 DOI: 10.1098/rsob.210304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023] Open
Abstract
The extracellular matrix (ECM) exists as a dynamic network of biophysical and biochemical factors that maintain tissue homeostasis. Given its sensitivity to changes in the intra- and extracellular space, the plasticity of the ECM can be pathological in driving disease through aberrant matrix remodelling. In particular, cancer uses the matrix for its proliferation, angiogenesis, cellular reprogramming and metastatic spread. An emerging field of matrix biology focuses on proteoglycans that regulate autophagy, an intracellular process that plays both critical and contextual roles in cancer. Here, we review the most prominent autophagic modulators from the matrix and the current understanding of the cellular pathways and signalling cascades that mechanistically drive their autophagic function. We then critically assess how their autophagic functions influence tumorigenesis, emphasizing the complexities and stage-dependent nature of this relationship in cancer. We highlight novel emerging data on immunoglobulin-containing and proline-rich receptor-1, heparanase and thrombospondin 1 in autophagy and cancer. Finally, we further discuss the pro- and anti-autophagic modulators originating from the ECM, as well as how these proteoglycans and other matrix constituents specifically influence cancer progression.
Collapse
Affiliation(s)
- Carolyn G. Chen
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Nikpour M, Nilsson J, Persson A, Noborn F, Vorontsov E, Larson G. Proteoglycan profiling of human, rat and mouse insulin-secreting cells. Glycobiology 2021; 31:916-930. [PMID: 33997891 PMCID: PMC8434799 DOI: 10.1093/glycob/cwab035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Proteoglycans (PGs) are proteins with glycosaminoglycan (GAG) chains, such as chondroitin sulfate (CS) or heparan sulfate (HS), attached to serine residues. We have earlier shown that prohormones can carry CS, constituting a novel class of PGs. The mapping of GAG modifications of proteins in endocrine cells may thus assist us in delineating possible roles of PGs in endocrine cellular physiology. With this aim, we applied a glycoproteomic approach to identify PGs, their GAG chains and their attachment sites in insulin-secreting cells. Glycopeptides carrying GAG chains were enriched from human pancreatic islets, rat (INS-1 832/13) and mouse (MIN6, NIT-1) insulinoma cell lines by exchange chromatography, depolymerized with GAG lyases, and analyzed by nanoflow liquid chromatography tandem mass spectrometry. We identified CS modifications of chromogranin-A (CgA), islet amyloid polypeptide, secretogranin-1 and secretogranin-2, immunoglobulin superfamily member 10, and protein AMBP. Additionally, we identified two HS-modified prohormones (CgA and secretogranin-1), which was surprising, as prohormones are not typically regarded as HSPGs. For CgA, the glycosylation site carried either CS or HS, making it a so-called hybrid site. Additional HS sites were found on syndecan-1, syndecan-4, nerurexin-2, protein NDNF and testican-1. These results demonstrate that several prohormones, and other constituents of the insulin-secreting cells are PGs. Cell-targeted mapping of the GAG glycoproteome forms an important basis for better understanding of endocrine cellular physiology, and the novel CS and HS sites presented here provide important knowledge for future studies.
Collapse
Affiliation(s)
- Mahnaz Nikpour
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9E, SE 405 30 Gothenburg, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
| | - Andrea Persson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
| | - Fredrik Noborn
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
| | - Egor Vorontsov
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9E, SE 405 30 Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9E, SE 405 30 Gothenburg, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Bruna Stråket 16, SE 413 45 Gothenburg, Sweden
| |
Collapse
|
15
|
Noborn F, Nikpour M, Persson A, Nilsson J, Larson G. Expanding the Chondroitin Sulfate Glycoproteome - But How Far? Front Cell Dev Biol 2021; 9:695970. [PMID: 34490248 PMCID: PMC8418075 DOI: 10.3389/fcell.2021.695970] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are found at cell surfaces and in connective tissues, where they interact with a multitude of proteins involved in various pathophysiological processes. From a methodological perspective, the identification of CSPGs is challenging, as the identification requires the combined sequencing of specific core proteins, together with the characterization of the CS polysaccharide modification(s). According to the current notion of CSPGs, they are often considered in relation to a functional role in which a given proteoglycan regulates a specific function in cellular physiology. Recent advances in glycoproteomic methods have, however, enabled the identification of numerous novel chondroitin sulfate core proteins, and their glycosaminoglycan attachment sites, in humans and in various animal models. In addition, these methods have revealed unexpected structural complexity even in the linkage regions. These findings indicate that the number and structural complexity of CSPGs are much greater than previously perceived. In light of these findings, the prospect of finding additional CSPGs, using improved methods for structural and functional characterizations, and studying novel sample matrices in humans and in animal models is discussed. Further, as many of the novel CSPGs are found in low abundance and with not yet assigned functions, these findings may challenge the traditional notion of defining proteoglycans. Therefore, the concept of proteoglycans is considered, discussing whether "a proteoglycan" should be defined mainly on the basis of an assigned function or on the structural evidence of its existence.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mahnaz Nikpour
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Andrea Persson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Persson A, Nikpour M, Vorontsov E, Nilsson J, Larson G. Domain Mapping of Chondroitin/Dermatan Sulfate Glycosaminoglycans Enables Structural Characterization of Proteoglycans. Mol Cell Proteomics 2021; 20:100074. [PMID: 33757834 PMCID: PMC8724862 DOI: 10.1016/j.mcpro.2021.100074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/22/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Of all posttranslational modifications known, glycosaminoglycans (GAGs) remain one of the most challenging to study, and despite the recent years of advancement in MS technologies and bioinformatics, detailed knowledge about the complete structures of GAGs as part of proteoglycans (PGs) is limited. To address this issue, we have developed a protocol to study PG-derived GAGs. Chondroitin/dermatan sulfate conjugates from the rat insulinoma cell line, INS-1832/13, known to produce primarily the PG chromogranin-A, were enriched by anion-exchange chromatography after pronase digestion. Following benzonase and hyaluronidase digestions, included in the sample preparation due to the apparent interference from oligonucleotides and hyaluronic acid in the analysis, the GAGs were orthogonally depolymerized and analyzed using nano-flow reversed-phase LC-MS/MS in negative mode. To facilitate the data interpretation, we applied an automated LC-MS peak detection and intensity measurement via the Proteome Discoverer software. This approach effectively provided a detailed structural description of the nonreducing end, internal, and linkage region domains of the CS/DS of chromogranin-A. The copolymeric CS/DS GAGs constituted primarily consecutive glucuronic-acid-containing disaccharide units, or CS motifs, of which the N-acetylgalactosamine residues were 4-O-sulfated, interspersed by single iduronic-acid-containing disaccharide units. Our data suggest a certain heterogeneity of the GAGs due to the identification of not only CS/DS GAGs but also of GAGs entirely of CS character. The presented protocol allows for the detailed characterization of PG-derived GAGs, which may greatly increase the knowledge about GAG structures in general and eventually lead to better understanding of how GAG structures are related to biological functions. Protocol developed to structurally characterize glycosaminoglycans of proteoglycans. Comprehensive characterization of cellular glycosaminoglycan structures. Relative quantification of nonreducing end, internal, and linkage region domains. Overall chondroitin/dermatan sulfate glycosaminoglycan structures of chromogranin-A.
Collapse
Affiliation(s)
- Andrea Persson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sweden.
| | - Mahnaz Nikpour
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Egor Vorontsov
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sweden; Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Västra Götaland Region, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Västra Götaland Region, Sweden.
| |
Collapse
|
17
|
Wang H, Zhang L, Wang Y, Li J, Du G, Kang Z. Engineering a thermostable chondroitinase for production of specifically distributed low-molecular-weight chondroitin sulfate. Biotechnol J 2021; 16:e2000321. [PMID: 33350041 DOI: 10.1002/biot.202000321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022]
Abstract
Chondroitinase ABC I (csABC I) has attracted intensive attention because of its great potential in heparin refining and the enzymatic preparation of low-molecular-weight chondroitin sulfate (LMW-CS). However, low thermal resistance (<30℃) restricts its applications. Herein, structure-guided and sequence-assisted combinatorial engineering approaches were applied to improve the thermal resistance of Proteus vulgaris csABC I. By integrating the deletion of the flexible fragment R166-L170 at the N-terminal domain and the mutation of E694P at the C-terminal domain, variant NΔ5/E694P exhibited 247-fold improvement of its half-life at 37℃ and a 2.3-fold increase in the specific activity. Through batch fermentation in a 3-L fermenter, the expression of variant NΔ5/E694P in an Escherichia coli host reached 1.7 g L-1 with the activity of 1.0 × 105 U L-1 . Finally, the enzymatic approach for the preparation of LMW-CS was established. By modulating enzyme concentration and controlling depolymerization time, specifically distributed LMW-CS (7000, 3400, and 1900 Da) with low polydispersity was produced, demonstrating the applicability of these processes for the industrial production of LMW-CS in a more environmentally friendly way.
Collapse
Affiliation(s)
- Hao Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Lin Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Delbaere S, De Clercq A, Mizumoto S, Noborn F, Bek JW, Alluyn L, Gistelinck C, Syx D, Salmon PL, Coucke PJ, Larson G, Yamada S, Willaert A, Malfait F. b3galt6 Knock-Out Zebrafish Recapitulate β3GalT6-Deficiency Disorders in Human and Reveal a Trisaccharide Proteoglycan Linkage Region. Front Cell Dev Biol 2020; 8:597857. [PMID: 33363150 PMCID: PMC7758351 DOI: 10.3389/fcell.2020.597857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
Proteoglycans are structurally and functionally diverse biomacromolecules found abundantly on cell membranes and in the extracellular matrix. They consist of a core protein linked to glycosaminoglycan chains via a tetrasaccharide linkage region. Here, we show that CRISPR/Cas9-mediated b3galt6 knock-out zebrafish, lacking galactosyltransferase II, which adds the third sugar in the linkage region, largely recapitulate the phenotypic abnormalities seen in human β3GalT6-deficiency disorders. These comprise craniofacial dysmorphism, generalized skeletal dysplasia, skin involvement and indications for muscle hypotonia. In-depth TEM analysis revealed disturbed collagen fibril organization as the most consistent ultrastructural characteristic throughout different affected tissues. Strikingly, despite a strong reduction in glycosaminoglycan content, as demonstrated by anion-exchange HPLC, subsequent LC-MS/MS analysis revealed a small amount of proteoglycans containing a unique linkage region consisting of only three sugars. This implies that formation of glycosaminoglycans with an immature linkage region is possible in a pathogenic context. Our study, therefore unveils a novel rescue mechanism for proteoglycan production in the absence of galactosyltransferase II, hereby opening new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sarah Delbaere
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Fredrik Noborn
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Lien Alluyn
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Charlotte Gistelinck
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, United States
| | - Delfien Syx
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | - Paul J. Coucke
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Andy Willaert
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Fransiska Malfait
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Filipek-Górniok B, Habicher J, Ledin J, Kjellén L. Heparan Sulfate Biosynthesis in Zebrafish. J Histochem Cytochem 2020; 69:49-60. [PMID: 33216642 DOI: 10.1369/0022155420973980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biosynthesis of heparan sulfate (HS) proteoglycans occurs in the Golgi compartment of cells and will determine the sulfation pattern of HS chains, which in turn will have a large impact on the biological activity of the proteoglycans. Earlier studies in mice have demonstrated the importance of HS for embryonic development. In this review, the enzymes participating in zebrafish HS biosynthesis, along with a description of enzyme mutants available for functional studies, are presented. The consequences of the zebrafish genome duplication and maternal transcript contribution are briefly discussed as are the possibilities of CRISPR/Cas9 methodologies to use the zebrafish model system for studies of biosynthesis as well as proteoglycan biology.
Collapse
Affiliation(s)
- Beata Filipek-Górniok
- Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Judith Habicher
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Johan Ledin
- Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Sethi MK, Downs M, Zaia J. Serial in-solution digestion protocol for mass spectrometry-based glycomics and proteomics analysis. Mol Omics 2020; 16:364-376. [PMID: 32309832 DOI: 10.1039/d0mo00019a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advancement in mass spectrometry has revolutionized the field of proteomics. However, there remains a gap in the analysis of protein post-translational modifications (PTMs), particularly for glycosylation. Glycosylation, the most common form of PTM, is involved in most biological processes; thus, analysis of glycans along with proteins is crucial to answering important biologically relevant questions. Of particular interest is the brain extracellular matrix (ECM), which has been called the "final Frontier" in neuroscience, which consists of highly glycosylated proteins. Among these, proteoglycans (PGs) contain large glycan structures called glycosaminoglycans (GAGs) that form crucial ECM components, including perineuronal nets (PNNs), shown to be altered in neuropsychiatric diseases. Thus, there is a growing need for high-throughput methods that combine GAG (glycomics) and PGs (proteomics) analysis to unravel the complete biological picture. The protocol presented here integrates glycomics and proteomics to analyze multiple classes of biomolecules. We use a filter-aided sample preparation (FASP) type serial in-solution digestion of GAG classes, including hyaluronan (HA), chondroitin sulfate (CS), and heparan sulfate (HS), followed by peptides. The GAGs and peptides are then cleaned and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This protocol is an efficient and economical way of processing tissue or cell lysates to isolate various GAG classes and peptides from the same sample. The method is more efficient (single-pot) than available parallel (multi-pot) release methods, and removal of GAGs facilitates the identification of the proteins with higher peptide-coverage than using conventional-proteomics. Overall, we demonstrate a high-throughput & efficient protocol for mass spectrometry-based glycomic and proteomic analysis (data are available via ProteomeXchange with identifier PXD017513).
Collapse
Affiliation(s)
- Manveen K Sethi
- Boston University School of Medicine, Boston University, Department of Biochemistry, Boston, 02118, USA.
| | | | | |
Collapse
|
21
|
Takemura M, Noborn F, Nilsson J, Bowden N, Nakato E, Baker S, Su TY, Larson G, Nakato H. Chondroitin sulfate proteoglycan Windpipe modulates Hedgehog signaling in Drosophila. Mol Biol Cell 2020; 31:813-824. [PMID: 32049582 PMCID: PMC7185963 DOI: 10.1091/mbc.e19-06-0327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Proteoglycans, a class of carbohydrate-modified proteins, often modulate growth factor signaling on the cell surface. However, the molecular mechanism by which proteoglycans regulate signal transduction is largely unknown. In this study, using a recently developed glycoproteomic method, we found that Windpipe (Wdp) is a novel chondroitin sulfate proteoglycan (CSPG) in Drosophila. Wdp is a single-pass transmembrane protein with leucin-rich repeat (LRR) motifs and bears three CS sugar chain attachment sites in the extracellular domain. Here we show that Wdp modulates the Hedgehog (Hh) pathway. In the wing disc, overexpression of wdp inhibits Hh signaling, which is dependent on its CS chains and the LRR motifs. The wdp null mutant flies show a specific defect (supernumerary scutellar bristles) known to be caused by Hh overexpression. RNA interference knockdown and mutant clone analyses showed that loss of wdp leads to the up-regulation of Hh signaling. Altogether, our study demonstrates a novel role of CSPGs in regulating Hh signaling.
Collapse
Affiliation(s)
- Masahiko Takemura
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Fredrik Noborn
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Nanako Bowden
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Sarah Baker
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Tsu-Yi Su
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
22
|
Koch CD, Apte SS. Characterization of Proteoglycanomes by Mass Spectrometry. EXTRACELLULAR MATRIX OMICS 2020. [DOI: 10.1007/978-3-030-58330-9_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Wang RM, Duran P, Christman KL. Processed Tissues. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Characterization of C. elegans Chondroitin Proteoglycans and Their Large Functional and Structural Heterogeneity; Evolutionary Aspects on Structural Differences Between Humans and the Nematode. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 21:155-170. [PMID: 32185697 DOI: 10.1007/5584_2020_485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteoglycans regulate important cellular pathways in essentially all metazoan organisms. While considerable effort has been devoted to study structural and functional aspects of proteoglycans in vertebrates, the knowledge of the core proteins and proteoglycan-related functions in invertebrates is relatively scarce, even for C.elegans. This nematode produces a large amount of non-sulfated chondroitin in addition to small amount of low-sulfated chondroitin chains (Chn and CS chains, respectively). Until recently, 9 chondroitin core proteins (CPGs) had been identified in C.elegans, none of which showed any homology to vertebrate counterparts or to other invertebrate core proteins. By using a glycoproteomic approach, we recently characterized the chondroitin glycoproteome of C.elegans, resulting in the identification of 15 novel CPG core proteins in addition to the 9 previously established. Three of the novel core proteins displayed homology to human proteins, indicating that CPG and CSPG core proteins may be more conserved throughout evolution than previously perceived. Bioinformatic analysis of the primary amino acid sequences revealed that the core proteins contained a broad range of functional domains, indicating that specialization of proteoglycan-mediated functions may have evolved early in metazoan evolution. This review specifically discusses our recent data in relation to previous knowledge of core proteins and GAG-attachment sites in Chn and CS proteoglycans of C.elegans and humans, and point out both converging and diverging aspects of proteoglycan evolution.
Collapse
|
25
|
Raghunathan R, Sethi MK, Klein JA, Zaia J. Proteomics, Glycomics, and Glycoproteomics of Matrisome Molecules. Mol Cell Proteomics 2019; 18:2138-2148. [PMID: 31471497 PMCID: PMC6823855 DOI: 10.1074/mcp.r119.001543] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
The most straightforward applications of proteomics database searching involve intracellular proteins. Although intracellular gene products number in the thousands, their well-defined post-translational modifications (PTMs) makes database searching practical. By contrast, cell surface and extracellular matrisome proteins pass through the secretory pathway where many become glycosylated, modulating their physicochemical properties, adhesive interactions, and diversifying their functions. Although matrisome proteins number only a few hundred, their high degree of complex glycosylation multiplies the number of theoretical proteoforms by orders of magnitude. Given that extracellular networks that mediate cell-cell and cell-pathogen interactions in physiology depend on glycosylation, it is important to characterize the proteomes, glycomes, and glycoproteomes of matrisome molecules that exist in a given biological context. In this review, we summarize proteomics approaches for characterizing matrisome molecules, with an emphasis on applications to brain diseases. We demonstrate the availability of methods that should greatly increase the availability of information on matrisome molecular structure associated with health and disease.
Collapse
Affiliation(s)
- Rekha Raghunathan
- Molecular and Translational Medicine Program, Boston University, Boston, MA 02218; Department of Biochemistry, Boston University, Boston, MA 02218
| | - Manveen K Sethi
- Department of Biochemistry, Boston University, Boston, MA 02218
| | - Joshua A Klein
- Bioinformatics Program, Boston University, Boston, MA 02218
| | - Joseph Zaia
- Molecular and Translational Medicine Program, Boston University, Boston, MA 02218; Department of Biochemistry, Boston University, Boston, MA 02218; Bioinformatics Program, Boston University, Boston, MA 02218.
| |
Collapse
|
26
|
Abstract
Proteoglycans can be difficult molecules to isolate and analyze due to large mass, charge, and tendency to aggregate or form macromolecular complexes. This unit describes detailed methods for purification of matrix, cell surface, and cytoskeleton-linked proteoglycans. Methods for analysis of glycoaminoglycan size and type and of core protein species are described. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Anne Woods
- University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|
27
|
Gordts PLSM, Esko JD. The heparan sulfate proteoglycan grip on hyperlipidemia and atherosclerosis. Matrix Biol 2018; 71-72:262-282. [PMID: 29803939 DOI: 10.1016/j.matbio.2018.05.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in lipid homeostasis and inflammation. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions in the context of cardiovascular disease. The majority of cardiovascular disease-related deaths are caused by complications of atherosclerosis, a disease that results in narrowing of the arterial lumen, thereby reducing blood flow to critical levels in vital organs, such as the heart and brain. Here, we discuss novel insights into how heparan sulfate proteoglycans modulate risk factors such as hyperlipidemia and inflammation that drive the initiation and progression of atherosclerotic plaques to their clinical critical endpoint.
Collapse
Affiliation(s)
- Philip L S M Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA.
| | - Jeffrey D Esko
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
28
|
Klein JA, Meng L, Zaia J. Deep Sequencing of Complex Proteoglycans: A Novel Strategy for High Coverage and Site-specific Identification of Glycosaminoglycan-linked Peptides. Mol Cell Proteomics 2018; 17:1578-1590. [PMID: 29773674 DOI: 10.1074/mcp.ra118.000766] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/09/2018] [Indexed: 12/17/2022] Open
Abstract
Proteoglycans are distributed in all animal tissues and play critical, multifaceted, physiological roles. Expressed in a spatially and temporally regulated manner, these molecules regulate interactions among growth factors and cell surface receptors and play key roles in basement membranes and other extracellular matrices. Because of the high degree of glycosylation by glycosaminoglycan (GAG), N-glycan and mucin-type O-glycan classes, the peptide sequence coverage of complex proteoglycans is revealed poorly by standard mass spectrometry-based proteomics methods. As a result, there is little information concerning how proteoglycan site specific glycosylation changes during normal and pathological processes. Here, we developed a workflow to improve sequence coverage and identification of glycosylated peptides in proteoglycans. We applied this workflow to the small leucine-rich proteoglycan decorin and three hyalectan proteoglycans: neurocan, brevican, and aggrecan.We characterized glycosylation of these proteoglycans using LC-MS methods easily implemented on instruments widely used in proteomics laboratories. For decorin, we assigned the linker-glycosite and three N-glycosylation sites. For neurocan and brevican, we identified densely glycosylated mucin-like regions in the extended domains. For aggrecan, we identified 50 linker-glycosites and mucin-type O-glycosites in the extended region and N-glycosites in the globular domains, many of which are novel and have not been observed previously. Most importantly, we demonstrate an LC-MS and bioinformatics approach that will enable routine analysis of proteoglycan glycosylation from biological samples to assess their role in pathophysiology.
Collapse
Affiliation(s)
- Joshua A Klein
- From the ‡Department of Biochemistry, Center for Biomedical Mass Spectrometry.,§Bioinformatics Program Boston University, Boston, Massachusetts 02118
| | - Le Meng
- From the ‡Department of Biochemistry, Center for Biomedical Mass Spectrometry
| | - Joseph Zaia
- From the ‡Department of Biochemistry, Center for Biomedical Mass Spectrometry; .,§Bioinformatics Program Boston University, Boston, Massachusetts 02118
| |
Collapse
|
29
|
Rnjak‐Kovacina J, Tang F, Whitelock JM, Lord MS. Glycosaminoglycan and Proteoglycan-Based Biomaterials: Current Trends and Future Perspectives. Adv Healthc Mater 2018; 7:e1701042. [PMID: 29210510 DOI: 10.1002/adhm.201701042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/18/2017] [Indexed: 12/18/2022]
Abstract
Proteoglycans and their glycosaminoglycans (GAG) are essential for life as they are responsible for orchestrating many essential functions in development and tissue homeostasis, including biophysical properties and roles in cell signaling and extracellular matrix assembly. In an attempt to capture these biological functions, a range of biomaterials are designed to incorporate off-the-shelf GAGs, typically isolated from animal sources, for tissue engineering, drug delivery, and regenerative medicine applications. All GAGs, with the exception of hyaluronan, are present in the body covalently coupled to the protein core of proteoglycans, yet the incorporation of proteoglycans into biomaterials remains relatively unexplored. Proteoglycan-based biomaterials are more likely to recapitulate the unique, tissue-specific GAG profiles and native GAG presentation in human tissues. The protein core offers additional biological functionality, including cell, growth factor, and extracellular matrix binding domains, as well as sites for protein immobilization chemistries. Finally, proteoglycans can be recombinantly expressed in mammalian cells and thus offer genetic manipulation and metabolic engineering opportunities for control over the protein and GAG structures and functions. This Progress Report summarizes current developments in GAG-based biomaterials and presents emerging research and future opportunities for the development of biomaterials that incorporate GAGs presented in their native proteoglycan form.
Collapse
Affiliation(s)
| | - Fengying Tang
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| |
Collapse
|
30
|
O'Callaghan P, Zhang X, Li JP. Heparan Sulfate Proteoglycans as Relays of Neuroinflammation. J Histochem Cytochem 2018; 66:305-319. [PMID: 29290138 DOI: 10.1369/0022155417742147] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are implicated as inflammatory mediators in a variety of settings, including chemokine activation, which is required to recruit circulating leukocytes to infection sites. Heparan sulfate (HS) polysaccharide chains are highly interactive and serve co-receptor roles in multiple ligand:receptor interactions. HS may also serve as a storage depot, sequestering ligands such as cytokines and restricting their access to binding partners. Heparanase, through its ability to fragment HS chains, is a key regulator of HS function and has featured prominently in studies of HS's involvement in inflammatory processes. This review focuses on recent discoveries regarding the role of HSPGs, HS, and heparanase during inflammation, with particular focus on the brain. HS chains emerge as critical go-betweens in multiple aspects of the inflammatory response-relaying signals between receptors and cells. The molecular interactions proposed to occur between HSPGs and the pathogen receptor toll-like receptor 4 (TLR4) are discussed, and we summarize some of the contrasting roles that HS and heparanase have been assigned in diseases associated with chronic inflammatory states, including Alzheimer's disease (AD). We conclude by briefly discussing how current knowledge could potentially be applied to augment HS-mediated events during sustained neuroinflammation, which contributes to neurodegeneration in AD.
Collapse
Affiliation(s)
- Paul O'Callaghan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Xiao Zhang
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Noborn F, Gomez Toledo A, Nasir W, Nilsson J, Dierker T, Kjellén L, Larson G. Expanding the chondroitin glycoproteome of Caenorhabditis elegans. J Biol Chem 2017; 293:379-389. [PMID: 29138239 DOI: 10.1074/jbc.m117.807800] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are important structural components of connective tissues in essentially all metazoan organisms. In vertebrates, CSPGs are involved also in more specialized processes such as neurogenesis and growth factor signaling. In invertebrates, however, knowledge of CSPGs core proteins and proteoglycan-related functions is relatively limited, even for Caenorhabditis elegans. This nematode produces large amounts of non-sulfated chondroitin in addition to low-sulfated chondroitin sulfate chains. So far, only nine core proteins (CPGs) have been identified, some of which have been shown to be involved in extracellular matrix formation. We recently introduced a protocol to characterize proteoglycan core proteins by identifying CS-glycopeptides with a combination of biochemical enrichment, enzymatic digestion, and nano-scale liquid chromatography MS/MS analysis. Here, we have used this protocol to map the chondroitin glycoproteome in C. elegans, resulting in the identification of 15 novel CPG proteins in addition to the nine previously established. Three of the newly identified CPGs displayed homology to vertebrate proteins. Bioinformatics analysis of the primary protein sequences revealed that the CPG proteins altogether contained 19 unique functional domains, including Kunitz and endostatin domains, suggesting direct involvement in protease inhibition and axonal migration, respectively. The analysis of the core protein domain organization revealed that all chondroitin attachment sites are located in unstructured regions. Our results suggest that CPGs display a much greater functional and structural heterogeneity than previously appreciated and indicate that specialized proteoglycan-mediated functions evolved early in metazoan evolution.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg
| | - Alejandro Gomez Toledo
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg
| | - Waqas Nasir
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg
| | - Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg
| | - Tabea Dierker
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, SE-413 45 Gothenburg.
| |
Collapse
|
32
|
Luo Y, Wang X, Liu Q, Liang A, He X, Jiang Z. A sensitive surface-enhanced Raman scattering method for chondroitin sulfate with Victoria blue 4R molecular probes in nanogold sol substrate. LUMINESCENCE 2017; 33:131-137. [DOI: 10.1002/bio.3382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Yanghe Luo
- School of Food and Bioengineering; Hezhou University; Hezhou China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry Education; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology; Guilin China
| | - Xiaoliang Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry Education; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology; Guilin China
| | - Qingye Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry Education; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology; Guilin China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry Education; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology; Guilin China
| | - Xingcun He
- School of Food and Bioengineering; Hezhou University; Hezhou China
| | - Zhiliang Jiang
- School of Food and Bioengineering; Hezhou University; Hezhou China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry Education; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology; Guilin China
| |
Collapse
|
33
|
Nilsson J, Noborn F, Gomez Toledo A, Nasir W, Sihlbom C, Larson G. Characterization of Glycan Structures of Chondroitin Sulfate-Glycopeptides Facilitated by Sodium Ion-Pairing and Positive Mode LC-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:229-241. [PMID: 27873218 PMCID: PMC5227003 DOI: 10.1007/s13361-016-1539-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/13/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
Purification and liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of glycopeptides, originating from protease digests of glycoproteins, enables site-specific analysis of protein N- and O-glycosylations. We have described a protocol to enrich, hydrolyze by chondroitinase ABC, and characterize chondroitin sulfate-containing glycopeptides (CS-glycopeptides) using positive mode LC-MS/MS. The CS-glycopeptides, originating from the Bikunin proteoglycan of human urine samples, had ΔHexAGalNAcGlcAGalGalXyl-O-Ser hexasaccharide structure and were further substituted with 0-3 sulfate and 0-1 phosphate groups. However, it was not possible to exactly pinpoint sulfate attachment residues, for protonated precursors, due to extensive fragmentation of sulfate groups using high-energy collision induced dissociation (HCD). To circumvent the well-recognized sulfate instability, we now introduced Na+ ions to form sodiated precursors, which protected sulfate groups from decomposition and facilitated the assignment of sulfate modifications. Sulfate groups were pinpointed to both Gal residues and to the GalNAc of the hexasaccharide structure. The intensities of protonated and sodiated saccharide oxonium ions were very prominent in the HCD-MS2 spectra, which provided complementary structural analysis of sulfate substituents of CS-glycopeptides. We have demonstrated a considerable heterogeneity of the bikunin CS linkage region. The realization of these structural variants should be beneficial in studies aimed at investigating the importance of the CS linkage region with regards to the biosynthesis of CS and potential interactions to CS binding proteins. Also, the combined use of protonated and sodiated precursors for positive mode HCD fragmentation analysis will likely become useful for additional classes of sulfated glycopeptides. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Noborn
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Alejandro Gomez Toledo
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Waqas Nasir
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Carina Sihlbom
- The Proteomics Core Facility, Core Facilities, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|