1
|
Thomas G, Kay WT, Fones HN. Life on a leaf: the epiphyte to pathogen continuum and interplay in the phyllosphere. BMC Biol 2024; 22:168. [PMID: 39113027 PMCID: PMC11304629 DOI: 10.1186/s12915-024-01967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024] Open
Abstract
Epiphytic microbes are those that live for some or all of their life cycle on the surface of plant leaves. Leaf surfaces are a topologically complex, physicochemically heterogeneous habitat that is home to extensive, mixed communities of resident and transient inhabitants from all three domains of life. In this review, we discuss the origins of leaf surface microbes and how different biotic and abiotic factors shape their communities. We discuss the leaf surface as a habitat and microbial adaptations which allow some species to thrive there, with particular emphasis on microbes that occupy the continuum between epiphytic specialists and phytopathogens, groups which have considerable overlap in terms of adapting to the leaf surface and between which a single virulence determinant can move a microbial strain. Finally, we discuss the recent findings that the wheat pathogenic fungus Zymoseptoria tritici spends a considerable amount of time on the leaf surface, and ask what insights other epiphytic organisms might provide into this pathogen, as well as how Z. tritici might serve as a model system for investigating plant-microbe-microbe interactions on the leaf surface.
Collapse
Affiliation(s)
| | - William T Kay
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
2
|
Ultrastructure and Physiological Characterization of Morchella Mitospores and Their Relevance in the Understanding of the Morel Life Cycle. Microorganisms 2023; 11:microorganisms11020345. [PMID: 36838309 PMCID: PMC9960803 DOI: 10.3390/microorganisms11020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Morels, which belong to the Ascomycete genus Morchella, are highly valued edible fungi treasured by gourmet chefs worldwide. Some species are saprotrophic and others are able to form facultative mycorrhizal-like associations with plant roots without establishing true ectomycorrhizal symbioses. In general, it is considered that the formation of asexual spores, or mitospores, is an important step in the life cycle of morels. However, ultrastructure characterization and physiological attributes of morel mitospores have received little attention. In this contribution, the mitospores of M. sextelata were successfully induced under laboratory conditions and their ultrastructure, occurrence, germination, physiological characteristics and mating type gene structure were studied. Mitospore production was closely related to aeration, nutrition and humidity conditions. The average germination rate of mitospores on different media and under various induction stimuli was very low, with an average of 1/100,000. Based on the ultrastructure characterization, low germination rate, growth rate decline, rapid aging and mating genotyping, it was concluded that the mitospores of M. sextelata had lost their conventional function as conidia and might act more as mate sperm-like (gamete) structures. Thus, this study contributed to a deeper understanding of the life cycle of the economically and ecologically important morel fungal group.
Collapse
|
3
|
Lutz T, Hadeler B, Jaeckel M, Schulz B, Heinze C. Stable overexpression and targeted gene deletion of the causative agent of ash dieback Hymenoscyphus fraxineus. Fungal Biol Biotechnol 2023; 10:1. [PMID: 36639657 PMCID: PMC9840287 DOI: 10.1186/s40694-023-00149-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Due to the infection with the invasive ascomycete Hymenoscyphus fraxineus, which has been replacing the closely related and non-pathogenic native Hymenoscyphus albidus, the European ashes, Fraxinus excelsior (also known as the common ash), Fraxinus angustifolia (also known as narrow-leaved ash) and Fraxinus ornus (also known as the manna ash) are at risk. Hymenoscyphus fraxineus is the causative agent of ash dieback of the European ashes, but is non-pathogenic to the native Asian ash Fraxinus mandshurica (also known as the Manchurian ash). Even though the invasion of H. fraxineus is a great threat for ashes in Europe, the fungal biology is still poorly understood. By the use of live cell imaging and targeted gene knock-out, the fungal life cycle and host-pathogen interaction can be studied in more detail. RESULTS Here, we developed a protocol for the preparation of protoplasts from mycelium of H. fraxineus, for their regeneration and for stable transformation with reporter genes and targeted gene knock-out by homologous recombination. We obtained mutants with various levels of reporter gene expression which did not correlate with the number of integrations. In an in vitro infection assay, we demonstrated the suitability of reporter gene overexpression for fungal detection in plant tissue after inoculation. As a proof of principle for targeted gene knock-out, the hygromycin resistance cassette of a reporter gene-expressing mutant was replaced with a geneticin resistance cassette. CONCLUSIONS The invasive fungal pathogen H. fraxineus is threatening the European ashes. To develop strategies for pest management, a better understanding of the fungal life cycle and its host interaction is crucial. Here, we provide a protocol for stable transformation of H. fraxineus to obtain fluorescence reporter strains and targeted gene knock-out mutants. This protocol will help future investigations on the biology of this pathogen.
Collapse
Affiliation(s)
- Tobias Lutz
- grid.9026.d0000 0001 2287 2617Institute of Plant Science and Microbiology, Molecular Phytopathology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Birgit Hadeler
- grid.9026.d0000 0001 2287 2617Institute of Plant Science and Microbiology, Molecular Phytopathology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Mareike Jaeckel
- grid.9026.d0000 0001 2287 2617Institute of Plant Science and Microbiology, Molecular Phytopathology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Barbara Schulz
- grid.6738.a0000 0001 1090 0254Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Brunswick, Germany
| | - Cornelia Heinze
- grid.9026.d0000 0001 2287 2617Institute of Plant Science and Microbiology, Molecular Phytopathology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| |
Collapse
|
4
|
Genomic patterns and the evolutionary origin of an invasive fungal pathogen (Hymenoscyphus fraxineus) in Europe. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Burns P, Timmermann V, Yearsley JM. Meteorological factors associated with the timing and abundance of Hymenoscyphus fraxineus spore release. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:493-506. [PMID: 34761333 PMCID: PMC8850239 DOI: 10.1007/s00484-021-02211-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/21/2021] [Accepted: 10/16/2021] [Indexed: 06/01/2023]
Abstract
The ascomycete Hymenoscyphus fraxineus has spread across most of the host range of European ash with a high level of mortality, causing important economic, cultural and environmental effects. We present a novel method combining a Monte-Carlo approach with a generalised additive model that confirms the importance of meteorology to the magnitude and timing of H. fraxineus spore emissions. The variability in model selection and the relative degree to which our models are over- or under-fitting the data has been quantified. We find that both the daily magnitude and timing of spore emissions are affected by meteorology during and prior to the spore emission diurnal peak. We found the daily emission magnitude has the strongest associations to weekly average net radiation and leaf moisture before the emission, soil temperature during the day before emission and net radiation during the spore emission. The timing of the daily peak in spore emissions has the strongest associations to net radiation both during spore emission and in the day preceding the emission. The seasonal peak in spore emissions has a near-exponential increase/decrease, and the mean daily emission peak is approximately Gaussian.
Collapse
Affiliation(s)
- Paul Burns
- College of Engineering, Mathematics and Physical Sciences, Harrison Building, Streatham Campus, University of Exeter, North Park Rd, Exeter, EX4 4QF UK
| | - Volkmar Timmermann
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), P.O. Box. 115, 1431 Ås, Norway
| | - Jon M. Yearsley
- School of Biology & Environmental Science & UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
The Impact of Biotic and Abiotic Stress Factors on Development of European Ash Tissue Cultures. FORESTS 2022. [DOI: 10.3390/f13010059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fraxinus excelsior L. is threatened by a variety of environmental factors causing a decline of the species. The most important biotic factors negatively affecting the condition of the F. excelsior population are fungi such as the pathogen Hymenoscyphus fraxineus. Abiotic factors with potentially harmful effect to the F. excelsior population are the accumulation of heavy metals and salinity in soils. Thus, the aim of this study was to investigate the impact of selected biotic and abiotic stress factors to determine which of them pose a threat to European ash. The study was conducted using in vitro techniques based on callus and seedlings regenerated via indirect organogenesis. Tissue cultures exclude the influence of other factors, including the environmental impact on ash extinction. The results confirmed very strong pathogenic potential of H. fraxineus in which after 14 days the callus tissue cells died as the tissue failed to activate its defense mechanisms. Experiments showed the high toxicity of cadmium in concentration of 0.027 mmol/L. Salinity caused the activity of oxidation enzymes to vary among seedlings and calluses in the control suggesting the enzymes play a role in controlling the morphogenetic development of tissue cultures.
Collapse
|
7
|
Dvořák M. Detection of Airborne Inoculum of Hymenoscyphus fraxineus: The Causal Agent of Ash Dieback. Methods Mol Biol 2022; 2536:119-137. [PMID: 35819602 DOI: 10.1007/978-1-0716-2517-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The inoculum of H. fraxineus consists mainly of ascospores released from apothecia which are growing on fallen leaves infected during the previous year. The ascospores can be detected in various manners due to their high concentration in the air during the main sporulation season, which corresponds to astronomic summer. This methodology is focused on one of the methods which have been successfully used. It employs a cheap, but highly efficient rotating arm air sampler and a specific quantitative real-time PCR method for the quantification of the air samples. The methodology is accompanied by lots of detailed theoretical and practical notes for its smooth application, including mentioning other alternatives.
Collapse
Affiliation(s)
- Miloň Dvořák
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic.
| |
Collapse
|
8
|
Itagaki H, Hosoya T. Lifecycle of Pyrenopeziza protrusa ( Helotiales, Dermateaceae sensu lato) in Magnolia obovata revealed by field observation and molecular quantification. MYCOSCIENCE 2021; 62:373-381. [PMID: 37090175 PMCID: PMC9721505 DOI: 10.47371/mycosci.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
Fungi exhibit saprophytic, parasitic, and symbiotic lifestyles, and flexibly switching between them by the environmental changes and host conditions. However, only a few studies have elucidated the detailed changes in fungal DNA or morphology, including the formation of reproductive structures along with lifestyle switching. We hypothesized that Pyrenopeziza protrusa, which occurs abundantly and specifically on Magnolia obovata as a saprophyte, is also associated with living hosts and switches its lifestyles as part of its lifecycle. To elucidate this hypothesis, we periodically sampled the fresh/fallen leaves of M. obovata to observe the seasonal occurrence of reproductive structures for the isolation and detection/quantification of P. protrusa DNA with newly developed species-specific primers. The isolation frequency and amount of P. protrusa DNA drastically increased in the fresh leaves just before defoliation in autumn, but remained high in fallen leaves from autumn to spring. Abundant production of conidiomata and apothecia was also observed in the fallen leaves with increasing DNA content. These results clarified a large part of the lifecycle of P. protrusa, suggesting that the lifestyle is switched from symbiotic to saprophytic stage by significantly increasing the amount of DNA in response to host conditions according to the seasonal variations.
Collapse
Affiliation(s)
- Hiyori Itagaki
- Department of Biological Science, Graduate School of Science, The University of Tokyo
| | | |
Collapse
|
9
|
Gossner MM, Beenken L, Arend K, Begerow D, Peršoh D. Insect herbivory facilitates the establishment of an invasive plant pathogen. ISME COMMUNICATIONS 2021; 1:6. [PMID: 37938649 PMCID: PMC9723786 DOI: 10.1038/s43705-021-00004-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 05/17/2023]
Abstract
Plants can be severely affected by insect herbivores and phytopathogenic fungi, but interactions between these plant antagonists are poorly understood. We analysed the impact of feeding damage by the abundant herbivore Orchestes fagi on infection rates of beech (Fagus sylvatica) leaves with Petrakia liobae, an invasive plant pathogenic fungus. The fungus was not detected in hibernating beetles, indicating that O. fagi does not serve as vector for P. liobae, at least not between growing seasons. Abundance of the fungus in beech leaves increased with feeding damage of the beetle and this relationship was stronger for sun-exposed than for shaded leaves. A laboratory experiment revealed sun-exposed leaves to have thicker cell walls and to be more resistant to pathogen infection than shaded leaves. Mechanical damage significantly increased frequency and size of necroses in the sun, but not in shade leaves. Our findings indicate that feeding damage of adult beetles provides entry ports for fungal colonization by removal of physical barriers and thus promotes infection success by pathogenic fungi. Feeding activity by larvae probably provides additional nutrient sources or eases access to substrates for the necrotrophic fungus. Our study exemplifies that invasive pathogens may benefit from herbivore activity, which may challenge forest health in light of climate change.
Collapse
Affiliation(s)
- Martin M Gossner
- Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Center for Food and Life Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany.
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, Zurich, Switzerland.
| | - Ludwig Beenken
- Forest Protection, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Kirstin Arend
- Ruhr-Universität Bochum, Faculty of Biology and Biotechnology, AG Geobotany, Bochum, Germany
| | - Dominik Begerow
- Ruhr-Universität Bochum, Faculty of Biology and Biotechnology, AG Geobotany, Bochum, Germany
| | - Derek Peršoh
- Ruhr-Universität Bochum, Faculty of Biology and Biotechnology, AG Geobotany, Bochum, Germany.
| |
Collapse
|
10
|
Colonization by dark septate endophytes improves the growth of Hedysarum scoparium under multiple inoculum levels. Symbiosis 2020. [DOI: 10.1007/s13199-020-00713-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Kosawang C, Sørensen H, Kjær ED, Dilokpimol A, McKinney LV, Collinge DB, Nielsen LR. Defining the twig fungal communities of Fraxinus species and Fraxinus excelsior genotypes with differences in susceptibility to ash dieback. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Hietala AM, Børja I, Solheim H, Nagy NE, Timmermann V. Propagule Pressure Build-Up by the Invasive Hymenoscyphus fraxineus Following Its Introduction to an Ash Forest Inhabited by the Native Hymenoscyphus albidus. FRONTIERS IN PLANT SCIENCE 2018; 9:1087. [PMID: 30105041 PMCID: PMC6077690 DOI: 10.3389/fpls.2018.01087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/05/2018] [Indexed: 06/02/2023]
Abstract
Dieback of European ash, caused by the ascomycete Hymenoscyphus fraxineus originating from Asia, has rapidly spread across Europe, and is threatening this keystone tree at a continental scale. High propagule pressure is characteristic to invasive species. Consistently, the enormous production of windborne ascospores by H. fraxineus in an ash forest with epidemic level of disease obviously facilitates its invasiveness and long distance spread. To understand the rate of build-up of propagule pressure by this pathogen following its local introduction, during 2011-2017 we monitored its sporulation at a newly infested ash stand in south-western Norway characterized with mild winters and cool summers. We also monitored the propagule pressure by Hymenoscyphus albidus, a non-pathogenic native species that competes for the same sporulation niche with H. fraxineus. During the monitoring period, crown condition of ash trees had impaired, and 20% of the dominant trees were severely damaged in 2017. H. fraxineus showed an exponential increase in spore production between 2012 and 2015, followed by drastic decline in 2016 and 2017. During 2011-2013, the two Hymenoscyphus species showed similar sporulation level, but thereafter spores of H. albidus were no longer detected. The data suggest that following local introduction, the population of H. fraxineus reaches rapidly an exponential growth stage if the local weather conditions are favorable for ascomata maturation across years. In the North Atlantic climate, summer temperatures critically influence the pathogen infection pressure, warm summers allowing the population to grow according to its biotic potential, whereas cold summers can cause a drastic decline in propagule pressure.
Collapse
Affiliation(s)
- Ari M. Hietala
- Department of Forest Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | | | | | | |
Collapse
|
13
|
Sugier K, Vacherie B, Cornils A, Wincker P, Jamet JL, Madoui MA. Chitin distribution in the Oithona digestive and reproductive systems revealed by fluorescence microscopy. PeerJ 2018; 6:e4685. [PMID: 29780666 PMCID: PMC5957050 DOI: 10.7717/peerj.4685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/10/2018] [Indexed: 11/20/2022] Open
Abstract
Among copepods, which are the most abundant animals on Earth, the genus Oithona is described as one of the most numerous and plays a major role in the marine food chain and biogeochemical cycles, particularly through the excretion of chitin-coated fecal pellets. Despite the morphology of several Oithona species is well known, knowledge of its internal anatomy and chitin distribution is still limited. To answer this problem, Oithona nana and O. similis individuals were stained by Wheat Germ Agglutinin-Fluorescein IsoThioCyanate (WGA-FITC) and DiAmidino-2-PhenylIndole (DAPI) for fluorescence microscopy observations. The image analyses allowed a new description of the organization and chitin content of the digestive and reproductive systems of Oithona male and female. Chitin microfibrils were found all along the digestive system from the stomach to the hindgut with a higher concentration at the peritrophic membrane of the anterior midgut. Several midgut shrinkages were observed and proposed to be involved in faecal pellet shaping and motion. Amorphous chitin structures were also found to be a major component of the ducts and seminal vesicles and receptacles. The rapid staining protocol we proposed allowed a new insight into the Oithona internal anatomy and highlighted the role of chitin in the digestion and reproduction. This method could be applied to a wide range of copepods in order to perform comparative anatomy analyses.
Collapse
Affiliation(s)
- Kevin Sugier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Benoit Vacherie
- Commissariat à l'Energie Atomique (CEA), Institut François Jacob, Genoscope, Evry, France
| | - Astrid Cornils
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Polar Biological Oceanography, Bremerhaven, Germany
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Louis Jamet
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Mohammed-Amin Madoui
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
14
|
McMullan M, Rafiqi M, Kaithakottil G, Clavijo BJ, Bilham L, Orton E, Percival-Alwyn L, Ward BJ, Edwards A, Saunders DGO, Garcia Accinelli G, Wright J, Verweij W, Koutsovoulos G, Yoshida K, Hosoya T, Williamson L, Jennings P, Ioos R, Husson C, Hietala AM, Vivian-Smith A, Solheim H, MaClean D, Fosker C, Hall N, Brown JKM, Swarbreck D, Blaxter M, Downie JA, Clark MD. The ash dieback invasion of Europe was founded by two genetically divergent individuals. Nat Ecol Evol 2018; 2:1000-1008. [PMID: 29686237 PMCID: PMC5969572 DOI: 10.1038/s41559-018-0548-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 03/27/2018] [Indexed: 11/22/2022]
Abstract
Accelerating international trade and climate change make pathogen spread an increasing concern. Hymenoscyphus fraxineus, the causal agent of ash dieback, is a fungal pathogen that has been moving across continents and hosts from Asian to European ash. Most European common ash trees (Fraxinus excelsior) are highly susceptible to H. fraxineus, although a minority (~5%) have partial resistance to dieback. Here, we assemble and annotate a H. fraxineus draft genome which approaches chromosome scale. Pathogen genetic diversity across Europe and in Japan, reveals a strong bottleneck in Europe, though a signal of adaptive diversity remains in key host interaction genes. We find that the European population was founded by two divergent haploid individuals. Divergence between these haplotypes represents the ancestral polymorphism within a large source population. Subsequent introduction from this source would greatly increase adaptive potential of the pathogen. Thus, further introgression of H. fraxineus into Europe represents a potential threat and Europe-wide biological security measures are needed to manage this disease.
Collapse
Affiliation(s)
- Mark McMullan
- The Earlham Institute, Norwich Research Park, Norwich, UK.
| | | | | | | | | | | | | | - Ben J Ward
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | - Anne Edwards
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | | - Walter Verweij
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Kentaro Yoshida
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.,Graduate school of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Tsuyoshi Hosoya
- Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| | | | | | - Renaud Ioos
- ANSES Laboratoire de la Santé des Végétaux, Malzéville, France
| | | | - Ari M Hietala
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | | | - Dan MaClean
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | | | - Neil Hall
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | | | | | - Mark Blaxter
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK.,Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Matthew D Clark
- The Earlham Institute, Norwich Research Park, Norwich, UK. .,Department of Life Sciences, Natural History Museum, London, UK.
| |
Collapse
|
15
|
Orton ES, Brasier CM, Bilham LJ, Bansal A, Webber JF, Brown J.KM. Population structure of the ash dieback pathogen, Hymenoscyphus fraxineus, in relation to its mode of arrival in the UK. PLANT PATHOLOGY 2018; 67:255-264. [PMID: 29527064 PMCID: PMC5832303 DOI: 10.1111/ppa.12762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The ash dieback fungus, Hymenoscyphus fraxineus, a destructive, alien pathogen of common ash (Fraxinus excelsior), has spread across Europe over the past 25 years and was first observed in the UK in 2012. To investigate the relationship of the pathogen's population structure to its mode of arrival, isolates were obtained from locations in England and Wales, either where established natural populations of ash had been infected by wind-dispersed ascospores or where the fungus had been introduced on imported planting stock. Population structure was determined by tests for vegetative compatibility (VC), mating type and single-nucleotide polymorphisms (SNPs). VC heterogeneity was high at all locations, with 96% of isolate pairings being incompatible. Frequencies of the MAT1-1-1 and MAT1-2-1 idiomorphs were approximately equal, consistent with H. fraxineus being an obligate outbreeder. Most SNP variation occurred within study location and there was little genetic differentiation between the two types of location in the UK, or between pathogen populations in the UK and continental Europe. There was modest differentiation between UK subpopulations, consistent with genetic variation between source populations in continental Europe. However, there was no evidence of strong founder effects, indicating that numerous individuals of H. fraxineus initiated infection at each location, regardless of the route of pathogen transmission. The ssRNA virus HfMV1 was present at moderate to high frequencies in all UK subpopulations. The results imply that management of an introduced plant pathogen requires action against its spread at the continental level involving coordinated efforts by European countries.
Collapse
Affiliation(s)
- E. S. Orton
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | | | - L. J. Bilham
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - A. Bansal
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Present address:
Plant Impact plcRothamsted, West CommonHarpendenAL5 2JQUK
| | - J. F. Webber
- Forest ResearchAlice Holt LodgeFarnhamGU10 4LHUK
| | | |
Collapse
|
16
|
A first assessment of Fraxinus excelsior (common ash) susceptibility to Hymenoscyphus fraxineus (ash dieback) throughout the British Isles. Sci Rep 2017; 7:16546. [PMID: 29185457 PMCID: PMC5707348 DOI: 10.1038/s41598-017-16706-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/22/2017] [Indexed: 01/15/2023] Open
Abstract
Ash dieback (ADB), caused by Hymenoscyphus fraxineus, has severely damaged a large proportion of ash trees (Fraxinus excelsior) in continental Europe. We have little damage data for the British Isles where the disease was found only five years ago in the Southeast, and is still spreading. A large-scale screening trial to evaluate ADB damage to provenances of F. excelsior sourced from throughout the British Isles was planted in 2013 in the southeast of England. In 2016, we scored trees by their level of ADB damage observed in field at the two worst affected (based on assessments in 2015) of the 14 sites. Significant differences were found in average ADB damage among planting sites and seed source provenances. Trees from certain provenances in Scotland were the least damaged by ADB, whereas trees from Wales and Southeast England were the most badly damaged in both trial sites. Thus the levels of ADB damage currently seen in ash populations in Southeast England may not be an accurate predictor of the damage expected in future throughout the British Isles. Given all provenances contained some healthy trees, a breeding programme to produce genetically variable native ash tree populations with lower ADB susceptibility may be feasible.
Collapse
|
17
|
Affiliation(s)
- J. Allan Downie
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
18
|
Abstract
Emerging pathogens of crops threaten food security and are increasingly problematic due to intensive agriculture and high volumes of trade and transport in plants and plant products. The ability to predict pathogen risk to agricultural regions would therefore be valuable. However, predictions are complicated by multi-faceted relationships between crops, their pathogens, and climate change. Climate change is related to industrialization, which has brought not only a rise in greenhouse gas emissions but also an increase in other atmospheric pollutants. Here, we consider the implications of rising levels of reactive nitrogen gases and their manifold interactions with crops and crop diseases.
Collapse
Affiliation(s)
- Helen N Fones
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Sarah J Gurr
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Rothamsted Research, North Wyke, Okehampton, EX20 2SB, UK
- Donder's Hon Chair, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
19
|
Fones HN, Fisher MC, Gurr SJ. Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0027-2016. [PMID: 28361733 PMCID: PMC11687465 DOI: 10.1128/microbiolspec.funk-0027-2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Indexed: 11/20/2022] Open
Abstract
While fungi can make positive contributions to ecosystems and agro-ecosystems, for example, in mycorrhizal associations, they can also have devastating impacts as pathogens of plants and animals. In undisturbed ecosystems, most such negative interactions will be limited through the coevolution of fungi with their hosts. In this article, we explore what happens when pathogenic fungi spread beyond their natural ecological range and become invasive on naïve hosts in new ecosystems. We will see that such invasive pathogens have been problematic to humans and their domesticated plant and animal species throughout history, and we will discuss some of the most pressing fungal threats of today.
Collapse
Affiliation(s)
- Helen N Fones
- Department of Biosciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
| | - Matthew C Fisher
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London, St Mary's Hospital, London W2 1PG, United Kingdom
| | - Sarah J Gurr
- Department of Biosciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
- University of Utrecht, 3584 CH, Utrecht, The Netherlands
- Rothamsted Research, North Wyke, Okehampton, EX20 2SB, United Kingdom
| |
Collapse
|