1
|
Liang Y, Carrillo-Baltodano AM, Martín-Durán JM. Emerging trends in the study of spiralian larvae. Evol Dev 2024; 26:e12459. [PMID: 37787615 DOI: 10.1111/ede.12459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Many animals undergo indirect development, where their embryogenesis produces an intermediate life stage, or larva, that is often free-living and later metamorphoses into an adult. As their adult counterparts, larvae can have unique and diverse morphologies and occupy various ecological niches. Given their broad phylogenetic distribution, larvae have been central to hypotheses about animal evolution. However, the evolution of these intermediate forms and the developmental mechanisms diversifying animal life cycles are still debated. This review focuses on Spiralia, a large and diverse clade of bilaterally symmetrical animals with a fascinating array of larval forms, most notably the archetypical trochophore larva. We explore how classic research and modern advances have improved our understanding of spiralian larvae, their development, and evolution. Specifically, we examine three morphological features of spiralian larvae: the anterior neural system, the ciliary bands, and the posterior hyposphere. The combination of molecular and developmental evidence with modern high-throughput techniques, such as comparative genomics, single-cell transcriptomics, and epigenomics, is a promising strategy that will lead to new testable hypotheses about the mechanisms behind the evolution of larvae and life cycles in Spiralia and animals in general. We predict that the increasing number of available genomes for Spiralia and the optimization of genome-wide and single-cell approaches will unlock the study of many emerging spiralian taxa, transforming our views of the evolution of this animal group and their larvae.
Collapse
Affiliation(s)
- Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Miglioli A, Tredez M, Boosten M, Sant C, Carvalho JE, Dru P, Canesi L, Schubert M, Dumollard R. The Mediterranean mussel Mytilus galloprovincialis: a novel model for developmental studies in mollusks. Development 2024; 151:dev202256. [PMID: 38270401 DOI: 10.1242/dev.202256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
A model organism in developmental biology is defined by its experimental amenability and by resources created for the model system by the scientific community. For the most powerful invertebrate models, the combination of both has already yielded a thorough understanding of developmental processes. However, the number of developmental model systems is still limited, and their phylogenetic distribution heavily biased. Members of one of the largest animal lineages, the Spiralia, for example, have long been neglected. In order to remedy this shortcoming, we have produced a detailed developmental transcriptome for the bivalve mollusk Mytilus galloprovincialis, and have expanded the list of experimental protocols available for this species. Our high-quality transcriptome allowed us to identify transcriptomic signatures of developmental progression and to perform a first comparison with another bivalve mollusk: the Pacific oyster Crassostrea gigas. To allow co-labelling studies, we optimized and combined protocols for immunohistochemistry and hybridization chain reaction to create high-resolution co-expression maps of developmental genes. The resources and protocols described here represent an enormous boost for the establishment of Mytilus galloprovincialis as an alternative model system in developmental biology.
Collapse
Affiliation(s)
- Angelica Miglioli
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Marion Tredez
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Manon Boosten
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
- Laboratoire d'Océanologie de Villefranche (LOV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Camille Sant
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
- Laboratoire d'Océanologie de Villefranche (LOV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - João E Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Philippe Dru
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Laura Canesi
- Università degli Studi di Genova, Dipartimento di Scienze della Terra dell Ambiente e della Vita (DISTAV), Genova 16132, Italy
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer 06230, France
| |
Collapse
|
3
|
Kohsokabe T, Kuratanai S, Kaneko K. Developmental hourglass: Verification by numerical evolution and elucidation by dynamical-systems theory. PLoS Comput Biol 2024; 20:e1011867. [PMID: 38422161 PMCID: PMC10903806 DOI: 10.1371/journal.pcbi.1011867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Determining the general laws between evolution and development is a fundamental biological challenge. Developmental hourglasses have attracted increased attention as candidates for such laws, but the necessity of their emergence remains elusive. We conducted evolutionary simulations of developmental processes to confirm the emergence of the developmental hourglass and unveiled its establishment. We considered organisms consisting of cells containing identical gene networks that control morphogenesis and evolved them under selection pressure to induce more cell types. By computing the similarity between the spatial patterns of gene expression of two species that evolved from a common ancestor, a developmental hourglass was observed, that is, there was a correlation peak in the intermediate stage of development. The fraction of pleiotropic genes increased, whereas the variance in individuals decreased, consistent with previous experimental reports. Reduction of the unavoidable variance by initial or developmental noise, essential for survival, was achieved up to the hourglass bottleneck stage, followed by diversification in developmental processes, whose timing is controlled by the slow expression dynamics conserved among organisms sharing the hourglass. This study suggests why developmental hourglasses are observed within a certain phylogenetic range of species.
Collapse
Affiliation(s)
| | | | - Kunihiko Kaneko
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Piovani L, Marlétaz F. Single-cell transcriptomics refuels the exploration of spiralian biology. Brief Funct Genomics 2023; 22:517-524. [PMID: 37609674 PMCID: PMC10658179 DOI: 10.1093/bfgp/elad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Spiralians represent the least studied superclade of bilaterian animals, despite exhibiting the widest diversity of organisms. Although spiralians include iconic organisms, such as octopus, earthworms and clams, a lot remains to be discovered regarding their phylogeny and biology. Here, we review recent attempts to apply single-cell transcriptomics, a new pioneering technology enabling the classification of cell types and the characterisation of their gene expression profiles, to several spiralian taxa. We discuss the methodological challenges and requirements for applying this approach to marine organisms and explore the insights that can be brought by such studies, both from a biomedical and evolutionary perspective. For instance, we show that single-cell sequencing might help solve the riddle of the homology of larval forms across spiralians, but also to better characterise and compare the processes of regeneration across taxa. We highlight the capacity of single-cell to investigate the origin of evolutionary novelties, as the mollusc shell or the cephalopod visual system, but also to interrogate the conservation of the molecular fingerprint of cell types at long evolutionary distances. We hope that single-cell sequencing will open a new window in understanding the biology of spiralians, and help renew the interest for these overlooked but captivating organisms.
Collapse
Affiliation(s)
- Laura Piovani
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution & Environment, University College London, Gower Street, London, UK
| | - Ferdinand Marlétaz
- Centre for Life’s Origins and Evolution (CLOE), Department of Genetics, Evolution & Environment, University College London, Gower Street, London, UK
| |
Collapse
|
5
|
Xu F, Deng S, Gavriouchkina D, Zhang G. Transcriptional regulation analysis reveals the complexity of metamorphosis in the Pacific oyster ( Crassostrea gigas). MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:467-477. [PMID: 38045547 PMCID: PMC10689616 DOI: 10.1007/s42995-023-00204-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Many marine invertebrate phyla are characterized by indirect development. These animals transit from planktonic larvae to benthic spats via settlement and metamorphosis, which contributes to their adaption to the marine environment. Studying the biological process of metamorphosis is, thus, key to understanding the origin and evolution of indirect development. Although numerous studies have been conducted on the relationship between metamorphosis and the marine environment, microorganisms, and neurohormones, little is known about gene regulation network (GRN) dynamics during metamorphosis. Metamorphosis-competent pediveligers of the Pacific oyster Crassostrea gigas were assayed in this study. By assaying gene expression patterns and open chromatin region changes of different samples of larvae and spats, the dynamics of molecular regulation during metamorphosis were examined. The results indicated significantly different gene regulation networks before, during and post-metamorphosis. Genes encoding membrane-integrated receptors and those related to the remodeling of the nervous system were upregulated before the initiation of metamorphosis. Massive biogenesis, e.g., of various enzymes and structural proteins, occurred during metamorphosis as inferred from the comprehensive upregulation of the protein synthesis system post epinephrine stimulation. Hierarchical downstream gene networks were then stimulated. Some transcription factors, including homeobox, basic helix-loop-helix and nuclear receptors, showed different temporal response patterns, suggesting a complex GRN during the transition stage. Nuclear receptors, as well as their retinoid X receptor partner, may participate in the GRN controlling oyster metamorphosis, indicating an ancient role of the nuclear receptor regulation system in animal metamorphosis. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00204-y.
Collapse
Affiliation(s)
- Fei Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laoshan Laboratory, Qingdao, 266237 China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, 266105 China
| | - Shaoxi Deng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077 China
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495 Japan
- UK Dementia Research Institute, University College London, London, WC1E 6BT UK
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laoshan Laboratory, Qingdao, 266237 China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, 266105 China
| |
Collapse
|
6
|
Piovani L, Leite DJ, Yañez Guerra LA, Simpson F, Musser JM, Salvador-Martínez I, Marlétaz F, Jékely G, Telford MJ. Single-cell atlases of two lophotrochozoan larvae highlight their complex evolutionary histories. SCIENCE ADVANCES 2023; 9:eadg6034. [PMID: 37531419 PMCID: PMC10396302 DOI: 10.1126/sciadv.adg6034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023]
Abstract
Pelagic larval stages are widespread across animals, yet it is unclear whether larvae were present in the last common ancestor of animals or whether they evolved multiple times due to common selective pressures. Many marine larvae are at least superficially similar; they are small, swim through the beating of bands of cilia, and sense the environment with an apical organ. To understand these similarities, we have generated single-cell atlases for marine larvae from two animal phyla and have compared their cell types. We found clear similarities among ciliary band cells and between neurons of the apical organ in the two larvae pointing to possible homology of these structures, suggesting a single origin of larvae within Spiralia. We also find several clade-specific innovations in each larva, including distinct myocytes and shell gland cells in the oyster larva. Oyster shell gland cells express many recently evolved genes that have made previous gene age estimates for the origin of trochophore larvae too young.
Collapse
Affiliation(s)
- Laura Piovani
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Daniel J. Leite
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | | | - Fraser Simpson
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Jacob M. Musser
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Irepan Salvador-Martínez
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Ferdinand Marlétaz
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Maximilian J. Telford
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
7
|
Morino Y. Dynamic evolutionary history of spiralian-specific TALE homeobox genes in mollusks. Dev Growth Differ 2022; 64:198-209. [PMID: 35441397 DOI: 10.1111/dgd.12779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022]
Abstract
Homeobox genes play essential roles in the early development of many animals. Although the repertoire of most homeobox genes, including three amino acid loop extension (TALE)-type homeobox genes, is conserved in animals, spiralian-TALE (SPILE) genes are a notable exception. In this study, SPILE genes were extracted from the genomic data of 22 mollusk species and classified into four clades (-A/C, -B, -D, and -E) to determine which SPILE genes exhibit dynamic repertoire changes. While SPILE-D and -E duplications were rarely observed, SPILE-B duplication was observed in the bivalve lineage and SPILE-A/C duplication was observed in multiple clades. Conversely, most or all SPILE genes were lost in cephalopods and in some gastropod lineages. SPILE gene expression patterns were also analyzed in multiple mollusk species using publicly available RNA-seq data. The majority of SPILE genes examined, particularly those in the A/C- and B-clades, were specifically expressed during early development, suggesting that most SPILE genes exert specific roles in early development. This comprehensive cataloging and characterization revealed a dynamic evolutionary history, including SPILE-A/C and -B gene duplications and the loss of SPILE genes in several lineages. Furthermore, this study provides a useful resource for studying the molecular mechanism of spiralian early development and the evolution of young and lineage-specific transcription factors.
Collapse
Affiliation(s)
- Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Distinguishing Evolutionary Conservation from Derivedness. Life (Basel) 2022; 12:life12030440. [PMID: 35330191 PMCID: PMC8954198 DOI: 10.3390/life12030440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
While the concept of “evolutionary conservation” has enabled biologists to explain many ancestral features and traits, it has also frequently been misused to evaluate the degree of changes from a common ancestor, or “derivedness”. We propose that the distinction of these two concepts allows us to properly understand phenotypic and organismal evolution. From a methodological aspect, “conservation” mainly considers genes or traits which species have in common, while “derivedness” additionally covers those that are not commonly shared, such as novel or lost traits and genes to evaluate changes from the time of divergence from a common ancestor. Due to these differences, while conservation-oriented methods are effective in identifying ancestral features, they may be prone to underestimating the overall changes accumulated during the evolution of certain lineages. Herein, we describe our recently developed method, “transcriptomic derivedness index”, for estimating the phenotypic derivedness of embryos with a molecular approach using the whole-embryonic transcriptome as a phenotype. Although echinoderms are often considered as highly derived species, our analyses with this method showed that their embryos, at least at the transcriptomic level, may not be much more derived than those of chordates. We anticipate that the future development of derivedness-oriented methods could provide quantitative indicators for finding highly/lowly evolvable traits.
Collapse
|
9
|
Leong JCK, Li Y, Uesaka M, Uchida Y, Omori A, Hao M, Wan W, Dong Y, Ren Y, Zhang S, Zeng T, Wang F, Chen L, Wessel G, Livingston BT, Bradham C, Wang W, Irie N. Derivedness Index for Estimating Degree of Phenotypic Evolution of Embryos: A Study of Comparative Transcriptomic Analyses of Chordates and Echinoderms. Front Cell Dev Biol 2021; 9:749963. [PMID: 34900995 PMCID: PMC8661034 DOI: 10.3389/fcell.2021.749963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Species retaining ancestral features, such as species called living fossils, are often regarded as less derived than their sister groups, but such discussions are usually based on qualitative enumeration of conserved traits. This approach creates a major barrier, especially when quantifying the degree of phenotypic evolution or degree of derivedness, since it focuses only on commonly shared traits, and newly acquired or lost traits are often overlooked. To provide a potential solution to this problem, especially for inter-species comparison of gene expression profiles, we propose a new method named "derivedness index" to quantify the degree of derivedness. In contrast to the conservation-based approach, which deals with expressions of commonly shared genes among species being compared, the derivedness index also considers those that were potentially lost or duplicated during evolution. By applying our method, we found that the gene expression profiles of penta-radial phases in echinoderm tended to be more highly derived than those of the bilateral phase. However, our results suggest that echinoderms may not have experienced much larger modifications to their developmental systems than chordates, at least at the transcriptomic level. In vertebrates, we found that the mid-embryonic and organogenesis stages were generally less derived than the earlier or later stages, indicating that the conserved phylotypic period is also less derived. We also found genes that potentially explain less derivedness, such as Hox genes. Finally, we highlight technical concerns that may influence the measured transcriptomic derivedness, such as read depth and library preparation protocols, for further improvement of our method through future studies. We anticipate that this index will serve as a quantitative guide in the search for constrained developmental phases or processes.
Collapse
Affiliation(s)
- Jason Cheok Kuan Leong
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Masahiro Uesaka
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Yui Uchida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Akihito Omori
- Sado Island Center for Ecological Sustainability, Niigata University, Niigata, Japan
| | - Meng Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yang Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Si Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Tao Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Fayou Wang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Gary Wessel
- Providence Institute of Molecular Oogenesis, Brown University, Providence, RI, United States
| | - Brian T Livingston
- Department of Biological Sciences, California State University, Long Beach, CA, United States
| | - Cynthia Bradham
- Department of Biology, Boston University, Boston, MA, United States
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Naoki Irie
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Evidence from oyster suggests an ancient role for Pdx in regulating insulin gene expression in animals. Nat Commun 2021; 12:3117. [PMID: 34035261 PMCID: PMC8149454 DOI: 10.1038/s41467-021-23216-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Hox and ParaHox genes encode transcription factors with similar expression patterns in divergent animals. The Pdx (Xlox) homeobox gene, for example, is expressed in a sharp spatial domain in the endodermal cell layer of the gut in chordates, echinoderms, annelids and molluscs. The significance of comparable gene expression patterns is unclear because it is not known if downstream transcriptional targets are also conserved. Here, we report evidence indicating that a classic transcriptional target of Pdx1 in vertebrates, the insulin gene, is a likely direct target of Pdx in Pacific oyster adults. We show that one insulin-related gene, cgILP, is co-expressed with cgPdx in oyster digestive tissue. Transcriptomic comparison suggests that this tissue plays a similar role to the vertebrate pancreas. Using ATAC-seq and ChIP, we identify an upstream regulatory element of the cgILP gene which shows binding interaction with cgPdx protein in oyster hepatopancreas and demonstrate, using a cell culture assay, that the oyster Pdx can act as a transcriptional activator through this site, possibly in synergy with NeuroD. These data argue that a classic homeodomain-target gene interaction dates back to the origin of Bilateria. In vertebrates insulin is a direct transcriptional target of Pdx: the same is true in Pacific oysters and the authors show insulin-related gene, cgILP, is co-expressed with cgPdx in oyster digestive tissue, showing this gene interaction dates back to the origin of Bilateria.
Collapse
|
11
|
Fujimoto S, Yamanaka K, Tanegashima C, Nishimura O, Kuraku S, Kuratani S, Irie N. Measuring potential effects of the developmental burden associated with the vertebrate notochord. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 338:129-136. [PMID: 33689235 PMCID: PMC9291948 DOI: 10.1002/jez.b.23032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 01/20/2023]
Abstract
The notochord functions primarily as a supporting tissue to maintain the anteroposterior axis of primitive chordates, a function that is replaced entirely by the vertebral column in many vertebrates. The notochord still appears during vertebrate embryogenesis and plays a crucial role in the developmental pattern formation of surrounding structures, such as the somites and neural tube, providing the basis for the vertebrate body plan. The indispensable role of the notochord has often been referred to as the developmental burden and used to explain the evolutionary conservation of notochord; however, the existence of this burden has not been successfully exemplified so far. Since the adaptive value of target tissues appears to result in the evolutionary conservation of upstream structures through the developmental burden, we performed comparative gene expression profiling of the notochord, somites, and neural tube during the mid‐embryonic stages in turtles and chicken to measure their evolutionary conservation. When compared with the somites and neural tube, overall gene expression profiles in the notochord showed significantly lower or merely comparable levels of conservation. However, genes involved in inductive signalings, such as the sonic hedgehog (Shh) cascade and the formation of functional primary cilia, showed relatively higher levels of conservation in all the three structures analyzed. Collectively, these results suggest that shh signals are critical as the inductive source and receiving structures, possibly constituting the inter‐dependencies of developmental burden. Potential evolutionary effects toward notochord by developmental burden was evaluated by Laser Micro Dissection RNAseq (LMDseq). Notochord was less conserved than neural tube and somites; however, genes in sonic hedgehog (shh) signaling cascade was found to be evolutionarily conserved (not only in notochord but also in somites and neural tube). These results suggest that Shh signals are critical as the inductive source and receiving structures, possibly constituting the inter‐dependencies of developmental burden. Further studies that directly measure the burden required to verify the hypothesis are awaited.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Naoki Irie
- Department of Biological SciencesThe University of TokyoTokyoJapan
- Universal Biology InstituteThe University of TokyoTokyoJapan
| |
Collapse
|
12
|
Uesaka M, Kuratani S, Irie N. The developmental hourglass model and recapitulation: An attempt to integrate the two models. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 338:76-86. [PMID: 33503326 PMCID: PMC9292893 DOI: 10.1002/jez.b.23027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Recapitulation is a hypothetical concept that assumes embryogenesis of an animal parallels its own phylogenetic history, sequentially developing from more ancestral features to more derived ones. This concept predicts that the earliest developmental stage of various animals should represent the most evolutionarily conserved patterns. Recent transcriptome‐based studies, on the other hand, have reported that mid‐embryonic, organogenetic periods show the highest level of conservation (the developmental hourglass model). This, however, does not rule out the possibility that recapitulation would still be detected after the mid‐embryonic period. In accordance with this, recapitulation‐like morphological features are enriched in late developmental stages. Moreover, our recent chromatin accessibility‐based study provided molecular evidence for recapitulation in the mid‐to‐late embryogenesis of vertebrates, as newly evolved gene regulatory elements tended to be activated at late embryonic stages. In this review, we revisit the recapitulation hypothesis, together with recent molecular‐based studies that support the developmental hourglass model. We contend that the recapitulation hypothesis does not entirely contradict the developmental hourglass model and that these two may even coexist in later embryonic stages of vertebrates. Finally, we review possible mechanisms underlying the recapitulation pattern of chromatin accessibility together with the hourglass‐like evolutionary conservation in vertebrate embryogenesis. Recapitulation pattern has been reported for chromatin accessibility during the mid‐to‐late embryogenesis. The observed recapitulation pattern and the developmental hourglass model may coexist. The possible evolutionary mechanisms underlying tendencies of embryonic evolution were discussed.
Collapse
Affiliation(s)
- Masahiro Uesaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Laboratory for Evolutionary Morphology, RIKEN Cluster for Pioneering Research, Kobe, Japan
| | - Naoki Irie
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Nesterenko MA, Starunov VV, Shchenkov SV, Maslova AR, Denisova SA, Granovich AI, Dobrovolskij AA, Khalturin KV. Molecular signatures of the rediae, cercariae and adult stages in the complex life cycles of parasitic flatworms (Digenea: Psilostomatidae). Parasit Vectors 2020; 13:559. [PMID: 33168070 PMCID: PMC7653818 DOI: 10.1186/s13071-020-04424-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 10/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background Parasitic flatworms (Trematoda: Digenea) represent one of the most remarkable examples of drastic morphological diversity among the stages within a life cycle. Which genes are responsible for extreme differences in anatomy, physiology, behavior, and ecology among the stages? Here we report a comparative transcriptomic analysis of parthenogenetic and amphimictic generations in two evolutionary informative species of Digenea belonging to the family Psilostomatidae. Methods In this study the transcriptomes of rediae, cercariae and adult worm stages of Psilotrema simillimum and Sphaeridiotrema pseudoglobulus, were sequenced and analyzed. High-quality transcriptomes were generated, and the reference sets of protein-coding genes were used for differential expression analysis in order to identify stage-specific genes. Comparative analysis of gene sets, their expression dynamics and Gene Ontology enrichment analysis were performed for three life stages within each species and between the two species. Results Reference transcriptomes for P. simillimum and S. pseudoglobulus include 21,433 and 46,424 sequences, respectively. Among 14,051 orthologous groups (OGs), 1354 are common and specific for two analyzed psilostomatid species, whereas 13 and 43 OGs were unique for P. simillimum and S. pseudoglobulus, respectively. In contrast to P. simillimum, where more than 60% of analyzed genes were active in the redia, cercaria and adult worm stages, in S. pseudoglobulus less than 40% of genes had such a ubiquitous expression pattern. In general, 7805 (36.41%) and 30,622 (65.96%) of genes were preferentially expressed in one of the analyzed stages of P. simillimum and S. pseudoglobulus, respectively. In both species 12 clusters of co-expressed genes were identified, and more than a half of the genes belonging to the reference sets were included into these clusters. Functional specialization of the life cycle stages was clearly supported by Gene Ontology enrichment analysis. Conclusions During the life cycles of the two species studied, most of the genes change their expression levels considerably, consequently the molecular signature of a stage is not only a unique set of expressed genes, but also the specific levels of their expression. Our results indicate unexpectedly high level of plasticity in gene regulation between closely related species. Transcriptomes of P. simillimum and S. pseudoglobulus provide high quality reference resource for future evolutionary studies and comparative analyses.![]()
Collapse
Affiliation(s)
- Maksim A Nesterenko
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia.
| | - Viktor V Starunov
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia.,Zoological Institute, Russian Academy of Sciences, Saint Petersburg, 199034, Russia
| | - Sergei V Shchenkov
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia
| | - Anna R Maslova
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia
| | - Sofia A Denisova
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia
| | - Andrey I Granovich
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia
| | - Andrey A Dobrovolskij
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia
| | - Konstantin V Khalturin
- Marine Genomics Unit, OIST, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| |
Collapse
|
14
|
Furusawa C, Irie N. Toward understanding of evolutionary constraints: experimental and theoretical approaches. Biophys Rev 2020; 12:1155-1161. [PMID: 32572681 PMCID: PMC7575679 DOI: 10.1007/s12551-020-00708-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/11/2020] [Indexed: 12/01/2022] Open
Abstract
Although organisms have diversified remarkably through evolution, they do not exhibit unlimited variability. During evolution, the phenotypic changes do not occur at random; instead, they are directional and restricted by the constraints imposed on them. Despite the perceived importance of characterizing the unevenness of these changes, studies on evolutionary constraints have been primarily qualitative in nature. In this review, we focus on the recent studies of evolutionary constraints, which are based on the quantification of high-dimensional phenotypic and genotypic data. Furthermore, we present a theoretical analysis that enables us to predict evolutionary constraints on the basis of phenotypic fluctuation, modeled on the fluctuation-response relationship in statistical physics. The review lays emphasis on the tight interactions between experimental and theoretical analyses in evolutionary biology that will contribute to a better understanding of evolutionary constraints.
Collapse
Affiliation(s)
- Chikara Furusawa
- Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Naoki Irie
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Biological Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
15
|
Li Y, Omori A, Flores RL, Satterfield S, Nguyen C, Ota T, Tsurugaya T, Ikuta T, Ikeo K, Kikuchi M, Leong JCK, Reich A, Hao M, Wan W, Dong Y, Ren Y, Zhang S, Zeng T, Uesaka M, Uchida Y, Li X, Shibata TF, Bino T, Ogawa K, Shigenobu S, Kondo M, Wang F, Chen L, Wessel G, Saiga H, Cameron RA, Livingston B, Bradham C, Wang W, Irie N. Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms. Commun Biol 2020; 3:371. [PMID: 32651448 PMCID: PMC7351957 DOI: 10.1038/s42003-020-1091-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Echinoderms are an exceptional group of bilaterians that develop pentameral adult symmetry from a bilaterally symmetric larva. However, the genetic basis in evolution and development of this unique transformation remains to be clarified. Here we report newly sequenced genomes, developmental transcriptomes, and proteomes of diverse echinoderms including the green sea urchin (L. variegatus), a sea cucumber (A. japonicus), and with particular emphasis on a sister group of the earliest-diverged echinoderms, the feather star (A. japonica). We learned that the last common ancestor of echinoderms retained a well-organized Hox cluster reminiscent of the hemichordate, and had gene sets involved in endoskeleton development. Further, unlike in other animal groups, the most conserved developmental stages were not at the body plan establishing phase, and genes normally involved in bilaterality appear to function in pentameric axis development. These results enhance our understanding of the divergence of protostomes and deuterostomes almost 500 Mya. Li et al. investigate the evolution and genetic basis of the adult pentameral body plan in echinoderms using genomic, transcriptomic, and proteomic data. They determine that the last common ancestor of echinoderms contained an organized Hox cluster and endoskeleton genes, and suggest that cooption of bilateral development genes was involved in evolution of the pentameric body plan.
Collapse
Affiliation(s)
- Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Akihito Omori
- Sado Island Center for Ecological Sustainability, Niigata University, Niigata, Japan
| | - Rachel L Flores
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | - Sheri Satterfield
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | - Christine Nguyen
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | | | | | - Tetsuro Ikuta
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan.,Tokyo Metropolitan University, Yokosuka, Tokyo, Japan
| | | | | | - Jason C K Leong
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Adrian Reich
- Providence Institute of Molecular Oogenesis, Brown University, Providence, RI, USA
| | - Meng Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yang Dong
- Yunnan Agricultural University, Kunming, China
| | - Yaondong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Si Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Tao Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Masahiro Uesaka
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan
| | - Yui Uchida
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, University of Tokyo, Tokyo, Japan
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tomoko F Shibata
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takahiro Bino
- NIBB Core Research Facilities, National Institute of Basic Biology, Okazaki, Aichi, Japan
| | - Kota Ogawa
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute of Basic Biology, Okazaki, Aichi, Japan
| | - Mariko Kondo
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Fayou Wang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Gary Wessel
- Providence Institute of Molecular Oogenesis, Brown University, Providence, RI, USA
| | - Hidetoshi Saiga
- Tokyo Metropolitan University, Yokosuka, Tokyo, Japan.,Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Chuo University, Tokyo, Japan
| | - R Andrew Cameron
- Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Brian Livingston
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | | | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Naoki Irie
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan. .,Universal Biology Institute, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
16
|
|
17
|
Wang J, Zhang L, Lian S, Qin Z, Zhu X, Dai X, Huang Z, Ke C, Zhou Z, Wei J, Liu P, Hu N, Zeng Q, Dong B, Dong Y, Kong D, Zhang Z, Liu S, Xia Y, Li Y, Zhao L, Xing Q, Huang X, Hu X, Bao Z, Wang S. Evolutionary transcriptomics of metazoan biphasic life cycle supports a single intercalation origin of metazoan larvae. Nat Ecol Evol 2020; 4:725-736. [PMID: 32203475 DOI: 10.1038/s41559-020-1138-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022]
Abstract
The transient larva-bearing biphasic life cycle is the hallmark of many metazoan phyla, but how metazoan larvae originated remains a major enigma in animal evolution. There are two hypotheses for larval origin. The 'larva-first' hypothesis suggests that the first metazoans were similar to extant larvae, with later evolution of the adult-added biphasic life cycle; the 'adult-first' hypothesis suggests that the first metazoans were adult forms, with the biphasic life cycle arising later via larval intercalation. Here, we investigate the evolutionary origin of primary larvae by conducting ontogenetic transcriptome profiling for Mollusca-the largest marine phylum characterized by a trochophore larval stage and highly variable adult forms. We reveal that trochophore larvae exhibit rapid transcriptome evolution with extraordinary incorporation of novel genes (potentially contributing to adult shell evolution), and that cell signalling/communication genes (for example, caveolin and innexin) are probably crucial for larval evolution. Transcriptome age analysis of eight metazoan species reveals the wide presence of young larval transcriptomes in both trochozoans and other major metazoan lineages, therefore arguing against the prevailing larva-first hypothesis. Our findings support an adult-first evolutionary scenario with a single metazoan larval intercalation, and suggest that the first appearance of proto-larva probably occurred after the divergence of direct-developing Ctenophora from a metazoan ancestor.
Collapse
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shanshan Lian
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenkui Qin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuan Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Dai
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Jiankai Wei
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Pingping Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Naina Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bo Dong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Dong
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Dexu Kong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhifeng Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Sinuo Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yu Xia
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yangping Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Liang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China. .,The Sars-Fang Centre, Ocean University of China, Qingdao, China.
| |
Collapse
|
18
|
Wu L, Ferger KE, Lambert JD. Gene Expression Does Not Support the Developmental Hourglass Model in Three Animals with Spiralian Development. Mol Biol Evol 2019; 36:1373-1383. [DOI: 10.1093/molbev/msz065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
It has been proposed that animals have a pattern of developmental evolution resembling an hourglass because the most conserved development stage—often called the phylotypic stage—is always in midembryonic development. Although the topic has been debated for decades, recent studies using molecular data such as RNA-seq gene expression data sets have largely supported the existence of periods of relative evolutionary conservation in middevelopment, consistent with the phylotypic stage and the hourglass concepts. However, so far this approach has only been applied to a limited number of taxa across the tree of life. Here, using established phylotranscriptomic approaches, we found a surprising reverse hourglass pattern in two molluscs and a polychaete annelid, representatives of the Spiralia, an understudied group that contains a large fraction of metazoan body plan diversity. These results suggest that spiralians have a divergent midembryonic stage, with more conserved early and late development, which is the inverse of the pattern seen in almost all other organisms where these phylotranscriptomic approaches have been reported. We discuss our findings in light of proposed reasons for the phylotypic stage and hourglass model in other systems.
Collapse
Affiliation(s)
- Longjun Wu
- Department of Biology, University of Rochester, Rochester, NY
| | - Kailey E Ferger
- Department of Biology, University of Rochester, Rochester, NY
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY
| |
Collapse
|
19
|
Irie N, Satoh N, Kuratani S. The phylum Vertebrata: a case for zoological recognition. ZOOLOGICAL LETTERS 2018; 4:32. [PMID: 30607258 PMCID: PMC6307173 DOI: 10.1186/s40851-018-0114-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
The group Vertebrata is currently placed as a subphylum in the phylum Chordata, together with two other subphyla, Cephalochordata (lancelets) and Urochordata (ascidians). The past three decades, have seen extraordinary advances in zoological taxonomy and the time is now ripe for reassessing whether the subphylum position is truly appropriate for vertebrates, particularly in light of recent advances in molecular phylogeny, comparative genomics, and evolutionary developmental biology. Four lines of current research are discussed here. First, molecular phylogeny has demonstrated that Deuterostomia comprises Ambulacraria (Echinodermata and Hemichordata) and Chordata (Cephalochordata, Urochordata, and Vertebrata), each clade being recognized as a mutually comparable phylum. Second, comparative genomic studies show that vertebrates alone have experienced two rounds of whole-genome duplication, which makes the composition of their gene family unique. Third, comparative gene-expression profiling of vertebrate embryos favors an hourglass pattern of development, the most conserved stage of which is recognized as a phylotypic period characterized by the establishment of a body plan definitively associated with a phylum. This mid-embryonic conservation is supported robustly in vertebrates, but only weakly in chordates. Fourth, certain complex patterns of body plan formation (especially of the head, pharynx, and somites) are recognized throughout the vertebrates, but not in any other animal groups. For these reasons, we suggest that it is more appropriate to recognize vertebrates as an independent phylum, not as a subphylum of the phylum Chordata.
Collapse
Affiliation(s)
- Naoki Irie
- Department of Biological Sciences, School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- Universal Biology Institute, University of Tokyo, Tokyo, 113-0033 Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, and Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
20
|
Uchida Y, Uesaka M, Yamamoto T, Takeda H, Irie N. Embryonic lethality is not sufficient to explain hourglass-like conservation of vertebrate embryos. EvoDevo 2018; 9:7. [PMID: 29568479 PMCID: PMC5855935 DOI: 10.1186/s13227-018-0095-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Abstract
Background Understanding the general trends in developmental changes during animal evolution, which are often associated with morphological diversification, has long been a central issue in evolutionary developmental biology. Recent comparative transcriptomic studies revealed that gene expression profiles of mid-embryonic period tend to be more evolutionarily conserved than those in earlier or later periods. While the hourglass-like divergence of developmental processes has been demonstrated in a variety of animal groups such as vertebrates, arthropods, and nematodes, the exact mechanism leading to this mid-embryonic conservation remains to be clarified. One possibility is that the mid-embryonic period (pharyngula period in vertebrates) is highly prone to embryonic lethality, and the resulting negative selections lead to evolutionary conservation of this phase. Here, we tested this “mid-embryonic lethality hypothesis” by measuring the rate of lethal phenotypes of three different species of vertebrate embryos subjected to two kinds of perturbations: transient perturbations and genetic mutations. Results By subjecting zebrafish (Danio rerio), African clawed frog (Xenopus laevis), and chicken (Gallus gallus) embryos to transient perturbations, namely heat shock and inhibitor treatments during three developmental periods [early (represented by blastula and gastrula), pharyngula, and late], we found that the early stages showed the highest rate of lethal phenotypes in all three species. This result was corroborated by perturbation with genetic mutations. By tracking the survival rate of wild-type embryos and embryos with genetic mutations induced by UV irradiation in zebrafish and African clawed frogs, we found that the highest decrease in survival rate was at the early stages particularly around gastrulation in both these species. Conclusion In opposition to the “mid-embryonic lethality hypothesis,” our results consistently showed that the stage with the highest lethality was not around the conserved pharyngula period, but rather around the early period in all the vertebrate species tested. These results suggest that negative selection by embryonic lethality could not explain hourglass-like conservation of animal embryos. This highlights the potential contribution of alternative mechanisms such as the diversifying effect of positive selections against earlier and later stages, and developmental constraints which lead to conservation of mid-embryonic stages. Electronic supplementary material The online version of this article (10.1186/s13227-018-0095-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yui Uchida
- 1Department of Biological Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Masahiro Uesaka
- 1Department of Biological Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takayoshi Yamamoto
- 1Department of Biological Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Hiroyuki Takeda
- 1Department of Biological Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan.,2Universal Biology Institute, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Naoki Irie
- 1Department of Biological Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan.,2Universal Biology Institute, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
21
|
Sussarellu R, Lebreton M, Rouxel J, Akcha F, Rivière G. Copper induces expression and methylation changes of early development genes in Crassostrea gigas embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 196:70-78. [PMID: 29353135 DOI: 10.1016/j.aquatox.2018.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Copper contamination is widespread along coastal areas and exerts adverse effects on marine organisms such as mollusks. In the Pacific oyster, copper induces severe developmental abnormalities during early life stages; however, the underlying molecular mechanisms are largely unknown. This study aims to better understand whether the embryotoxic effects of copper in Crassostrea gigas could be mediated by alterations in gene expression, and the putative role of DNA methylation, which is known to contribute to gene regulation in early embryo development. For that purpose, oyster embryos were exposed to 4 nominal copper concentrations (0.1, 1, 10 and 20 μg L-1 Cu2+) during early development assays. Embryotoxicity was monitored through the oyster embryo-larval bioassay at the D-larva stage 24 h post fertilization (hpf) and genotoxicity at gastrulation 7 hpf. In parallel, the relative expression of 15 genes encoding putative homeotic, biomineralization and DNA methylation proteins was measured at three developmental stages (3 hpf morula stage, 7 hpf gastrula stage, 24 hpf D-larvae stage) using RT-qPCR. Global DNA content in methylcytosine and hydroxymethylcytosine were measured by HPLC and gene-specific DNA methylation levels were monitored using MeDIP-qPCR. A significant increase in larval abnormalities was observed from copper concentrations of 10 μg L-1, while significant genotoxic effects were detected at 1 μg L-1 and above. All the selected genes presented a stage-dependent expression pattern, which was impaired for some homeobox and DNA methylation genes (Notochord, HOXA1, HOX2, Lox5, DNMT3b and CXXC-1) after copper exposure. While global DNA methylation (5-methylcytosine) at gastrula stage didn't show significant changes between experimental conditions, 5-hydroxymethylcytosine, its degradation product, decreased upon copper treatment. The DNA methylation of exons and the transcript levels were correlated in control samples for HOXA1 but such a correlation was diminished following copper exposure. The methylation level of some specific gene regions (HoxA1, Hox2, Engrailed2 and Notochord) displayed changes upon copper exposure. Such changes were gene and exon-specific and no obvious global trends could be identified. Our study suggests that the embryotoxic effects of copper in oysters could involve homeotic gene expression impairment possibly by changing DNA methylation levels.
Collapse
Affiliation(s)
- Rossana Sussarellu
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, 44311 Nantes, France.
| | - Morgane Lebreton
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, 44311 Nantes, France; UMR BOREA, Université Caen-Basse Normandie, Esplanade de la Paix, Caen 14032, France
| | - Julien Rouxel
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, 44311 Nantes, France
| | - Farida Akcha
- Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, 44311 Nantes, France
| | - Guillaume Rivière
- UMR BOREA, Université Caen-Basse Normandie, Esplanade de la Paix, Caen 14032, France
| |
Collapse
|
22
|
Carrillo-Baltodano AM, Meyer NP. Decoupling brain from nerve cord development in the annelid Capitella teleta: Insights into the evolution of nervous systems. Dev Biol 2017; 431:134-144. [DOI: 10.1016/j.ydbio.2017.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/17/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
23
|
Constrained vertebrate evolution by pleiotropic genes. Nat Ecol Evol 2017; 1:1722-1730. [PMID: 28963548 DOI: 10.1038/s41559-017-0318-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/16/2017] [Indexed: 02/06/2023]
Abstract
Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages that pattern the bodyplan (the phylotype hypothesis); however, there has been no quantitative testing of this idea with a phylum-wide comparison of species. Here, based on data from early-to-late embryonic transcriptomes collected from eight chordates, we suggest that the phylotype hypothesis would be better applied to vertebrates than chordates. Furthermore, we found that vertebrates' conserved mid-embryonic developmental programmes are intensively recruited to other developmental processes, and the degree of the recruitment positively correlates with their evolutionary conservation and essentiality for normal development. Thus, we propose that the intensively recruited genetic system during vertebrates' organogenesis period imposed constraints on its diversification through pleiotropic constraints, which ultimately led to the common anatomical pattern observed in vertebrates.
Collapse
|
24
|
Cadmium effects on DNA and protein metabolism in oyster (Crassostrea gigas) revealed by proteomic analyses. Sci Rep 2017; 7:11716. [PMID: 28916745 PMCID: PMC5601910 DOI: 10.1038/s41598-017-11894-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/31/2017] [Indexed: 12/15/2022] Open
Abstract
Marine molluscs, including oysters, can concentrate high levels of cadmium (Cd) in their soft tissues, but the molecular mechanisms of Cd toxicity remain speculative. In this study, Pacific oysters (Crassostrea gigas) were exposed to Cd for 9 days and their gills were subjected to proteomic analysis, which were further confirmed with transcriptomic analysis. A total of 4,964 proteins was quantified and 515 differentially expressed proteins were identified in response to Cd exposure. Gene Ontology enrichment analysis revealed that excess Cd affected the DNA and protein metabolism. Specifically, Cd toxicity resulted in the inhibition of DNA glycosylase and gap-filling and ligation enzymes expressions in base excision repair pathway, which may have decreased DNA repair capacity. At the protein level, Cd induced the heat shock protein response, initiation of protein refolding as well as degradation by ubiquitin proteasome pathway, among other effects. Excess Cd also induced antioxidant responses, particularly glutathione metabolism, which play important roles in Cd chelation and anti-oxidation. This study provided the first molecular mechanisms of Cd toxicity on DNA and protein metabolism at protein levels, and identified molecular biomarkers for Cd toxicity in oysters.
Collapse
|
25
|
Irie N. Remaining questions related to the hourglass model in vertebrate evolution. Curr Opin Genet Dev 2017; 45:103-107. [DOI: 10.1016/j.gde.2017.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/28/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022]
|
26
|
Drost HG, Janitza P, Grosse I, Quint M. Cross-kingdom comparison of the developmental hourglass. Curr Opin Genet Dev 2017; 45:69-75. [PMID: 28347942 DOI: 10.1016/j.gde.2017.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/02/2017] [Indexed: 01/01/2023]
Abstract
The developmental hourglass model has its foundations in classic anatomical studies by von Baer and Haeckel. In this context, even the conservation of animal body plans has been explained by evolutionary constraints acting on mid-embryogenic development. Recent studies have shown that developmental hourglass patterns also exist on the transcriptomic level, mirroring the corresponding morphological patterns. The identification of similar patterns in embryonic, post-embryonic, and life cycle spanning transcriptomes in plant and fungus development, however, contradict the notion of a direct coupling between morphological and molecular patterns. To explain the existence of hourglass patterns across kingdoms and developmental processes, we propose the organizational checkpoint model that integrates the developmental hourglass model into a framework of transcriptome switches.
Collapse
Affiliation(s)
- Hajk-Georg Drost
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Philipp Janitza
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany
| | - Ivo Grosse
- Martin Luther University Halle-Wittenberg, Institute of Computer Science, Von-Seckendorff-Platz 1, 06120 Halle (Saale), Germany; German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Marcel Quint
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany.
| |
Collapse
|