1
|
Miller BR, Gonzaga-Jauregui C, Brigatti KW, de Jong J, Breese RS, Ko SY, Puffenberger EG, Van Hout C, Young M, Luna VM, Staples J, First MB, Gregoire HJ, Dwork AJ, Pefanis E, McCarthy S, Brydges S, Rojas J, Ye B, Stahl E, Di Gioia SA, Hen R, Elwood K, Rosoklija G, Li D, Mellis S, Carey D, Croll SD, Overton JD, Macdonald LE, Economides AN, Shuldiner AR, Chuhma N, Rayport S, Amin N, Kushner SA, Alessandri-Haber N, Markx S, Strauss KA. A rare variant in GPR156 associated with depression in a Mennonite pedigree causes habenula hyperactivity and stress sensitivity in mice. Proc Natl Acad Sci U S A 2025; 122:e2404754122. [PMID: 40228124 PMCID: PMC12037005 DOI: 10.1073/pnas.2404754122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 02/25/2025] [Indexed: 04/16/2025] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. Risk for MDD is heritable, and the genetic structure of founder populations enables investigation of rare susceptibility alleles with large effect. In an extended Old Order Mennonite family cohort, we identified a rare missense variant in GPR156 (c.1599G>T, p.Glu533Asp) associated with a two-fold increase in the relative risk of MDD. GPR156 is an orphan G protein-coupled receptor localized in the medial habenula, a region implicated in mood regulation. Insertion of a human sequence containing c.1599G>T into the murine Gpr156 locus induced medial habenula hyperactivity and abnormal stress-related behaviors. This work reveals a human variant that is associated with depression, implicates GPR156 as a target for mood regulation, and introduces informative murine models for investigating the pathophysiology and treatment of affective disorders.
Collapse
Affiliation(s)
- Bradley R. Miller
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | - Claudia Gonzaga-Jauregui
- Regeneron Genetics Center, Tarrytown, NY10591
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, Mexico
| | | | - Job de Jong
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY10032
| | | | - Seung Yeon Ko
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | | | - Cristopher Van Hout
- Regeneron Genetics Center, Tarrytown, NY10591
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, Mexico
| | - Millie Young
- Clinic for Special Children, Gordonville, PA17529
| | - Victor M. Luna
- Department of Neural Sciences, Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA19140
| | | | - Michael B. First
- Department of Psychiatry, Columbia University, New York, NY10032
| | - Hilledna J. Gregoire
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | - Andrew J. Dwork
- Department of Psychiatry, Columbia University, New York, NY10032
| | | | | | | | - Jose Rojas
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY10591
| | - Bin Ye
- Regeneron Genetics Center, Tarrytown, NY10591
| | - Eli Stahl
- Regeneron Genetics Center, Tarrytown, NY10591
| | | | - René Hen
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | | | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, NY10032
| | - Dadong Li
- Regeneron Genetics Center, Tarrytown, NY10591
| | - Scott Mellis
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY10591
| | | | - Susan D. Croll
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY10591
| | | | | | - Aris N. Economides
- Regeneron Genetics Center, Tarrytown, NY10591
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY10591
| | | | - Nao Chuhma
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY10032
| | - Stephen Rayport
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY10032
| | - Najaf Amin
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam3015 GD, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam3015 GD, The Netherlands
| | - Steven A. Kushner
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | | | - Sander Markx
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY10032
| | - Kevin A. Strauss
- Clinic for Special Children, Gordonville, PA17529
- Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA17602
- Departments of Pediatrics and Molecular, Cell and Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA01655
| |
Collapse
|
2
|
Kawai T, Dong P, Bakhurin K, Yin HH, Yang H. Calcium-activated ion channels drive atypical inhibition in medial habenula neurons. SCIENCE ADVANCES 2025; 11:eadq2629. [PMID: 40106550 PMCID: PMC11922023 DOI: 10.1126/sciadv.adq2629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Nicotine is an addictive substance that poses substantial health and societal challenges. Despite the known links between the medial habenula (MHb) and nicotine avoidance, the ionic mechanisms underlying MHb neuronal responses to nicotine remain unclear. Here, we report that MHb neurons use a long-lasting refractory period (LLRP) as an unconventional inhibitory mechanism to curb hyperexcitability. This process is initiated by nicotine-induced calcium influx through nicotinic acetylcholine receptors, which activates a calcium-activated chloride channel (CaCC). Owing to high intracellular chloride levels in MHb neurons, chloride efflux through CaCC, coupled with high-threshold voltage-gated calcium channels, sustains MHb depolarization near the chloride equilibrium potential of -30 millivolts, thereby enabling LLRP. Concurrently, calcium-activated BK potassium channels counteract this depolarization, promoting LLRP termination. Our findings reveal an atypical inhibitory mechanism, orchestrated by synergistic actions between calcium-permeable and calcium-activated channels. This discovery advances our understanding of neuronal excitability control and nicotine addiction.
Collapse
Affiliation(s)
- Takafumi Kawai
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Integrative Physiology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Ping Dong
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Konstantin Bakhurin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Henry H. Yin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
3
|
Wu YJ, Ren KX, Cai KY, Zheng C, Xu AP, Luo H, Wang MY, Zhang HH. Post-traumatic stress disorder-induced behavioral modulation by the medial septum-medial habenula neural pathway. Brain Res Bull 2025; 220:111185. [PMID: 39740693 DOI: 10.1016/j.brainresbull.2024.111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by anxiety, excessive fear, distress, and weakness as symptoms of a psychiatric disorder. However, the mechanism associated with its symptoms such as anxiety-like behaviors is not well understood. It is aimed to investigate the underlying mechanisms of the medial septum (MS)-medial habenula (MHb) neural circuit modulating the anxiety-like behaviors of PTSD mice through in vivo fiber photometry recording, optogenetics, behavioral testing by open-field and elevated plus maze, fluorescent gold retrograde tracer technology, and viral tracer technology. In the mouse PTSD model induced by compound stress consisting of single-prolonged stress combined with electrical foot shock, the average peak value of the Ca2 + signals in both the MHb and MS glutamatergic neurons significantly increased. The anterograde and retrograde tracer markers were used to indicate the possible connection between MS and MHb via glutamatergic neural pathway. After the optogenetic manipulation of the MS-MHb pathway in mice with PTSD, if the MS-MHb glutamatergic pathway was inhibited, anxiety was relieved based on changes in the various indices of behavioral experiments in mice with PTSD. Moreover, the heart rate of mice decreased. In conclusion, both glutamatergic neurons located in MS and MHb can be engaged in the development of PTSD anxiety-like behavior, and the MS-MHb can be related to the regulation of PTSD anxiety-like behavior and cardiac function through the glutamatergic neural pathway.
Collapse
Affiliation(s)
- Yu-Jie Wu
- Psychophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China; Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Ke-Xing Ren
- Psychophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China; Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Kun-Yi Cai
- Psychophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China; Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Chao Zheng
- Neurobiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Ai-Ping Xu
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Hao Luo
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Meng-Ya Wang
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China.
| | - Huan-Huan Zhang
- Psychophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China.
| |
Collapse
|
4
|
Chung L, Jing M, Li Y, Tapper AR. Feed-forward Activation of Habenula Cholinergic Neurons by Local Acetylcholine. Neuroscience 2023; 529:172-182. [PMID: 37572877 PMCID: PMC10840387 DOI: 10.1016/j.neuroscience.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
While the functional and behavioral role of the medial habenula (MHb) is still emerging, recent data indicate an involvement of this nuclei in regulating mood, aversion, and addiction. Unique to the MHb is a large cluster of cholinergic neurons that project to the interpeduncular nucleus and densely express acetylcholine receptors (AChRs) suggesting that the activity of these cholinergic neurons may be regulated by ACh itself. Whether endogenous ACh from within the habenula regulates cholinergic neuron activity has not been demonstrated. Supporting a role for ACh in modulating MHb activity, acetylcholinesterase inhibitors increased the firing rate of MHb cholinergic neurons in mouse habenula slices, an effect blocked by AChR antagonists and mediated by ACh which was detected via expressing fluorescent ACh sensors in MHb in vivo. To test if cholinergic afferents innervate MHb cholinergic neurons, we used anterograde and retrograde viral tracing to identify cholinergic inputs. Surprisingly, tracing experiments failed to detect cholinergic inputs into the MHb, including from the septum, suggesting that MHb cholinergic neurons may release ACh within the MHb to drive cholinergic activity. To test this hypothesis, we expressed channelrhodopsin in a portion of MHb cholinergic neurons while recording from non-opsin-expressing neurons. Light pulses progressively increased activity of MHb cholinergic neurons indicating feed-forward activation driven by MHb ACh release. These data indicate MHb cholinergic neurons may utilize a unique feed-forward mechanism to synchronize and increase activity by releasing local ACh.
Collapse
Affiliation(s)
- Leeyup Chung
- Brudnick Neuropsychiatric Research Institute, Dept. of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Miao Jing
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China; Chinese Institute for Brain Research, 102206 Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China; Chinese Institute for Brain Research, 102206 Beijing, China
| | - Andrew R Tapper
- Brudnick Neuropsychiatric Research Institute, Dept. of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
5
|
Orikasa C. Social Network Plasticity of Mice Parental Behavior. Front Neurosci 2022; 16:882850. [PMID: 35747212 PMCID: PMC9209706 DOI: 10.3389/fnins.2022.882850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Neural plasticity occurs during developmental stages and is essential for sexual differentiation of the brain and the ensuing sex-dependent behavioral changes in adults. Maternal behavior is primarily affected by sex-related differences in the brain; however, chronic social isolation even in mature male mice can induce maternal retrieving and crouching behavior when they are first exposed to pups. Social milieus influence the inherent behavior of adults and alter the molecular architecture in the brain, thereby allowing higher levels of associated gene expression and molecular activity. This review explores the possibility that although the development of neural circuits is closely associated with maternal behavior, the brain can still retain its neuroplasticity in adults from a neuromolecular perspective. In addition, neuronal machinery such as neurotransmitters and neuropeptides might influence sociobehavioral changes. This review also discusses that the neural circuits regulating behaviors such as parenting and infanticide (including neglect behavior), might be controlled by neural relay on melanin concentrating hormone (MCH)–oxytocin in the hypothalamus during the positive and negative mode of action in maternal behavior. Furthermore, MCH–oxytocin neural relay might contribute to the anxiolytic effect on maternal behavior, which is involved with reward circuits.
Collapse
|
6
|
Mu R, Tang S, Han X, Wang H, Yuan D, Zhao J, Long Y, Hong H. A cholinergic medial septum input to medial habenula mediates generalization formation and extinction of visual aversion. Cell Rep 2022; 39:110882. [PMID: 35649349 DOI: 10.1016/j.celrep.2022.110882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/07/2021] [Accepted: 05/06/2022] [Indexed: 12/28/2022] Open
Abstract
Generalization of visual aversion is a critical function of the brain that supports survival, but the underlying neurobiological mechanisms are unclear. We establish a rapid generalization procedure for inducing visual aversion by dynamic stripe images. By using fiber photometry, apoptosis, chemogenetic and optogenetic techniques, and behavioral tests, we find that decreased cholinergic neurons' activity in the medial septum (MS) leads to generalization loss of visual aversion. Strikingly, we identify a projection from MS cholinergic neurons to the medial habenula (MHb) and find that inhibition of the MS→MHb cholinergic circuit disrupts aversion-generalization formation while its continuous activation disrupts subsequent extinction. Further studies show that MS→MHb cholinergic projections modulate the generalization of visual aversion possibly via M1 muscarinic acetylcholine receptors (mAChRs) of downstream neurons coreleasing glutamate and acetylcholine. These findings reveal that the MS→MHb cholinergic circuit is a critical node in aversion-generalization formation and extinction and potentially provides insight into the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- Ronghao Mu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Susu Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaomeng Han
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Wang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Danhua Yuan
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Jiajia Zhao
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Long
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
7
|
Mocellin P, Mikulovic S. The Role of the Medial Septum-Associated Networks in Controlling Locomotion and Motivation to Move. Front Neural Circuits 2021; 15:699798. [PMID: 34366795 PMCID: PMC8340000 DOI: 10.3389/fncir.2021.699798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022] Open
Abstract
The Medial Septum and diagonal Band of Broca (MSDB) was initially studied for its role in locomotion. However, the last several decades were focussed on its intriguing function in theta rhythm generation. Early studies relied on electrical stimulation, lesions and pharmacological manipulation, and reported an inconclusive picture regarding the role of the MSDB circuits. Recent studies using more specific methodologies have started to elucidate the differential role of the MSDB's specific cell populations in controlling both theta rhythm and behaviour. In particular, a novel theory is emerging showing that different MSDB's cell populations project to different brain regions and control distinct aspects of behaviour. While the majority of these behaviours involve movement, increasing evidence suggests that MSDB-related networks govern the motivational aspect of actions, rather than locomotion per se. Here, we review the literature that links MSDB, theta activity, and locomotion and propose open questions, future directions, and methods that could be employed to elucidate the diverse roles of the MSDB-associated networks.
Collapse
Affiliation(s)
- Petra Mocellin
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
- International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Sanja Mikulovic
- Research Group Cognition and Emotion, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
8
|
Takeuchi Y, Nagy AJ, Barcsai L, Li Q, Ohsawa M, Mizuseki K, Berényi A. The Medial Septum as a Potential Target for Treating Brain Disorders Associated With Oscillopathies. Front Neural Circuits 2021; 15:701080. [PMID: 34305537 PMCID: PMC8297467 DOI: 10.3389/fncir.2021.701080] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
The medial septum (MS), as part of the basal forebrain, supports many physiological functions, from sensorimotor integration to cognition. With often reciprocal connections with a broad set of peers at all major divisions of the brain, the MS orchestrates oscillatory neuronal activities throughout the brain. These oscillations are critical in generating sensory and emotional salience, locomotion, maintaining mood, supporting innate anxiety, and governing learning and memory. Accumulating evidence points out that the physiological oscillations under septal influence are frequently disrupted or altered in pathological conditions. Therefore, the MS may be a potential target for treating neurological and psychiatric disorders with abnormal oscillations (oscillopathies) to restore healthy patterns or erase undesired ones. Recent studies have revealed that the patterned stimulation of the MS alleviates symptoms of epilepsy. We discuss here that stimulus timing is a critical determinant of treatment efficacy on multiple time scales. On-demand stimulation may dramatically reduce side effects by not interfering with normal physiological functions. A precise pattern-matched stimulation through adaptive timing governed by the ongoing oscillations is essential to effectively terminate pathological oscillations. The time-targeted strategy for the MS stimulation may provide an effective way of treating multiple disorders including Alzheimer's disease, anxiety/fear, schizophrenia, and depression, as well as pain.
Collapse
Affiliation(s)
- Yuichi Takeuchi
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Anett J. Nagy
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Lívia Barcsai
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Qun Li
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Antal Berényi
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
- Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary
- HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary
- Neuroscience Institute, New York University, New York, NY, United States
| |
Collapse
|
9
|
Vickstrom CR, Liu X, Liu S, Hu MM, Mu L, Hu Y, Yu H, Love SL, Hillard CJ, Liu QS. Role of endocannabinoid signaling in a septohabenular pathway in the regulation of anxiety- and depressive-like behavior. Mol Psychiatry 2021; 26:3178-3191. [PMID: 33093652 PMCID: PMC8060365 DOI: 10.1038/s41380-020-00905-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
Enhancing endocannabinoid signaling produces anxiolytic- and antidepressant-like effects, but the neural circuits involved remain poorly understood. The medial habenula (MHb) is a phylogenetically-conserved epithalamic structure that is a powerful modulator of anxiety- and depressive-like behavior. Here, we show that a robust endocannabinoid signaling system modulates synaptic transmission between the MHb and its sole identified GABA input, the medial septum and nucleus of the diagonal band (MSDB). With RNAscope in situ hybridization, we demonstrate that key enzymes that synthesize or degrade the endocannabinoids 2-arachidonylglycerol (2-AG) or anandamide are expressed in the MHb and MSDB, and that cannabinoid receptor 1 (CB1) is expressed in the MSDB. Electrophysiological recordings in MHb neurons revealed that endogenously-released 2-AG retrogradely depresses GABA input from the MSDB. This endocannabinoid-mediated depolarization-induced suppression of inhibition (DSI) was limited by monoacylglycerol lipase (MAGL) but not by fatty acid amide hydrolase. Anatomic and optogenetic circuit mapping indicated that MSDB GABA neurons monosynaptically project to cholinergic neurons of the ventral MHb. To test the behavioral significance of this MSDB-MHb endocannabinoid signaling, we induced MSDB-specific knockout of CB1 or MAGL via injection of virally-delivered Cre recombinase into the MSDB of Cnr1loxP/loxP or MgllloxP/loxP mice. Relative to control mice, MSDB-specific knockout of CB1 or MAGL bidirectionally modulated 2-AG signaling in the ventral MHb and led to opposing effects on anxiety- and depressive-like behavior. Thus, depression of synaptic GABA release in the MSDB-ventral MHb pathway may represent a potential mechanism whereby endocannabinoids exert anxiolytic and antidepressant-like effects.
Collapse
Affiliation(s)
- Casey R Vickstrom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Shuai Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Meng-Ming Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hao Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Santidra L Love
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
10
|
Neural Contributions of the Hypothalamus to Parental Behaviour. Int J Mol Sci 2021; 22:ijms22136998. [PMID: 34209728 PMCID: PMC8268030 DOI: 10.3390/ijms22136998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Parental behaviour is a comprehensive set of neural responses to social cues. The neural circuits that govern parental behaviour reside in several putative nuclei in the brain. Melanin concentrating hormone (MCH), a neuromodulator that integrates physiological functions, has been confirmed to be involved in parental behaviour, particularly in crouching behaviour during nursing. Abolishing MCH neurons in innate MCH knockout males promotes infanticide in virgin male mice. To understand the mechanism and function of neural networks underlying parental care and aggression against pups, it is essential to understand the basic organisation and function of the involved nuclei. This review presents newly discovered aspects of neural circuits within the hypothalamus that regulate parental behaviours.
Collapse
|
11
|
Chronic sleep fragmentation enhances habenula cholinergic neural activity. Mol Psychiatry 2021; 26:941-954. [PMID: 30980042 PMCID: PMC6790161 DOI: 10.1038/s41380-019-0419-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/21/2019] [Accepted: 03/26/2019] [Indexed: 01/25/2023]
Abstract
Sleep is essential to emotional health. Sleep disturbance, particularly REM sleep disturbance, profoundly impacts emotion regulation, but the underlying neural mechanisms remain elusive. Here we show that chronic REM sleep disturbance, achieved in mice by chronic sleep fragmentation (SF), enhanced neural activity in the medial habenula (mHb), a brain region increasingly implicated in negative affect. Specifically, after a 5-day SF procedure that selectively fragmented REM sleep, cholinergic output neurons (ChNs) in the mHb exhibited increased spontaneous firing rate and enhanced firing regularity in brain slices. The SF-induced firing changes remained intact upon inhibition of glutamate, GABA, acetylcholine, and histamine receptors, suggesting cell-autonomous mechanisms independent of synaptic transmissions. Moreover, the SF-induced hyperactivity was not because of enhanced intrinsic membrane excitability, but was accompanied by depolarized resting membrane potential in mHb ChNs. Furthermore, inhibition of TASK-3 (KCNK9) channels, a subtype of two-pore domain K+ channels, mimicked the SF effects by increasing the firing rate and regularity, as well as depolarizing the resting membrane potential in mHb ChNs in control-sleep mice. These effects of TASK-3 inhibition were absent in SF mice, suggesting reduced TASK-3 activity following SF. By contrast, inhibition of small-conductance Ca2+-activated K+ (SK) channels did not produce similar effects. Thus, SF compromised TASK-3 function in mHb ChNs, which likely led to depolarized resting membrane potential and increased spontaneous firing. These results not only demonstrate that selective REM sleep disturbance leads to hyperactivity of mHb ChNs, but also identify a key molecular substrate through which REM sleep disturbance may alter affect regulation.
Collapse
|
12
|
Kato Y, Katsumata H, Inutsuka A, Yamanaka A, Onaka T, Minami S, Orikasa C. Involvement of MCH-oxytocin neural relay within the hypothalamus in murine nursing behavior. Sci Rep 2021; 11:3348. [PMID: 33558633 PMCID: PMC7870840 DOI: 10.1038/s41598-021-82773-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sequential actions, performed during parental behaviors, are essential elements of reproduction in mammalian species. We showed that neurons expressing melanin concentrating hormone (MCH) in the lateral hypothalamic area (LHA) are more active in rodents of both sexes when exhibiting parental nursing behavior. Genetic ablation of the LHA-MCH neurons impaired maternal nursing. The post-birth survival rate was lower in pups born to female mice with congenitally ablated MCH neurons under control of tet-off system, exhibiting reduced crouching behavior. Virgin female and male mice with ablated MCH neurons were less interested in pups and maternal care. Chemogenetic and optogenetic stimulation of LHA-MCH neurons induced parental nursing in virgin female and male mice. LHA-MCH GABAergic neurons project fibres to the paraventricular hypothalamic nucleus (PVN) neurons. Optogenetic stimulation of PVN induces nursing crouching behavior along with increasing plasma oxytocin levels. The hypothalamic MCH neural relays play important functional roles in parental nursing behavior in female and male mice.
Collapse
Affiliation(s)
- Yoko Kato
- Department of Bioregulation, Institute for Advanced Medical Science, Nippon Medical School, Kawasaki, 211-8533, Japan
| | - Harumi Katsumata
- Department of Bioregulation, Institute for Advanced Medical Science, Nippon Medical School, Kawasaki, 211-8533, Japan
| | - Ayumu Inutsuka
- Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Tatsushi Onaka
- Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Shiro Minami
- Department of Bioregulation, Institute for Advanced Medical Science, Nippon Medical School, Kawasaki, 211-8533, Japan
| | - Chitose Orikasa
- Department of Bioregulation, Institute for Advanced Medical Science, Nippon Medical School, Kawasaki, 211-8533, Japan.
| |
Collapse
|
13
|
T-Type Calcium Channels Contribute to Burst Firing in a Subpopulation of Medial Habenula Neurons. eNeuro 2020; 7:ENEURO.0201-20.2020. [PMID: 32719103 PMCID: PMC7433892 DOI: 10.1523/eneuro.0201-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022] Open
Abstract
Action potential (AP) burst firing caused by the activation of low-voltage-activated T-type Ca2+ channels is a unique mode of neuronal firing. T-type channels have been implicated in diverse physiological and pathophysiological processes, including epilepsy, autism, and mood regulation, but the brain structures involved remain incompletely understood. The medial habenula (MHb) is an epithalamic structure implicated in anxiety-like and withdrawal behavior. Previous studies have shown that MHb neurons fire tonic APs at a frequency of ∼2–10 Hz or display depolarized low-amplitude membrane oscillations. Here, we report in C57BL/6J mice that a subpopulation of MHb neurons are capable of firing transient, high-frequency AP bursts mediated by T-type channels. Burst firing was observed following rebounding from hyperpolarizing current injections or during depolarization from hyperpolarized membrane potentials in ∼20% of MHb neurons. It was rarely observed at baseline but could be evoked in MHb neurons displaying different initial activity states. Further, we show that T-type channel mRNA, in particular Cav3.1, is expressed in the MHb in both cholinergic and substance P-ergic neurons. Pharmacological Cav3 antagonism blocked both burst firing and evoked Ca2+ currents in MHb neurons. Additionally, we observed high-frequency AP doublet firing at sustained depolarized membrane potentials that was independent of T-type channels. Thus, there is a greater diversity of AP firing patterns in MHb neurons than previously identified, including T-type channel-mediated burst firing, which may uniquely contribute to behaviors with relevance to neuropsychiatric disease.
Collapse
|
14
|
Webster JF, Vroman R, Balueva K, Wulff P, Sakata S, Wozny C. Disentangling neuronal inhibition and inhibitory pathways in the lateral habenula. Sci Rep 2020; 10:8490. [PMID: 32444785 PMCID: PMC7244525 DOI: 10.1038/s41598-020-65349-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
The lateral habenula (LHb) is hyperactive in depression, and thus potentiating inhibition of this structure makes an interesting target for future antidepressant therapies. However, the circuit mechanisms mediating inhibitory signalling within the LHb are not well-known. We addressed this issue by studying LHb neurons expressing either parvalbumin (PV) or somatostatin (SOM), two markers of particular sub-classes of neocortical inhibitory neurons. Here, we find that both PV and SOM are expressed by physiologically distinct sub-classes. Furthermore, we describe multiple sources of inhibitory input to the LHb arising from both local PV-positive neurons, from PV-positive neurons in the medial dorsal thalamic nucleus, and from SOM-positive neurons in the ventral pallidum. These findings hence provide new insight into inhibitory control within the LHb, and highlight that this structure is more neuronally diverse than previously thought.
Collapse
Affiliation(s)
- Jack F Webster
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Rozan Vroman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Kira Balueva
- Institute of Physiology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 5, 24118, Kiel, Germany
| | - Peer Wulff
- Institute of Physiology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 5, 24118, Kiel, Germany
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Christian Wozny
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
15
|
Otsu Y, Lecca S, Pietrajtis K, Rousseau CV, Marcaggi P, Dugué GP, Mailhes-Hamon C, Mameli M, Diana MA. Functional Principles of Posterior Septal Inputs to the Medial Habenula. Cell Rep 2019; 22:693-705. [PMID: 29346767 PMCID: PMC5792424 DOI: 10.1016/j.celrep.2017.12.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/26/2017] [Accepted: 12/20/2017] [Indexed: 11/29/2022] Open
Abstract
The medial habenula (MHb) is an epithalamic hub contributing to expression and extinction of aversive states by bridging forebrain areas and midbrain monoaminergic centers. Although contradictory information exists regarding their synaptic properties, the physiology of the excitatory inputs to the MHb from the posterior septum remains elusive. Here, combining optogenetics-based mapping with ex vivo and in vivo physiology, we examine the synaptic properties of posterior septal afferents to the MHb and how they influence behavior. We demonstrate that MHb cells receive sparse inputs producing purely glutamatergic responses via calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), heterotrimeric GluN2A-GluN2B-GluN1 N-methyl-D-aspartate (NMDA) receptors, and inhibitory group II metabotropic glutamate receptors. We describe the complex integration dynamics of these components by MHb cells. Finally, we combine ex vivo data with realistic afferent firing patterns recorded in vivo to demonstrate that efficient optogenetic septal stimulation in the MHb induces anxiolysis and promotes locomotion, contributing long-awaited evidence in favor of the importance of this septo-habenular pathway. Medial habenular (MHb) neurons receive sparse inputs from the posterior septum (PS) PS afferents to the MHb function in a purely glutamatergic mode Excitatory ionotropic and inhibitory metabotropic receptors convey PS inputs in the MHb PS activation in the MHb increases locomotion and induces anxiolysis
Collapse
Affiliation(s)
- Yo Otsu
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Salvatore Lecca
- Institut du Fer à Moulin, INSERM-UPMC UMR-S 839, Paris, France
| | - Katarzyna Pietrajtis
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Charly Vincent Rousseau
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Païkan Marcaggi
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Guillaume Pierre Dugué
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Caroline Mailhes-Hamon
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Manuel Mameli
- Institut du Fer à Moulin, INSERM-UPMC UMR-S 839, Paris, France
| | - Marco Alberto Diana
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France.
| |
Collapse
|
16
|
López AJ, Jia Y, White AO, Kwapis JL, Espinoza M, Hwang P, Campbell R, Alaghband Y, Chitnis O, Matheos DP, Lynch G, Wood MA. Medial habenula cholinergic signaling regulates cocaine-associated relapse-like behavior. Addict Biol 2019; 24:403-413. [PMID: 29430793 PMCID: PMC6087687 DOI: 10.1111/adb.12605] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/08/2017] [Accepted: 01/08/2018] [Indexed: 01/19/2023]
Abstract
Propensity to relapse, even following long periods of abstinence, is a key feature in substance use disorders. Relapse and relapse‐like behaviors are known to be induced, in part, by re‐exposure to drug‐associated cues. Yet, while many critical nodes in the neural circuitry contributing to relapse have been identified and studied, a full description of the networks driving reinstatement of drug‐seeking behaviors is lacking. One area that may provide further insight to the mechanisms of relapse is the habenula complex, an epithalamic region composed of lateral and medial (MHb) substructures, each with unique cell and target populations. Although well conserved across vertebrate species, the functions of the MHb are not well understood. Recent research has demonstrated that the MHb regulates nicotine aversion and withdrawal. However, it remains undetermined whether MHb function is limited to nicotine and aversive stimuli or if MHb circuit regulates responses to other drugs of abuse. Advances in circuit‐level manipulations now allow for cell‐type and temporally specific manipulations during behavior, specifically in spatially restrictive brain regions, such as the MHb. In this study, we focus on the response of the MHb to reinstatement of cocaine‐associated behavior, demonstrating that cocaine‐primed reinstatement of conditioned place preference engages habenula circuitry. Using chemogenetics, we demonstrate that MHb activity is sufficient to induce reinstatement behavior. Together, these data identify the MHb as a key hub in the circuitry underlying reinstatement and may serve as a target for regulating relapse‐like behaviors.
Collapse
Affiliation(s)
- Alberto J. López
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
- Center for the Neurobiology of Learning and Memory, Ayala School of Biological Sciences; University of California; Irvine CA USA
| | - Yousheng Jia
- Department of Anatomy and Neurobiology, School of Medicine; University of California; Irvine CA USA
| | - André O. White
- Department of Biological Sciences, Neuroscience and Behavior; Mount Holyoke College; South Hadley MA USA
| | - Janine L. Kwapis
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
| | - Monica Espinoza
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
- Center for the Neurobiology of Learning and Memory, Ayala School of Biological Sciences; University of California; Irvine CA USA
| | - Philip Hwang
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
- Center for the Neurobiology of Learning and Memory, Ayala School of Biological Sciences; University of California; Irvine CA USA
| | - Rianne Campbell
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
- Center for the Neurobiology of Learning and Memory, Ayala School of Biological Sciences; University of California; Irvine CA USA
| | - Yasaman Alaghband
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
- Center for the Neurobiology of Learning and Memory, Ayala School of Biological Sciences; University of California; Irvine CA USA
| | - Om Chitnis
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
- Center for the Neurobiology of Learning and Memory, Ayala School of Biological Sciences; University of California; Irvine CA USA
| | - Dina P. Matheos
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
- Center for the Neurobiology of Learning and Memory, Ayala School of Biological Sciences; University of California; Irvine CA USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, School of Medicine; University of California; Irvine CA USA
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
- Center for the Neurobiology of Learning and Memory, Ayala School of Biological Sciences; University of California; Irvine CA USA
| |
Collapse
|