1
|
Salehzadeh M, Izadpanah K, Afsharifar A. Antiviral activity and mechanisms of action of atropine, rutin, and hypoxanthine against tomato Brown rugose fruit virus. Microb Pathog 2025; 205:107587. [PMID: 40287106 DOI: 10.1016/j.micpath.2025.107587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/26/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Plant viral diseases cause considerable damage to the agricultural industry and are difficult to control. Recently, botanical biopesticides that are environmentally friendly, safe for non-target organisms, and not prone to developing drug resistance have shown great potential as antiviral agents. In the present study a screening of natural products with antiviral potential was conducted, and three compounds - atropine, rutin, and hypoxanthine - were identified to possess anti-tomato brown rugose fruit virus (ToBRFV) activity. Further, the modes of action of these compounds were investigated. The results of the bioassay revealed that atropine, rutin and hypoxanthine were effective at concentrations of 50, 100 and 150 μg mL-1 in inactivating, inhibiting proliferation and protecting against ToBRFV when combined with atropine and rutin. As the concentration of compounds increased, their antiviral properties were found to be enhanced. These compounds were found to reduce the expression of the coat protein and the replicase genes of ToBRFV. Atropine and rutin, in particular, demonstrated substantial anti-ToBRFV effects with diverse modes of action when used alone or in combination. Hypoxanthine demonstrated a comparatively weaker antiviral effect than the other two compounds, and when combined with the latter, the antiviral activity of the other compounds was also reduced to a certain extent. These results provided key proof that these compounds may represent a promising source of novel antiviral agents for agricultural use.
Collapse
Affiliation(s)
- Mehrdad Salehzadeh
- Plant Pathology, Plant Virology Research Center, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Keramatollah Izadpanah
- Plant Pathology, Plant Virology Research Center, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Alireza Afsharifar
- Plant Pathology, Plant Virology Research Center, School of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
2
|
Mante J, Groover KE, Pullen RM. Environmental community transcriptomics: strategies and struggles. Brief Funct Genomics 2025; 24:elae033. [PMID: 39183066 PMCID: PMC11735753 DOI: 10.1093/bfgp/elae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Transcriptomics is the study of RNA transcripts, the portion of the genome that is transcribed, in a specific cell, tissue, or organism. Transcriptomics provides insight into gene expression patterns, regulation, and the underlying mechanisms of cellular processes. Community transcriptomics takes this a step further by studying the RNA transcripts from environmental assemblies of organisms, with the intention of better understanding the interactions between members of the community. Community transcriptomics requires successful extraction of RNA from a diverse set of organisms and subsequent analysis via mapping those reads to a reference genome or de novo assembly of the reads. Both, extraction protocols and the analysis steps can pose hurdles for community transcriptomics. This review covers advances in transcriptomic techniques and assesses the viability of applying them to community transcriptomics.
Collapse
Affiliation(s)
- Jeanet Mante
- Oak Ridge Associated Universities, Oak Ridge, 37831, TN, USA
| | - Kyra E Groover
- Department of Molecular Biosciences, University of Texas at Austin, Austin, 78705, TX, USA
| | - Randi M Pullen
- DEVCOM Army Research Laboratory, Adelphi, 20783, MD, USA
| |
Collapse
|
3
|
Shilpha J, Lee J, Kwon JS, Lee HA, Nam JY, Jang H, Kang WH. An improved bacterial mRNA enrichment strategy in dual RNA sequencing to unveil the dynamics of plant-bacterial interactions. PLANT METHODS 2024; 20:99. [PMID: 38951818 PMCID: PMC11218159 DOI: 10.1186/s13007-024-01227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Dual RNA sequencing is a powerful tool that enables a comprehensive understanding of the molecular dynamics underlying plant-microbe interactions. RNA sequencing (RNA-seq) poses technical hurdles in the transcriptional analysis of plant-bacterial interactions, especially in bacterial transcriptomics, owing to the presence of abundant ribosomal RNA (rRNA), which potentially limits the coverage of essential transcripts. Therefore, to achieve cost-effective and comprehensive sequencing of the bacterial transcriptome, it is imperative to devise efficient methods for eliminating rRNA and enhancing the proportion of bacterial mRNA. In this study, we modified a strand-specific dual RNA-seq method with the goal of enriching the proportion of bacterial mRNA in the bacteria-infected plant samples. The enriched method involved the sequential separation of plant mRNA by poly A selection and rRNA removal for bacterial mRNA enrichment followed by strand specific RNA-seq library preparation steps. We assessed the efficiency of the enriched method in comparison to the conventional method by employing various plant-bacterial interactions, including both host and non-host resistance interactions with pathogenic bacteria, as well as an interaction with a beneficial rhizosphere associated bacteria using pepper and tomato plants respectively. RESULTS In all cases of plant-bacterial interactions examined, an increase in mapping efficiency was observed with the enriched method although it produced a lower read count. Especially in the compatible interaction with Xanthmonas campestris pv. Vesicatoria race 3 (Xcv3), the enriched method enhanced the mapping ratio of Xcv3-infected pepper samples to its own genome (15.09%; 1.45-fold increase) and the CDS (8.92%; 1.49-fold increase). The enriched method consistently displayed a greater number of differentially expressed genes (DEGs) than the conventional RNA-seq method at all fold change threshold levels investigated, notably during the early stages of Xcv3 infection in peppers. The Gene Ontology (GO) enrichment analysis revealed that the DEGs were predominantly enriched in proteolysis, kinase, serine type endopeptidase and heme binding activities. CONCLUSION The enriched method demonstrated in this study will serve as a suitable alternative to the existing RNA-seq method to enrich bacterial mRNA and provide novel insights into the intricate transcriptomic alterations within the plant-bacterial interplay.
Collapse
Affiliation(s)
- Jayabalan Shilpha
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Junesung Lee
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ji-Su Kwon
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun-Ah Lee
- Division of Smart Horticulture, Yonam College, Cheonan, 31005, Republic of Korea
| | - Jae-Young Nam
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hakgi Jang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Won-Hee Kang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
4
|
Cantin LJ, Gregory V, Blum LN, Foster JM. Dual RNA-seq in filarial nematodes and Wolbachia endosymbionts using RNase H based ribosomal RNA depletion. Front Microbiol 2024; 15:1418032. [PMID: 38832111 PMCID: PMC11144916 DOI: 10.3389/fmicb.2024.1418032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Lymphatic filariasis is caused by parasitic nematodes and is a leading cause of disability worldwide. Many filarial worms contain the bacterium Wolbachia as an obligate endosymbiont. RNA sequencing is a common technique used to study their molecular relationships and to identify potential drug targets against the nematode and bacteria. Ribosomal RNA (rRNA) is the most abundant RNA species, accounting for 80-90% of the RNA in a sample. To reduce sequencing costs, it is necessary to remove ribosomal reads through poly-A enrichment or ribosomal depletion. Bacterial RNA does not contain a poly-A tail, making it difficult to sequence both the nematode and Wolbachia from the same library preparation using standard poly-A selection. Ribosomal depletion can utilize species-specific oligonucleotide probes to remove rRNA through pull-down or degradation methods. While species-specific probes are commercially available for many commonly studied model organisms, there are currently limited depletion options for filarial parasites. Here, we performed total RNA sequencing from Brugia malayi containing the Wolbachia symbiont (wBm) and designed ssDNA depletion probes against their rRNA sequences. We compared the total RNA library to poly-A enriched, Terminator 5'-Phosphate-Dependent Exonuclease treated, NEBNext Human/Bacteria rRNA depleted and our custom nematode probe depleted libraries. The custom nematode depletion library had the lowest percentage of ribosomal reads across all methods, with a 300-fold decrease in rRNA when compared to the total RNA library. The nematode depletion libraries also contained the highest percentage of Wolbachia mRNA reads, resulting in a 16-1,000-fold increase in bacterial reads compared to the other enrichment and depletion methods. Finally, we found that the Brugia malayi depletion probes can remove rRNA from the filarial worm Dirofilaria immitis and the majority of rRNA from the more distantly related free living nematode Caenorhabditis elegans. These custom filarial probes will allow for future dual RNA-seq experiments between nematodes and their bacterial symbionts from a single sequencing library.
Collapse
Affiliation(s)
- Lindsey J. Cantin
- Biochemistry and Microbiology Division, New England BioLabs, Ipswich, MA, United States
| | - Vanessa Gregory
- Biochemistry and Microbiology Division, New England BioLabs, Ipswich, MA, United States
| | - Laura N. Blum
- Applications and Product Development, New England BioLabs, Ipswich, MA, United States
| | - Jeremy M. Foster
- Biochemistry and Microbiology Division, New England BioLabs, Ipswich, MA, United States
| |
Collapse
|
5
|
Lanza A, Kimura S, Hirono I, Yoshitake K, Kinoshita S, Asakawa S. Transcriptome analysis of Edwardsiella piscicida during intracellular infection reveals excludons are involved with the activation of a mitochondrion-like energy generation program. mBio 2024; 15:e0352623. [PMID: 38349189 PMCID: PMC10936155 DOI: 10.1128/mbio.03526-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024] Open
Abstract
Phylogenetic evidence suggests a shared ancestry between mitochondria and modern Proteobacteria, a phylum including several genera of intracellular pathogens. Studying these diverse pathogens, particularly during intracellular infection of their hosts, can reveal characteristics potentially representative of the mitochondrial-Proteobacterial ancestor by identifying traits shared with mitochondria. While transcriptomic approaches can provide global insights into intracellular acclimatization by pathogens, they are often limited by excess host RNAs in extracts. Here, we developed a method employing magnetic nanoparticles to enrich RNA from an intracellular Gammaproteobacterium, Edwardsiella piscicida, within zebrafish, Danio rerio, fin fibroblasts, enabling comprehensive exploration of the bacterial transcriptome. Our findings revealed that the intracellular E. piscicida transcriptome reflects a mitochondrion-like energy generation program characterized by the suppression of glycolysis and sugar transport, coupled with upregulation of the tricarboxylic acid (TCA) cycle and alternative import of simple organic acids that directly flux into TCA cycle intermediates or electron transport chain donors. Additionally, genes predicted to be members of excludons, loci of gene pairs antagonistically co-regulated by overlapping antisense transcription, are significantly enriched in the set of all genes with perturbed sense and antisense transcription, suggesting a general but important involvement of excludons with intracellular acclimatization. Notably, genes involved with the activation of the mitochondrion-like energy generation program, specifically with metabolite import and glycolysis, are also members of predicted excludons. Other intracellular Proteobacterial pathogens appear to employ a similar mitochondrion-like energy generation program, suggesting a potentially conserved mechanism for optimized energy acquisition from hosts centered around the TCA cycle.IMPORTANCEPhylogenetic evidence suggests that mitochondria and Proteobacteria, a phylum encompassing various intracellular pathogens, share a common ancestral lineage. In this study, we developed a novel method employing magnetic nanoparticles to explore the transcriptome of an aquatic Gammaproteobacterium, Edwardsiella piscicida, during intracellular infection of host cells. We show that the strategy E. piscicida uses to generate energy strikingly mirrors the function of mitochondria-energy generators devoid of glycolytic processes. Notably, several implicated genes are members of excludons-gene pairs antagonistically co-regulated by overlapping antisense transcription. Other intracellular Proteobacterial pathogens appear to adopt a similar mitochondrion-like energy generation program, indicating a possibly conserved strategy for optimized energy acquisition from hosts centered around the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Andre Lanza
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kimura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuo Hirono
- Department of Marine Biosciences, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Bohn T, Balbuena E, Ulus H, Iddir M, Wang G, Crook N, Eroglu A. Carotenoids in Health as Studied by Omics-Related Endpoints. Adv Nutr 2023; 14:1538-1578. [PMID: 37678712 PMCID: PMC10721521 DOI: 10.1016/j.advnut.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
Carotenoids have been associated with risk reduction for several chronic diseases, including the association of their dietary intake/circulating levels with reduced incidence of obesity, type 2 diabetes, certain types of cancer, and even lower total mortality. In addition to some carotenoids constituting vitamin A precursors, they are implicated in potential antioxidant effects and pathways related to inflammation and oxidative stress, including transcription factors such as nuclear factor κB and nuclear factor erythroid 2-related factor 2. Carotenoids and metabolites may also interact with nuclear receptors, mainly retinoic acid receptor/retinoid X receptor and peroxisome proliferator-activated receptors, which play a role in the immune system and cellular differentiation. Therefore, a large number of downstream targets are likely influenced by carotenoids, including but not limited to genes and proteins implicated in oxidative stress and inflammation, antioxidation, and cellular differentiation processes. Furthermore, recent studies also propose an association between carotenoid intake and gut microbiota. While all these endpoints could be individually assessed, a more complete/integrative way to determine a multitude of health-related aspects of carotenoids includes (multi)omics-related techniques, especially transcriptomics, proteomics, lipidomics, and metabolomics, as well as metagenomics, measured in a variety of biospecimens including plasma, urine, stool, white blood cells, or other tissue cellular extracts. In this review, we highlight the use of omics technologies to assess health-related effects of carotenoids in mammalian organisms and models.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg.
| | - Emilio Balbuena
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States
| | - Hande Ulus
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States
| | - Mohammed Iddir
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Genan Wang
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States.
| |
Collapse
|
7
|
Kariuki EG, Kibet C, Paredes JC, Mboowa G, Mwaura O, Njogu J, Masiga D, Bugg TDH, Tanga CM. Metatranscriptomic analysis of the gut microbiome of black soldier fly larvae reared on lignocellulose-rich fiber diets unveils key lignocellulolytic enzymes. Front Microbiol 2023; 14:1120224. [PMID: 37180276 PMCID: PMC10171111 DOI: 10.3389/fmicb.2023.1120224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Recently, interest in the black soldier fly larvae (BSFL) gut microbiome has received increased attention primarily due to their role in waste bioconversion. However, there is a lack of information on the positive effect on the activities of the gut microbiomes and enzymes (CAZyme families) acting on lignocellulose. In this study, BSFL were subjected to lignocellulose-rich diets: chicken feed (CF), chicken manure (CM), brewers' spent grain (BSG), and water hyacinth (WH). The mRNA libraries were prepared, and RNA-Sequencing was conducted using the PCR-cDNA approach through the MinION sequencing platform. Our results demonstrated that BSFL reared on BSG and WH had the highest abundance of Bacteroides and Dysgonomonas. The presence of GH51 and GH43_16 enzyme families in the gut of BSFL with both α-L-arabinofuranosidases and exo-alpha-L-arabinofuranosidase 2 were common in the BSFL reared on the highly lignocellulosic WH and BSG diets. Gene clusters that encode hemicellulolytic arabinofuranosidases in the CAZy family GH51 were also identified. These findings provide novel insight into the shift of gut microbiomes and the potential role of BSFL in the bioconversion of various highly lignocellulosic diets to fermentable sugars for subsequent value-added products (bioethanol). Further research on the role of these enzymes to improve existing technologies and their biotechnological applications is crucial.
Collapse
Affiliation(s)
- Eric G. Kariuki
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Caleb Kibet
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Juan C. Paredes
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Oscar Mwaura
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - John Njogu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Timothy D. H. Bugg
- Department of Chemistry, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Chrysantus M. Tanga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
8
|
Koorakula R, Ghanbari M, Schiavinato M, Wegl G, Dohm JC, Domig KJ. Storage media and RNA extraction approaches substantially influence the recovery and integrity of livestock fecal microbial RNA. PeerJ 2022; 10:e13547. [PMID: 35694379 PMCID: PMC9186325 DOI: 10.7717/peerj.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
Background There is growing interest in understanding gut microbiome dynamics, to increase the sustainability of livestock production systems and to better understand the dynamics that regulate antibiotic resistance genes (i.e., the resistome). High-throughput sequencing of RNA transcripts (RNA-seq) from microbial communities (metatranscriptome) allows an unprecedented opportunity to analyze the functional and taxonomical dynamics of the expressed microbiome and emerges as a highly informative approach. However, the isolation and preservation of high-quality RNA from livestock fecal samples remains highly challenging. This study aimed to determine the impact of the various sample storage and RNA extraction strategies on the recovery and integrity of microbial RNA extracted from selected livestock (chicken and pig) fecal samples. Methods Fecal samples from pigs and chicken were collected from conventional slaughterhouses. Two different storage buffers were used at two different storage temperatures. The extraction of total RNA was done using four different commercially available kits and RNA integrity/quality and concentration were measured using a Bioanalyzer 2100 system with RNA 6000 Nano kit (Agilent, Santa Clara, CA, USA). In addition, RT-qPCR was used to assess bacterial RNA quality and the level of host RNA contamination. Results The quantity and quality of RNA differed by sample type (i.e., either pig or chicken) and most significantly by the extraction kit, with differences in the extraction method resulting in the least variability in pig feces samples and the most variability in chicken feces. Considering a tradeoff between the RNA yield and the RNA integrity and at the same time minimizing the amount of host RNA in the sample, a combination of storing the fecal samples in RNALater at either 4 °C (for 24 h) or -80 °C (up to 2 weeks) with extraction with PM kit (RNEasy Power Microbiome Kit) had the best performance for both chicken and pig samples. Conclusion Our findings provided a further emphasis on using a consistent methodology for sample storage, duration as well as a compatible RNA extraction approach. This is crucial as the impact of these technical steps can be potentially large compared with the real biological variability to be explained in microbiome and resistome studies.
Collapse
Affiliation(s)
- Raju Koorakula
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Vienna, Austria
- Competence Centre for Feed and Food Quality, Safety and Innovation (FFoQSI), Tulln an der Donau, Lower Austria, Austria
| | | | - Matteo Schiavinato
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Computational Biology, Vienna, Austria
| | | | - Juliane C. Dohm
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Computational Biology, Vienna, Austria
| | - Konrad J. Domig
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Vienna, Austria
| |
Collapse
|
9
|
Mavila S, Culver HR, Anderson AJ, Prieto TR, Bowman CN. Athermal, Chemically Triggered Release of RNA from Thioester Nucleic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sudheendran Mavila
- Department of Chemical and Biological Engineering University of Colorado—Boulder Boulder CO 80309 USA
| | - Heidi R. Culver
- Department of Chemical and Biological Engineering University of Colorado—Boulder Boulder CO 80309 USA
| | - Alex J. Anderson
- Department of Chemical and Biological Engineering University of Colorado—Boulder Boulder CO 80309 USA
| | - Tania R. Prieto
- Department of Chemical and Biological Engineering University of Colorado—Boulder Boulder CO 80309 USA
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering University of Colorado—Boulder Boulder CO 80309 USA
| |
Collapse
|
10
|
Mavila S, Culver HR, Anderson AJ, Prieto TR, Bowman CN. Athermal, Chemically Triggered Release of RNA from Thioester Nucleic Acids. Angew Chem Int Ed Engl 2022; 61:e202110741. [PMID: 34697873 DOI: 10.1002/anie.202110741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 12/21/2022]
Abstract
An athermal approach to mRNA enrichment from total RNA using a self-immolative thioester linked nucleic acids (TENA) is described. Oligo(thymine) (oT) TENA has a six-atom spacing between bases which allowed TENA to selectively base-pair with polyadenine RNA. As a result of the neutral backbone of TENA and the hydrophobicity of the octanethiol end group, oT TENA is water insoluble and efficiently pulled down 93±2 % of EGFP mRNA at a concentration of 10 ng μL-1 . Self-immolative degradation of TENA upon ambient temperature exposure to nucleophilic buffer components (Tris, DTT) allowed recovery of 55±27 ng of mRNA from 3.1 μg of total RNA, which was not statistically different from the amount recovered using Dynabeads® mRNA DIRECT Kit (89±24 ng). Gene expression as measured by RT-qPCR was comparable for both enrichment methods, suggesting that the mild conditions required for enrichment of mRNA using oT TENA are compatible with RT-qPCR and other downstream molecular biology applications.
Collapse
Affiliation(s)
- Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO, 80309, USA
| | - Heidi R Culver
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO, 80309, USA
| | - Alex J Anderson
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO, 80309, USA
| | - Tania R Prieto
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO, 80309, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
11
|
De Francesco A, Lovelace AH, Shaw D, Qiu M, Wang Y, Gurung F, Ancona V, Wang C, Levy A, Jiang T, Ma W. Transcriptome Profiling of ' Candidatus Liberibacter asiaticus' in Citrus and Psyllids. PHYTOPATHOLOGY 2022; 112:116-130. [PMID: 35025694 DOI: 10.1094/phyto-08-21-0327-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
'Candidatus Liberibacter asiaticus' (Las) is an emergent bacterial pathogen that is associated with the devastating citrus huanglongbing (HLB). Vectored by the Asian citrus psyllid, Las colonizes the phloem tissue of citrus, causing severe damage to infected trees. So far, cultivating pure Las culture in axenic media has not been successful, and dual-transcriptome analyses aiming to profile gene expression in both Las and its hosts have a low coverage of the Las genome because of the low abundance of bacterial RNA in total RNA extracts from infected tissues. Therefore, a lack of understanding of the Las transcriptome remains a significant knowledge gap. Here, we used a bacterial cell enrichment procedure and confidently determined the expression profiles of approximately 84% of the Las genes. Genes that exhibited high expression in citrus include transporters, ferritin, outer membrane porins, specific pilins, and genes involved in phage-related functions, cell wall modification, and stress responses. We also found 106 genes to be differentially expressed in citrus versus Asian citrus psyllids. Genes related to transcription or translation and resilience to host defense response were upregulated in citrus, whereas genes involved in energy generation and the flagella system were expressed to higher levels in psyllids. Finally, we determined the relative expression levels of potential Sec-dependent effectors, which are considered as key virulence factors of Las. This work advances our understanding of HLB biology and offers novel insight into the interactions of Las with its plant host and insect vector.
Collapse
Affiliation(s)
- Agustina De Francesco
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Amelia H Lovelace
- The Sainsbury Laboratory, Norwich Research Park, NR4 7UH, United Kingdom
| | - Dipan Shaw
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, U.S.A
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fatta Gurung
- Citrus Center, Department of Agriculture, Agribusiness and Environmental Sciences, Texas A&M University-Kingsville, Weslaco, TX 78599, U.S.A
| | - Veronica Ancona
- Citrus Center, Department of Agriculture, Agribusiness and Environmental Sciences, Texas A&M University-Kingsville, Weslaco, TX 78599, U.S.A
| | - Chunxia Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, U.S.A
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
- The Sainsbury Laboratory, Norwich Research Park, NR4 7UH, United Kingdom
| |
Collapse
|
12
|
Lee SM, Kim HK, Lee HB, Kwon OD, Lee EB, Bok JD, Cho CS, Choi YJ, Kang SK. Effects of flaxseed supplementation on omega-6 to omega-3 fatty acid ratio, lipid mediator profile, proinflammatory cytokines and stress indices in laying hens. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.2000416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sang-Mok Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hee Kyum Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ho-Bin Lee
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Oh-Dae Kwon
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Eun-Bi Lee
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Jin-Duck Bok
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Kee Kang
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Consentino L, Rejasse A, Crapart N, Bevilacqua C, Nielsen-LeRoux C. Laser capture microdissection to study Bacillus cereus iron homeostasis gene expression during Galleria mellonella in vivo gut colonization. Virulence 2021; 12:2104-2121. [PMID: 34374318 PMCID: PMC8366545 DOI: 10.1080/21505594.2021.1959790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacillus cereus is a Gram-positive opportunistic pathogen closely related to the entomopathogen, Bacillus thuringiensis, both of which are involved in intestinal infections. Iron is an essential micronutrient for full growth and virulence of pathogens during infection. However, little is known about iron homeostasis during gut infection. Therefore, we aimed to assess the expression of B. cereus genes related to bacterial iron homeostasis, virulence and oxidative stress. The hypothesis is that the expression of such genes would vary between early and later stage colonization in correlation to gut cell damage. To perform the study, a germ-free Galleria mellonella model was set up in order to adapt the use of Laser-capture microdissection (LCM), to select precise areas in the gut lumen from frozen whole larval cryo-sections. Analyses were performed from alive larvae and the expression of targeted genes was assessed byspecific pre-amplification of mRNA followed by quantitative PCR. Firstly, the results reinforce the reliability of LCM, despite a low amount of bacterial RNA recovered. Secondly, bacterial genes involved in iron homeostasis are expressed in the lumen at both 3 and 16 hours post force-feeding. Thirdly, iron gene expression is slightly modulated during gut infection, and lastly, the mRNA of G. mellonella encoding for ferritin and transferrin iron storage and transport are recovered too. Therefore, iron homeostasis should play a role in B. cereus gut colonization. Furthermore, we demonstrate for the first time the value of using LCM for specific in situ gene expression analysis of extracellular bacteria in a whole animal.
Collapse
Affiliation(s)
- Laurent Consentino
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Agnès Rejasse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Nicolas Crapart
- Université Paris Saclay, INRAE, AgroParisTech, UMR GABI, Abridge, Jouy En Josas, France.,Exilone, Elancourt, France
| | - Claudia Bevilacqua
- Université Paris Saclay, INRAE, AgroParisTech, UMR GABI, Abridge, Jouy En Josas, France
| | | |
Collapse
|
14
|
Darolt JC, Bento FDMM, Merlin BL, Peña L, Cônsoli FL, Wulff NA. The Genome of " Candidatus Liberibacter asiaticus" Is Highly Transcribed When Infecting the Gut of Diaphorina citri. Front Microbiol 2021; 12:687725. [PMID: 34322103 PMCID: PMC8312247 DOI: 10.3389/fmicb.2021.687725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
The Asian citrus psyllid, Diaphorina citri, is the vector of the bacterium "Candidatus Liberibacter asiaticus" (Las), associated with the devastating, worldwide citrus disease huanglongbing. In order to explore the molecular interactions of this bacterium with D. citri during the vector acquisition process, cDNA libraries were sequenced on an Illumina platform, obtained from the gut of adult psyllids confined in healthy (H) and in Las-infected young shoots (Las) for different periods of times (I = 1/2 days, II = 3/4 days, and III = 5/6 days). In each sampling time, three biological replicates were collected, containing 100 guts each, totaling 18 libraries depleted in ribosomal RNA. Reads were quality-filtered and mapped against the Chinese JXGC Las strain and the Floridian strain UF506 for the analysis of the activity of Las genome and SC1, SC2, and type 3 (P-JXGC-3) prophages of the studied Las strain. Gene activity was considered only if reads of at least two replicates for each acquisition access period mapped against the selected genomes, which resulted in coverages of 44.4, 79.9, and 94.5% of the JXGC predicted coding sequences in Las I, Las II, and Las III, respectively. These genes indicate an active metabolism and increased expression according to the feeding time in the following functional categories: energy production, amino acid metabolism, signal translation, cell wall, and replication and repair of genetic material. Pilins were among the most highly expressed genes regardless of the acquisition time, while only a few genes from cluster I of flagella were not expressed. Furthermore, the prophage region had a greater coverage of reads for SC1 and P-JXGC-3 prophages and low coverage in SC2 and no indication of activity for the lysis cycle. This research presents the first descriptive analysis of Las transcriptome in the initial steps of the D. citri gut colonization, where 95% of Las genes were active.
Collapse
Affiliation(s)
- Josiane Cecília Darolt
- Instituto de Química, Universidade Estadual Paulista “Julio de Mesquita Filho” – UNESP, Araraquara, Brazil
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura – Fundecitrus, Araraquara, Brazil
| | - Flavia de Moura Manoel Bento
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Bruna Laís Merlin
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Leandro Peña
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura – Fundecitrus, Araraquara, Brazil
- Instituto de Biologia Molecular y Celular de Plantas – Consejo Superior de Investigaciones Científicas, Universidade Politécnica de Valencia, Valencia, Spain
| | - Fernando Luis Cônsoli
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Nelson Arno Wulff
- Instituto de Química, Universidade Estadual Paulista “Julio de Mesquita Filho” – UNESP, Araraquara, Brazil
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura – Fundecitrus, Araraquara, Brazil
| |
Collapse
|
15
|
Haveman NJ, Khodadad CLM, Dixit AR, Louyakis AS, Massa GD, Venkateswaran K, Foster JS. Evaluating the lettuce metatranscriptome with MinION sequencing for future spaceflight food production applications. NPJ Microgravity 2021; 7:22. [PMID: 34140518 PMCID: PMC8211661 DOI: 10.1038/s41526-021-00151-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Healthy plants are vital for successful, long-duration missions in space, as they provide the crew with life support, food production, and psychological benefits. The microorganisms that associate with plant tissues play a critical role in improving plant health and production. To that end, we developed a methodology to investigate the transcriptional activities of the microbiome of red romaine lettuce, a key salad crop that was grown under International Space Station (ISS)-like conditions. Microbial transcripts enriched from host-microbe total RNA were sequenced using the Oxford Nanopore MinION sequencing platform. Results show that this enrichment approach was highly reproducible and could be an effective approach for the on-site detection of microbial transcriptional activity. Our results demonstrate the feasibility of using metatranscriptomics of enriched microbial RNA as a potential method for on-site monitoring of the transcriptional activity of crop microbiomes, thereby helping to facilitate and maintain plant health for on-orbit space food production.
Collapse
Affiliation(s)
- Natasha J. Haveman
- grid.15276.370000 0004 1936 8091Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab, Merritt Island, FL USA
| | - Christina L. M. Khodadad
- grid.419743.c0000 0001 0845 4769Amentum Services, Inc., LASSO, Kennedy Space Center, Merritt Island, FL USA
| | - Anirudha R. Dixit
- grid.419743.c0000 0001 0845 4769Amentum Services, Inc., LASSO, Kennedy Space Center, Merritt Island, FL USA
| | - Artemis S. Louyakis
- grid.63054.340000 0001 0860 4915Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT USA
| | - Gioia D. Massa
- grid.419743.c0000 0001 0845 4769Space Crop Production Team, Kennedy Space Center, Merritt Island, FL USA
| | - Kasthuri Venkateswaran
- grid.211367.0Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, Pasadena, CA USA
| | - Jamie S. Foster
- grid.15276.370000 0004 1936 8091Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab, Merritt Island, FL USA
| |
Collapse
|
16
|
Chung M, Bruno VM, Rasko DA, Cuomo CA, Muñoz JF, Livny J, Shetty AC, Mahurkar A, Dunning Hotopp JC. Best practices on the differential expression analysis of multi-species RNA-seq. Genome Biol 2021; 22:121. [PMID: 33926528 PMCID: PMC8082843 DOI: 10.1186/s13059-021-02337-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Advances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.
Collapse
Affiliation(s)
- Matthew Chung
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Vincent M. Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142 USA
| | - José F. Muñoz
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142 USA
| | - Jonathan Livny
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142 USA
| | - Amol C. Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Anup Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201 USA
| |
Collapse
|
17
|
Tjale MA, Liebenberg J, Steyn H, Van Kleef M, Pretorius A. Transcriptome analysis of Ehrlichia ruminantium in the ruminant host at the tick bite site and in the tick vector salivary glands. Ticks Tick Borne Dis 2020; 12:101646. [PMID: 33508537 DOI: 10.1016/j.ttbdis.2020.101646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
Heartwater is a non-contagious tick-borne disease of domestic and wild ruminants. Data regarding the complex processes involved during pathogen-vector-host interaction during Ehrlichia ruminantium infection is lacking and could be improved with knowledge associated with gene expression changes in both the pathogen and the host. Thus, in the current study, we aimed to identify E. ruminantium genes that are up-regulated when the pathogen enters the host and before the disease is established. Identification of such genes/proteins may aid in future vaccine development strategies against heartwater. RNA-sequencing was used to identify E. ruminantium genes that were exclusively expressed at the tick bite site in sheep skin biopsies (SB) and in adult tick salivary glands (SG). RNA was extracted from pooled samples of the SB or SG collected at different time points during tick attachment and prior to disease manifestation. Ribosomal RNA (rRNA) was removed and the samples were sequenced. Several E. ruminantium genes were highly expressed in all the samples while others were exclusively expressed in each. It was concluded that E. ruminantium genes that were exclusively expressed in the SB or both SB and SG when compared to the transcriptome datasets from bovine elementary bodies (BovEBs) from cell culture may be considered as early antigenic targets of host immunity. In silico immunogenic epitope prediction analysis and preliminary characterization of selected genes in vitro using ELIspot assay showed that they could possibly be ideal targets for future vaccine development against heartwater, however, further epitope characterization is still required.
Collapse
Affiliation(s)
- Mabotse A Tjale
- Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa; Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa.
| | - Junita Liebenberg
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa
| | - Helena Steyn
- Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa
| | - Mirinda Van Kleef
- Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa; Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa
| | - Alri Pretorius
- Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa; Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort 0110, South Africa
| |
Collapse
|
18
|
Large scale genome reconstructions illuminate Wolbachia evolution. Nat Commun 2020; 11:5235. [PMID: 33067437 PMCID: PMC7568565 DOI: 10.1038/s41467-020-19016-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Wolbachia is an iconic example of a successful intracellular bacterium. Despite its importance as a manipulator of invertebrate biology, its evolutionary dynamics have been poorly studied from a genomic viewpoint. To expand the number of Wolbachia genomes, we screen over 30,000 publicly available shotgun DNA sequencing samples from 500 hosts. By assembling over 1000 Wolbachia genomes, we provide a substantial increase in host representation. Our phylogenies based on both core-genome and gene content provide a robust reference for future studies, support new strains in model organisms, and reveal recent horizontal transfers amongst distantly related hosts. We find various instances of gene function gains and losses in different super-groups and in cytoplasmic incompatibility inducing strains. Our Wolbachia-host co-phylogenies indicate that horizontal transmission is widespread at the host intraspecific level and that there is no support for a general Wolbachia-mitochondrial synchronous divergence. By greatly expanding the number of assembled genomes for Wolbachia (a group of intracellular bacteria) and constructing robust phylogenies, this study finds strong rate heterogeneity among Wolbachiapopulations and no support for synchronous divergence between Wolbachia and host mitochondria.
Collapse
|
19
|
Narra HP, Sahni A, Alsing J, Schroeder CLC, Golovko G, Nia AM, Fofanov Y, Khanipov K, Sahni SK. Comparative transcriptomic analysis of Rickettsia conorii during in vitro infection of human and tick host cells. BMC Genomics 2020; 21:665. [PMID: 32977742 PMCID: PMC7519539 DOI: 10.1186/s12864-020-07077-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/17/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Pathogenic Rickettsia species belonging to the spotted fever group are arthropod-borne, obligate intracellular bacteria which exhibit preferential tropism for host microvascular endothelium in the mammalian hosts, resulting in disease manifestations attributed primarily to endothelial damage or dysfunction. Although rickettsiae are known to undergo evolution through genomic reduction, the mechanisms by which these pathogens regulate their transcriptome to ensure survival in tick vectors and maintenance by transovarial/transstadial transmission, in contrast to their ability to cause debilitating infections in human hosts remain unknown. In this study, we compare the expression profiles of rickettsial sRNAome/transcriptome and determine the transcriptional start sites (TSSs) of R. conorii transcripts during in vitro infection of human and tick host cells. RESULTS We performed deep sequencing on total RNA from Amblyomma americanum AAE2 cells and human microvascular endothelial cells (HMECs) infected with R. conorii. Strand-specific RNA sequencing of R. conorii transcripts revealed the expression 32 small RNAs (Rc_sR's), which were preferentially expressed above the limit of detection during tick cell infection, and confirmed the expression of Rc_sR61, sR71, and sR74 by quantitative RT-PCR. Intriguingly, a total of 305 and 132 R. conorii coding genes were differentially upregulated (> 2-fold) in AAE2 cells and HMECs, respectively. Further, enrichment for primary transcripts by treatment with Terminator 5'-Phosphate-dependent Exonuclease resulted in the identification of 3903 and 2555 transcription start sites (TSSs), including 214 and 181 primary TSSs in R. conorii during the infection to tick and human host cells, respectively. Seventy-five coding genes exhibited different TSSs depending on the host environment. Finally, we also observed differential expression of 6S RNA during host-pathogen and vector-pathogen interactions in vitro, implicating an important role for this noncoding RNA in the regulation of rickettsial transcriptome depending on the supportive host niche. CONCLUSIONS In sum, the findings of this study authenticate the presence of novel Rc_sR's in R. conorii, reveal the first evidence for differential expression of coding transcripts and utilization of alternate transcriptional start sites depending on the host niche, and implicate a role for 6S RNA in the regulation of coding transcriptome during tripartite host-pathogen-vector interactions.
Collapse
Affiliation(s)
- Hema P Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jessica Alsing
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Casey L C Schroeder
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Anna M Nia
- Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
20
|
Drug Repurposing of Bromodomain Inhibitors as Potential Novel Therapeutic Leads for Lymphatic Filariasis Guided by Multispecies Transcriptomics. mSystems 2019; 4:4/6/e00596-19. [PMID: 31796568 PMCID: PMC6890932 DOI: 10.1128/msystems.00596-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current treatment regimen for lymphatic filariasis is mostly microfilaricidal. In an effort to identify new drug candidates for lymphatic filariasis, we conducted a three-way transcriptomics/systems biology study of one of the causative agents of lymphatic filariasis, Brugia malayi, its Wolbachia endosymbiont wBm, and its vector host Aedes aegypti at 16 distinct B. malayi life stages. B. malayi upregulates the expression of bromodomain-containing proteins in the adult female, embryo, and microfilaria stages. In vitro, we find that the existing cancer therapeutic JQ1(+), which is a bromodomain and extraterminal protein inhibitor, has adulticidal activity in B. malayi. To better understand the transcriptomic interplay of organisms associated with lymphatic filariasis, we conducted multispecies transcriptome sequencing (RNA-Seq) on the filarial nematode Brugia malayi, its Wolbachia endosymbiont wBm, and its laboratory vector Aedes aegypti across the entire B. malayi life cycle. In wBm, transcription of the noncoding 6S RNA suggests that it may be a regulator of bacterial cell growth, as its transcript levels correlate with bacterial replication rates. For A. aegypti, the transcriptional response reflects the stress that B. malayi infection exerts on the mosquito with indicators of increased energy demand. In B. malayi, expression modules associated with adult female samples consistently contained an overrepresentation of genes involved in chromatin remodeling, such as the bromodomain-containing proteins. All bromodomain-containing proteins encoded by B. malayi were observed to be upregulated in the adult female, embryo, and microfilaria life stages, including 2 members of the bromodomain and extraterminal (BET) protein family. The BET inhibitor JQ1(+), originally developed as a cancer therapeutic, caused lethality of adult worms in vitro, suggesting that it may be a potential therapeutic that can be repurposed for treating lymphatic filariasis. IMPORTANCE The current treatment regimen for lymphatic filariasis is mostly microfilaricidal. In an effort to identify new drug candidates for lymphatic filariasis, we conducted a three-way transcriptomics/systems biology study of one of the causative agents of lymphatic filariasis, Brugia malayi, its Wolbachia endosymbiont wBm, and its vector host Aedes aegypti at 16 distinct B. malayi life stages. B. malayi upregulates the expression of bromodomain-containing proteins in the adult female, embryo, and microfilaria stages. In vitro, we find that the existing cancer therapeutic JQ1(+), which is a bromodomain and extraterminal protein inhibitor, has adulticidal activity in B. malayi.
Collapse
|
21
|
O'Connell CM, Brochu H, Girardi J, Harrell E, Jones A, Darville T, Seña AC, Peng X. Simultaneous profiling of sexually transmitted bacterial pathogens, microbiome, and concordant host response in cervical samples using whole transcriptome sequencing analysis. MICROBIAL CELL 2019; 6:177-183. [PMID: 30854394 PMCID: PMC6402362 DOI: 10.15698/mic2019.03.672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pelvic inflammatory disease (PID) is a female upper genital tract inflammatory disorder that arises after sexually transmitted bacterial infections (STI). Factors modulating risk for reproductive sequelae include co-infection, microbiota, host genetics and physiology. In a pilot study of cervical samples obtained from women at high risk for STIs, we examined the potential for unbiased characterization of host, pathogen and microbiome interactions using whole transcriptome sequencing analysis of ribosomal RNA-depleted total RNAs (Total RNA-Seq). Only samples from women with STI infection contained pathogen-specific sequences (3 to 38% transcriptome coverage). Simultaneously, we identified and quantified their active microbial communities. After integration with host-derived reads from the same data, we detected clustering of host transcriptional profiles that reflected microbiome differences and STI infection. Together, our study suggests that total RNA profiling will advance understanding of the interplay of pathogen, host and microbiota during natural infection and may reveal novel, outcome-relevant biomarkers.
Collapse
Affiliation(s)
- Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hayden Brochu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Jenna Girardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erin Harrell
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Aiden Jones
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Arlene C Seña
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
22
|
Multispecies Transcriptomics Data Set of Brugia malayi, Its Wolbachia Endosymbiont wBm, and Aedes aegypti across the B. malayi Life Cycle. Microbiol Resour Announc 2018; 7:MRA01306-18. [PMID: 30533772 PMCID: PMC6256537 DOI: 10.1128/mra.01306-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/15/2018] [Indexed: 02/05/2023] Open
Abstract
Here, we present a comprehensive transcriptomics data set of Brugia malayi, its Wolbachia endosymbiont wBm, and its vector host. This study samples from 16 stages across the entire B. malayi life cycle, including stage 1 through 4 larvae, adult males and females, embryos, immature microfilariae, and mature microfilariae. Here, we present a comprehensive transcriptomics data set of Brugia malayi, its Wolbachia endosymbiont wBm, and its vector host. This study samples from 16 stages across the entire B. malayi life cycle, including stage 1 through 4 larvae, adult males and females, embryos, immature microfilariae, and mature microfilariae.
Collapse
|
23
|
Targeted enrichment outperforms other enrichment techniques and enables more multi-species RNA-Seq analyses. Sci Rep 2018; 8:13377. [PMID: 30190541 PMCID: PMC6127098 DOI: 10.1038/s41598-018-31420-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/17/2018] [Indexed: 11/30/2022] Open
Abstract
Enrichment methodologies enable the analysis of minor members in multi-species transcriptomic data. We compared the standard enrichment of bacterial and eukaryotic mRNA to a targeted enrichment using an Agilent SureSelect (AgSS) capture for Brugia malayi, Aspergillus fumigatus, and the Wolbachia endosymbiont of B. malayi (wBm). Without introducing significant systematic bias, the AgSS quantitatively enriched samples, resulting in more reads mapping to the target organism. The AgSS-enriched libraries consistently had a positive linear correlation with their unenriched counterparts (r2 = 0.559–0.867). Up to a 2,242-fold enrichment of RNA from the target organism was obtained following a power law (r2 = 0.90), with the greatest fold enrichment achieved in samples with the largest ratio difference between the major and minor members. While using a single total library for prokaryote and eukaryote enrichment from a single RNA sample could be beneficial for samples where RNA is limiting, we observed a decrease in reads mapping to protein coding genes and an increase in multi-mapping reads to rRNAs in AgSS enrichments from eukaryotic total RNA libraries compared to eukaryotic poly(A)-enriched libraries. Our results support a recommendation of using AgSS targeted enrichment on poly(A)-enriched libraries for eukaryotic captures, and total RNA libraries for prokaryotic captures, to increase the robustness of multi-species transcriptomic studies.
Collapse
|
24
|
Friday D, Freidhoff P, Baumstark T, Bruist MF. Enrichment of midsized RNAs with manganese chloride precipitation. Anal Biochem 2018; 560:56-59. [PMID: 30193930 DOI: 10.1016/j.ab.2018.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/03/2018] [Indexed: 11/28/2022]
Abstract
Enrichment of specific RNAs is important for RNA analysis. MnCl2 has been used previously to enrich viroid RNA fractions from total RNA from infected plants. We have expanded this method to show that MnCl2 can enrich single-stranded as well as structured RNAs of 450 nt and below from a total RNA preparation. We have applied this method to map the transcription start sites of a PSTVd transcript from total RNA from yeast under conditions where the RNA was previously undetectable.
Collapse
Affiliation(s)
- Dillon Friday
- Department of Chemistry & Biochemistry, University of the Sciences, 600 South 43rd Street, Philadelphia, PA, 19104, USA
| | - Paul Freidhoff
- Department of Chemistry & Biochemistry, University of the Sciences, 600 South 43rd Street, Philadelphia, PA, 19104, USA
| | - Tilman Baumstark
- Department of Microbiology and Immunology, University at Buffalo, SUNY, Buffalo, NY, 14203, USA
| | - Michael F Bruist
- Department of Chemistry & Biochemistry, University of the Sciences, 600 South 43rd Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Kondethimmanahalli C, Ganta R. Impact of Three Different Mutations in Ehrlichia chaffeensis in Altering the Global Gene Expression Patterns. Sci Rep 2018; 8:6162. [PMID: 29670161 PMCID: PMC5906474 DOI: 10.1038/s41598-018-24471-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
The rickettsial pathogen Ehrlichia chaffeensis causes a tick-borne disease, human monocytic ehrlichiosis. Mutations within certain genomic locations of the pathogen aid in understanding the pathogenesis and in developing attenuated vaccines. Our previous studies demonstrated that mutations in different genomic sites in E. chaffeensis caused variable impacts on their growth and attenuation in vertebrate and tick hosts. Here, we assessed the effect of three mutations on transcriptional changes using RNA deep-sequencing technology. RNA sequencing aided in detecting 66-80% of the transcripts of wildtype and mutant E. chaffeensis. Mutation in an antiporter gene (ECH_0379) causing attenuated growth in vertebrate hosts resulted in the down regulation of many transcribed genes. Similarly, a mutation downstream to the ECH_0490 coding sequence resulted in minimal impact on the pathogen's in vivo growth, but caused major changes in its transcriptome. This mutation caused enhanced expression of several host stress response genes. Even though the ECH_0660 gene mutation caused the pathogen's rapid clearance in vertebrate hosts and aids in generating a protective response, there was minimal impact on the transcriptome. The transcriptomic data offer novel insights about the impact of mutations on global gene expression and how they may contribute to the pathogen's resistance and/or clearance from the host.
Collapse
Affiliation(s)
- Chandramouli Kondethimmanahalli
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Roman Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, 66506, USA.
| |
Collapse
|
26
|
Luo X, Zhang X, Wu X, Yang X, Han C, Wang Z, Du Q, Zhao X, Liu SL, Tong D, Huang Y. Brucella Downregulates Tumor Necrosis Factor-α to Promote Intracellular Survival via Omp25 Regulation of Different MicroRNAs in Porcine and Murine Macrophages. Front Immunol 2018; 8:2013. [PMID: 29387067 PMCID: PMC5776175 DOI: 10.3389/fimmu.2017.02013] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/28/2017] [Indexed: 01/18/2023] Open
Abstract
Brucella spp. impedes the production of pro-inflammatory cytokines by its outer membrane protein Omp25 in order to promote survival and immune evasion. However, how Omp25 regulates tumor necrosis factor (TNF-α) expression in different mammalian macrophages remains unclear. In this study, we investigated the potential mechanisms by which Omp25 regulates TNF-α expression and found that Omp25-deficient mutant of B. suis exhibited an enhanced TNF-α expression compared with wild-type (WT) B. suis, whereas ectopic expression of Omp25 suppressed LPS-induced TNF-α production at both protein and mRNA levels in porcine alveolar macrophages (PAMs) and murine macrophage RAW264.7 cells. We observed that Omp25 protein as well as WT B. suis upregulated miR-146a, -181a, -181b, and -301a-3p and downregulated TRAF6 and IRAK1 in both PAMs and RAW264.7 cells, but separately upregulates miR-130a-3p in PAMs and miR-351-5p in RAW264.7. The upregulation of miR-146a or miR-351-5p attenuated TNF-α transcription by targeting TRAF6 and IRAK1 at the 3' untranslated region (UTR), resulting in inhibition of NF-kB pathway, while upregulation of miR-130a-3p, -181a, or -301a-3p correlated temporally with decreased TNF-α by targeting its 3'UTR in PAMs or RAW264.7 cells. In contrast, inhibition of miR-130a-3p, -146a, -181a, and -301a-3p attenuated the inhibitory effects of Omp25 on LPS-induced TNF-α in PAMs, while inhibition of miR-146a, -181a, -301a-3p, and -351-5p attenuated the inhibitory effects of Omp25 in RAW264.7, resulting in an increased TNF-α production and decreased intracellular bacteria in both cells. Taken together, our results demonstrate that Brucella downregulates TNF-α to promote intracellular survival via Omp25 regulation of different microRNAs in porcine and murine macrophages.
Collapse
Affiliation(s)
- Xiaomao Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingchen Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuefeng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Cong Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhengyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States.,Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
Huang YA, You ZH, Chen X, Huang ZA, Zhang S, Yan GY. Prediction of microbe-disease association from the integration of neighbor and graph with collaborative recommendation model. J Transl Med 2017; 15:209. [PMID: 29037244 PMCID: PMC5644104 DOI: 10.1186/s12967-017-1304-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases. Knowledge of microbe-disease associations can provide valuable insights for complex disease mechanism understanding as well as the prevention, diagnosis and treatment of various diseases. However, little effort has been made to predict microbial candidates for human complex diseases on a large scale. METHODS In this work, we developed a new computational model for predicting microbe-disease associations by combining two single recommendation methods. Based on the assumption that functionally similar microbes tend to get involved in the mechanism of similar disease, we adopted neighbor-based collaborative filtering and a graph-based scoring method to compute association possibility of microbe-disease pairs. The promising prediction performance could be attributed to the use of hybrid approach based on two single recommendation methods as well as the introduction of Gaussian kernel-based similarity and symptom-based disease similarity. RESULTS To evaluate the performance of the proposed model, we implemented leave-one-out and fivefold cross validations on the HMDAD database, which is recently built as the first database collecting experimentally-confirmed microbe-disease associations. As a result, NGRHMDA achieved reliable results with AUCs of 0.9023 ± 0.0031 and 0.9111 in the validation frameworks of fivefold CV and LOOCV. In addition, 78.2% microbe samples and 66.7% disease samples are found to be consistent with the basic assumption of our work that microbes tend to get involved in the similar disease clusters, and vice versa. CONCLUSIONS Compared with other methods, the prediction results yielded by NGRHMDA demonstrate its effective prediction performance for microbe-disease associations. It is anticipated that NGRHMDA can be used as a useful tool to search the most potential microbial candidates for various diseases, and therefore boosts the medical knowledge and drug development. The codes and dataset of our work can be downloaded from https://github.com/yahuang1991/NGRHMDA .
Collapse
Affiliation(s)
- Yu-An Huang
- Department of Information Engineering, Xijing University, Xi’an, 710123 China
| | - Zhu-Hong You
- Department of Information Engineering, Xijing University, Xi’an, 710123 China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Zhi-An Huang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Shanwen Zhang
- Department of Information Engineering, Xijing University, Xi’an, 710123 China
| | - Gui-Ying Yan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190 China
| |
Collapse
|
28
|
Robinson KM, Hawkins AS, Santana-Cruz I, Adkins RS, Shetty AC, Nagaraj S, Sadzewicz L, Tallon LJ, Rasko DA, Fraser CM, Mahurkar A, Silva JC, Dunning Hotopp JC. Aligner optimization increases accuracy and decreases compute times in multi-species sequence data. Microb Genom 2017; 3:e000122. [PMID: 29114401 PMCID: PMC5643015 DOI: 10.1099/mgen.0.000122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/04/2017] [Indexed: 01/01/2023] Open
Abstract
As sequencing technologies have evolved, the tools to analyze these sequences have made similar advances. However, for multi-species samples, we observed important and adverse differences in alignment specificity and computation time for bwa- mem (Burrows-Wheeler aligner-maximum exact matches) relative to bwa-aln. Therefore, we sought to optimize bwa-mem for alignment of data from multi-species samples in order to reduce alignment time and increase the specificity of alignments. In the multi-species cases examined, there was one majority member (i.e. Plasmodium falciparum or Brugia malayi) and one minority member (i.e. human or the Wolbachia endosymbiont wBm) of the sequence data. Increasing bwa-mem seed length from the default value reduced the number of read pairs from the majority sequence member that incorrectly aligned to the reference genome of the minority sequence member. Combining both source genomes into a single reference genome increased the specificity of mapping, while also reducing the central processing unit (CPU) time. In Plasmodium, at a seed length of 18 nt, 24.1 % of reads mapped to the human genome using 1.7±0.1 CPU hours, while 83.6 % of reads mapped to the Plasmodium genome using 0.2±0.0 CPU hours (total: 107.7 % reads mapping; in 1.9±0.1 CPU hours). In contrast, 97.1 % of the reads mapped to a combined Plasmodium-human reference in only 0.7±0.0 CPU hours. Overall, the results suggest that combining all references into a single reference database and using a 23 nt seed length reduces the computational time, while maximizing specificity. Similar results were found for simulated sequence reads from a mock metagenomic data set. We found similar improvements to computation time in a publicly available human-only data set.
Collapse
Affiliation(s)
- Kelly M Robinson
- 1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aziah S Hawkins
- 1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ivette Santana-Cruz
- 1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ricky S Adkins
- 1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amol C Shetty
- 1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sushma Nagaraj
- 1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lisa Sadzewicz
- 1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luke J Tallon
- 1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David A Rasko
- 1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,2Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claire M Fraser
- 1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,3Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anup Mahurkar
- 1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joana C Silva
- 1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,2Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Julie C Dunning Hotopp
- 2Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.,1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Cui B, Liu W, Wang X, Chen Y, Du Q, Zhao X, Zhang H, Liu SL, Tong D, Huang Y. Brucella Omp25 Upregulates miR-155, miR-21-5p, and miR-23b to Inhibit Interleukin-12 Production via Modulation of Programmed Death-1 Signaling in Human Monocyte/Macrophages. Front Immunol 2017; 8:708. [PMID: 28694807 PMCID: PMC5483987 DOI: 10.3389/fimmu.2017.00708] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/31/2017] [Indexed: 02/01/2023] Open
Abstract
Brucella spp. infection results in compromised Type1 (Th1) cellular immune response. Several reports have described an immunomodulatory function for Brucella major outer membrane protein Omp25. However, the mechanism by which Omp25 modulates macrophage dysfunction has not been defined. Herein, we reported that Omp25-deficient mutant of Brucella suis exhibited an enhanced ability to induce interleukin (IL)-12 whereas ectopic expression of Omp25 protein inhibited TLR agonists-induced IL-12 p70 production through suppression of both IL-12 p40 and p35 subunit expression in THP-1 cells. In addition, Omp25 significantly upregulated miR-155, -23b and -21-5p, as well as the immunomodulator molecule programmed death-1 (PD-1) in monocyte/macrophages. The upregulation of miR-155 and -23b correlated temporally with decreased TAB2 levels, IκB phosphorylation and IL-12 p40 levels by targeting TAB2 and il12B 3' untranslated region (UTR), respectively, while miR-21-5p increase directly led to the reduction of lipopolysaccharide (LPS)/R848-induced IL-12 p35 protein by targeting il12A 3'UTR. Consistent with this finding, reduction of miR-155 and -23b attenuated the inhibitory effects of Omp25 on LPS/R848-induced IL-12 p40 expression at both transcriptional and posttranscriptional levels, while reduction of miR-21-5p attenuated the inhibitory effects of Omp25 on LPS/R848-induced IL-12 p35 expression at the posttranscriptional level, together significantly enhanced IL-12 p70 production upon LPS/R848 stimulation. We also found that blocking PD-1 signaling decreased the expression of miR-155, -23b and -21-5p induced by Omp25 and enhanced IL-12 production in monocyte/macrophages. Altogether, these data demonstrate that Brucella Omp25 induces miR-155, -23b and -21-5p to negatively regulate IL-12 production at both transcriptional and posttranscriptional levels via regulation of PD-1 signaling, which provides an entirely new mechanism underlying monocyte/macrophages dysfunction during Brucella spp. infection.
Collapse
Affiliation(s)
- Beibei Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wenli Liu
- School Hospital, Northwest A&F University, Yangling, China
| | - Xiaoya Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yu Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hai Zhang
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, China
| | - Shan-Lu Liu
- Center for Retrovirus Research, Department of Veterinary Biosciences, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
James K, Cockell SJ, Zenkin N. Deep sequencing approaches for the analysis of prokaryotic transcriptional boundaries and dynamics. Methods 2017; 120:76-84. [PMID: 28434904 DOI: 10.1016/j.ymeth.2017.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 01/13/2023] Open
Abstract
The identification of the protein-coding regions of a genome is straightforward due to the universality of start and stop codons. However, the boundaries of the transcribed regions, conditional operon structures, non-coding RNAs and the dynamics of transcription, such as pausing of elongation, are non-trivial to identify, even in the comparatively simple genomes of prokaryotes. Traditional methods for the study of these areas, such as tiling arrays, are noisy, labour-intensive and lack the resolution required for densely-packed bacterial genomes. Recently, deep sequencing has become increasingly popular for the study of the transcriptome due to its lower costs, higher accuracy and single nucleotide resolution. These methods have revolutionised our understanding of prokaryotic transcriptional dynamics. Here, we review the deep sequencing and data analysis techniques that are available for the study of transcription in prokaryotes, and discuss the bioinformatic considerations of these analyses.
Collapse
Affiliation(s)
- Katherine James
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Bioscience, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne NE2 4AX, UK.
| | - Simon J Cockell
- Bioinformatics Support Unit, Newcastle University, William Leech Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Bioscience, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne NE2 4AX, UK
| |
Collapse
|
31
|
Luck AN, Slatko BE, Foster JM. Removing the needle from the haystack: Enrichment of Wolbachia endosymbiont transcripts from host nematode RNA by Cappable-seq™. PLoS One 2017; 12:e0173186. [PMID: 28291780 PMCID: PMC5349465 DOI: 10.1371/journal.pone.0173186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/18/2022] Open
Abstract
Efficient transcriptomic sequencing of microbial mRNA derived from host-microbe associations is often compromised by the much lower relative abundance of microbial RNA in the mixed total RNA sample. One solution to this problem is to perform extensive sequencing until an acceptable level of transcriptome coverage is obtained. More cost-effective methods include use of prokaryotic and/or eukaryotic rRNA depletion strategies, sometimes in conjunction with depletion of polyadenylated eukaryotic mRNA. Here, we report use of Cappable-seq™ to specifically enrich, in a single step, Wolbachia endobacterial mRNA transcripts from total RNA prepared from the parasitic filarial nematode, Brugia malayi. The obligate Wolbachia endosymbiont is a proven drug target for many human filarial infections, yet the precise nature of its symbiosis with the nematode host is poorly understood. Insightful analysis of the expression levels of Wolbachia genes predicted to underpin the mutualistic association and of known drug target genes at different life cycle stages or in response to drug treatments is typically challenged by low transcriptomic coverage. Cappable-seq resulted in up to ~ 5-fold increase in the number of reads mapping to Wolbachia. On average, coverage of Wolbachia transcripts from B. malayi microfilariae was enriched ~40-fold by Cappable-seq. Additionally, this method has an additional benefit of selectively removing abundant prokaryotic ribosomal RNAs.The deeper microbial transcriptome sequencing afforded by Cappable-seq facilitates more detailed characterization of gene expression levels of pathogens and symbionts present in animal tissues.
Collapse
Affiliation(s)
- Ashley N. Luck
- Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, United States of America
| | - Barton E. Slatko
- Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, United States of America
| | - Jeremy M. Foster
- Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, United States of America
- * E-mail:
| |
Collapse
|