1
|
Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP. Nanomaterial-based contrast agents. NATURE REVIEWS. METHODS PRIMERS 2023; 3:30. [PMID: 38130699 PMCID: PMC10732545 DOI: 10.1038/s43586-023-00211-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmin Tang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Olga E. Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Wang J, Dong Y, Ma P, Wang Y, Zhang F, Cai B, Chen P, Liu BF. Intelligent Micro-/Nanorobots for Cancer Theragnostic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201051. [PMID: 35385160 DOI: 10.1002/adma.202201051] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most intractable diseases owing to its high mortality rate and lack of effective diagnostic and treatment tools. Advancements in micro-/nanorobot (MNR)-assisted sensing, imaging, and therapeutics offer unprecedented opportunities to develop MNR-based cancer theragnostic platforms. Unlike ordinary nanoparticles, which exhibit Brownian motion in biofluids, MNRs overcome viscous resistance in an ultralow Reynolds number (Re << 1) environment by effective self-propulsion. This unique locomotion property has motivated the advanced design and functionalization of MNRs as a basis for next-generation cancer-therapy platforms, which offer the potential for precise distribution and improved permeation of therapeutic agents. Enhanced barrier penetration, imaging-guided operation, and biosensing are additionally studied to enable the promising cancer-related applications of MNRs. Herein, the recent advances in MNR-based cancer therapy are comprehensively addresses, including actuation engines, diagnostics, medical imaging, and targeted drug delivery; promising research opportunities that can have a profound impact on cancer therapy over the next decade is highlighted.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yue Dong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yu Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fangyu Zhang
- Department of Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bocheng Cai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
3
|
Nteroli G, Dasa MK, Messa G, Koutsikou S, Bondu M, Moselund PM, Markos C, Bang O, Podoleanu A, Bradu A. Two octaves spanning photoacoustic microscopy. Sci Rep 2022; 12:10590. [PMID: 35732808 PMCID: PMC9218110 DOI: 10.1038/s41598-022-14869-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, for the first time, a Photoacoustic Microscopy instrument driven by a single optical source operating over a wide spectral range (475-2400 nm), covering slightly more than two octaves is demonstrated. Xenopus laevis tadpoles were imaged in vivo using the whole spectral range of 2000 nm of a supercontinuum optical source, and a novel technique of mapping absorbers is also demonstrated, based on the supposition that only one chromophore contributes to the photoacoustic signal of each individual voxel in the 3D photoacoustic image. By using a narrow spectral window (of 25 nm bandwidth) within the broad spectrum of the supercontinuum source at a time, in vivo hyper-spectral Photoacoustic images of tadpoles are obtained. By post-processing pairs of images obtained using different spectral windows, maps of five endogenous contrast agents (hemoglobin, melanin, collagen, glucose and lipids) are produced.
Collapse
Affiliation(s)
- Gianni Nteroli
- Applied Optics Group, University of Kent, Canterbury, UK.
| | - Manoj K Dasa
- DTU Fotonik, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- NKT Photonics A/S, Blokken 84, 3460, Birkerød, Denmark
| | - Giulia Messa
- Medway School of Pharmacy, University of Kent, Chatham, UK
| | | | - Magalie Bondu
- NKT Photonics A/S, Blokken 84, 3460, Birkerød, Denmark
| | | | - Christos Markos
- DTU Fotonik, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Ole Bang
- DTU Fotonik, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | | | - Adrian Bradu
- Applied Optics Group, University of Kent, Canterbury, UK
| |
Collapse
|
4
|
Yang W, Knorr F, Latka I, Vogt M, Hofmann GO, Popp J, Schie IW. Real-time molecular imaging of near-surface tissue using Raman spectroscopy. LIGHT, SCIENCE & APPLICATIONS 2022; 11:90. [PMID: 35396506 PMCID: PMC8993924 DOI: 10.1038/s41377-022-00773-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 05/08/2023]
Abstract
The steady progress in medical diagnosis and treatment of diseases largely hinges on the steady development and improvement of modern imaging modalities. Raman spectroscopy has attracted increasing attention for clinical applications as it is label-free, non-invasive, and delivers molecular fingerprinting information of a sample. In combination with fiber optic probes, it also allows easy access to different body parts of a patient. However, image acquisition with fiber optic probes is currently not possible. Here, we introduce a fiber optic probe-based Raman imaging system for the real-time molecular virtual reality data visualization of chemical boundaries on a computer screen and the physical world. The approach is developed around a computer vision-based positional tracking system in conjunction with photometric stereo and augmented and mixed chemical reality, enabling molecular imaging and direct visualization of molecular boundaries of three-dimensional surfaces. The proposed approach achieves a spatial resolution of 0.5 mm in the transverse plane and a topology resolution of 0.6 mm, with a spectral sampling frequency of 10 Hz, and can be used to image large tissue areas in a few minutes, making it highly suitable for clinical tissue-boundary demarcation. A variety of applications on biological samples, i.e., distribution of pharmaceutical compounds, brain-tumor phantom, and various types of sarcoma have been characterized, showing that the system enables rapid and intuitive assessment of molecular boundaries.
Collapse
Affiliation(s)
- Wei Yang
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Florian Knorr
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Ines Latka
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Matthias Vogt
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Gunther O Hofmann
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Iwan W Schie
- Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745, Jena, Germany.
- Department of Medical Engineering and Biotechnology, University of Applied Sciences - Jena, Carl-Zeiss-Promenade 2, 07745, Jena, Germany.
| |
Collapse
|
5
|
Abstract
Photoacoustic imaging is an emerging biomedical imaging technique that combines optical contrast and ultrasound resolution to create unprecedented light absorption contrast in deep tissue. Thanks to its fusional imaging advantages, photoacoustic imaging can provide multiple structural and functional insights into biological tissues such as blood vasculatures and tumors and monitor the kinetic movements of hemoglobin and lipids. To better visualize and analyze the regions of interest, segmentation and quantitative analyses were used to extract several biological factors, such as the intensity level changes, diameter, and tortuosity of the tissues. Over the past 10 years, classical segmentation methods and advances in deep learning approaches have been utilized in research investigations. In this review, we provide a comprehensive review of segmentation and quantitative methods that have been developed to process photoacoustic imaging in preclinical and clinical experiments. We focus on the parametric reliability of quantitative analysis for semantic and instance-level segmentation. We also introduce the similarities and alternatives of deep learning models in qualitative measurements using classical segmentation methods for photoacoustic imaging.
Collapse
|
6
|
Kyrkou SG, Vrettos EI, Gorpas D, Crook T, Syed N, Tzakos AG. Design Principles Governing the Development of Theranostic Anticancer Agents and Their Nanoformulations with Photoacoustic Properties. Pharmaceutics 2022; 14:362. [PMID: 35214094 PMCID: PMC8877540 DOI: 10.3390/pharmaceutics14020362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
The unmet need to develop novel approaches for cancer diagnosis and treatment has led to the evolution of theranostic agents, which usually include, in addition to the anticancer drug, an imaging agent based mostly on fluorescent agents. Over the past few years, a non-invasive photoacoustic imaging modality has been effectively integrated into theranostic agents. Herein, we shed light on the design principles governing the development of theranostic agents with photoacoustic properties, which can be formulated into nanocarriers to enhance their potency. Specifically, we provide an extensive analysis of their individual constituents including the imaging dyes, drugs, linkers, targeting moieties, and their formulation into nanocarriers. Along these lines, we present numerous relevant paradigms. Finally, we discuss the clinical relevance of the specific strategy, as also the limitations and future perspectives, and through this review, we envisage paving the way for the development of theranostic agents endowed with photoacoustic properties as effective anticancer medicines.
Collapse
Affiliation(s)
- Stavroula G. Kyrkou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
| | - Eirinaios I. Vrettos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
| | - Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, D-85764 Oberschleißheim, Germany;
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
| | - Timothy Crook
- John Fulcher Neuro-Oncology Laboratory, Department of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Department of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
7
|
Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part II: Nanoacoustics for biomedical imaging and therapy. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 332:112925. [PMID: 34937992 PMCID: PMC8691754 DOI: 10.1016/j.sna.2021.112925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the past decade, acoustics at the nanoscale (i.e., nanoacoustics) has evolved rapidly with continuous and substantial expansion of capabilities and refinement of techniques. Motivated by research innovations in the last decade, for the first time, recent advancements of acoustics-associated nanomaterials/nanostructures and nanodevices for different applications are outlined in this comprehensive review, which is written in two parts. As part II of this two-part review, this paper concentrates on nanoacoustics in biomedical imaging and therapy applications, including molecular ultrasound imaging, photoacoustic imaging, ultrasound-mediated drug delivery and therapy, and photoacoustic drug delivery and therapy. Firstly, the recent developments of nanosized ultrasound and photoacoustic contrast agents as well as their various imaging applications are examined. Secondly, different types of nanomaterials/nanostructures as nanocarriers for ultrasound and photoacoustic therapies are discussed. Finally, a discussion of challenges and future research directions are provided for nanoacoustics in medical imaging and therapy.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James B. Spicer
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Jeong S, Yoo SW, Kim HJ, Park J, Kim JW, Lee C, Kim H. Recent Progress on Molecular Photoacoustic Imaging with Carbon-Based Nanocomposites. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5643. [PMID: 34640053 PMCID: PMC8510032 DOI: 10.3390/ma14195643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022]
Abstract
For biomedical imaging, the interest in noninvasive imaging methods is ever increasing. Among many modalities, photoacoustic imaging (PAI), which is a combination of optical and ultrasound imaging techniques, has received attention because of its unique advantages such as high spatial resolution, deep penetration, and safety. Incorporation of exogenous imaging agents further amplifies the effective value of PAI, since they can deliver other specified functions in addition to imaging. For these agents, carbon-based materials can show a large specific surface area and interesting optoelectronic properties, which increase their effectiveness and have proved their potential in providing a theragnostic platform (diagnosis + therapy) that is essential for clinical use. In this review, we introduce the current state of the PAI modality, address recent progress on PAI imaging that takes advantage of carbon-based agents, and offer a future perspective on advanced PAI systems using carbon-based agents.
Collapse
Affiliation(s)
- Songah Jeong
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun 58128, Jeollanam-do, Korea;
| | - Hea Ji Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Jieun Park
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Ji Woo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| | - Changho Lee
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun 58128, Jeollanam-do, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju 61469, Korea
- Department of Artificial Intelligence Convergence, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea; (S.J.); (H.J.K.); (J.P.); (J.W.K.)
| |
Collapse
|
9
|
Nguyen VT, Truong NTP, Pham VH, Choi J, Park S, Ly CD, Cho SW, Mondal S, Lim HG, Kim CS, Oh J. Ultra-widefield photoacoustic microscopy with a dual-channel slider-crank laser-scanning apparatus for in vivo biomedical study. PHOTOACOUSTICS 2021; 23:100274. [PMID: 34150499 PMCID: PMC8190471 DOI: 10.1016/j.pacs.2021.100274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 05/21/2023]
Abstract
Photoacoustic microscopy (PAM) is an important imaging tool that can noninvasively visualize the anatomical structure of living animals. However, the limited scanning area restricts traditional PAM systems for scanning a large animal. Here, we firstly report a dual-channel PAM system based on a custom-made slider-crank scanner. This novel scanner allows us to stably capture an ultra-widefield scanning area of 24 mm at a high B-scan speed of 32 Hz while maintaining a high signal-to-noise ratio. Our system's spatial resolution is measured at ∼3.4 μm and ∼37 μm for lateral and axial resolution, respectively. Without any contrast agent, a dragonfly wing, a nude mouse ear, an entire rat ear, and a portion of mouse sagittal are successfully imaged. Furthermore, for hemodynamic monitoring, the mimicking circulating tumor cells using magnetic contrast agent is rapidly captured in vitro. The experimental results demonstrated that our device is a promising tool for biological applications.
Collapse
Affiliation(s)
- Van Tu Nguyen
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Republic of Korea
| | | | - Van Hiep Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Republic of Korea
| | - Jaeyeop Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Republic of Korea
- Ohlabs Corp, Busan, 48513, Republic of Korea
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Republic of Korea
| | - Cao Duong Ly
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Republic of Korea
| | - Soon-Woo Cho
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sudip Mondal
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Republic of Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- Ohlabs Corp, Busan, 48513, Republic of Korea
| |
Collapse
|
10
|
Hartmann K, Stein KP, Neyazi B, Sandalcioglu IE. Theranostic applications of optical coherence tomography in neurosurgery? Neurosurg Rev 2021; 45:421-427. [PMID: 34398385 PMCID: PMC8827310 DOI: 10.1007/s10143-021-01599-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/11/2021] [Accepted: 06/27/2021] [Indexed: 12/14/2022]
Abstract
In light of our own experiences, we value the existing literature to critically point out possible “near” future applications of optical coherence tomography (OCT) as an intraoperative neurosurgical guidance tool. “Pub Med”, “Cochrane Library”, “Crossref Metadata Search”, and “IEEE Xplore” databases as well as the search engine “Google Scholar” were screened for “optical coherence tomography + neurosurgery”, “optical coherence tomography + intraoperative imaging + neurosurgery”, and “microscope integrated optical coherence tomography + neurosurgery”. n = 51 articles related to the use of OCT as an imaging technique in the field of neurosurgery or neurosurgical research. n = 7 articles documented the intraoperative use of OCT in patients. n = 4 articles documented the use of microscope-integrated optical coherence tomography as a neurosurgical guidance tool. The Results demonstrate that OCT is the first imaging technique to study microanatomy in vivo. Postoperative analysis of intraoperative scans holds promise to enrich our physiological and pathophysiological understanding of the human brain. No data exists to prove that OCT-guided surgery minimizes perioperative morbidity or extends tumor resection. But results suggest that regular use of microscope-integrated OCT could increase security during certain critical microsurgical steps like, e.g., dural dissection at cavernous sinus, transtentorial approaches, or aneurysm clip placement. Endoscopy integration could aid surgery in regions which are not yet accessible to real-time imaging modalities like the ventricles or hypophysis. Theranostic instruments which combine OCT with laser ablation might gain importance in the emerging field of minimal invasive tumor surgery. OCT depicts vessel wall layers and its pathologies uniquely. Doppler OCT could further visualize blood flow in parallel. These abilities shed light on promising future applications in the field of vascular neurosurgery.
Collapse
Affiliation(s)
- Karl Hartmann
- Universitätsklinik Für Neurochirurgie, Otto-Von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Deutschland.
| | - Klaus-Peter Stein
- Universitätsklinik Für Neurochirurgie, Otto-Von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Deutschland
| | - Belal Neyazi
- Universitätsklinik Für Neurochirurgie, Otto-Von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Deutschland
| | - I Erol Sandalcioglu
- Universitätsklinik Für Neurochirurgie, Otto-Von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Deutschland
| |
Collapse
|
11
|
Wiacek A, Lediju Bell MA. Photoacoustic-guided surgery from head to toe [Invited]. BIOMEDICAL OPTICS EXPRESS 2021; 12:2079-2117. [PMID: 33996218 PMCID: PMC8086464 DOI: 10.1364/boe.417984] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 05/04/2023]
Abstract
Photoacoustic imaging-the combination of optics and acoustics to visualize differences in optical absorption - has recently demonstrated strong viability as a promising method to provide critical guidance of multiple surgeries and procedures. Benefits include its potential to assist with tumor resection, identify hemorrhaged and ablated tissue, visualize metal implants (e.g., needle tips, tool tips, brachytherapy seeds), track catheter tips, and avoid accidental injury to critical subsurface anatomy (e.g., major vessels and nerves hidden by tissue during surgery). These benefits are significant because they reduce surgical error, associated surgery-related complications (e.g., cancer recurrence, paralysis, excessive bleeding), and accidental patient death in the operating room. This invited review covers multiple aspects of the use of photoacoustic imaging to guide both surgical and related non-surgical interventions. Applicable organ systems span structures within the head to contents of the toes, with an eye toward surgical and interventional translation for the benefit of patients and for use in operating rooms and interventional suites worldwide. We additionally include a critical discussion of complete systems and tools needed to maximize the success of surgical and interventional applications of photoacoustic-based technology, spanning light delivery, acoustic detection, and robotic methods. Multiple enabling hardware and software integration components are also discussed, concluding with a summary and future outlook based on the current state of technological developments, recent achievements, and possible new directions.
Collapse
Affiliation(s)
- Alycen Wiacek
- Department of Electrical and Computer Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
| | - Muyinatu A. Lediju Bell
- Department of Electrical and Computer Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Computer Science, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
12
|
Park J, Park B, Kim TY, Jung S, Choi WJ, Ahn J, Yoon DH, Kim J, Jeon S, Lee D, Yong U, Jang J, Kim WJ, Kim HK, Jeong U, Kim HH, Kim C. Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer. Proc Natl Acad Sci U S A 2021; 118:e1920879118. [PMID: 33836558 PMCID: PMC7980418 DOI: 10.1073/pnas.1920879118] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ultrasound and optical imagers are used widely in a variety of biological and medical applications. In particular, multimodal implementations combining light and sound have been actively investigated to improve imaging quality. However, the integration of optical sensors with opaque ultrasound transducers suffers from low signal-to-noise ratios, high complexity, and bulky form factors, significantly limiting its applications. Here, we demonstrate a quadruple fusion imaging system using a spherically focused transparent ultrasound transducer that enables seamless integration of ultrasound imaging with photoacoustic imaging, optical coherence tomography, and fluorescence imaging. As a first application, we comprehensively monitored multiparametric responses to chemical and suture injuries in rats' eyes in vivo, such as corneal neovascularization, structural changes, cataracts, and inflammation. As a second application, we successfully performed multimodal imaging of tumors in vivo, visualizing melanomas without using labels and visualizing 4T1 mammary carcinomas using PEGylated gold nanorods. We strongly believe that the seamlessly integrated multimodal system can be used not only in ophthalmology and oncology but also in other healthcare applications with broad impact and interest.
Collapse
Affiliation(s)
- Jeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Byullee Park
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Tae Yeong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Woo June Choi
- School of Electrical and Electronics Engineering, Chung-Ang University, 06974 Seoul, Republic of Korea
| | - Joongho Ahn
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Dong Hee Yoon
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 41944 Daegu, Republic of Korea
| | - Jeongho Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 41944 Daegu, Republic of Korea
| | - Seungwan Jeon
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Donghyun Lee
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Uijung Yong
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Won Jong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Hong Kyun Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 41944 Daegu, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea;
| | - Hyung Ham Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea;
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Chulhong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea;
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| |
Collapse
|
13
|
Mai TT, Yoo SW, Park S, Kim JY, Choi KH, Kim C, Kwon SY, Min JJ, Lee C. In Vivo Quantitative Vasculature Segmentation and Assessment for Photodynamic Therapy Process Monitoring Using Photoacoustic Microscopy. SENSORS 2021; 21:s21051776. [PMID: 33806466 PMCID: PMC7961824 DOI: 10.3390/s21051776] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022]
Abstract
Vascular damage is one of the therapeutic mechanisms of photodynamic therapy (PDT). In particular, short-term PDT treatments can effectively destroy malignant lesions while minimizing damage to nonmalignant tissue. In this study, we investigate the feasibility of label-free quantitative photoacoustic microscopy (PAM) for monitoring the vasculature changes under the effect of PDT in mouse ear melanoma tumors. In particular, quantitative vasculature evaluation was conducted based on Hessian filter segmentation. Three-dimensional morphological PAM and depth-resolved images before and after PDT treatment were acquired. In addition, five quantitative vasculature parameters, including the PA signal, vessel diameter, vessel density, perfused vessel density, and vessel complexity, were analyzed to evaluate the influence of PDT on four different areas: Two melanoma tumors, and control and normal vessel areas. The quantitative and qualitative results successfully demonstrated the potential of the proposed PAM-based quantitative approach to evaluate the effectiveness of the PDT method.
Collapse
Affiliation(s)
- Thi Thao Mai
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Korea;
| | - Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 58128, Korea; (S.W.Y.); (S.Y.K.); (J.-J.M.)
| | - Suhyun Park
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, Gwangju 61186, Korea;
| | - Jin Young Kim
- Department of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk-do 37673, Korea; (J.Y.K.); (C.K.)
| | - Kang-Ho Choi
- Department of Neurology, Chonnam National University Hospital, 8 Hak-dong, Dong-gu, Gwangju 501-757, Korea;
| | - Chulhong Kim
- Department of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk-do 37673, Korea; (J.Y.K.); (C.K.)
| | - Seong Young Kwon
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 58128, Korea; (S.W.Y.); (S.Y.K.); (J.-J.M.)
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, Gwangju 61186, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, Jeollanamdo 58128, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 58128, Korea; (S.W.Y.); (S.Y.K.); (J.-J.M.)
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, Gwangju 61186, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, Jeollanamdo 58128, Korea
| | - Changho Lee
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Korea;
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo 58128, Korea; (S.W.Y.); (S.Y.K.); (J.-J.M.)
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, Gwangju 61186, Korea;
- Department of Nuclear Medicine, Chonnam National University Medical School, Jeollanamdo 58128, Korea
- Correspondence: ; Tel.: +82-61-379-2885
| |
Collapse
|
14
|
Ma L, Fei B. Comprehensive review of surgical microscopes: technology development and medical applications. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200292VRR. [PMID: 33398948 PMCID: PMC7780882 DOI: 10.1117/1.jbo.26.1.010901] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Surgical microscopes provide adjustable magnification, bright illumination, and clear visualization of the surgical field and have been increasingly used in operating rooms. State-of-the-art surgical microscopes are integrated with various imaging modalities, such as optical coherence tomography (OCT), fluorescence imaging, and augmented reality (AR) for image-guided surgery. AIM This comprehensive review is based on the literature of over 500 papers that cover the technology development and applications of surgical microscopy over the past century. The aim of this review is threefold: (i) providing a comprehensive technical overview of surgical microscopes, (ii) providing critical references for microscope selection and system development, and (iii) providing an overview of various medical applications. APPROACH More than 500 references were collected and reviewed. A timeline of important milestones during the evolution of surgical microscope is provided in this study. An in-depth technical overview of the optical system, mechanical system, illumination, visualization, and integration with advanced imaging modalities is provided. Various medical applications of surgical microscopes in neurosurgery and spine surgery, ophthalmic surgery, ear-nose-throat (ENT) surgery, endodontics, and plastic and reconstructive surgery are described. RESULTS Surgical microscopy has been significantly advanced in the technical aspects of high-end optics, bright and shadow-free illumination, stable and flexible mechanical design, and versatile visualization. New imaging modalities, such as hyperspectral imaging, OCT, fluorescence imaging, photoacoustic microscopy, and laser speckle contrast imaging, are being integrated with surgical microscopes. Advanced visualization and AR are being added to surgical microscopes as new features that are changing clinical practices in the operating room. CONCLUSIONS The combination of new imaging technologies and surgical microscopy will enable surgeons to perform challenging procedures and improve surgical outcomes. With advanced visualization and improved ergonomics, the surgical microscope has become a powerful tool in neurosurgery, spinal, ENT, ophthalmic, plastic and reconstructive surgeries.
Collapse
Affiliation(s)
- Ling Ma
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
| | - Baowei Fei
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
- University of Texas Southwestern Medical Center, Department of Radiology, Dallas, Texas, United States
| |
Collapse
|
15
|
Feasibility Study of Precise Balloon Catheter Tracking and Visualization with Fast Photoacoustic Microscopy. SENSORS 2020; 20:s20195585. [PMID: 33003536 PMCID: PMC7582572 DOI: 10.3390/s20195585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Correct guiding of the catheter is a critical issue in almost all balloon catheter applications, including arterial stenosis expansion, coronary arterial diseases, and gastrointestinal tracking. To achieve safe and precise guiding of the balloon catheter, a novel imaging method with high-resolution, sufficient depth of penetration, and real-time display is required. Here, we present a new balloon catheter guiding method using fast photoacoustic microscopy (PAM) technique for precise balloon catheter tracking and visualization as a feasibility study. We implemented ex vivo and in vivo experiments with three different medium conditions of balloon catheter: no air, air, and water. Acquired cross-sectional, maximum amplitude projection (MAP), and volumetric 3D PAM images demonstrated its capability as a new imaging guiding tool for balloon catheter tracking and visualization.
Collapse
|
16
|
Aziz A, Pane S, Iacovacci V, Koukourakis N, Czarske J, Menciassi A, Medina-Sánchez M, Schmidt OG. Medical Imaging of Microrobots: Toward In Vivo Applications. ACS NANO 2020; 14:10865-10893. [PMID: 32869971 DOI: 10.1021/acsnano.0c05530] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medical microrobots (MRs) have been demonstrated for a variety of non-invasive biomedical applications, such as tissue engineering, drug delivery, and assisted fertilization, among others. However, most of these demonstrations have been carried out in in vitro settings and under optical microscopy, being significantly different from the clinical practice. Thus, medical imaging techniques are required for localizing and tracking such tiny therapeutic machines when used in medical-relevant applications. This review aims at analyzing the state of the art of microrobots imaging by critically discussing the potentialities and limitations of the techniques employed in this field. Moreover, the physics and the working principle behind each analyzed imaging strategy, the spatiotemporal resolution, and the penetration depth are thoroughly discussed. The paper deals with the suitability of each imaging technique for tracking single or swarms of MRs and discusses the scenarios where contrast or imaging agent's inclusion is required, either to absorb, emit, or reflect a determined physical signal detected by an external system. Finally, the review highlights the existing challenges and perspective solutions which could be promising for future in vivo applications.
Collapse
Affiliation(s)
- Azaam Aziz
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Stefano Pane
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Veronica Iacovacci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Nektarios Koukourakis
- Chair of Measurement and Sensor System Technique, School of Engineering, TU Dresden, Helmholtzstrasse 18, 01069 Dresden, Germany
- Center for Biomedical Computational Laser Systems, TU Dresden, 01062 Dresden, Germany
| | - Jürgen Czarske
- Chair of Measurement and Sensor System Technique, School of Engineering, TU Dresden, Helmholtzstrasse 18, 01069 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
- Center for Biomedical Computational Laser Systems, TU Dresden, 01062 Dresden, Germany
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56025, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, Reichenhainer Strasse 10, 09107 Chemnitz, Germany
- School of Science, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
17
|
Real-time, functional intra-operative localization of rat cavernous nerve network using near-infrared cyanine voltage-sensitive dye imaging. Sci Rep 2020; 10:6618. [PMID: 32313132 PMCID: PMC7171155 DOI: 10.1038/s41598-020-63588-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/27/2020] [Indexed: 12/02/2022] Open
Abstract
Despite current progress achieved in the surgical technique of radical prostatectomy, post-operative complications such as erectile dysfunction and urinary incontinence persist at high incidence rates. In this paper, we present a methodology for functional intra-operative localization of the cavernous nerve (CN) network for nerve-sparing radical prostatectomy using near-infrared cyanine voltage-sensitive dye (VSD) imaging, which visualizes membrane potential variations in the CN and its branches (CNB) in real time. As a proof-of-concept experiment, we demonstrate a functioning complex nerve network in response to electrical stimulation of the CN, which was clearly differentiated from surrounding tissues in an in vivo rat prostate model. Stimulation of an erection was confirmed by correlative intracavernosal pressure (ICP) monitoring. Within 10 minutes, we performed trans-fascial staining of the CN by direct VSD administration. Our findings suggest the applicability of VSD imaging for real-time, functional imaging guidance during nerve-sparing radical prostatectomy.
Collapse
|
18
|
Zhao T, Desjardins AE, Ourselin S, Vercauteren T, Xia W. Minimally invasive photoacoustic imaging: Current status and future perspectives. PHOTOACOUSTICS 2019; 16:100146. [PMID: 31871889 PMCID: PMC6909166 DOI: 10.1016/j.pacs.2019.100146] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 09/30/2019] [Indexed: 05/09/2023]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging modality that is based on optical absorption contrast, capable of revealing distinct spectroscopic signatures of tissue at high spatial resolution and large imaging depths. However, clinical applications of conventional non-invasive PAI systems have been restricted to examinations of tissues at depths less than a few cm due to strong light attenuation. Minimally invasive photoacoustic imaging (miPAI) has greatly extended the landscape of PAI by delivering excitation light within tissue through miniature fibre-optic probes. In the past decade, various miPAI systems have been developed with demonstrated applicability in several clinical fields. In this article, we present an overview of the current status of miPAI and our thoughts on future perspectives.
Collapse
Affiliation(s)
- Tianrui Zhao
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing St Thomas’ Hospital London, London SE1 7EH, United Kingdom
| | - Adrien E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing St Thomas’ Hospital London, London SE1 7EH, United Kingdom
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing St Thomas’ Hospital London, London SE1 7EH, United Kingdom
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Wenfeng Xia
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing St Thomas’ Hospital London, London SE1 7EH, United Kingdom
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
19
|
Jung D, Park S, Lee C, Kim H. Recent Progress on Near-Infrared Photoacoustic Imaging: Imaging Modality and Organic Semiconducting Agents. Polymers (Basel) 2019; 11:E1693. [PMID: 31623160 PMCID: PMC6836006 DOI: 10.3390/polym11101693] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Over the past few decades, the photoacoustic (PA) effect has been widely investigated, opening up diverse applications, such as photoacoustic spectroscopy, estimation of chemical energies, or point-of-care detection. Notably, photoacoustic imaging (PAI) has also been developed and has recently received considerable attention in bio-related or clinical imaging fields, as it now facilitates an imaging platform in the near-infrared (NIR) region by taking advantage of the significant advancement of exogenous imaging agents. The NIR PAI platform now paves the way for high-resolution, deep-tissue imaging, which is imperative for contemporary theragnosis, a combination of precise diagnosis and well-timed therapy. This review reports the recent progress on NIR PAI modality, as well as semiconducting contrast agents, and outlines the trend in current NIR imaging and provides further direction for the prospective development of PAI systems.
Collapse
Affiliation(s)
- Doyoung Jung
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Suhyeon Park
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Changho Lee
- Interdisciplinary Program of Molecular Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School & Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do 58128, Korea.
| | - Hyungwoo Kim
- School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| |
Collapse
|
20
|
Jeon S, Kim J, Lee D, Baik JW, Kim C. Review on practical photoacoustic microscopy. PHOTOACOUSTICS 2019; 15:100141. [PMID: 31463194 PMCID: PMC6710377 DOI: 10.1016/j.pacs.2019.100141] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/19/2019] [Accepted: 07/24/2019] [Indexed: 05/03/2023]
Abstract
Photoacoustic imaging (PAI) has many interesting advantages, such as deep imaging depth, high image resolution, and high contrast to intrinsic and extrinsic chromophores, enabling morphological, functional, and molecular imaging of living subjects. Photoacoustic microscopy (PAM) is one form of the PAI inheriting its characteristics and is useful in both preclinical and clinical research. Over the years, PAM systems have been evolved in several forms and each form has its relative advantages and disadvantages. Thus, to maximize the benefits of PAM for a specific application, it is important to configure the PAM system optimally by targeting a specific application. In this review, we provide practical methods for implementing a PAM system to improve the resolution, signal-to-noise ratio (SNR), and imaging speed. In addition, we review the preclinical and the clinical applications of PAM and discuss the current challenges and the scope for future developments.
Collapse
Affiliation(s)
| | | | | | | | - Chulhong Kim
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
21
|
Kim J, Kim JY, Jeon S, BAIK JW, Cho SH, Kim C. Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers. LIGHT, SCIENCE & APPLICATIONS 2019; 8:103. [PMID: 31798842 PMCID: PMC6868204 DOI: 10.1038/s41377-019-0220-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 05/03/2023]
Abstract
Photoacoustic microscopy (PAM) has become a premier microscopy tool that can provide the anatomical, functional, and molecular information of animals and humans in vivo. However, conventional PAM systems suffer from limited temporal and/or spatial resolution. Here, we present a fast PAM system and an agent-free localization method based on a stable and commercial galvanometer scanner with a custom-made scanning mirror (L-PAM-GS). This novel hardware implementation enhances the temporal resolution significantly while maintaining a high signal-to-noise ratio (SNR). These improvements allow us to photoacoustically and noninvasively observe the microvasculatures of small animals and humans in vivo. Furthermore, the functional hemodynamics, namely, the blood flow rate in the microvasculature, is successfully monitored and quantified in vivo. More importantly, thanks to the high SNR and fast B-mode rate (500 Hz), by localizing photoacoustic signals from captured red blood cells without any contrast agent, unresolved microvessels are clearly distinguished, and the spatial resolution is improved by a factor of 2.5 in vivo. L-PAM-GS has great potential in various fields, such as neurology, oncology, and pathology.
Collapse
Affiliation(s)
- Jongbeom Kim
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Jin Young Kim
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Seungwan Jeon
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Jin Woo BAIK
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Seong Hee Cho
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Chulhong Kim
- Departments of Creative IT Engineering, Electrical Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
22
|
Lee J, Wijesinghe RE, Jeon D, Kim P, Choung YH, Jang JH, Jeon M, Kim J. Clinical Utility of Intraoperative Tympanomastoidectomy Assessment Using a Surgical Microscope Integrated with an Optical Coherence Tomography. Sci Rep 2018; 8:17432. [PMID: 30479360 PMCID: PMC6258704 DOI: 10.1038/s41598-018-35563-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
Significant technical and optical advances are required for intraoperative optical coherence tomography (OCT) to be utilized during otological surgeries. Integrating OCT with surgical microscopy makes it possible to evaluate soft tissue in real-time and at a high resolution. Herein, we describe an augmented-reality, intraoperative OCT/microscope system with an extended working distance of 280 mm, providing more space for surgical manipulation than conventional techniques. We initially performed ex vivo experiments to evaluate system performance. In addition, we validated the system by performing preliminary clinical assessments of tympanomastoidectomy outcomes in six patients with chronic otitis media. The system evaluated residual inflammation in the region-of-interest of the mastoid bone. Most importantly, the system intraoperatively revealed the connection between the graft and the remnant tympanic membrane. The extended working distance allows otological surgeons to evaluate the status of both the mastoid bone and tympanic membrane during manipulation, affording full intraoperative imaging.
Collapse
Affiliation(s)
- Jaeyul Lee
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Ruchire Eranga Wijesinghe
- Department of Biomedical Engineering, College of Engineering, Kyungil University, 50, Gamasil-gil, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do, 38428, Republic of Korea
| | - Deokmin Jeon
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Pilun Kim
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, School of Medicine, Ajou University, 164 World cup-ro, Yeongtong-gu, Suwon, Gyeunggi-do, 16499, Republic of Korea
| | - Jeong Hun Jang
- Department of Otolaryngology, School of Medicine, Ajou University, 164 World cup-ro, Yeongtong-gu, Suwon, Gyeunggi-do, 16499, Republic of Korea.
| | - Mansik Jeon
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Jeehyun Kim
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
23
|
Lee C, Kim JY, Kim C. Recent Progress on Photoacoustic Imaging Enhanced with Microelectromechanical Systems (MEMS) Technologies. MICROMACHINES 2018; 9:E584. [PMID: 30413091 PMCID: PMC6266184 DOI: 10.3390/mi9110584] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/01/2023]
Abstract
Photoacoustic imaging (PAI) is a new biomedical imaging technology currently in the spotlight providing a hybrid contrast mechanism and excellent spatial resolution in the biological tissues. It has been extensively studied for preclinical and clinical applications taking advantage of its ability to provide anatomical and functional information of live bodies noninvasively. Recently, microelectromechanical systems (MEMS) technologies, particularly actuators and sensors, have contributed to improving the PAI system performance, further expanding the research fields. This review introduces cutting-edge MEMS technologies for PAI and summarizes the recent advances of scanning mirrors and detectors in MEMS.
Collapse
Affiliation(s)
- Changho Lee
- Department of Nuclear Medicine, Chonnam National University Medical School & Hwasun Hospital, Hwasun 58128, Korea.
| | - Jin Young Kim
- Departments of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Chulhong Kim
- Departments of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
- Departments of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| |
Collapse
|
24
|
Mkarimi M, Mashimo H. Advanced Imaging for Barrett's Esophagus and Early Neoplasia: Surface and Subsurface Imaging for Diagnosis and Management. Curr Gastroenterol Rep 2018; 20:54. [PMID: 30302571 DOI: 10.1007/s11894-018-0661-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Esophageal adenocarcinoma bears one of the fastest rising incidence of any cancers and generally arises in the setting of gastroesophageal reflux and Barrett's esophagus. However, early detection of neoplasia can be challenging since most patients are asymptomatic until they progress to more advanced and less curable stages, and early dysplastic lesions can be small, multifocal, and difficult to detect. Clearly, new imaging tools are needed in light of sampling error associated with random biopsies, the current standard of practice. RECENT FINDINGS Advances in endoscopic imaging including virtual chromoendoscopy, confocal laser endomicroscopy, and subsurface imaging with optical coherence tomography have ushered in a new era for detecting subtle neoplastic lesions. Moreover, in light of esophagus-sparing treatments for neoplastic lesions, such tools are likely to guide ablation and follow-up management. While there is no ideal single imaging modality to facilitate improved detection, staging, ablation, and follow-up of patients with dysplastic Barrett's esophagus, new advances in available technology, the potential for multimodal imaging, and the use of computer-aided diagnosis and biomarkers all hold great promise for improving detection and treatment.
Collapse
Affiliation(s)
- Mansoureh Mkarimi
- VA Boston Healthcare, Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA
| | - Hiroshi Mashimo
- VA Boston Healthcare, Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA, 02132, USA.
| |
Collapse
|
25
|
Numerical-Sampling-Functionalized Real-Time Index Regulation for Direct k-Domain Calibration in Spectral Domain Optical Coherence Tomography. ELECTRONICS 2018. [DOI: 10.3390/electronics7090182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An index-regulation technique functionalized by numerical sampling for direct calibration of the non-linear wavenumber (k)-domain to a linear domain in spectral domain optical coherence tomography (SD-OCT) is proposed. The objective of the developed method is to facilitate high-resolution identification of microstructures in biomedical imaging. Subjective optical alignments caused by nonlinear sampling of interferograms in the k-domain tend to hinder depth-dependent signal-to-noise ratios (SNR) and axial resolution in SD-OCT. Moreover, the optical-laser-dependent k-domain requires constant recalibrated in accordance with each laser transition, thereby necessitating either hardware or heavy software compensations. As the key feature of the proposed method, a relatively simple software-based k-domain mask calibration technique was developed to enable real-time linear sampling of k-domain interpolations whilst facilitating image observation through use of an index-regulation technique. Moreover, it has been confirmed that dispersion can be simultaneously compensated with noise residuals generated using the proposed technique, and that use of complex numerical or hardware techniques are no longer required. Observed results, such as fall-off, SNR, and axial resolution clearly exhibit the direct impact of the proposed technique, which could help investigators rapidly achieve optical-laser-independent high-quality SD-OCT images.
Collapse
|
26
|
Abstract
Over the past twenty years, photoacoustics—also called optoacoustics—have been widely investigated and, in particular, extensively applied in biomedical imaging as an emerging modality. Photoacoustic imaging (PAI) detects an ultrasound wave that is generated via photoexcitation and thermoelastic expansion by a short nanosecond laser pulse, which significantly reduces light and acoustic scattering, more than in other typical optical imaging and renders high-resolution tomographic images with preserving high absorption contrast with deep penetration depth. In addition, PAI provides anatomical and physiological parameters in non-invasive manner. Over the past two decades, this technique has been remarkably developed in the sense of instrumentation and contrast agent materials. In this review, we briefly introduce state-of-the-art multiscale imaging systems and summarize recent progress on exogenous bio-compatible and -degradable agents that address biomedical application and clinical practice.
Collapse
|
27
|
Upputuri PK, Pramanik M. Fast photoacoustic imaging systems using pulsed laser diodes: a review. Biomed Eng Lett 2018; 8:167-181. [PMID: 30603201 PMCID: PMC6208528 DOI: 10.1007/s13534-018-0060-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/15/2022] Open
Abstract
Photoacoustic imaging (PAI) is a newly emerging imaging modality for preclinical and clinical applications. The conventional PAI systems use Q-switched Nd:YAG/OPO (Optical Parametric Oscillator) nanosecond lasers as excitation sources. Such lasers are expensive, bulky, and imaging speed is limited because of low pulse repetition rate. In recent years, the semiconductor laser technology has advanced to generate high-repetitions rate near-infrared pulsed lasers diodes (PLDs) which are reliable, less-expensive, hand-held, and light-weight, about 200 g. In this article, we review the development and demonstration of PLD based PAI systems for preclinical and clinical applications reported in recent years.
Collapse
Affiliation(s)
- Paul Kumar Upputuri
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| |
Collapse
|
28
|
Photoacoustic microscopy: principles and biomedical applications. Biomed Eng Lett 2018; 8:203-213. [PMID: 30603203 DOI: 10.1007/s13534-018-0067-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022] Open
Abstract
Photoacoustic microscopy (PAM) has become an increasingly popular technology for biomedical applications, providing anatomical, functional, and molecular information. In this concise review, we first introduce the basic principles and typical system designs of PAM, including optical-resolution PAM and acoustic-resolution PAM. The major imaging characteristics of PAM, i.e. spatial resolutions, penetration depth, and scanning approach are discussed in detail. Then, we introduce the major biomedical applications of PAM, including anatomical imaging across scales from cellular level to organismal level, label-free functional imaging using endogenous biomolecules, and molecular imaging using exogenous contrast agents. Lastly, we discuss the technical and engineering challenges of PAM in the translation to potential clinical impacts.
Collapse
|
29
|
Fan Y, Xia Y, Zhang X, Sun Y, Tang J, Zhang L, Liao H. Optical coherence tomography for precision brain imaging, neurosurgical guidance and minimally invasive theranostics. Biosci Trends 2018; 12:12-23. [PMID: 29332928 DOI: 10.5582/bst.2017.01258] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review focuses on optical coherence tomography (OCT)-based neurosurgical application for imaging and treatment of brain tumors. OCT has emerged as one of the most innovative and successful translational biomedical-diagnostic techniques. It is a useful imaging tool for noninvasive, in vivo, in situ and real-time imaging in soft biological tissues, such as brain tumor imaging. OCT can detect the structure of biological tissue in a micrometer scale, and functional OCT has some clinical researches and applications, such as nerve fiber tracts and neurovascular imaging. OCT is able to identify tumor margins, and it gives intraoperative precision identification and resection guidance. OCT-based theranostics is introduced into preclinical neurosurgical resection, such as the integration of OCT and laser ablation. We discuss the challenges and opportunities of OCT-based system in the field of combination of intraoperative structural and functional imaging, neurosurgical guidance and minimally invasive theranostics. We point out that OCT and laser ablation-based theranostics can give more precision and intelligence for intraoperative diagnosis and therapeutics in clinical applications. The theranostics can precisely locate, or specifically target cancerous tissues, and then as much as possiblly eliminate them.
Collapse
Affiliation(s)
- Yingwei Fan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University
| | - Yan Xia
- Department of Biomedical Engineering, School of Medicine, Tsinghua University
| | - Xinran Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University
| | - Yu Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| | - Jie Tang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| | - Hongen Liao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University
| |
Collapse
|
30
|
Haindl R, Preisser S, Andreana M, Rohringer W, Sturtzel C, Distel M, Chen Z, Rank E, Fischer B, Drexler W, Liu M. Dual modality reflection mode optical coherence and photoacoustic microscopy using an akinetic sensor. OPTICS LETTERS 2017; 42:4319-4322. [PMID: 29088153 DOI: 10.1364/ol.42.004319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This Letter presents a novel dual modality reflection mode optical coherence and photoacoustic microscopy (OC-PAM) system. The optical coherence microscopy modality features a broadband source to accomplish 5 μm axial resolution. The photoacoustic microscopy modality uses a rigid akinetic Fabry-Perot etalon encapsulated in an optically transparent medium, which forms a 2 mm×11 mm translucent imaging window, permitting reflection mode dual modality imaging. After characterization, the OC-PAM system was applied to image zebrafish larvae in vivo, demonstrating its capability in biomedical imaging with complementary optical scattering and absorption contrasts by revealing morphology in the fish larvae.
Collapse
|
31
|
Lee D, Park S, Noh WC, Im JS, Kim C. Photoacoustic imaging of dental implants in a porcine jawbone ex vivo. OPTICS LETTERS 2017; 42:1760-1763. [PMID: 28454154 DOI: 10.1364/ol.42.001760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Currently, x-ray-based imaging is used before and after the dental implant treatment, but the ionizing radiation is potentially harmful to patients and operators. Here, we demonstrate ex vivo photoacoustic imaging of a dental implant embedded in a porcine jawbone. By layering biological tissue over the jawbone to mimic a clinical environment, we demonstrate 10 mm deep imaging. Our results show that photoacoustic imaging can provide jawbone anatomical information, the location of an embedded implant fixture, and the thickness of the soft tissue above the jawbone.
Collapse
|
32
|
Contrast-enhanced dual mode imaging: photoacoustic imaging plus more. Biomed Eng Lett 2017; 7:121-133. [PMID: 30603159 DOI: 10.1007/s13534-016-0006-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022] Open
Abstract
Conventional biomedical imaging modalities in wide clinical use, such as ultrasound imaging, X-ray computed tomography, magnetic resonance imaging, and positron emission tomography, can provide morphological, anatomical, and functional information about biological tissues. However, single mode imaging in conventional medicine provides only limited information for definitive diagnoses. Thus, combinational diagnosis using multiple imaging modalities has become increasingly important. Recently, photoacoustic imaging (PAI) has gained significant attention, and several PAI prototypes have been used in clinical trials. At the same time, PAI has been tested in combination with conventional imaging modalities. For all these imaging modalities, various contrast-enhancing agents have been developed for various purposes. In this review article, we will focus on recent progress in developing dual mode contrast agents for PAI in combination with other conventional imaging modalities.
Collapse
|