1
|
Graef F, Wei Y, Garbe A, Seemann R, Zenzes M, Tsitsilonis S, Duda GN, Zaslansky P. Increased cancellous bone mass accompanies decreased cortical bone mineral density and higher axial deformation in femurs of leptin-deficient obese mice. J Mech Behav Biomed Mater 2024; 160:106745. [PMID: 39317095 DOI: 10.1016/j.jmbbm.2024.106745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Leptin is a pleiotropic hormone that regulates food intake and energy homeostasis with enigmatic effects on bone development. It is unclear if leptin promotes or inhibits bone growth. The aim of this study was to characterize the micro-architecture and mechanical competence of femur bones of leptin-deficient mice. MATERIALS AND METHODS Right femur bones of 15-week old C57BL/6 (n = 9) and leptin-deficient (ob/ob, n = 9) mice were analyzed. Whole bones were scanned using micro-CT and morphometric parameters of the cortex and trabeculae were assessed. Elastic moduli were determined from microindentations in midshaft cross-sections. Mineral densities were determined using quantitative backscatter scanning electron microscopy. 3D models of the distal femur metaphysis, cleared from trabecular bone, were meshed and used for finite element simulations of axial loading to identify straining differences between ob/ob and C57BL/6 controls. RESULTS Compared with C57BL/6 controls, ob/ob mice had significantly shorter bones. ob/ob mice showed significantly increased cancellous bone volume and trabecular thickness. qBEI quantified a ∼7% lower mineral density in ob/ob mice in the distal femur metaphysis. Indentation demonstrated a significantly reduced Young's modulus of 12.14 [9.67, 16.56 IQR] GPa for ob/ob mice compared to 23.12 [20.70, 26.57 IQR] GPa in C57BL/6 mice. FEA revealed greater deformation of cortical bone in ob/ob as compared to C57BL/6 mice. CONCLUSION Leptin deficient ob/ob mice have a softer cortical bone in the distal femur metaphysis but an excessive amount of cancellous bone, possibly as a response to increased deformation of the bones during axial loading. Both FEA and direct X-ray and electron microscopy imaging suggest that the morphology and micro-architecture of ob/ob mice have inferior biomechanical properties suggestive of a reduced mechanical competence.
Collapse
Affiliation(s)
- F Graef
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany.
| | - Y Wei
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany.
| | - A Garbe
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany
| | - R Seemann
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany
| | - M Zenzes
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany
| | - S Tsitsilonis
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - G N Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - P Zaslansky
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany.
| |
Collapse
|
2
|
Pawelec KM, Schoborg TA, Shapiro EM. Computed tomography technologies to measure key structural features of polymeric biomedical implants from bench to bedside. J Biomed Mater Res A 2024; 112:1893-1901. [PMID: 38728118 PMCID: PMC11368623 DOI: 10.1002/jbm.a.37735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Implanted polymeric devices, designed to encourage tissue regeneration, require porosity. However, characterizing porosity, which affects many functional device properties, is non-trivial. Computed tomography (CT) is a quick, versatile, and non-destructive way to gain 3D structural information, yet various CT technologies, such as benchtop, preclinical and clinical systems, all have different capabilities. As system capabilities determine the structural information that can be obtained, seamless monitoring of key device features through all stages of clinical translation must be engineered intentionally. Therefore, in this study we tested feasibility of obtaining structural information in pre-clinical systems and high-resolution micro-CT (μCT) under physiological conditions. To overcome the low CT contrast of polymers in hydrated environments, radiopaque nanoparticle contrast agent was incorporated into porous devices. The size of resolved features in porous structures is highly dependent on the resolution (voxel size) of the scan. As the voxel size of the CT scan increased (lower resolution) from 5 to 50 μm, the measured pore size was overestimated, and percentage porosity was underestimated by nearly 50%. With the homogeneous introduction of nanoparticles, changes to device structure could be quantified in the hydrated state, including at high-resolution. Biopolymers had significant structural changes post-hydration, including a mean increase of 130% in pore wall thickness that could potentially impact biological response. By incorporating imaging capabilities into polymeric devices, CT can be a facile way to monitor devices from initial design stages through to clinical translation.
Collapse
Affiliation(s)
- Kendell M Pawelec
- Michigan State University, Dept Radiology, East Lansing, MI 48824
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Todd A Schoborg
- University of Wyoming, Dept of Molecular Biology, Laramie, WY 82071
| | - Erik M Shapiro
- Michigan State University, Dept Radiology, East Lansing, MI 48824
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University, Dept of Physiology, East Lansing, MI 48824, USA
- Michigan State University, Dept of Chemical Engineering and Material Science, East Lansing, MI 48824, USA
- Michigan State University, Dept of Biomedical Engineering, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Li P, Alenazi KKK, Dally J, Woods EL, Waddington RJ, Moseley R. Role of oxidative stress in impaired type II diabetic bone repair: scope for antioxidant therapy intervention? FRONTIERS IN DENTAL MEDICINE 2024; 5:1464009. [PMID: 39917650 PMCID: PMC11797775 DOI: 10.3389/fdmed.2024.1464009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/02/2024] [Indexed: 02/09/2025] Open
Abstract
Impaired bone healing is a significant complication observed in individuals with type 2 diabetes mellitus (T2DM), leading to prolonged recovery, increased risk of complications, impaired quality of life, and increased risk of patient morbidity. Oxidative stress, resulting from an imbalance between the generation of reactive oxygen species (ROS) and cellular/tissue antioxidant defence mechanisms, has been identified as a critical contributor to the pathogenesis of impaired bone healing in T2DM. Antioxidants have shown promise in mitigating oxidative stress and promoting bone repair, particularly non-enzymic antioxidant entities. This comprehensive narrative review aims to explore the underlying mechanisms and intricate relationship between oxidative stress, impaired bone healing and T2DM, with a specific focus on the current preclinical and clinical evidence advocating the potential of antioxidant therapeutic interventions in improving bone healing outcomes in individuals with T2DM. From the ever-emerging evidence available, it is apparent that exogenously supplemented antioxidants, especially non-enzymic antioxidants, can ameliorate the detrimental effects of oxidative stress, inflammation, and impaired cellular function on bone healing processes during uncontrolled hyperglycaemia; and therefore, hold considerable promise as novel efficacious therapeutic entities. However, despite such conclusions, several important gaps in our knowledge remain to be addressed, including studies involving more sophisticated enzymic antioxidant-based delivery systems, further mechanistic studies into how these antioxidants exert their desirable reparative effects; and more extensive clinical trial studies into the optimisation of antioxidant therapy dosing, frequency, duration and their subsequent biodistribution and bioavailability. By enhancing our understanding of such crucial issues, we can fully exploit the oxidative stress-neutralising properties of these antioxidants to develop effective antioxidant interventions to mitigate impaired bone healing and reduce the associated complications in such T2DM patient populations.
Collapse
Affiliation(s)
- Pui Li
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Kuraym Khalid Kuraym Alenazi
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Jordanna Dally
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Emma Louise Woods
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Rachel Jane Waddington
- Biomaterials Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Ryan Moseley
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Williamson A, da Silva A, do Carmo JM, Le Maitre C, Hall JE, Aberdein N. Impact of leptin deficiency on male tibia and vertebral body 3D bone architecture independent of changes in body weight. Physiol Rep 2023; 11:10.14814/phy2.15832. [PMID: 37786973 PMCID: PMC10546263 DOI: 10.14814/phy2.15832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023] Open
Abstract
Leptin an adipokine with potent effects on energy balance and body weight plays an important role in defining bone architecture in growing mammals. However, major changes in body weight can also influence morphology of trabecular and cortical bone. Therefore, we examined the impact of leptin deficiency on tibia and vertebral body 3D bone architecture independent of changes in body weight. Furthermore, advances in computational 3D image analysis suggest that average morphological values may mask regional specific differences in trabecular bone thickness. The study utilized leptin-deficient Ob/Ob mice (n = 8) weight-paired to C57BL/6 (C57) control mice (n = 8) which were split into either lean or obese groups for 24 ± 2 weeks. Whole tibias and L3 vertebrae were fixed before high resolution microcomputed tomography (μCT) scanning was performed. Leptin deficiency independent of body weight reduced tibia cortical bone volume, trabecular bone volume/tissue volume, number, and mineral density. Mean tibia trabecular thickness showed no significant differences between all groups; however, significant changes in trabecular thickness were found when analyzed by region. This study demonstrates that leptin deficiency significantly impacts tibia and vertebral body trabecular and cortical bone 3D architecture independent of changes in body weight.
Collapse
Affiliation(s)
- Alexander Williamson
- Biomolecular Science Research Centre, Department of Bioscience and ChemistrySheffield Hallam UniversitySheffieldUK
| | - Alexandre da Silva
- Mississippi Center for Obesity Research, Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Jussara M. do Carmo
- Mississippi Center for Obesity Research, Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Christine L. Le Maitre
- Biomolecular Science Research Centre, Department of Bioscience and ChemistrySheffield Hallam UniversitySheffieldUK
| | - John E. Hall
- Mississippi Center for Obesity Research, Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Nicola Aberdein
- Biomolecular Science Research Centre, Department of Bioscience and ChemistrySheffield Hallam UniversitySheffieldUK
| |
Collapse
|
5
|
Arora D, Taylor EA, King KB, Donnelly E. Increased tissue modulus and hardness in the TallyHO mouse model of early onset type 2 diabetes mellitus. PLoS One 2023; 18:e0287825. [PMID: 37418415 PMCID: PMC10328374 DOI: 10.1371/journal.pone.0287825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 06/14/2023] [Indexed: 07/09/2023] Open
Abstract
Individuals with type 2 diabetes mellitus (T2DM) have a higher fracture risk compared to those without T2DM despite having higher bone mineral density (BMD). Thus, T2DM may alter other aspects of resistance to fracture beyond BMD such as bone geometry, microarchitecture, and tissue material properties. We characterized the skeletal phenotype and assessed the effects of hyperglycemia on bone tissue mechanical and compositional properties in the TallyHO mouse model of early-onset T2DM using nanoindentation and Raman spectroscopy. Femurs and tibias were harvested from male TallyHO and C57Bl/6J mice at 26 weeks of age. The minimum moment of inertia assessed by micro-computed tomography was smaller (-26%) and cortical porosity was greater (+490%) in TallyHO femora compared to controls. In three-point bending tests to failure, the femoral ultimate moment and stiffness did not differ but post-yield displacement was lower (-35%) in the TallyHO mice relative to that in C57Bl/6J age-matched controls after adjusting for body mass. The cortical bone in the tibia of TallyHO mice was stiffer and harder, as indicated by greater mean tissue nanoindentation modulus (+22%) and hardness (+22%) compared to controls. Raman spectroscopic mineral:matrix ratio and crystallinity were greater in TallyHO tibiae than in C57Bl/6J tibiae (mineral:matrix +10%, p < 0.05; crystallinity +0.41%, p < 0.10). Our regression model indicated that greater values of crystallinity and collagen maturity were associated with reduced ductility observed in the femora of the TallyHO mice. The maintenance of structural stiffness and strength of TallyHO mouse femora despite reduced geometric resistance to bending could potentially be explained by increased tissue modulus and hardness, as observed at the tibia. Finally, with worsening glycemic control, tissue hardness and crystallinity increased, and bone ductility decreased in TallyHO mice. Our study suggests that these material factors may be sentinels of bone embrittlement in adolescents with T2DM.
Collapse
Affiliation(s)
- Daksh Arora
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, United States of America
| | - Erik A. Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Karen B. King
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, United States of America
- Research Institute, Hospital for Special Surgery, New York, New York, United States of America
| |
Collapse
|
6
|
Wang Z, Wang H, Zhuang C, Chen W, Hoang TM, Li J, Lin H. The effect of type 2 diabetes mellitus on the prognosis of osteoporotic vertebral compression fracture with osteoporotic fracture classification after vertebroplasty. J Orthop Surg Res 2023; 18:342. [PMID: 37161429 PMCID: PMC10170769 DOI: 10.1186/s13018-023-03792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/11/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND To analyze the clinical and radiological effects of type 2 diabetes mellitus on the prognosis of osteoporotic vertebral compression fracture after percutaneous vertebroplasty, and explore the prognostic value of osteoporotic fracture classification. METHODS Osteoporotic vertebral compression fracture patients who received vertebroplasty from January 1, 2016 to June 30, 2021 were divided into type 2 diabetes mellitus group and control group in this retrospective cohort study. Visual analogue scale, Oswestry Disability Index, bone cement leakage, new compression fracture, anterior, middle, and posterior portion heights of vertebral body and local Cobb angle on X-ray before surgery, 2 days after surgery, 6 months, and 12 months after surgery were recorded, and the osteoporotic fracture classification was performed. P < 0.05 was set as statistical significance. RESULTS A total of 261 vertebral bodies were included, containing 68 in the type 2 diabetes mellitus group and 193 in the control group. There were no differences in baseline characteristics between the two groups. At 6 months after vertebroplasty, the local Cobb angle of the type 2 diabetes mellitus group was 8.29 ± 4.90° greater than that of the control group 6.05 ± 5.18° (P = 0.002). At 12 months, compared with pre-operation, the anterior portion height recovered 8.13 ± 12.90%, which was less than 12.51 ± 14.92% of the control group (P = 0.032), and 19.07 ± 16.47% of the middle portion height recovery was less than the control group's 24.63 ± 17.67% (P = 0.024). Compared with the control group, osteoporotic fracture 2 vertebral bodies of the type 2 diabetes mellitus group at 12 months postoperatively in middle portion height (14.82 ± 14.71% vs 24.78 ± 18.16%, P = 0.023) and local Cobb angle (5.65 ± 4.06° vs 3.26 ± 4.86°, P = 0.043) restored significantly worse. Besides, osteoporotic fracture 3 with type 2 diabetes mellitus restored worse in anterior portion height (5.40 ± 11.02% vs 13.57 ± 12.79%, P = 0.008), middle portion height (11.22 ± 15.53% vs 17.84 ± 12.36%, P = 0.041) and local Cobb angle (10.85 ± 3.79 vs 7.97 ± 3.83°, P = 0.002) at 12 months postoperatively. There was no difference in radiological outcomes of osteoporotic fracture 4 between the two groups. CONCLUSIONS The degree of fractured vertebral compression, the recovery of the height and angle obtained immediately after surgery and the clinical symptoms in type 2 diabetes mellitus patients were not different from those in the control. However, vertebral body morphology of type 2 diabetes mellitus patients was worse since the sixth month after surgery. Osteoporotic fracture classification has a good prognostic reference value for both the control and the type 2 diabetes mellitus population.
Collapse
Affiliation(s)
- Zixiang Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hanquan Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chenyang Zhuang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weisin Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tien-Manh Hoang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Juan Li
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Orthopedics, Shanghai Geriatrics Medical Center, Fudan University, Shanghai, 201100, China.
| | - Hong Lin
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Orthopedics, Shanghai Geriatrics Medical Center, Fudan University, Shanghai, 201100, China.
| |
Collapse
|
7
|
Wang S, Yang X, Han Z, Wu X, Fan YB, Sun LW. Changes of cortical bone pores structure and their effects on mechanical properties in tail-suspended rats. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
8
|
Miao M, Zhang Y, Wang X, Lei S, Huang X, Qin L, Shou D. The miRNA-144-5p/IRS1/AKT axis regulates the migration, proliferation, and mineralization of osteoblasts: A mechanism of bone repair in diabetic osteoporosis. Cell Biol Int 2022; 46:2220-2231. [PMID: 36168858 DOI: 10.1002/cbin.11913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Diabetic osteoporosis (DOP) is a disorder of bone metabolism induced by multiple mechanisms. Previous studies have revealed that microRNAs (miRNAs) play crucial roles in bone metabolism. MiRNA-144-5p has been proven to participate in the regulation of osteoblast activities; however, its specific mechanism in DOP has not been elucidated. This study investigated whether high glucose (HG) inhibited osteoblasts by regulating miRNA-144-5p. Our results showed that HG inhibited bone formation not only in vivo but also in vitro. We observed that HG severely hindered the migration, proliferation and mineralization of osteoblasts, while miRNA-144-5p was upregulated by way of the cell counting kit-8 assay, wound healing assay, alkaline phosphatase (ALP) activity assay and alizarin red staining. Double luciferase reporter experiments showed that miRNA-144-5p directly targeted insulin receptor substrate 1 (IRS1). The IRS1/AKT signaling pathway is closely related to osteoblasts' migration, proliferation, and mineralization. Silencing miRNA-144-5p promoted the mRNA, and protein expression of IRS1, thereby letting the expression of total AKT down, and then preventing phosphorylation of AKT into the nucleus to regulate migration, proliferation, and mineralization genes of osteoblasts. In conclusion, this study indicated that HG regulated the migration, proliferation, and mineralization of osteoblasts via the miRNA-144-5p/IRS1/AKT axis, which suggested a possible mechanism for DOP pathology.
Collapse
Affiliation(s)
- Maomao Miao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zhang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Xuping Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Shanshan Lei
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Xiaowen Huang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dan Shou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
9
|
Jia S, Li J, Hu X, Wu X, Gong H. Improved fatigue properties, bone microstructure and blood glucose in type 2 diabetic rats with verapamil treatment. Clin Biomech (Bristol, Avon) 2022; 98:105719. [PMID: 35882095 DOI: 10.1016/j.clinbiomech.2022.105719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus is a global epidemic disease, which leads to a severe complication named increased bone fracture risk. This study aimed to explore if verapamil treatment could improve bone quality of type 2 diabetes mellitus. METHODS Rat models of control, diabetes and verapamil treatment with 4/12/24/48 mg/kg/d were established, respectively. Blood glucose was monitored during 12-week treatment, and bilateral tibiae were collected. Microstructural images of bilateral metaphyseal cancellous bone and high-resolution images of cortical bone of left tibial shafts were obtained by micro-computed tomography. Fatigue properties of bone were evaluated via cyclic compressive tests of right tibial shafts. FINDINGS Verapamil treatment had no significant effect on blood glucose, but blood glucose tended to decline with the increase of verapamil-treated time and dose. Compared with controls, osteocyte lacunar and canal porosities in diabetes and verapamil-treated groups were significantly decreased (P < 0.05), trabecular separation and degree of anisotropy were significantly increased (P < 0.05), while trabecular tissue mineral density, trabecular bone volume fraction and trabecular number in verapamil-treated (48 mg/kg/d) group were significantly higher than those in diabetes (P < 0.05). Compared with diabetes, initial compressive elastic moduli in verapamil-treated (12/24/48 mg/kg/d) groups were significantly increased (P < 0.05), while secant modulus degradations in verapamil-treated (24/48 mg/kg/d) groups were significantly decreased (P < 0.05). INTERPRETATION Verapamil could improve bone microstructure and fatigue properties in type 2 diabetic rats; and high-dose verapamil presented a significant effect on improving bone quality. These findings provided a new possibility for preventing the high bone fracture risk of type 2 diabetes mellitus in clinics.
Collapse
Affiliation(s)
- Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jingwen Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaorong Hu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaodan Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| |
Collapse
|
10
|
Ali D, Tencerova M, Figeac F, Kassem M, Jafari A. The pathophysiology of osteoporosis in obesity and type 2 diabetes in aging women and men: The mechanisms and roles of increased bone marrow adiposity. Front Endocrinol (Lausanne) 2022; 13:981487. [PMID: 36187112 PMCID: PMC9520254 DOI: 10.3389/fendo.2022.981487] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is defined as a systemic skeletal disease characterized by decreased bone mass and micro-architectural deterioration leading to increased fracture risk. Osteoporosis incidence increases with age in both post-menopausal women and aging men. Among other important contributing factors to bone fragility observed in osteoporosis, that also affect the elderly population, are metabolic disturbances observed in obesity and Type 2 Diabetes (T2D). These metabolic complications are associated with impaired bone homeostasis and a higher fracture risk. Expansion of the Bone Marrow Adipose Tissue (BMAT), at the expense of decreased bone formation, is thought to be one of the key pathogenic mechanisms underlying osteoporosis and bone fragility in obesity and T2D. Our review provides a summary of mechanisms behind increased Bone Marrow Adiposity (BMA) during aging and highlights the pre-clinical and clinical studies connecting obesity and T2D, to BMA and bone fragility in aging osteoporotic women and men.
Collapse
Affiliation(s)
- Dalia Ali
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- *Correspondence: Dalia Ali, ; Abbas Jafari,
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Florence Figeac
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Abbas Jafari
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Dalia Ali, ; Abbas Jafari,
| |
Collapse
|
11
|
Uniyal P, Sihota P, Tikoo K, Kumar N. Anatomical variation in intracortical canal network microarchitecture and its influence on bone fracture risk. J Mech Behav Biomed Mater 2021; 123:104770. [PMID: 34392038 DOI: 10.1016/j.jmbbm.2021.104770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/05/2021] [Accepted: 08/07/2021] [Indexed: 11/30/2022]
Abstract
Intracortical canals are a major contributor to cortical bone porosity and influence its mechanical response. Canal networks act as stress concentrators and the magnitude of which depends on the size and spatial distribution of canals. In the present study, we investigated site-dependent variation in intracortical canal network morphological indices and their effect on the mechanical response of bone. For this, mid-diaphysis of rat tibia bones were scanned using high-resolution micro-CT and morphological indices were measured for four main anatomical sites-anterior, posterior, medial and lateral. Further, a micro-finite element (μFE) model was developed to quantify the stress concentration regions in different cortices. The fracture risk was assessed using an effective strain approach. Results show that canal porosity, canal orientation and canal length are site-dependent whereas canal diameter and canal number density are independent of the site. The lateral cortex has significantly higher porosity compared to the posterior cortex (p < 0.05). The orientation of canals is found significantly different between endosteal and periosteal regions for anterior and medial quadrants. Canals are inclined at higher angles with bone axis in the endosteal region as compare to the periosteal region. The μ-FE results show that the regions with higher effective strain are concentrated around the canals. Further, failed element volume per unit bone volume is found highest for medial cortex whereas lowest for posterior cortex. The higher failed volume is associated with more radial canals in the medial cortex as compare to other cortices. The linear regression analysis shows that the volume of overstrained elements strongly depends on canal orientation (R2 = 0.73, p < 0.0001) and canal porosity (R2 = 0.61, p < 0.0001). The findings from this study suggest that along with vascular canal porosity, canal orientation and canal diameter can further improve the bone fracture risk assessment.
Collapse
Affiliation(s)
- Piyush Uniyal
- Department for Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Praveer Sihota
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Navin Kumar
- Department for Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India; Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India.
| |
Collapse
|
12
|
Pei Q, Li J, Zhou P, Zhang J, Huang P, Fan J, Zou Z, Li X, Wang B. A Potential Participant in Type 2 Diabetes Bone Fragility: TIMP-1 at Sites of Osteocyte Lacunar-Canalicular System. Diabetes Metab Syndr Obes 2021; 14:4903-4909. [PMID: 34992398 PMCID: PMC8711839 DOI: 10.2147/dmso.s345081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/12/2021] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with an increased risk of bone fracture, but the bone mineral density (BMD) is typically normal or higher in such patients. Because the fracture risk is independent of reduced BMD, bone fragility in T2DM may be partially due to poor bone quality. The mechanisms triggering bone quality abnormalities in T2DM are complex, and include the accumulation of advanced glycation end-products, the increased inflammation, and low bone turnover. Matrix metalloproteinases (MMPs) in bone can hydrolyze the bone matrix. Tissue inhibitors of MMPs (TIMPs) can inhibit the activity of MMPs. Both MMPs and TIMPs participate in mediating bone quality. Among all types of TIMPs, TIMP-1 is mostly reportedly increased in the serum of T2DM patients. Because osteocytes can express TIMP-1, and osteocyte pericellular matrix influences bone quality partially regulated by perilacunar/canalicular remodeling, we hypothesized that TIMP-1 at sites of osteocyte lacunar-canalicular system is involved in T2DM bone fragility.
Collapse
Affiliation(s)
- Qilin Pei
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jun Li
- Department of Orthopedic Surgery, Chengdu Fifth People’s Hospital, Chengdu, Sichuan Province, 610072, People’s Republic of China
| | - Pengfei Zhou
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Peng Huang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jingchuan Fan
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Correspondence: Bin Wang; Xi Li Email ;
| |
Collapse
|
13
|
Bone regeneration in a mouse model of type 1 diabetes: Influence of sex, vitamin D3, and insulin. Life Sci 2020; 263:118593. [PMID: 33069738 DOI: 10.1016/j.lfs.2020.118593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
AIM This study set forth a question: are there any differences in bone responses to insulin and/or vitamin D3 treatment in female and male type 1 diabetic (T1D) mice? MAIN METHODS To address this issue, a non-critical sized femur defect was created in streptozotocin (STZ)-T1D mice. Control non-diabetic and T1D female and male mice received: saline; vitamin D3; insulin; or vitamin D3 plus insulin, for 21 days. KEY FINDINGS Female and male T1D mice showed impaired bone healing, as indicated by histological and micro-computed tomography (micro-CT) analysis. Vitamin D3 or insulin improved the bone regeneration in T1D mice, irrespective of sex. Vitamin D3 plus insulin did not exhibit any additional effects. There were no differences regarding the numbers of TRAP-stained osteoclasts in either evaluated groups. The osteoblast-related gene osterix was upregulated in vitamin D3-treated male T1D mice, as revealed by RT-qPCR. Female T1D mice treated with vitamin D3, insulin, or vitamin D3 plus insulin presented an increased expression of insulin growth factor-1 (IGF-1) mRNA. Conversely, IGF-1 mRNA levels were reduced by the same treatments in male TD1 mice. SIGNIFICANCE Altogether, the results suggested that T1D similarly delayed the osseous healing in female and male mice, with beneficial effects for either vitamin D3 or insulin in T1D mice of both sexes. However, data indicated marked sex differences regarding the expression of genes implicated in bone formation, in T1D mice treated with vitamin D3 and/or insulin.
Collapse
|
14
|
Sihota P, Yadav RN, Poleboina S, Mehandia V, Bhadada SK, Tikoo K, Kumar N. Development of HFD-Fed/Low-Dose STZ-Treated Female Sprague-Dawley Rat Model to Investigate Diabetic Bone Fragility at Different Organization Levels. JBMR Plus 2020; 4:e10379. [PMID: 33103024 PMCID: PMC7574700 DOI: 10.1002/jbm4.10379] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/31/2020] [Indexed: 01/11/2023] Open
Abstract
Type 2 diabetes (T2D) adversely affects the normal functioning, intrinsic material properties, and structural integrity of many tissues, and bone fragility is one of them. To simulate human T2D and to investigate diabetic bone fragility, many rodent diabetic models have been developed. Still, an outbred genetically normal nonobese diabetic rat model is not available that can better simulate the disease characteristics of nonobese T2D patients, who have a high prevalence in Asia. In this study, we used a combination treatment of high-fat diet (4 weeks, 58% kcal as fat) and low-dose streptozotocin (STZ; 35 mg/kg i.p. at the end of the fourth week) to develop T2D in female Sprague-Dawley (SD) rats. After 8 weeks of the establishment of the T2D model, the femoral bones were excised after euthanizing rats (animal age approximately 21 to 22 weeks; n = 10 with T2D, n = 10 without diabetes). The bone microstructure (μCT), mechanical, and material properties (three-point bending, cyclic reference point indentation, nanoindentation), mean mineral crystallite size (XRD), bone composition (mineral-to-matrix ratio, nonenzymatic cross-link ratio [NE-xLR], Fourier transform-infrared microspectroscopy), and total fluorescent advanced glycation end products were analyzed. We found that diabetic bone had reduced whole-bone strength and compromised structural properties (μCT). The NE-xLRs were elevated in the T2D group, and strongly and negatively correlated with postyield displacement, which suggests bone fragility was caused by a lack of glycation control. Along with that, the decreased mineral-to-matrix ratio and modulus, increased indentation distance increase, and wider mineral crystallite size in the T2D group were evidence that the diabetic bone composition and material properties had changed, and bone became weaker with a tendency to easily fracture. Altogether, this model simulates the natural history and metabolic characteristics of late-stage T2D (insulin resistance and as disease progress develops, hypoinsulinemia) for nonobese young (and/or adolescent) T2D patients (Asians) and provides potential evidence of diabetic bone fragility at various organization levels. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Praveer Sihota
- Department of Mechanical EngineeringIndian Institute of Technology RoparRupnagarIndia
| | - Ram Naresh Yadav
- Department of Mechanical EngineeringIndian Institute of Technology RoparRupnagarIndia
| | - Sumathi Poleboina
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and ResearchMohaliIndia
| | - Vishwajeet Mehandia
- Department of Mechanical EngineeringIndian Institute of Technology RoparRupnagarIndia
| | - Sanjay Kumar Bhadada
- Department of EndocrinologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Kulbhushan Tikoo
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and ResearchMohaliIndia
| | - Navin Kumar
- Department of Mechanical EngineeringIndian Institute of Technology RoparRupnagarIndia
| |
Collapse
|
15
|
Tang X, Ma S, Li Y, Sun Y, Zhang K, Zhou Q, Yu R. Evaluating the Activity of Sodium Butyrate to Prevent Osteoporosis in Rats by Promoting Osteal GSK-3β/Nrf2 Signaling and Mitochondrial Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6588-6603. [PMID: 32459091 DOI: 10.1021/acs.jafc.0c01820] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxidative stress (OS) and mitochondrial dysfunction are key pathophysiological features of osteoporosis and obesity. Sodium butyrate (NaB), produced by fermentation by the gut microbiota of the large intestine, has been demonstrated to protect against OS by improving specific antioxidant enzymes and to regulate mitochondria redox homeostasis in vivo. Here, in an unblinded study, we identified femur mitochondria as the main target of the beneficial effects of NaB, consisting of reversion of bone loss and body-weight gain in obesity-prone rats. In particular, NaB promoted the activity of mitochondrial antioxidant enzymes and energy metabolism, preserved the bone microstructure and calcium homeostasis, and activated bone metabolism, as shown by increased Nrf2/GSK-3β signaling and the upregulation of PGC-1α and TFAM. In vitro experiments showed that moderate NaB treatment prevented H2O2-induced oxidative damage in MC3T3-E1 cells, improved osteoblast mineralization and differentiation, and maintained the balance in bone metabolism by enhancing intracellular antioxidant enzyme activity and ATP production and decreasing the ROS level. In conclusion, NaB promoted the Nrf2/GSK-3β signaling pathway and mitochondrial function and is a potential new therapeutic strategy for obesity and osteoporosis.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuhua Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yingrui Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongjuan Sun
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kai Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qin Zhou
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| |
Collapse
|
16
|
de Bournonville S, Vangrunderbeeck S, Ly HGT, Geeroms C, De Borggraeve WM, Parac-Vogt TN, Kerckhofs G. Exploring polyoxometalates as non-destructive staining agents for contrast-enhanced microfocus computed tomography of biological tissues. Acta Biomater 2020; 105:253-262. [PMID: 31996331 DOI: 10.1016/j.actbio.2020.01.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 11/28/2022]
Abstract
To advance clinical translation of regenerative medicine, there is, amongst others, still need for better insights in tissue development and disease. For this purpose, more precise imaging of the 3D microstructure and spatial interrelationships of the different tissues within organs is crucial. Despite being destructive towards the sample, conventional histology still is the gold standard for structural analysis of biological tissues. It is, however, limited by 2D sections of a 3D object, prohibiting full 3D structural analysis. MicroCT has proven to provide full 3D structural information of mineralized tissues and dense biomaterials. However, the intrinsic low X-ray absorption of soft tissues requires contrast-enhancing staining agents (CESAs). In a previous study, we showed that hafnium-substituted Wells-Dawson polyoxometalate (Hf-WD POM) allows simultaneous contrast-enhanced microCT (CE-CT) visualization of bone and its marrow vascularization and adiposity. In this study, other POM species have been examined for their potential as soft tissue CESAs. Four Wells-Dawson POMs, differing in structure and overall charge, were used to stain murine long bones and kidneys. Their staining potential and diffusion rate were compared to those of Hf-WD POM and phosphotungstic acid (PTA), a frequently used but destructive CESA. Monolacunary Wells-Dawson POM (Mono-WD POM) showed similar soft tissue enhancement as Hf-WD POM and PTA. Moreover, Mono-WD POM is less destructive, shows a better diffusion than PTA, and its synthesis requires less time and cost than Hf-WD POM. Finally, the solubility of Mono-WD POM was improved by addition of lithium chloride (LiCl) to the staining solution, enhancing further the soft tissue contrast. STATEMENT OF SIGNIFICANCE: To advance clinical translation of regenerative medicine, there is, amongst others, still need for better insights in tissue development and disease. For this purpose, more precise imaging of the 3D microstructure and spatial interrelationships of the different tissues within organs is crucial. Current standard structural analysis techniques (e.g. 2D histomorphometry), however, do not allow full 3D assessment. Contrast-enhanced X-ray computed tomography has emerged as a powerful 3D structural characterization tool of soft biological tissues. In this study, from a library of Wells Dawson polyoxometalates (WD POMs), we identified monolacunary WD POM together with lithium chloride, dissolved in phosphate buffered saline, as the most suitable contrast-enhancing staining agent solution for different biological tissues without tissue shrinkage.
Collapse
Affiliation(s)
- Sébastien de Bournonville
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Sarah Vangrunderbeeck
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium; Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Hong Giang T Ly
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium; Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Carla Geeroms
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Wim M De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; IREC, Institute of Experimental and Clinical Research, UCLouvain, Woluwé-Saint-Lambert, Belgium; Department Materials Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Hyperglycemia compromises Rat Cortical Bone by Increasing Osteocyte Lacunar Density and Decreasing Vascular Canal Volume. Commun Biol 2020; 3:20. [PMID: 31925331 PMCID: PMC6952406 DOI: 10.1038/s42003-019-0747-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Uncontrolled diabetes is associated with increased risk of bony fractures. However, the mechanisms have yet to be understood. Using high-resolution synchrotron micro-CT, we calculated the changes in the microstructure of femoral cortices of streptozotocin-induced hyperglycemic (STZ) Wistar Albino rats and tested the mechanical properties of the mineralized matrix by nanoindentation. Total lacunar volume of femoral cortices increased in STZ group due to a 9% increase in lacunar density. However, total vascular canal volume decreased in STZ group due to a remarkable decrease in vascular canal diameter (7 ± 0.3 vs. 8.5 ± 0.4 µm). Osteocytic territorial matrix volume was less in the STZ group (14,908 ± 689 µm3) compared with healthy controls (16,367 ± 391 µm3). In conclusion, hyperglycemia increased cellularity and lacunar density, decreased osteocyte territorial matrix, and reduced vascular girth, in addition to decreasing matrix mechanical properties in the STZ group when compared with euglycemic controls. Birol Ay et al. use high-resolution synchrotron radiation micro-CT to calculate the changes in the microstructure of femoral cortices in STZ-induced hyperglycemic rats. They show that hyperglycemia increases lacunar density due to a reduction in osteocytic territorial matrix volume but decreases total vascular canal volume due to a decrease in canal diameter.
Collapse
|
18
|
Tratwal J, Labella R, Bravenboer N, Kerckhofs G, Douni E, Scheller EL, Badr S, Karampinos DC, Beck-Cormier S, Palmisano B, Poloni A, Moreno-Aliaga MJ, Fretz J, Rodeheffer MS, Boroumand P, Rosen CJ, Horowitz MC, van der Eerden BCJ, Veldhuis-Vlug AG, Naveiras O. Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne) 2020; 11:65. [PMID: 32180758 PMCID: PMC7059536 DOI: 10.3389/fendo.2020.00065] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
The interest in bone marrow adiposity (BMA) has increased over the last decade due to its association with, and potential role, in a range of diseases (osteoporosis, diabetes, anorexia, cancer) as well as treatments (corticosteroid, radiation, chemotherapy, thiazolidinediones). However, to advance the field of BMA research, standardization of methods is desirable to increase comparability of study outcomes and foster collaboration. Therefore, at the 2017 annual BMA meeting, the International Bone Marrow Adiposity Society (BMAS) founded a working group to evaluate methodologies in BMA research. All BMAS members could volunteer to participate. The working group members, who are all active preclinical or clinical BMA researchers, searched the literature for articles investigating BMA and discussed the results during personal and telephone conferences. According to the consensus opinion, both based on the review of the literature and on expert opinion, we describe existing methodologies and discuss the challenges and future directions for (1) histomorphometry of bone marrow adipocytes, (2) ex vivo BMA imaging, (3) in vivo BMA imaging, (4) cell isolation, culture, differentiation and in vitro modulation of primary bone marrow adipocytes and bone marrow stromal cell precursors, (5) lineage tracing and in vivo BMA modulation, and (6) BMA biobanking. We identify as accepted standards in BMA research: manual histomorphometry and osmium tetroxide 3D contrast-enhanced μCT for ex vivo quantification, specific MRI sequences (WFI and H-MRS) for in vivo studies, and RT-qPCR with a minimal four gene panel or lipid-based assays for in vitro quantification of bone marrow adipogenesis. Emerging techniques are described which may soon come to complement or substitute these gold standards. Known confounding factors and minimal reporting standards are presented, and their use is encouraged to facilitate comparison across studies. In conclusion, specific BMA methodologies have been developed. However, important challenges remain. In particular, we advocate for the harmonization of methodologies, the precise reporting of known confounding factors, and the identification of methods to modulate BMA independently from other tissues. Wider use of existing animal models with impaired BMA production (e.g., Pfrt-/-, KitW/W-v) and development of specific BMA deletion models would be highly desirable for this purpose.
Collapse
Affiliation(s)
- Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rossella Labella
- Tissue and Tumour Microenvironments Lab, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Department Materials Engineering, KU Leuven, Leuven, Belgium
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, United States
| | - Sammy Badr
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, Lille, France
- CHU Lille, Service de Radiologie et Imagerie Musculosquelettique, Lille, France
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Sarah Beck-Cormier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
| | - Biagio Palmisano
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Antonella Poloni
- Hematology, Department of Clinic and Molecular Science, Università Politecnica Marche-AOU Ospedali Riuniti, Ancona, Italy
| | - Maria J. Moreno-Aliaga
- Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra's Health Research Institute, Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| | - Jackie Fretz
- Department of Orthopaedics and Rehabilitation, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Matthew S. Rodeheffer
- Department of Comparative Medicine and Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Clifford J. Rosen
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
| | - Mark C. Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, United States
| | - Bram C. J. van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annegreet G. Veldhuis-Vlug
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
- Jan van Goyen Medical Center/OLVG Hospital, Department of Internal Medicine, Amsterdam, Netherlands
- *Correspondence: Annegreet G. Veldhuis-Vlug
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Hematology Service, Departments of Oncology and Laboratory Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Olaia Naveiras ;
| |
Collapse
|
19
|
Yang L, Zhou G, Li M, Li Y, Yang L, Fu Q, Tian Y. High Glucose Downregulates Connexin 43 Expression and Its Gap Junction and Hemichannel Function in Osteocyte-like MLO-Y4 Cells Through Activation of the p38MAPK/ERK Signal Pathway. Diabetes Metab Syndr Obes 2020; 13:545-557. [PMID: 32161481 PMCID: PMC7049751 DOI: 10.2147/dmso.s239892] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/16/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Osteocyte network structure correlates with bone material quality. This network is profoundly altered in diabetic mice; however, the underlying mechanisms are unknown. The gap junction protein connexin 43 (Cx43) is necessary for normal osteocyte function and osteocyte network formation. Here, we evaluated Cx43 expression in patients with diabetes, the effect of high glucose on Cx43 expression, and the function of Cx43 gap junctions and hemichannels in osteocyte-like MLO-Y4 (MLO-Y4) cells. PATIENTS AND METHODS Human cortical bone samples were obtained from patients with or without type II diabetes mellitus (T2DM) who underwent arthroplasty surgery to treat osteoporosis-induced femoral neck fracture. UNLABELLED Cx43 expression was quantified in human cortical bone samples from both groups of patients and MLO-Y4 cells. The functions of Cx43 gap junctions and hemichannels in MLO-Y4 cells were evaluated using dye transfer and dye uptake assays, respectively. Furthermore, we evaluated levels of membrane Cx43 (mCx43), the functional form, and p38MAPK/ERK1/2 signaling, which is involved in mCx43 internalization, to characterize the mechanism of decreased Cx43 expression and gap junctions and hemichannels function. RESULTS Osteocyte Cx43 expression was decreased in femoral neck cortical bone samples of patients with T2DM patients compared with the non-diabetic control group. In addition, Cx43 expression was decreased in MLO-Y4 cells treated with high glucose. The functions of Cx43 gap junctions and hemichannels were inhibited in MLO-Y4 cells treated with high glucose. mCx43 expression was decreased in response to activation of p38-MAPK/ERK signaling. Inhibition of the p38-MAPK/ERK pathway partially reversed the decreases in Cx43 hemichannels and gap-junctions function. CONCLUSION High glucose dampened Cx43 gap junction and hemichannel function in MLO-Y4 cells by activating the p38MAPK/ERK pathway leading to subsequent mCx43 internalization.
Collapse
Affiliation(s)
- Lei Yang
- Orthopedics Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Guangping Zhou
- Orthopedics Department, Shenyang Orthopedics Hospital, Shenyang, Liaoning Province, People’s Republic of China
| | - Mingyang Li
- Orthopedics Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Yan Li
- Orthopedics Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Liqing Yang
- Orthopedics Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Qin Fu
- Orthopedics Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Correspondence: Qin Fu Tel +86-18940251086 Email
| | - Ye Tian
- Orthopedics Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| |
Collapse
|
20
|
Pascart T, Paccou J, Colard T, Norberciak L, Girard J, Delattre J, Marchandise P, Legrand J, Penel G, Coursier R, Putman S, Cortet B, Kerckhofs G, Budzik JF. T1-weighted MRI images accurately represent the volume and surface of architectural mineral damage of osteonecrosis of the femoral head: Comparison with high-resolution computed tomography. Bone 2020; 130:115099. [PMID: 31654780 DOI: 10.1016/j.bone.2019.115099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 11/24/2022]
Abstract
The potency of magnetic resonance imaging (MRI) to measure the exact extent of osteonecrosis of the femoral head (ONFH) remains uncertain. The objective of this study was to determine if the volume of necrosis assessed with MRI accurately reflects the volume of architectural mineral alterations in osteonecrosis of the femoral head by comparison with high-resolution microfocus X-ray computed tomography (HR-μCT). Fourteen male patients aged 53 years [46.2;59.0] suffering from ONFH were prospectively enrolled to undergo preoperative MRI and ex vivo analysis using HR-μCT. The necrotic zone on T1-weighted MRI scans was defined as total necrosis (delimited by the low-signal peripheral band) or dark necrosis (low-signal lesions only). The HR-μCT scans delimited outer necrosis and inner necrosis by including or excluding the sclerotic zone. The intra-class correlation coefficient (ICC) was calculated to compare the agreement of surface areas and volumes of necrosis measurements with the two techniques. There was an overall excellent agreement between MRI dark necrosis volume and HR-μCT outer necrosis volume (ICC=0.91[0.54;0.98]) while the MRI total necrosis volume showed poor agreement with both HR-μCT delimitations of necrosis volume. For surface area, agreement between MRI dark necrosis and HR-μCT delimitations was good for inner necrosis (ICC=0.70[0.21;0.9]) and moderate for outer necrosis (ICC=0.58[0.07;0.85]). This study demonstrates that measurement of the MRI lesions provides a reliable assessment of the extent of ONFH-related architectural damage.
Collapse
Affiliation(s)
- Tristan Pascart
- Department of Rheumatology, Lille Catholic Hospitals, University of Lille, F-59160, Lomme, France; EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, University of Lille, F-59000, Lille, France.
| | - Julien Paccou
- EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, University of Lille, F-59000, Lille, France; Department of Rheumatology, Hopital Salengro, Centre Hospitalier Universitaire de Lille, University of Lille, F-59000, Lille, France
| | - Thomas Colard
- EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, University of Lille, F-59000, Lille, France
| | - Laurène Norberciak
- Department of Medical Research, Biostatistics, Lille Catholic Hospitals, University of Lille, F-59160, Lomme, France
| | - Julien Girard
- Department of Orthopaedic Surgery, Hopital Salengro, Centre Hospitalier Universitaire de Lille, F-59037, Lille, France
| | - Jerôme Delattre
- EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, University of Lille, F-59000, Lille, France
| | - Pierre Marchandise
- EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, University of Lille, F-59000, Lille, France
| | - Julie Legrand
- Department of Radiology, Lille Catholic Hospitals, University of Lille, F-59160, Lomme, France
| | - Guillaume Penel
- EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, University of Lille, F-59000, Lille, France
| | - Raphaël Coursier
- Department of Orthopaedic Surgery, Lille Catholic Hospitals, University of Lille, F-59160 Lomme, France
| | - Sophie Putman
- Department of Orthopaedic Surgery, Hopital Salengro, Centre Hospitalier Universitaire de Lille, F-59037, Lille, France
| | - Bernard Cortet
- EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, University of Lille, F-59000, Lille, France; Department of Rheumatology, Hopital Salengro, Centre Hospitalier Universitaire de Lille, University of Lille, F-59000, Lille, France
| | - Greet Kerckhofs
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Prometheus - Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium; Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UC Louvain, Louvain-la-Neuve, Belgium
| | - Jean-François Budzik
- EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, University of Lille, F-59000, Lille, France; Department of Radiology, Lille Catholic Hospitals, University of Lille, F-59160, Lomme, France
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Individuals with type 1 and type 2 diabetes mellitus (T1DM, T2DM) have an increased risk of bone fracture compared to non-diabetic controls that is not explained by differences in BMD, BMI, or falls. Thus, bone tissue fracture resistance may be reduced in individuals with DM. The purpose of this review is to summarize work that analyzes the effects of T1DM and T2DM on bone tissue compositional and mechanical properties. RECENT FINDINGS Studies of clinical T2DM specimens revealed increased mineralization and advanced glycation endproduct (AGE) concentrations and significant relationships between mechanical performance and composition of cancellous bone. Specifically, in femoral cancellous tissue, compressive stiffness and strength increased with mineral content; and post-yield properties decreased with AGE concentration. In addition, cortical resistance to in vivo indentation (bone material strength index) was lower in patients with T2DM vs. age-matched non-diabetic controls, and this resistance decreased with worsening glycemic control. Recent studies on patients with T1DM and history of a prior fragility fracture found greater mineral content and concentrations of AGEs in iliac trabecular bone and correspondingly stiffer, harder bone at the nanosacle. Recent observational data showed greater AGE and mineral content in surgically retrieved bone from patients with T2DM vs. non-DM controls, consistent with reduced bone remodeling. Limited data on human T1DM bone tissue also showed higher mineral and AGE content in patients with prior fragility fractures compared to non-DM and non-fracture controls.
Collapse
MESH Headings
- Animals
- Biomechanical Phenomena
- Blood Glucose/metabolism
- Bone Density
- Bone Remodeling
- Bone and Bones/diagnostic imaging
- Bone and Bones/metabolism
- Bone and Bones/physiopathology
- Cancellous Bone/diagnostic imaging
- Cancellous Bone/metabolism
- Cancellous Bone/physiopathology
- Cortical Bone/diagnostic imaging
- Cortical Bone/metabolism
- Cortical Bone/physiopathology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 2/epidemiology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Fractures, Bone/epidemiology
- Glycation End Products, Advanced/metabolism
- Humans
Collapse
Affiliation(s)
- Sashank Lekkala
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Heather B Hunt
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.
- Research Division, Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
22
|
Adhikary S, Kothari P, Choudhary D, Tripathi AK, Trivedi R. Glucocorticoid aggravates bone micro-architecture deterioration and skeletal muscle atrophy in mice fed on high-fat diet. Steroids 2019; 149:108416. [PMID: 31150681 DOI: 10.1016/j.steroids.2019.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/10/2019] [Accepted: 05/24/2019] [Indexed: 11/30/2022]
Abstract
High fat diet (HFD) induced obesity has deleterious effect on bone micro-architecture and is associated with low-grade chronic inflammation. Exogenous glucocorticoids (GC) are used to treat inflammatory conditions but with concomitant adverse effect on musculoskeletal system. This study aims to highlight the effect of exogenous GCs on musculoskeletal system in mice fed on HFD. Adult BALB/c mice were fed either normal chow or high fat diet and were exogenously administered with GC for 10 weeks. At the end of the study, animals were autopsied and bone, muscle, serum samples were collected for micro-CT, gene expression and histological study. HFD induced obesity resulted in deterioration in bone micro-architecture predominant in trabecular region of long bones and was significantly amplified with GC administration. Approximately, 37% and 25% loss in femoral and tibial bone volume was observed in obese animals with exogenous GC. Further, deteriorating bone pathology was apparent from reduced bone mineral density (BMD) and bone strength parameter which was correlated to alteration in osteoblast and adipocytes pool of cells in bone marrow. Transcriptional analysis of osteoblast marker genes, bone morphogenetic protein 2 (BMP-2), osteocalcin (OCN) exhibited decreased formation. Moreover, similar degeneration was observed in skeletal muscle physiology with stimulation in muscle atrophy genes atrogin-1, muscle ring finger motif-1 (MuRF-1) and inflammatory markers accompanied with intra-myocellular lipid accumulation. Thus, our results showed that detrimental effect of GC on bone and skeletal muscle is aggravated with HFD, attributed to alteration in bone marrow cell population and skeletal muscle atrophy.
Collapse
Affiliation(s)
- Sulekha Adhikary
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Priyanka Kothari
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dharmendra Choudhary
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashish Kumar Tripathi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
23
|
De Clercq K, Persoons E, Napso T, Luyten C, Parac-Vogt TN, Sferruzzi-Perri AN, Kerckhofs G, Vriens J. High-resolution contrast-enhanced microCT reveals the true three-dimensional morphology of the murine placenta. Proc Natl Acad Sci U S A 2019; 116:13927-13936. [PMID: 31249139 PMCID: PMC6683600 DOI: 10.1073/pnas.1902688116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic engineering of the mouse genome identified many genes that are essential for embryogenesis. Remarkably, the prevalence of concomitant placental defects in embryonic lethal mutants is highly underestimated and indicates the importance of detailed placental analysis when phenotyping new individual gene knockouts. Here we introduce high-resolution contrast-enhanced microfocus computed tomography (CE-CT) as a nondestructive, high-throughput technique to evaluate the 3D placental morphology. Using a contrast agent, zirconium-substituted Keggin polyoxometalate (Zr-POM), the soft tissue of the placenta (i.e., different layers and cell types and its vasculature) was imaged with a resolution of 3.5 µm voxel size. This approach allowed us to visualize and study early and late stages of placental development. Moreover, CE-CT provides a method to precisely quantify placental parameters (i.e., volumes, volume fraction, ratio of different placental layers, and volumes of specific cell populations) that are crucial for statistical comparison studies. The CE-CT assessment of the 3D morphology of the placentas was validated (i) by comparison with standard histological studies; (ii) by evaluating placentas from 2 different mouse strains, 129S6 and C57BL/6J mice; and (iii) by confirming the placental phenotype of mice lacking phosphoinositol 3-kinase (PI3K)-p110α. Finally, the Zr-POM-based CE-CT allowed for inspection of the vasculature structure in the entire placenta, as well as detecting placental defects in pathologies characterized by embryonic resorption and placental fusion. Taken together, Zr-POM-based CE-CT offers a quantitative 3D methodology to investigate placental development or pathologies.
Collapse
Affiliation(s)
- Katrien De Clercq
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, Gynecology-Pediatrics and Urology Research Group (G-PURE), Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Centre for Brain & Disease Research, 3000 Leuven, Belgium
| | - Eleonora Persoons
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, Gynecology-Pediatrics and Urology Research Group (G-PURE), Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Centre for Brain & Disease Research, 3000 Leuven, Belgium
| | - Tina Napso
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Catherine Luyten
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, Gynecology-Pediatrics and Urology Research Group (G-PURE), Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, 3000 Leuven, Belgium
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Greet Kerckhofs
- Biomechanics Laboratory, Institute of Mechanics, Materials, and Civil Engineering, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
- Department of Materials Science and Engineering, KU Leuven, 3000 Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, Gynecology-Pediatrics and Urology Research Group (G-PURE), Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
24
|
Tamaki H, Yotani K, Ogita F, Hayao K, Kirimto H, Onishi H, Kasuga N, Yamamoto N. Low-Frequency Electrical Stimulation of Denervated Skeletal Muscle Retards Muscle and Trabecular Bone Loss in Aged Rats. Int J Med Sci 2019; 16:822-830. [PMID: 31337955 PMCID: PMC6643115 DOI: 10.7150/ijms.32590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/02/2019] [Indexed: 01/25/2023] Open
Abstract
Electrical stimulation (ES)-induced muscle contraction has multiple effects; however, mechano-responsiveness of bone tissue declines with age. Here, we investigated whether daily low-frequency ES-induced muscle contraction treatment reduces muscle and bone loss and ameliorates bone fragility in early-stage disuse musculoskeletal atrophy in aged rats. Twenty-seven-month-old male rats were assigned to age-matched groups comprising the control (CON), sciatic nerve denervation (DN), or DN with direct low-frequency ES (DN+ES) groups. The structural and mechanical properties of the trabecular and cortical bone of the tibiae, and the morphological and functional properties of the tibialis anterior (TA) muscles were assessed one week after DN. ES-induced muscle contraction force mitigated denervation-induced muscle and trabecular bone loss and deterioration of the mechanical properties of the tibia mid-diaphysis, such as the stiffness, but not the maximal load, in aged rats. The TA muscle in the DN+ES group showed significant improvement in the myofiber cross-sectional area and muscle force relative to the DN group. These results suggest that low-frequency ES-induced muscle contraction treatment retards trabecular bone and muscle loss in aged rats in early-stage disuse musculoskeletal atrophy, and has beneficial effects on the functional properties of denervated skeletal muscle.
Collapse
Affiliation(s)
- Hiroyuki Tamaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan.,Department of Sports and Life Science, National Institute of Fitness and Sports in Kanoya, Japan
| | - Kengo Yotani
- Department of Sports and Life Science, National Institute of Fitness and Sports in Kanoya, Japan
| | - Futoshi Ogita
- Department of Sports and Life Science, National Institute of Fitness and Sports in Kanoya, Japan
| | - Keishi Hayao
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | - Hikari Kirimto
- Department of Sensorimotor Neuroscience, Hiroshima University, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan
| | | | - Noriaki Yamamoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan.,Niigata Rehabilitation Hospital, Japan
| |
Collapse
|
25
|
Mohsin S, Kaimala S, Sunny JJ, Adeghate E, Brown EM. Type 2 Diabetes Mellitus Increases the Risk to Hip Fracture in Postmenopausal Osteoporosis by Deteriorating the Trabecular Bone Microarchitecture and Bone Mass. J Diabetes Res 2019; 2019:3876957. [PMID: 31815147 PMCID: PMC6878775 DOI: 10.1155/2019/3876957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/10/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023] Open
Abstract
T2DM is linked to an increase in the fracture rate as compared to the nondiabetic population even with normal or raised bone mineral density (BMD). Hence, bone quality plays an important role in the pathogenesis of skeletal fragility due to T2DM. This study analyzed the changes in the trabecular bone microstructure due to T2DM at various time points in ovariectomized and nonovariectomized rats. Animals were divided into four groups: (I) control (sham), (II) diabetic (sham), (III) ovariectomized, and (IV) ovariectomized with diabetes. The trabecular microarchitecture of the femoral head was characterized using a micro-CT. The differences between the groups were analyzed at 8, 10, and 14 weeks of the onset of T2DM using a two-way analysis of variance and by post hoc multiple comparisons. The diabetic group with and without ovariectomies demonstrated a significant increase in trabecular separation and a decrease in bone volume fraction, trabecular number, and thickness. BMD decreased in ovariectomized diabetic animals at 14 weeks of the onset of T2DM. No significant change was found in connectivity density and degree of anisotropy among groups. The structural model index suggested a change towards a weaker rod-like microstructure in diabetic animals. The data obtained suggested that T2DM affects the trabecular structure within a rat's femoral heads negatively and changes are most significant at a longer duration of T2DM, increasing the risk to hip fractures.
Collapse
Affiliation(s)
- Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, UAE
| | - Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, UAE
| | - Jens Jolly Sunny
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, UAE
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, UAE
| | - Eric Mensah Brown
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, PO Box 17666, UAE
| |
Collapse
|
26
|
Exploring the Links Between Common Diseases of Ageing—Osteoporosis, Sarcopenia and Vascular Calcification. Clin Rev Bone Miner Metab 2018. [DOI: 10.1007/s12018-018-9251-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Relationship between the Second to Fourth Finger Length Ratio and Calcaneus Quantitative Ultrasound. Sci Rep 2018; 8:14603. [PMID: 30279568 PMCID: PMC6168508 DOI: 10.1038/s41598-018-33056-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
This study aimed to characterize the relationship between the ratio of the length of the second and fourth fingers (2D:4D value) and the speed of sound of the calcaneus by quantitative ultrasound (QUS-SOS) in undergraduate female students. We recruited 138 young women with a mean age of 19.6 ± 1.4 years. The participants' calcaneus QUS-SOS was measured using an ultrasound bone densitometer. We also measured the participants' weight, height, and grip strength. A self-reported questionnaire was used to obtain information on participants' secondary sexual characteristics, and exercise habits. The present study showed that the 2D:4D value of both hands was significantly correlated with the calcaneus QUS-SOS. The 2D:4D value of the left hand was also positively associated with the calcaneus QUS-SOS results in several respects. These findings suggest that the 2D:4D value may be useful for the screening of risk for a low bone quality in undergraduate female students.
Collapse
|
28
|
Unraveling the compromised biomechanical performance of type 2 diabetes- and Roux-en-Y gastric bypass bone by linking mechanical-structural and physico-chemical properties. Sci Rep 2018; 8:5881. [PMID: 29651097 PMCID: PMC5897570 DOI: 10.1038/s41598-018-24229-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 03/06/2018] [Indexed: 02/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder associated with obesity and hyperglycemia. Roux-en-Y gastric bypass (RYGB) surgery is a common treatment for severely obese patients and T2DM. Both RYGB and T2DM are linked to increased skeletal fragility, though the exact mechanisms are poorly understood. Our aim was to characterize the structural, mechanical and compositional properties of bones from diet-induced obese and RYGB-treated obese (bypass) mice to elucidate which the exact factors are contributing to the increased skeletal fragility. To achieve this, a combinatory approach including microfocus X-ray computed tomography, 3-point bending, finite element modeling and Raman spectroscopy, was used. Compared to aged-matched lean controls, the obese mice displayed decreased cortical thickness, trabecular bone loss, decreased stiffness and increased Young’s modulus. For the bypass mice, these alterations were even more pronounced, and additionally they showed low mineral-to-matrix ratio in the cortical endosteal area. Accumulation of the advanced glycation end-product (AGE) pentosidine was found in the cortex of obese and bypass groups and this accumulation was correlated with an increased Young’s modulus. In conclusion, we found that the increased fracture risk in T2DM- and post-RYGB bones is mainly driven by accumulation of AGEs and macro-structural alterations, generating biomechanical dysfunctionality.
Collapse
|
29
|
Kerckhofs G, Stegen S, van Gastel N, Sap A, Falgayrac G, Penel G, Durand M, Luyten FP, Geris L, Vandamme K, Parac-Vogt T, Carmeliet G. Simultaneous three-dimensional visualization of mineralized and soft skeletal tissues by a novel microCT contrast agent with polyoxometalate structure. Biomaterials 2018; 159:1-12. [DOI: 10.1016/j.biomaterials.2017.12.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
|
30
|
Marin C, Luyten FP, Van der Schueren B, Kerckhofs G, Vandamme K. The Impact of Type 2 Diabetes on Bone Fracture Healing. Front Endocrinol (Lausanne) 2018; 9:6. [PMID: 29416527 PMCID: PMC5787540 DOI: 10.3389/fendo.2018.00006] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease known by the presence of elevated blood glucose levels. Nowadays, it is perceived as a worldwide epidemic, with a very high socioeconomic impact on public health. Many are the complications caused by this chronic disorder, including a negative impact on the cardiovascular system, kidneys, eyes, muscle, blood vessels, and nervous system. Recently, there has been increasing evidence suggesting that T2DM also adversely affects the skeletal system, causing detrimental bone effects such as bone quality deterioration, loss of bone strength, increased fracture risk, and impaired bone healing. Nevertheless, the precise mechanisms by which T2DM causes detrimental effects on bone tissue are still elusive and remain poorly studied. The aim of this review was to synthesize current knowledge on the different factors influencing the impairment of bone fracture healing under T2DM conditions. Here, we discuss new approaches used in recent studies to unveil the mechanisms and fill the existing gaps in the scientific understanding of the relationship between T2DM, bone tissue, and bone fracture healing.
Collapse
Affiliation(s)
- Carlos Marin
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Biomaterials—BIOMAT, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Katleen Vandamme
- Prometheus—Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
- Biomaterials—BIOMAT, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Mosey H, Núñez JA, Goring A, Clarkin CE, Staines KA, Lee PD, Pitsillides AA, Javaheri B. Sost Deficiency does not Alter Bone's Lacunar or Vascular Porosity in Mice. FRONTIERS IN MATERIALS 2017; 4:27. [PMID: 29349060 PMCID: PMC5769812 DOI: 10.3389/fmats.2017.00027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
SCLEROSTIN (Sost) is expressed predominantly in osteocytes acting as a negative regulator of bone formation. In humans, mutations in the SOST gene lead to skeletal overgrowth and increased bone mineral density, suggesting that SCLEROSTIN is a key regulator of bone mass. The function of SCLEROSTIN as an inhibitor of bone formation is further supported by Sost knockout (KO) mice which display a high bone mass with elevated bone formation. Previous studies have indicated that Sost exerts its effect on bone formation through Wnt-mediated regulation of osteoblast differentiation, proliferation, and activity. Recent in vitro studies have also suggested that SCLEROSTIN regulates angiogenesis and osteoblast-to-osteocyte transition. Despite this wealth of knowledge of the mechanisms responsible for SCLEROSTIN action, no previous studies have examined whether SCLEROSTIN regulates osteocyte and vascular configuration in cortices of mouse tibia. Herein, we image tibiae from Sost KO mice and their wild-type (WT) counterparts with high-resolution CT to examine whether lack of SCLEROSTIN influences the morphometric properties of lacunae and vascular canal porosity relating to osteocytes and vessels within cortical bone. Male Sost KO and WT mice (n = 6/group) were sacrificed at 12 weeks of age. Fixed tibiae were analyzed using microCT to examine cortical bone mass and architecture. Then, samples were imaged by using benchtop and synchrotron nano-computed tomography at the tibiofibular junction. Our data, consistent with previous studies show that, Sost deficiency leads to significant enhancement of bone mass by cortical thickening and bigger cross-sectional area and we find that this occurs without modifications of tibial ellipticity, a measure of bone shape. In addition, our data show that there are no significant differences in any lacunar or vascular morphometric or geometric parameters between Sost KO mouse tibia and WT counterparts. We, therefore, conclude that the significant increases in bone mass induced by Sost deficiency are not accompanied by any significant modification in the density, organization, or shape of osteocyte lacunae or vascular content within the cortical bone. These data may imply that SCLEROSTIN does not modify the frequency of osteocytogenic recruitment of osteoblasts to initiate terminal osteocytic differentiation in mice.
Collapse
Affiliation(s)
- Henry Mosey
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Juan A. Núñez
- Faculty of Natural and Environmental Sciences, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Alice Goring
- Faculty of Natural and Environmental Sciences, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Claire E. Clarkin
- Faculty of Natural and Environmental Sciences, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Katherine A. Staines
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Peter D. Lee
- Manchester X-Ray Imaging Facility, University of Manchester, Manchester, United Kingdom
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Behzad Javaheri
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| |
Collapse
|
32
|
de Mello-Sampayo C, Agripino AA, Stilwell D, Vidal B, Fernando AL, Silva-Lima B, Vaz MF, Canhão H, Marques MC. Chronic Hyperglycemia Modulates Rat Osteoporotic Cortical Bone Microarchitecture into Less Fragile Structures. Int J Endocrinol 2017; 2017:4603247. [PMID: 29081798 PMCID: PMC5610808 DOI: 10.1155/2017/4603247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/28/2017] [Accepted: 07/13/2017] [Indexed: 11/28/2022] Open
Abstract
There is controversy concerning the diabetes impact on bone quality, notorious in type 2 diabetic postmenopausal women. One pointed cause might be uncontrolled glycemia. In this study, the effect of chronic hyperglycemia in bone turnover, morphology, and biomechanics was evaluated in female Wistar rats in the presence/absence of estrogens (ovariectomy). Animals (n = 28) were divided into sham, ovariectomized (OVX), hyperglycemic (streptozotocin 40 mg/kg, single-dose i.p.-STZ), and hyperglycemic-ovariectomized (STZ + OVX) animals. Blood biomarkers were estimated 60 days postovariectomy. Body weight, vertebral microarchitecture (L4-histomorphometry), femur biomechanical properties (bending tests), tibia ultrastructure (scanning electron microscopy), and femur and urinary calcium (atomic absorption) were also evaluated. The increased PINP/CTX ratio of hyperglycemic animals and the similar ratio between STZ + OVX and healthy animals contrasting with the lower ratio of OVX (in line with its histomorphometric data) suggest a tendency for improved bone formation in hyperglycemic-ovariectomized animals. The increased tibia medullar canal, which contrasts with the unaffected cortical thickness of both hyperglycemic groups while that of OVX decreased, was associated to the increased stiffness and strength of STZ + OVX bones compared to those of OVX, in line with the observed ultrastructure. Concluding, chronic hyperglycemia in ovariectomized female rats causes bone morphological changes that translate positively in the ultrastructure and mechanical properties of cortical bones.
Collapse
Affiliation(s)
- Cristina de Mello-Sampayo
- Department of Pharmacological Sciences, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Pharmacological and Regulatory Sciences, iMed, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Alaíde Alves Agripino
- Department of Pharmacological Sciences, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- MEtRiCS, Unidade de Biotecnologia Ambiental (UBiA), Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências Tecnologia, Universidade Nova de Lisboa, Almada, Portugal
| | | | - Bruno Vidal
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Ana Luisa Fernando
- MEtRiCS, Unidade de Biotecnologia Ambiental (UBiA), Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências Tecnologia, Universidade Nova de Lisboa, Almada, Portugal
| | - Beatriz Silva-Lima
- Department of Pharmacological Sciences, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Pharmacological and Regulatory Sciences, iMed, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Fátima Vaz
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Helena Canhão
- Nova Medical School and School of Public Health, Universidade Nova de Lisboa, Lisboa, Portugal
| | - M. Cristina Marques
- Department of Pharmacological Sciences, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- MEtRiCS, Unidade de Biotecnologia Ambiental (UBiA), Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências Tecnologia, Universidade Nova de Lisboa, Almada, Portugal
| |
Collapse
|
33
|
Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5695217. [PMID: 28497057 PMCID: PMC5406745 DOI: 10.1155/2017/5695217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/29/2017] [Indexed: 12/12/2022]
Abstract
The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES) on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP) immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON), denervation (DN), and denervation with direct ES (DN + ES). Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA), and capillary-to-fiber (C/F) ratio of the tibialis anterior (TA) muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs.
Collapse
|