1
|
Trecourt A, Donzel M, Gaillot-Durand L, Bolze PA, Golfier F, Descargues P, Hajri T, Mauduit C, Devouassoux-Shisheboran M, Allias F. SALL4 as a Useful Marker for the Distinction of Various Gestational Trophoblastic Disease Subtypes: Choriocarcinoma From Other Trophoblastic Lesions and Early Complete Hydatidiform Mole From Partial Mole and NonMolar Villi. Am J Surg Pathol 2025; 49:417-428. [PMID: 39876093 PMCID: PMC11984545 DOI: 10.1097/pas.0000000000002358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The distinction between choriocarcinoma and residual trophoblastic cell proliferation from a complete hydatidiform mole/invasive mole (CHM/IM) without villi is challenging on curettage materials. We investigated whether SALL4 immunostaining could help differentiate various gestational trophoblastic diseases. Placental site nodules (PSN; n=10), atypical PSN (APSN; n=8), placental site trophoblastic tumors (PSTT; n=9), epithelioid trophoblastic tumors (ETT; n=5), gestational choriocarcinomas (n=31), partial hydatidiform moles (PHM; n=13), CHM/IM (n=47), and nonmolar products of conception (POC) (n=26) were included. SALL4 immunostaining was quantified (0 [1% to 10%], [11% to 100%]) and characterized (scattered single-cell or clustered nuclear positivity) in 2 locations: cytotrophoblast/intermediate trophoblast and villous stromal fibroblasts. A diffuse (11% to 100%) and clustered pattern of SALL4 immunostaining in cytotrophoblast/intermediate trophoblast was statistically associated with choriocarcinomas (74.2%, 23/31) as compared with PSN (0/10; P <0.0001), APSN (0/8; P =0.0002), PSTT (0/9; P <0.0001), ETT (0/5; P =0.0034), PHM (0/13; P <0.0001), CHM/IM (0/47; P <0.0001), and nonmolar POC (0/26; P <0.0001). Most nonchoriocarcinoma samples showed no SALL4 expression; when present, it was of low level (1% to 10%) and with a scattered single-cell staining in 3/9 PSTT (33%), 1/13 PHM (7.7%), 19/47 CHM/IM (40%), and 1/26 nonmolar POC (1.7%). These results were confirmed using a validation cohort. In addition, 66% (31/47) of CHM/IM villous stromal fibroblasts showed SALL4 expression (11% to 100%) (all before 14 gestational weeks), whereas this level of expression was never observed in PHM (0/13), nor in nonmolar POC (0/26; P <0.0001). Finally, a clustered and >10% SALL4 immunostaining in cytotrophoblast/intermediate trophoblast favors choriocarcinoma diagnosis. SALL4 expression in >10% villous stromal fibroblasts before 14 gestational weeks favors CHM/IM rather than PHM and nonmolar POC.
Collapse
Affiliation(s)
- Alexis Trecourt
- Service de Pathologie Multi-Site, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon
- Centre pour l’innovation en cancérologie de Lyon (CICLY), Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon-1
| | - Marie Donzel
- Service de Pathologie Multi-Site, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon-1, Centre International de Recherche en Infectiologie (CIRI), UMR5308, Ecole Normale Supérieure de Lyon
| | - Lucie Gaillot-Durand
- Service de Pathologie Multi-Site, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon
- Centre Français de Référence des maladies trophoblastique
| | - Pierre A. Bolze
- Service de Chirurgie Gynécologique et Oncologique, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Université Lyon 1, Obstétrique, CICLY, Pierre Bénite
- Centre Français de Référence des maladies trophoblastique
| | - François Golfier
- Service de Chirurgie Gynécologique et Oncologique, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Université Lyon 1, Obstétrique, CICLY, Pierre Bénite
- Centre Français de Référence des maladies trophoblastique
| | - Pierre Descargues
- Service de Chirurgie Gynécologique et Oncologique, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Université Lyon 1, Obstétrique, CICLY, Pierre Bénite
- Centre Français de Référence des maladies trophoblastique
| | - Touria Hajri
- Centre Français de Référence des maladies trophoblastique
| | - Claire Mauduit
- Service de Pathologie Multi-Site, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon
- Centre Méditerranéen de Médecine Moléculaire (C3M), Institut National de la Santé et de la Recherche Médicale, Unité 1065, Nice, France
| | - Mojgan Devouassoux-Shisheboran
- Service de Pathologie Multi-Site, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon
- Centre pour l’innovation en cancérologie de Lyon (CICLY), Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon-1
- Centre Français de Référence des maladies trophoblastique
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon-1, Lyon
| | - Fabienne Allias
- Service de Pathologie Multi-Site, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon
- Centre Français de Référence des maladies trophoblastique
| |
Collapse
|
2
|
Mitra R, Hale TK, Fitzsimons HL, Gray C, White MPJ. A novel three-dimensional model of infantile haemangioma. Br J Dermatol 2025; 192:874-882. [PMID: 39686709 DOI: 10.1093/bjd/ljae483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Infantile haemangioma (IH) is vascular tumour in infants that exhibits rapid proliferation and angiogenesis followed by gradual involution. Ten per cent of cases are associated with disfiguring complications that require medical intervention with beta blockers, surgery or laser therapy. OBJECTIVES To improve our understanding of the disease mechanisms of IH with an in vitro three-dimensional model. METHODS We isolated and expanded CD31+ endothelial cells (HemECs) from patient-derived IH cell lines and grew them as spheroids in STEMdiffTM Endothelial Expansion Medium. The cells were then embedded in an extracellular matrix hydrogel with reduced growth factors to initiate angiogenic sprouting. RESULTS HemEC spheroids expressed CD31, glucose transporter 1, vascular endothelial growth factor receptor 2, CD44, vimentin and CD133 but not smooth muscle actin, indicating their similarity to immature IH blood vessels and their angiogenic potential. Proteomic analysis revealed similar homology in terms of protein expression in spheroids and IH tissue. The high-throughput application of the three-dimensional angiogenesis model was tested using propranolol to inhibit sprouting of spheroids with increased toxicity response. CONCLUSIONS This study reports the development of a three-dimensional model of IH that closely resembles the angiogenic features of IH for molecular analysis and drug screening.
Collapse
Affiliation(s)
- Raka Mitra
- Gillies McIndoe Research Institute, Wellington, New Zealand
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Tracy K Hale
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Helen L Fitzsimons
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Clint Gray
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
3
|
Mitra R, Fitzsimons HL, Hale T, Tan ST, Gray C, White MPJ. Recent advances in understanding the molecular basis of infantile haemangioma development. Br J Dermatol 2024; 191:661-669. [PMID: 38845569 DOI: 10.1093/bjd/ljae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 10/19/2024]
Abstract
Infantile haemangioma (IH) - the most common vascular tumour of infancy - is comprised of diverse cell types, including endothelial cells, pericytes, fibroblasts and immune cells. IH is characterized by rapid proliferation followed by slow involution over 1-10 years. Most lesions regress spontaneously, but up to 10% can be disfiguring, with complications that require further medical treatment. Recent research has revealed the biological characteristics of IH, highlighting the involvement of angiogenesis and vasculogenesis during tumour formation. Gene expression profiling has provided vital insights into the underlying biological processes, with some of the key IH-related pathways identified, including vascular endothelial growth factor, the renin-angiotensin-aldosterone system, hypoxia-inducible factor 1α, Notch, platelet-derived growth factor, phosphoinositide 3-kinase/Akt/mammalian target of rapamycin, Janus kinase/signal transducers and activators of transcription, fibroblast growth factor, peroxisome proliferator-activated receptor-γ and insulin-like growth factor. Further evidence suggests extracellular matrix factors and hormone receptors regulate IH progression. In this review, we explore the molecular mechanisms involved in the proliferating, plateau and involuting phases of IH, identifying differentially expressed genes, targeted proteins and key signalling pathways. This knowledge will increase the broader understanding of vascular development, tissue remodelling and angiogenesis.
Collapse
Affiliation(s)
- Raka Mitra
- Gillies McIndoe Research Institute, Newtown, Wellington, New Zealand
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Helen L Fitzsimons
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Tracy Hale
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Newtown, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Clint Gray
- Gillies McIndoe Research Institute, Newtown, Wellington, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, New Zealand
| | | |
Collapse
|
4
|
Lorusso B, Nogara A, Fioretzaki R, Corradini E, Bove R, Roti G, Gherli A, Montanaro A, Monica G, Cavazzini F, Bonomini S, Graiani G, Silini EM, Gnetti L, Pilato FP, Cerasoli G, Quaini F, Lagrasta CAM. CD26 Is Differentially Expressed throughout the Life Cycle of Infantile Hemangiomas and Characterizes the Proliferative Phase. Int J Mol Sci 2024; 25:9760. [PMID: 39337249 PMCID: PMC11432178 DOI: 10.3390/ijms25189760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Infantile hemangiomas (IHs) are benign vascular neoplasms of childhood (prevalence 5-10%) due to the abnormal proliferation of endothelial cells. IHs are characterized by a peculiar natural life cycle enclosing three phases: proliferative (≤12 months), involuting (≥13 months), and involuted (up to 4-7 years). The mechanisms underlying this neoplastic disease still remain uncovered. Twenty-seven IH tissue specimens (15 proliferative and 12 involuting) were subjected to hematoxylin and eosin staining and a panel of diagnostic markers by immunohistochemistry. WT1, nestin, CD133, and CD26 were also analyzed. Moreover, CD31pos/CD26pos proliferative hemangioma-derived endothelial cells (Hem-ECs) were freshly isolated, exposed to vildagliptin (a DPP-IV/CD26 inhibitor), and tested for cell survival and proliferation by MTT assay, FACS analysis, and Western blot assay. All IHs displayed positive CD31, GLUT1, WT1, and nestin immunostaining but were negative for D2-40. Increased endothelial cell proliferation in IH samples was documented by ki67 labeling. All endothelia of proliferative IHs were positive for CD26 (100%), while only 10 expressed CD133 (66.6%). Surprisingly, seven involuting IH samples (58.3%) exhibited coexisting proliferative and involuting aspects in the same hemangiomatous lesion. Importantly, proliferative areas were characterized by CD26 immunolabeling, at variance from involuting sites that were always CD26 negative. Finally, in vitro DPP-IV pharmacological inhibition by vildagliptin significantly reduced Hem-ECs proliferation through the modulation of ki67 and induced cell cycle arrest associated with the upregulation of p21 protein expression. Taken together, our findings suggest that CD26 might represent a reliable biomarker to detect proliferative sites and unveil non-regressive IHs after a 12-month life cycle.
Collapse
Affiliation(s)
- Bruno Lorusso
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| | - Antonella Nogara
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| | - Rodanthi Fioretzaki
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Department of Medical Oncology, Metaxa Cancer Hospital of Piraeus, 185 37 Piraeus, Greece
| | - Emilia Corradini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| | - Roberta Bove
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy;
| | - Andrea Gherli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy
| | - Anna Montanaro
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy
| | - Gregorio Monica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy
| | - Filippo Cavazzini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy
| | - Sabrina Bonomini
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy;
| | - Gallia Graiani
- Center of Dental Medicine, University of Parma, 43126 Parma, Italy;
| | - Enrico Maria Silini
- Pathology Section, University Hospital of Parma, 43126 Parma, Italy; (E.M.S.); (L.G.); (F.P.P.)
| | - Letizia Gnetti
- Pathology Section, University Hospital of Parma, 43126 Parma, Italy; (E.M.S.); (L.G.); (F.P.P.)
| | - Francesco Paolo Pilato
- Pathology Section, University Hospital of Parma, 43126 Parma, Italy; (E.M.S.); (L.G.); (F.P.P.)
| | - Giuseppe Cerasoli
- Pediatric Surgery, Ospedale dei Bambini of Parma, University Hospital of Parma, 43126 Parma, Italy;
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| | - Costanza Anna Maria Lagrasta
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (B.L.); (A.N.); (R.F.); (E.C.); (R.B.); (G.R.); (A.G.); (A.M.); (G.M.); (F.C.); (F.Q.)
| |
Collapse
|
5
|
Xiang S, Gong X, Qiu T, Zhou J, Yang K, Lan Y, Zhang Z, Ji Y. Insights into the mechanisms of angiogenesis in infantile hemangioma. Biomed Pharmacother 2024; 178:117181. [PMID: 39059349 DOI: 10.1016/j.biopha.2024.117181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Infantile hemangioma (IH) is the most common benign tumor in infants and usually resolves on its own. However, a small portion of IH cases are accompanied by serious complications and other problems, impacting the physical and psychological health of the children affected. The pathogenesis of IH is highly controversial. Studies have shown that abnormal blood vessel formation is an important pathological basis for the development of IH. Compared with that in normal tissues, the equilibrium of blood vessel growth at the tumor site is disrupted, and interactions among other types of cells, such as immune cells, promote the rapid proliferation and migration of vascular tissue cells and the construction of vascular networks. Currently, propranolol is the most common systemic drug used to inhibit the growth of IHs and accelerate their regression. The purpose of this review is to provide the latest research on the mechanisms of angiogenesis in IH. We discuss the possible roles of three major factors, namely, estrogen, hypoxia, and inflammation, in the development of IH. Additionally, we summarize the key roles of tumor cell subpopulations, such as pericytes, in the proliferation and regression of IH considering evidence from the past few years, with an emphasis on the possible mechanisms of propranolol in the treatment of IH. Angiogenesis is an important event during the development of IH, and an in-depth understanding of the molecular mechanisms of angiogenesis will provide new insights into the biology and clinical treatment of IH.
Collapse
Affiliation(s)
- Shanshan Xiang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou 510623, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zixin Zhang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Longhim ACLV, Chahud F. Biological identity of orbital cavernous venous malformations. Arq Bras Oftalmol 2024; 87:e2023. [PMID: 38655941 PMCID: PMC11622445 DOI: 10.5935/0004-2749.2023-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 04/26/2024] Open
Abstract
Vascular anomalies comprise a wide spectrum of clinical manifestations related to disturbances in the blood or lymph vessels. They correspond to mainly tumors (especially hemangiomas), characterized by high mitotic activity and proliferation of the vascular endothelium, and malformations, endowed with normal mitotic activity and no hypercellularity or changes in the rate of cell turnover. However, the classifications of these lesions go beyond this dichotomy and consist various systems adapted for and by different clinical subgroups. Thus, the classifications have not reached a consensus and have historically caused confusion regarding the nomenclatures and definitions. Cavernous venous malformations of the orbit, previously called cavernous hemangiomas, are the most common benign vascular orbital lesions in adults. Herein, we have compiled and discussed the various evidences, including clinical, radiological, morphological, and molecular evidence that indicate the non-neoplastic nature of these lesions.
Collapse
Affiliation(s)
| | - Fernando Chahud
- Department of Pathology and Forensic Medicine, Faculdade de
Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão
Preto, SP, Brazil
| |
Collapse
|
7
|
Holm A, Mulliken JB, Bischoff J. Infantile hemangioma: the common and enigmatic vascular tumor. J Clin Invest 2024; 134:e172836. [PMID: 38618963 PMCID: PMC11014660 DOI: 10.1172/jci172836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Infantile hemangioma (IH) is a benign vascular tumor that occurs in 5% of newborns. The tumor follows a life cycle of rapid proliferation in infancy, followed by slow involution in childhood. This unique life cycle has attracted the interest of basic and clinical scientists alike as a paradigm for vasculogenesis, angiogenesis, and vascular regression. Unanswered questions persist about the genetic and molecular drivers of the proliferating and involuting phases. The beta blocker propranolol usually accelerates regression of problematic IHs, yet its mechanism of action on vascular proliferation and differentiation is unclear. Some IHs fail to respond to beta blockers and regrow after discontinuation. Side effects occur and long-term sequelae of propranolol treatment are unknown. This poses clinical challenges and raises novel questions about the mechanisms of vascular overgrowth in IH.
Collapse
Affiliation(s)
- Annegret Holm
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Freiburg, VASCERN-VASCA European Reference Center, Freiburg, Germany
| | - John B. Mulliken
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Zhang W, Sun L, Gao H, Wang S. Mechanism of the HIF-1α/VEGF/VEGFR-2 pathway in the proliferation and apoptosis of human haemangioma endothelial cells. Int J Exp Pathol 2023; 104:258-268. [PMID: 37381118 PMCID: PMC10500167 DOI: 10.1111/iep.12485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/21/2023] [Indexed: 06/30/2023] Open
Abstract
Haemangiomas (HAs) are prevalent vascular endothelial cell tumours. With respect to the possible involvement of HIF-1α in HAs, we have explored its role in haemangioma endothelial cell (HemEC) proliferation and apoptosis. shRNA HIF-1α and pcDNA3.1 HIF-α were manipulated into HemECs. HIF-α, VEGF, and VEGFR-2 mRNA and protein levels were assessed by qRT-PCR and Western blotting. Cell proliferation and viability, cell cycle and apoptosis, migration and invasion, and ability to form tubular structures were assessed by colony formation assay, CCK-8, flow cytometry, Transwell assay, and tube formation assay. Cell cycle-related protein levels, and VEGF and VEGFR-2 protein interaction were detected by Western blot and immunoprecipitation assays. An Haemangioma nude mouse model was established by subcutaneous injection of HemECs. Ki67 expression was determined by immunohistochemical staining. HIF-1α silencing suppressed HemEC neoplastic behaviour and promoted apoptosis. HIF-1α facilitated VEGF/VEGFR-2 expression and the VEGF had interacted with VEGFR-2 at protein - protein level. HIF-1α silencing arrested HemECs at G0/G1 phase, diminished Cyclin D1 protein level, and elevated p53 protein level. VEGF overexpression partially abrogated the effects of HIF-1α knockdown on inhibiting HemEC malignant behaviours. Inhibiting HIF-1α in nude mice with HAs repressed tumour growth and Ki67-positive cells. Briefly, HIF-1α regulated HemEC cell cycle through VEGF/VEGFR-2, thus promoting cell proliferation and inhibiting apoptosis.
Collapse
Affiliation(s)
- Wenpei Zhang
- Department of Vascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
- Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lei Sun
- Department of Vascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
- Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongxia Gao
- Department of Vascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
- Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shengquan Wang
- Department of Vascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
- Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
9
|
Eroglu N, Sen HS, Kar YD, Pektas A, Eker I. Can Propranolol Affect Platelet Indices in Infantile Hemangioma? J Pediatr Hematol Oncol 2023; 45:e899-e903. [PMID: 37278557 DOI: 10.1097/mph.0000000000002683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/03/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Propranolol, a nonselective beta-blocker used in the medical treatment of infantile Hemangioma (IH), has been shown to decrease the levels of vascular endothelial growth factor and reduce angiogenesis with its antiproliferative and antiangiogenetic effects. MATERIALS AND METHODS It has been reported that the storage, transport, and secretion of vascular endothelial growth factor (VEGF) are associated with platelet volume indices (PVI). We aimed to investigate the effect of propranolol on PVI in IH patients. Propranolol treatment was started on 22 IH patients. Platelets, mean platelet volume (MPV), platelet distribution width (PDW), and plateletcrit values in the follow-ups at months 0, 1, and 2 were compared between 22 patients who received treatment and 25 patients who did not. RESULTS While a statistically significant difference between months 0, 1, and 2 in PDW and MPV values was detected in the treated group, it was not detected in the untreated group. Taking into consideration that VEGF levels were higher at the beginning of the treatment in the pathophysiology of the disease, it was thought that the decrease in VEGF levels by propranolol may have led to a decrease in MPV and PDW levels in the treatment group. CONCLUSION Consequently, in IH cases, propranolol response follow-up can be evaluated with PVIs, especially MPV and PDW, and it may facilitate clinicians' monitoring of the disease after propranolol administration.
Collapse
Affiliation(s)
| | | | | | - Ayhan Pektas
- Pediatric Cardiology, Afyonkarahisar Health Sciences University Faculty of Medicine, Afyonkarahisar, Turkey
| | - Ibrahim Eker
- Departments of Pediatric Hematology and Oncology
| |
Collapse
|
10
|
Kong M, Li Y, Wang K, Zhang S, Ji Y. Infantile hemangioma models: is the needle in a haystack? J Transl Med 2023; 21:308. [PMID: 37149592 PMCID: PMC10163722 DOI: 10.1186/s12967-023-04144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023] Open
Abstract
Infantile hemangioma (IH) is the most prevalent benign vascular tumor in infants, with distinct disease stages and durations. Despite the fact that the majority of IHs can regress spontaneously, a small percentage can cause disfigurement or even be fatal. The mechanisms underlying the development of IH have not been fully elucidated. Establishing stable and reliable IH models provides a standardized experimental platform for elucidating its pathogenesis, thereby facilitating the development of new drugs and the identification of effective treatments. Common IH models include the cell suspension implantation model, the viral gene transfer model, the tissue block transplantation model, and the most recent three-dimensional (3D) microtumor model. This article summarizes the research progress and clinical utility of various IH models, as well as the benefits and drawbacks of each. Researchers should select distinct IH models based on their individual research objectives to achieve their anticipated experimental objectives, thereby increasing the clinical relevance of their findings.
Collapse
Affiliation(s)
- Meng Kong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, #37# Guo-Xue-Xiang, Chengdu, 610041 China
| | - Yanan Li
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, #37# Guo-Xue-Xiang, Chengdu, 610041 China
| | - Kai Wang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, #37# Guo-Xue-Xiang, Chengdu, 610041 China
| | - Shisong Zhang
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, #23976# Jingshi Road, Jinan, 250022 China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, #37# Guo-Xue-Xiang, Chengdu, 610041 China
| |
Collapse
|
11
|
Li Y, Zhu X, Kong M, Chen S, Bao J, Ji Y. Three-Dimensional Microtumor Formation of Infantile Hemangioma-Derived Endothelial Cells for Mechanistic Exploration and Drug Screening. Pharmaceuticals (Basel) 2022; 15:1393. [PMID: 36422523 PMCID: PMC9692769 DOI: 10.3390/ph15111393] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 11/07/2023] Open
Abstract
Infantile hemangioma (IH) is the most prevalent type of vascular tumor in infants. The pathophysiology of IH is unknown. The tissue structure and physiology of two-dimensional cell cultures differ greatly from those in vivo, and spontaneous regression often occurs during tumor formation in nude mice and has severely limited research into the pathogenesis and development of IH. By decellularizing porcine aorta, we attempted to obtain vascular-specific extracellular matrix as the bioink for fabricating micropattern arrays of varying diameters via microcontact printing. We then constructed IH-derived CD31+ hemangioma endothelial cell three-dimensional microtumor models. The vascular-specific and decellularized extracellular matrix was suitable for the growth of infantile hemangioma-derived endothelial cells. The KEGG signaling pathway analysis revealed enrichment primarily in stem cell pluripotency, RAS, and PI3KAkt compared to the two-dimensional cell model according to RNA sequencing. Propranolol, the first-line medication for IH, was also used to test the model's applicability. We also found that metformin had some impact on the condition. The three-dimensional microtumor models of CD31+ hemangioma endothelial cells were more robust and efficient experimental models for IH mechanistic exploration and drug screening.
Collapse
Affiliation(s)
- Yanan Li
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - Xinglong Zhu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Kong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - Siyuan Chen
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Wang Y, Kong L, Sun B, Cui J, Shen W. Celecoxib induces adipogenic differentiation of hemangioma‑derived mesenchymal stem cells through the PPAR‑γ pathway in vitro and in vivo. Exp Ther Med 2022; 23:375. [PMID: 35495586 PMCID: PMC9047034 DOI: 10.3892/etm.2022.11303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
Infantile hemangioma (IH) is a benign tumor that produces a permanent scar or a mass of fibro-fatty tissue after involution in 40-80% of cases. Celecoxib is an inhibitor of cyclooxygenase-2 (COX-2), and can inhibit angiogenesis and fibrosis. The present study aimed to clarify whether celecoxib is able to induce tumor regression with minimal side effects. For that purpose, the regulation of celecoxib in the involution of IH was investigated in an IH model. Hemangioma-derived mesenchymal stem cells (Hem-MSCs) were isolated from proliferating specimens, and an IH model was established by injecting these cells into nude mice. Celecoxib was administered in vitro and in vivo. Oil Red O staining and reverse transcription-quantitative-PCR were used to detect the adipogenic differentiation of Hem-MSCs. Histologic analysis and immunohistochemical staining of the tumor xenografts were performed to investigate the pathological evolution of the tumor. The results showed that celecoxib inhibited the proliferation and induced the adipogenic differentiation of Hem-MSCs in vitro. In vivo, adipocytes were only present in the celecoxib group at week 4, while a larger number of fibroblasts and collagenous fibers could be observed in the basic fibroblast growth factor group. Therefore, celecoxib may be a potential agent used for IH treatment by inducing adipogenesis and inhibiting fibroblast formation.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Liangliang Kong
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Buhao Sun
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jie Cui
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Weimin Shen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
13
|
Tawfik HA, Dutton JJ. Orbital Vascular Anomalies: A Nomenclatorial, Etiological, and Nosologic Conundrum. Ophthalmic Plast Reconstr Surg 2022; 38:108-121. [PMID: 34238823 DOI: 10.1097/iop.0000000000002029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Vascular anomalies are a heterogeneous group of disorders that frequently present in the periorbital region. They encompass 2 broad entities: vascular tumors, which possess a proliferative endothelium, and vascular malformations, which are basically localized defects of vascular morphogenesis. The primary goal of this review was to address inaccurate or controversial terminology in the oculoplastic literature concerning orbital and periorbital vascular anomalies and to categorize these lesions in an abridged and simplified hierarchical list that adheres as much as possible to the most recent (2018) iteration for the classification of vascular lesions proposed by the International Society for the Study of Vascular Anomalies (ISSVA). The secondary goal of this review was to review and update information regarding the genetic underpinnings of vascular anomalies and the downstream signaling pathways that are subsequently affected as a result of these genetic errors. METHODS A literature review was conducted in PubMed, MEDLINE, PubMed Central, National Center for Biotechnology Information Bookshelf, and Embase for several related keywords including "vascular anomalies, vascular malformations, vascular tumors, and cavernous venous malformation," both with and without adding the keywords "eyelid," "orbital," and "periorbital." In addition, a detailed search was conducted for controversial or obsolete keywords like "cavernous hemangioma," "lymphangioma," and "varices," again in their systemic and orbital/periorbital context. RESULTS Crucial issues in the 2018 ISSVA classification regarding the proper categorization of orbital vascular anomalies, particularly venous lesions, were critically evaluated and revised, and a regional, simplified, and abridged modification of the ISSVA 2018 classification was proposed. CONCLUSIONS Interdisciplinary and intradisciplinary dialogue concerning orbital vascular anomalies is seriously compromised due to the lack of a unanimous agreement on terminology and the absence of a unified classification concept system. The authors recommend that oculoplastic surgeons adopt ISSVA terminology whenever technically possible and scientifically sound. However, they also propose modifying the ISSVA 2018 classification specifically to adapt to the peculiarities of vascular anomalies in the periorbital region. At present, the simplified classification proposed here is a preliminary first step towards managing patients with orbital vascular anomalies with greater diagnostic and therapeutic precision, until such time in the future when the entire genetic makeup of orbital vascular anomalies is more completely elucidated. Optimistically, this could pave the way for a more robust classification and the ultimate therapeutic cure.
Collapse
Affiliation(s)
- Hatem A Tawfik
- Department of Ophthalmology, Ain Shams University, Cairo, Egypt
| | - Jonathan J Dutton
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, U.S.A
| |
Collapse
|
14
|
Sun Y, Qiu F, Hu C, Guo Y, Lei S. Hemangioma Endothelial Cells and Hemangioma Stem Cells in Infantile Hemangioma. Ann Plast Surg 2022; 88:244-249. [PMID: 35023872 DOI: 10.1097/sap.0000000000002835] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Hemangioma is one of the most common benign tumors in infants and young children. The 2 most important cells in the course of infantile hemangioma (IH) are hemangioma stem cells (HemSCs) and hemangioma endothelial cells (HemECs). Infantile hemangioma is characterized by massive proliferation of HemECs, but current studies indicate that HemSCs play an important role in pathogenesis of IH. OBJECTIVE This review aimed to identify molecules that influence HemSC differentiation and HemEC proliferation and apoptosis to help clarify the pathogenesis of IH and provide novel drug targets for the treatment of IH. METHODS Relevant basic science studies related to IH were identified by searching Google Scholar, Embase, PubMed, MEDLINE, and peer-reviewed journal articles. RESULT Hemangioma stem cells can differentiate into HemECs, pericytes, and adipocytes. In the proliferating phase of IH, HemSCs mainly differentiate into HemECs and pericytes to promote angiogenesis. In the regressive phase, they mainly differentiate into adipocytes. Therefore, increasing the proportion of HemSCs differentiating into adipocytes, inhibiting the proliferation of HemECs, and promoting the apoptosis of HemECs can facilitate the regression of IH.
Collapse
Affiliation(s)
- Yuming Sun
- From the Department of Plastic surgery, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | |
Collapse
|
15
|
Seebauer CT, Graus MS, Huang L, McCann AJ, Wylie-Sears J, Fontaine FR, Karnezis T, Zurakowski D, Staffa SJ, Meunier FA, Mulliken JB, Bischoff J, Francois M. Non-β-blocker enantiomers of propranolol and atenolol inhibit vasculogenesis in infantile hemangioma. J Clin Invest 2021; 132:151109. [PMID: 34874911 PMCID: PMC8803322 DOI: 10.1172/jci151109] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Propranolol and atenolol, current therapies for problematic infantile hemangioma (IH), are composed of R(+) and S(–) enantiomers: the R(+) enantiomer is largely devoid of beta blocker activity. We investigated the effect of R(+) enantiomers of propranolol and atenolol on the formation of IH-like blood vessels from hemangioma stem cells (HemSCs) in a murine xenograft model. Both R(+) enantiomers inhibited HemSC vessel formation in vivo. In vitro, similar to R(+) propranolol, both atenolol and its R(+) enantiomer inhibited HemSC to endothelial cell differentiation. As our previous work implicated the transcription factor sex-determining region Y (SRY) box transcription factor 18 (SOX18) in propranolol-mediated inhibition of HemSC to endothelial differentiation, we tested in parallel a known SOX18 small-molecule inhibitor (Sm4) and show that this compound inhibited HemSC vessel formation in vivo with efficacy similar to that seen with the R(+) enantiomers. We next examined how R(+) propranolol alters SOX18 transcriptional activity. Using a suite of biochemical, biophysical, and quantitative molecular imaging assays, we show that R(+) propranolol directly interfered with SOX18 target gene trans-activation, disrupted SOX18-chromatin binding dynamics, and reduced SOX18 dimer formation. We propose that the R(+) enantiomers of widely used beta blockers could be repurposed to increase the efficiency of current IH treatment and lower adverse associated side effects.
Collapse
Affiliation(s)
- Caroline T Seebauer
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Matthew S Graus
- David Richmond Laboratory for Cardiovascular Development, University of Sydney, Sydney, Australia
| | - Lan Huang
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Alex J McCann
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jill Wylie-Sears
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Frank R Fontaine
- Gertrude Biomedical, Gertrude Biomedical Pty Ltd, Melbourne, Australia
| | - Tara Karnezis
- Gertrude Biomedical, Gertrude Biomedical Pty Ltd, Melbourne, Australia
| | - David Zurakowski
- Department of Anesthesiology, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Steven J Staffa
- Department of Anesthesiology, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Frédéric A Meunier
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - John B Mulliken
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Joyce Bischoff
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Mathias Francois
- David Richmond Laboratory for Cardiovascular Development, University of Sydney, Sydney, Australia
| |
Collapse
|
16
|
Ferreira-Facio CDS, Botafogo V, Ferrão PM, Canellas MC, Milito CB, Romano S, Lopes DV, Teixeira LC, Oliveira E, Bruno-Riscarolli E, Mello FV, Siqueira PFR, Moura P, Macedo FN, Forny DN, Simião L, Pureza AL, Land MGP, Pedreira CE, van Dongen JJM, Orfao A, da Costa ES. Flow Cytometry Immunophenotyping for Diagnostic Orientation and Classification of Pediatric Cancer Based on the EuroFlow Solid Tumor Orientation Tube (STOT). Cancers (Basel) 2021; 13:cancers13194945. [PMID: 34638431 PMCID: PMC8508207 DOI: 10.3390/cancers13194945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/15/2022] Open
Abstract
Simple Summary Pediatric solid tumors are a heterogenous group of diseases that comprise ≈ 40% of all pediatric cancers, early diagnosis being key for improved survival. Here we designed, tested, and validated a single eight-color tube for the diagnostic screening of pediatric cancer—solid tumor orientation tube (STOT)—based on multiparameter flow cytometry vs. conventional diagnostic procedures. Prospective clinical validation of STOT in 149 samples (63 tumor mass, 38 bone marrow, 30 lymph node, and 18 body fluid samples) screened for pediatric cancer, apart from 26 blood specimens that were excluded from analysis, showed concordant results with the final WHO/ICCC-3 diagnosis in 138/149 cases (92.6%). This included correct diagnostic orientation by STOT in 43/44 (98%) malignant and 4/4 (100%) benign non-hematopoietic tumors, together with 28/38 (74%) leukemia/lymphoma cases. The only recurrently missed diagnosis was Hodgkin lymphoma (0/8), which would require additional markers. These results support the use of STOT as a complementary tool for fast and accurate diagnostic screening, orientation, and classification of pediatric cancer in suspicious patients. Abstract Early diagnosis of pediatric cancer is key for adequate patient management and improved outcome. Although multiparameter flow cytometry (MFC) has proven of great utility in the diagnosis and classification of hematologic malignancies, its application to non-hematopoietic pediatric tumors remains limited. Here we designed and prospectively validated a new single eight-color antibody combination—solid tumor orientation tube, STOT—for diagnostic screening of pediatric cancer by MFC. A total of 476 samples (139 tumor mass, 138 bone marrow, 86 lymph node, 58 peripheral blood, and 55 other body fluid samples) from 296 patients with diagnostic suspicion of pediatric cancer were analyzed by MFC vs. conventional diagnostic procedures. STOT was designed after several design–test–evaluate–redesign cycles based on a large panel of monoclonal antibody combinations tested on 301 samples. In its final version, STOT consists of a single 8-color/12-marker antibody combination (CD99-CD8/numyogenin/CD4-EpCAM/CD56/GD2/smCD3-CD19/cyCD3-CD271/CD45). Prospective validation of STOT in 149 samples showed concordant results with the patient WHO/ICCC-3 diagnosis in 138/149 cases (92.6%). These included: 63/63 (100%) reactive/disease-free samples, 43/44 (98%) malignant and 4/4 (100%) benign non-hematopoietic tumors together with 28/38 (74%) leukemia/lymphoma cases; the only exception was Hodgkin lymphoma that required additional markers to be stained. In addition, STOT allowed accurate discrimination among the four most common subtypes of malignant CD45− CD56++ non-hematopoietic solid tumors: 13/13 (GD2++ numyogenin− CD271−/+ nuMyoD1− CD99− EpCAM−) neuroblastoma samples, 5/5 (GD2− numyogenin++ CD271++ nuMyoD1++ CD99−/+ EpCAM−) rhabdomyosarcomas, 2/2 (GD2−/+ numyogenin− CD271+ nuMyoD1− CD99+ EpCAM−) Ewing sarcoma family of tumors, and 7/7 (GD2− numyogenin− CD271+ nuMyoD1− CD99− EpCAM+) Wilms tumors. In summary, here we designed and validated a new standardized antibody combination and MFC assay for diagnostic screening of pediatric solid tumors that might contribute to fast and accurate diagnostic orientation and classification of pediatric cancer in routine clinical practice.
Collapse
Affiliation(s)
- Cristiane de Sá Ferreira-Facio
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Vitor Botafogo
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Patrícia Mello Ferrão
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Maria Clara Canellas
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Cristiane B. Milito
- Department of Pathology, Faculty of Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil;
| | - Sérgio Romano
- Laboratory of Anatomical Pathology and Cytopathology, Instituto Nacional de Câncer (INCa), Rio de Janeiro 20220-400, Brazil;
| | - Daiana V. Lopes
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Lisandra C. Teixeira
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Elen Oliveira
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Enrico Bruno-Riscarolli
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Fabiana V. Mello
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Patrícia F. R. Siqueira
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Patrícia Moura
- I’Dor Institute, Hospital Estadual da Criança, Rio de Janeiro 21330-400, Brazil; (P.M.); (F.N.M.)
| | - Francisco Nicanor Macedo
- I’Dor Institute, Hospital Estadual da Criança, Rio de Janeiro 21330-400, Brazil; (P.M.); (F.N.M.)
| | - Danielle N. Forny
- Department of Pediatric Surgery, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil;
| | - Luíza Simião
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Ana Luíza Pureza
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
| | - Marcelo Gerardin Poirot Land
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
| | - Carlos Eduardo Pedreira
- Systems and Computing Engineering Department (COPPE-PESC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-972, Brazil;
| | - Jacques J. M. van Dongen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands;
| | - Alberto Orfao
- Translational and Clinical Research Program, Centro de Investigación del Cáncer and IBMCC (CSIC-University of Salamanca), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca (USAL), Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (A.O.); (E.S.d.C.); Tel.: +34-9232-9481 (A.O.); +55-21-3938-4725 (E.S.d.C.)
| | - Elaine Sobral da Costa
- Internal Medicine Postgraduate Program, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil; (C.d.S.F.-F.); (V.B.); (L.C.T.); (E.O.); (E.B.-R.); (P.F.R.S.); (M.G.P.L.)
- Cytometry Service, Institute of Paediatrics and Puericultura Martagão Gesteira (IPPMG), Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil; (P.M.F.); (M.C.C.); (D.V.L.); (F.V.M.); (L.S.); (A.L.P.)
- Correspondence: (A.O.); (E.S.d.C.); Tel.: +34-9232-9481 (A.O.); +55-21-3938-4725 (E.S.d.C.)
| |
Collapse
|
17
|
Wang QZ, Zhao ZL, Liu C, Zheng JW. Exosome-derived miR-196b-5p facilitates intercellular interaction in infantile hemangioma via down-regulating CDKN1B. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:394. [PMID: 33842615 PMCID: PMC8033367 DOI: 10.21037/atm-20-6456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Though infantile hemangioma (IH) is a common benign vascular tumor, its pathogenesis remains unclear. This study explored the function of hemangioma-derived stem cells (HemSCs) derived exosomes, which exerted an intercellular effect on hemangioma-derived endothelial cells (HemECs). Methods First, HemSCs and HemECs were extracted and cultured. HemSCs derived exosomes (HemSCs-exos) were harvested. miRNA sequencing and target prediction were used to explore differentially expressed miRNAs and potential binding targets. After HemECs were co-cultured with HemSCs-exos, a series of in vitro assays were then performed including cell counting kit-8 (CCK-8) assay, cell apoptosis assay, cell cycle assay and tube formation assay to evaluate proliferation, angiogenesis abilities, etc. qRT-PCR and Western blot were conducted to detect the expression level of target genes and proteins. Results After co-culturing with HemSCs-exos, proliferation, and angiogenesis abilities of HemECs were enhanced, while apoptosis and cell cycle arrest rate were decreased. MiR-196b-5p was observed to be significantly highly expressed in HemSCs-exos. CDKN1B was identified as the binding target of miR-196b-5p. HemECs' proliferation and angiogenesis abilities were elevated when co-cultured with exosomes from HemSCs transfected with miR-196b-5p mimic. In addition, apoptosis rate declined, and lower cells were arrested in G0/G1 phases. Cyclin E, bcl-2 were significantly highly expressed, whereas p27, Bax expression were significantly down-regulated. The positive effect of miR-196b-5p in HemSCs-exos was dramatically reversed when HemECs were transfected with oe-CDKN1B. Conclusions The current study found a novel intercellular interaction between IH cells. Briefly, exosome-derived miRNA-196b-5p in HemSCs could facilitate proliferation and angiogenesis abilities, and attenuate apoptosis and cell cycle repression rate of HemECs by directly binding with CDKN1B.
Collapse
Affiliation(s)
- Qi-Zhang Wang
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Liang Zhao
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Liu
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Wei Zheng
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Rosa-Mangeret F, Calza AM, Pfister RE, Barcos-Munoz F. Post-Burn Infantile Hemangioma in an Extremely Premature Neonate. Biomed Hub 2021; 5:13-17. [PMID: 33564658 DOI: 10.1159/000508296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/29/2020] [Indexed: 02/02/2023] Open
Abstract
Infantile hemangioma (IH) is the most common vascular tumor in infancy, and its physiopathology is not fully understood. Nevertheless, a hypoxic insult may be an essential element for the formation of an IH. Herein, we describe a case of a 25-week premature newborn who developed an IH after a post-burn scar and its evolution.
Collapse
Affiliation(s)
- Flavia Rosa-Mangeret
- Neonatology Division, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Anne Marie Calza
- Pediatric Dermatology Division, Geneva University Hospitals, Geneva, Switzerland
| | - Riccardo E Pfister
- Neonatology Division, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Francisca Barcos-Munoz
- Neonatology Division, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| |
Collapse
|
19
|
Huang L, Bischoff J. Isolation of Stem Cells, Endothelial Cells and Pericytes from Human Infantile Hemangioma. Bio Protoc 2020; 10:e3487. [PMID: 33654720 DOI: 10.21769/bioprotoc.3487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/23/2019] [Accepted: 12/12/2019] [Indexed: 11/02/2022] Open
Abstract
Infantile hemangioma (IH) is a vascular tumor noted for its excessive blood vessel formation during infancy, glucose-transporter-1 (GLUT1)-positive staining of the blood vessels, and its slow spontaneous involution over several years in early childhood. For most children, IH poses no serious threat because it will eventually involute, but a subset can destroy facial structures and impair vision, breathing and feeding. To unravel the molecular mechanism(s) driving IH-specific vascular overgrowth, which to date remains elusive, investigators have studied IH histopathology, the cellular constituents and mRNA expression. Hemangioma endothelial cells (HemEC) were first isolated from surgically removed IH specimens in 1982 by Mulliken and colleagues ( Mulliken et al., 1982 ). Hemangioma stem cells (HemSC) were isolated in 2008, hemangioma pericytes in 2013 and GLUT1-positive HemEC in 2015. Indeed, as we describe here, it is possible to isolate HemSC, GLUT1-positive HemEC, GLUT1-negative HemEC and HemPericytes from a single proliferating IH tissue specimen. This is accomplished by sequential selection using antibodies against specific cell surface markers: anti-CD133 to select HemSC, anti-GLUT1 and anti-CD31 to select HemECs and anti-PDGFRβ to select HemPericytes. IH-derived cells proliferate well in culture and can be used for in vitro and in vivo vasculogenesis and angiogenesis assays.
Collapse
Affiliation(s)
- Lan Huang
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Li X, Ma C, Xu J, Gao B, Steele M, Idris A. Elevated eosinophil levels observed in infantile hemangioma patients from Kaifeng, China. F1000Res 2019; 8:2111. [PMID: 32047605 PMCID: PMC6993820 DOI: 10.12688/f1000research.21608.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2019] [Indexed: 11/20/2022] Open
Abstract
Infantile hemangioma (IH) is one of the most common soft-tissue neoplasms of infancy. Although clinical diagnosis for IH is well-established, the haematological parameters associated with IH are not well explored. In this short study, we observed significantly higher eosinophil (EO) numbers in IH patient blood compared to healthy controls. This contributed to the observed higher EO % in the peripheral blood of IH patients and was irrespective of age. This new haematological finding could carry a potential diagnostic/prognostic relevance for IH.
Collapse
Affiliation(s)
- Xianglei Li
- Department of clinical laboratory, Kaifeng Central Hospital, Kaifeng, Henan province, China
| | - Chunyan Ma
- Department of clinical laboratory, Kaifeng Central Hospital, Kaifeng, Henan province, China
| | - Jiaoyang Xu
- Department of clinical laboratory, Kaifeng Central Hospital, Kaifeng, Henan province, China
| | - Biao Gao
- Department of clinical laboratory, Kaifeng Central Hospital, Kaifeng, Henan province, China
| | - Michael Steele
- Faculty of Health Sciences, Australian Catholic University, Brisbane, Queensland, Australia
| | - Adi Idris
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
21
|
Kittler NW, Mathes EF, Kinsler V, Frieden IJ. The biker-glove pattern of congenital melanocytic nevi. Pediatr Dermatol 2019; 36:918-921. [PMID: 31448441 DOI: 10.1111/pde.13939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Congenital melanocytic nevi (CMN) are common birthmarks with 20% occurring on the limbs. We describe 4 patients with acral CMN with a "biker-glove" distribution with sparing of the distal digits, as has previously been described in acral infantile hemangiomas (IH). The existence of the biker-glove pattern suggests that CMN arise from early mutations in melanocyte precursors and supports the recently described Kinsler-Larue hypothesis of mesenchymal distribution of melanocyte migration occurring in a circular field from a central point. Developmental errors in mesenchymal precursors with similar migration patterns may explain this shared pattern among CMN and IH.
Collapse
Affiliation(s)
- Nicole W Kittler
- Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Erin F Mathes
- Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Veronica Kinsler
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK.,Paediatric Dermatology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Ilona J Frieden
- Department of Dermatology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
22
|
van Schaijik B, Tan ST, Marsh RW, Itinteang T. Expression of (pro)renin receptor and its effect on endothelial cell proliferation in infantile hemangioma. Pediatr Res 2019; 86:202-207. [PMID: 31091531 DOI: 10.1038/s41390-019-0430-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/06/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Propranolol is the preferred treatment for problematic proliferating infantile hemangioma (IH) by targeting the renin-angiotensin system (RAS) expressed by IH endothelium. (Pro)renin receptor (PRR) is a major component of the RAS associated with the canonical wnt signaling pathway. We proposed that activation of PRR by renin causes proliferation of IH. METHODS The expression of PRR in IH tissue samples was investigated using immunohistochemical (IHC) staining and NanoString analysis. NanoString analysis was also used to confirm transcriptional expression of PRR in CD34-sorted proliferating IH-derived primary cell lines. MTT assay was utilized to determine the effect of exogenous renin on the number of viable IH cells. RT-qPCR was used to determine the effect of renin on the stem cell gene expression. RESULTS NanoString analysis and IHC staining confirmed transcriptional and translational expression of PRR, which was localized to the non-endothelial and the endothelial IH cell populations. MTT assay demonstrated an increased number of viable IH cells by administration of renin and the effect was negated by the wnt receptor blocker dickkopf-1. CONCLUSION Our results present a model for renin-induced increased proliferation of IH cells through PRR acting via the wnt signaling pathway, which may account for accumulation of cells in IH during the proliferative phase of the tumor.
Collapse
Affiliation(s)
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand. .,Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand.
| | - Reginald W Marsh
- Gillies McIndoe Research Institute, Wellington, New Zealand.,University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
23
|
Byun JW, An HY, Yeom SD, Lee SJ, Chung HY. NDRG1 and FOXO1 regulate endothelial cell proliferation in infantile haemangioma. Exp Dermatol 2019; 27:690-693. [PMID: 29569762 DOI: 10.1111/exd.13541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 12/21/2022]
Abstract
The etiopathogenesis of infantile haemangioma has not been well understood, and it is accepted that angiogenic mediator dysregulation is the main contributor to the abnormal haemangioma capillary formation. The role of NDRG1, a hypoxia-inducible protein; FOXOs, which are tumor suppressor proteins; and the mTOR complex 2 pathway in infantile haemangioma have not been studied yet. The purpose of this study was to investigate NDRG1 and FOXO1 expression in the infantile haemangioma and the correlation of these proteins with proliferation and involution. Primary endothelial cells were obtained, with parental agreement, from 12 infantile haemangioma patients during surgery; 6 patients had proliferating infantile haemangiomas and 6 had involuting IHs. We compared the infantile haemangioma tissues and primary endothelial cells with human vein endothelial cells using microarrays, real-time PCR, Western blotting and immunohistochemical staining. Our data indicated that FOXO1 expression was downregulated in proliferating infantile haemangioma tissue. We found that the expression of NDRG1, a molecule upstream of the FOXO1 pathway, increased during haemangioma proliferation. NDRG1 knockdown decreased haemangioma endothelial cell proliferation and downregulated c-MYC oncoprotein levels. Our findings suggest that NDRG1 positively regulates haemangioma proliferation. FOXO1 dysregulation plays an important role in infantile haemangiomas pathogenesis.
Collapse
Affiliation(s)
- Ji Won Byun
- Department of Dermatology, Inha Hospital and Inha University School of Medicine, Incheon, South Korea
| | - Hye Young An
- Department of Dermatology, Inha Hospital and Inha University School of Medicine, Incheon, South Korea
| | - Seung Dohn Yeom
- Department of Dermatology, Inha Hospital and Inha University School of Medicine, Incheon, South Korea
| | - Seok Jong Lee
- Department of Dermatology, Kyungpook National University, Daegu, South Korea
| | - Ho Yun Chung
- Department of Plastic Surgery, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
24
|
Wu H, Wang X, Zheng J, Zhang L, Li X, Yuan W, Liu X. Propranolol-Loaded Mesoporous Silica Nanoparticles for Treatment of Infantile Hemangiomas. Adv Healthc Mater 2019; 8:e1801261. [PMID: 30838782 DOI: 10.1002/adhm.201801261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/24/2019] [Indexed: 12/11/2022]
Abstract
Infantile hemangioma (IH) is one of the most common neoplasm of infancy. Although with the potential to involute slowly after proliferation, IH has several subsets that could develop severe complications and lead to functional impairment or permanent disfigurement. In the present study, a novel propranolol (PRN) delivery system is developed that encapsulated in mesoporous silica nanoparticles (MSN). The primary nanoparticles are further treated with polyvinyl alcohol (PVA) to form PVA-MSN-PRN nanoparticles. The encapsulation efficiency is 58.8% ± 7.2%, and nanoparticles could release PRN in a controlled-release way. It is discovered that PVA-MSN-PRN could significantly suppress hemangioma stem cell (Hemsc) proliferation, promote Hemsc apoptosis in vitro, and inhibit the growth of hemangiomain xenografts in vivo. A conclusion could be made that this novel nanodrug delivery system has high therapeutic efficacy, low cytotoxicity, low administration frequency, and provides an attractive strategy for efficient IH therapy.
Collapse
Affiliation(s)
- Haiwei Wu
- Department of Oral and Maxillofacial SurgeryShandong Provincial Hospital Affiliated to Shandong University Jinan Shandong 250012 China
- Department of Oral and Maxillofacial SurgeryShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of Medicine Shanghai 200011 China
| | - Xuan Wang
- Department of Oral and Maxillofacial SurgeryShandong Provincial Hospital Affiliated to Shandong University Jinan Shandong 250012 China
| | - Jiawei Zheng
- Department of Oral and Maxillofacial SurgeryShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of Medicine Shanghai 200011 China
| | - Ling Zhang
- Department of Oral and Maxillofacial SurgeryShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of Medicine Shanghai 200011 China
| | - Xiaoming Li
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of Education, and School of PharmacyShanghai Jiao Tong University Shanghai 200240 China
| | - Wei‐En Yuan
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of Education, and School of PharmacyShanghai Jiao Tong University Shanghai 200240 China
| | - Xuejian Liu
- The Economic and Technological Development Zone People's Hospital of Linyi City Linyi Shandong 276023 China
| |
Collapse
|
25
|
Bota M, Fischer-Fodor E, Bochiș OV, Cenariu M, Popa G, Blag CL, Tătaru A. Combined effect of propranolol, vincristine and bevacizumab on HUVECs and BJ cells. Exp Ther Med 2019; 17:307-315. [PMID: 30651796 PMCID: PMC6307438 DOI: 10.3892/etm.2018.6925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 09/14/2018] [Indexed: 11/05/2022] Open
Abstract
Infantile hemangioma is one of the most common benign tumors affecting children, with ~10-15% requiring medical treatment. These tumors consist of endothelial cells and stromal components, including fibroblasts, pericytes and mast cells. Effects of propranolol treatment in combination with bevacizumab or vincristine on cell growth were compared in the current study using human umbilical vein endothelial cells (HUVECs) and BJ human normal fibroblasts (BJs) to determine potential synergic effects in vitro. Inhibition of cell growth was investigated using MTT assays and cytotoxicity of the drugs in various combinations was expressed as half inhibitory concentration (IC50). Apoptosis was investigated using flow cytometry, with Alexa Fluor 488 and propidium iodide. Propranolol inhibited BJ and HUVEC growth in a dose-dependent manner, with increased response observed in BJs (IC50, 148,32 µg/ml; standard error logIC50, 0.07). Treatment with vincristine induced the strongest growth inhibition in HUVECs (IC50, 17,89 µg/ml; standard error log IC50, 0.07) and BJs (IC50, 24,81 µg/ml; standard error log IC50, 0.08) compared with propranolol (HUVEC IC50, 81,94 µg/ml; standard error log IC50, 0.06; BJ-IC50, 148,32 µg/ml; standard error logIC50, 0.07) or bevacizumab (HUVEC IC50 96,91 µg/ml; standard error log IC50, 0.06; BJ IC50, 182,70 µg/ml; standard error log IC50, 0.09) alone. Bevacizumab was the weakest cytotoxic agent. Combination treatment of vincristine with bevacizumab induced the highest levels of apoptosis in HUVECs compared with all other treatments and triple-drug therapy induced the levels of apoptosis in BJs. Single treatment with vincristine, propranolol or bevacizumab induced apoptosis in BJs and HUVECs. In BJs, triple treatment exhibited the greatest influence on apoptosis, compared with single and dual treatments and in HUVECs, vincristine and bevacizumab combination treatment induced apoptosis to the highest level. The present study offers novel perspectives in drug repurposing studies for the three drugs, particularly in diseases where the pathogenesis is based on healthy endothelial cell proliferation, including hemangiomas.
Collapse
Affiliation(s)
- Mădălina Bota
- Department of Pediatrics, University of Medicine and Pharmacy 'Iuliu Hațieganu', 400012 Cluj-Napoca, Romania
| | - Eva Fischer-Fodor
- Tumor Biology Department, The Oncology Institute 'I. Chiricuță', 400015 Cluj-Napoca, Romania.,Medfuture-Research Center for Advanced Medicine, University of Medicine and Pharmacy 'Iuliu Hațieganu', 400012 Cluj-Napoca, Romania
| | - Ovidiu-Vasile Bochiș
- Department of Medical Oncology, The Oncology Institute 'I. Chiricuță', 400015 Cluj-Napoca, Romania
| | - Mihai Cenariu
- Biotechnology Research Center, University of Agricultural Science and Veterinary Medicine, 400374 Cluj-Napoca, Romania
| | - Gheorghe Popa
- Department of Pediatrics, University of Medicine and Pharmacy 'Iuliu Hațieganu', 400012 Cluj-Napoca, Romania
| | - Cristina Lucia Blag
- Department of Pediatrics, University of Medicine and Pharmacy 'Iuliu Hațieganu', 400012 Cluj-Napoca, Romania
| | - Alexandru Tătaru
- Department of Dermatology, University of Medicine and Pharmacy 'Iuliu Hațieganu', 400012 Cluj-Napoca, Romania
| |
Collapse
|
26
|
Mong EF, Akat KM, Canfield J, Lockhart J, VanWye J, Matar A, Tsibris JCM, Wu JK, Tuschl T, Totary-Jain H. Modulation of LIN28B/Let-7 Signaling by Propranolol Contributes to Infantile Hemangioma Involution. Arterioscler Thromb Vasc Biol 2018; 38:1321-1332. [PMID: 29724816 DOI: 10.1161/atvbaha.118.310908] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/18/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Infantile hemangiomas (IHs) are the most common benign vascular neoplasms of infancy, characterized by a rapid growth phase followed by a spontaneous involution, or triggered by propranolol treatment by poorly understood mechanisms. LIN28/let-7 axis plays a central role in the regulation of stem cell self-renewal and tumorigenesis. However, the role of LIN28B/let-7 signaling in IH pathogenesis has not yet been elucidated. APPROACH AND RESULTS LIN28B is highly expressed in proliferative IH and is less expressed in involuted and in propranolol-treated IH samples as measured by immunofluorescence staining and quantitative RT-PCR. Small RNA sequencing analysis of IH samples revealed a decrease in microRNAs that target LIN28B, including let-7, and an increase in microRNAs in the mir-498(46) cistron. Overexpression of LIN28B in HEK293 cells induced the expression of miR-516b in the mir-498(46) cistron. Propranolol treatment of induced pluripotent stem cells, which express mir-498(46) endogenously, reduced the expression of both LIN28B and mir-498(46) and increased the expression of let-7. Furthermore, propranolol treatment reduced the proliferation of induced pluripotent stem cells and induced epithelial-mesenchymal transition. CONCLUSIONS This work uncovers the role of the LIN28B/let-7 switch in IH pathogenesis and provides a novel mechanism by which propranolol induces IH involution. Furthermore, it provides therapeutic implications for cancers in which the LIN28/let-7 pathway is imbalanced.
Collapse
Affiliation(s)
- Ezinne Francess Mong
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Kemal Marc Akat
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York (K.M.A., T.T.)
| | - John Canfield
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - John Lockhart
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Jeffrey VanWye
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Andrew Matar
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - John C M Tsibris
- Department of Obstetrics and Gynecology (J.C.M.T.), Morsani College of Medicine, University of South Florida, Tampa
| | - June K Wu
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York (J.K.W.)
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York (K.M.A., T.T.)
| | - Hana Totary-Jain
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| |
Collapse
|
27
|
Sulzberger L, Tan EMS, Davis PF, Brasch HD, Tan ST, Itinteang T. Phosphorylated Forms of STAT1, STAT3 and STAT5 Are Expressed in Proliferating but Not Involuted Infantile Hemangioma. Front Surg 2018; 5:31. [PMID: 29725593 PMCID: PMC5917091 DOI: 10.3389/fsurg.2018.00031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/29/2018] [Indexed: 11/13/2022] Open
Abstract
We have recently demonstrated the expression of embryonic stem cell markers on the endothelium of infantile hemangioma, a functional hemogenic endothelium with the capacity for primitive erythropoiesis in vitro. Despite recent work characterizing stem cells within proliferating infantile hemangioma, the expression of STAT proteins, well documented for their roles in stem cell signaling, has not been investigated. 3,3-Diaminobenzidine and immunofluorescence immunohistochemical staining revealed expression of pSTAT1, pSTAT3 and pSTAT5 in proliferating infantile hemangioma samples with the strongest expression of pSTAT3. There was reduced expression of these pSTAT proteins in the involuted infantile hemangioma samples. Western blotting confirmed the identification of all these three proteins in proliferating infantile hemangioma. It is therefore not surprising that the phosphorylated/activated forms of these proteins are relatively abundantly expressed in proliferating, in comparison to involuted infantile hemangioma samples. We speculate that the reduced STAT activation, as infantile hemangioma involutes, is a reflection of the depletion of the abundant stem cells within proliferating infantile hemangioma, as the lesion involutes.
Collapse
Affiliation(s)
| | - Elysia M S Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Helen D Brasch
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Centre for the Study and Treatment of Vascular Birthmarks, Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Centre for the Study and Treatment of Vascular Birthmarks, Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| | | |
Collapse
|
28
|
Cai Y, Lv F, Kaldybayeva N, Zhamilya A, Wu Z, Wu Y. 15, 16-Dihydrotanshinone I Inhibits Hemangiomas through Inducing Pro-apoptotic and Anti-angiogenic Mechanisms in Vitro and in Vivo. Front Pharmacol 2018; 9:25. [PMID: 29441017 PMCID: PMC5797551 DOI: 10.3389/fphar.2018.00025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/10/2018] [Indexed: 12/14/2022] Open
Abstract
Infantile hemangioma (IH) is a common and benign vascular neoplasms, which has a high incidence in children. Although IH is benign, some patients experience complications such as pain, functional impairment, and permanent disfigurement. Treatment options for IH include corticosteroids, surgery, vincristine, interferon or cyclophosphamide. However, none of these modalities are ideal due to restrictions or potential serious side effects. There is thus a great need to explore novel treatments for IH with less side effects. Angiogenesis, vasculogenesis and tumorigenesis are the main features of IH. Tanshen is mostly used in Chinese traditional medicine to treat hematological abnormalities. Therefore, the aim of our study was to evaluate anti-proliferation and anti-angiogenesis effects on hemangiomas cells by extracted Tanshen compounds compared with propranolol, the first-line treatment for IH currently, both in vitro and in vivo. Cell viability, apoptosis, protein expression and anti-angiogenesis were analyzed by CCK8, Annexin V staining, Western blot and tube formation, respectively. The anti-tumor activity in vivo was evaluated using a mouse xenograft model. Fourteen major compounds extracting from Tanshen were screened for their ability to inhibit hemangiomas cells. Of the 14 compounds investigated, 15,16-Dihydrotanshinone I (DHTS) was the most potent modulator of EOMA cell biology. DHTS could significantly decrease EOMA cells proliferation by inducing cell apoptosis, which is much more efficient than propranolol in vitro. DHTS increased the expression of several apoptosis-related proteins, including caspase9, caspase3, PARP, AIF, BAX, cytochrome c, caspase8 and FADD and significantly inhibited angiogenesis, as indicated by reduced tube formation and diminished expression of vascular endothelial cell growth factor receptor 2 and matrix metalloproteinase 9. In nude mice xenograft experiment, DHTS (10 mg/kg) could significantly inhibit the tumor growth of EOMA cells as well as propranolol (40 mg/kg). Our study showed that DHTS was much more effective than propranolol in inhibiting hemangiomas proliferation and angiogenesis in vitro and in vivo, which could have potential therapeutic applications for treatment of IH.
Collapse
Affiliation(s)
- Yihong Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Fan Lv
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Nurshat Kaldybayeva
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Abilova Zhamilya
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| |
Collapse
|
29
|
Peng SH, Yang KY, Chen SY, Ji Y. [Research progresses in the pathogenesis, diagnosis and treatment of infantile hemangioma with PHACE syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:1291-1296. [PMID: 29237532 PMCID: PMC7389804 DOI: 10.7499/j.issn.1008-8830.2017.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Infant hemangioma, the most common benign tumor in children, is characterized by rapid proliferation, followed by slower spontaneous involution. However, some patients with facial segmental hemangioma are associated with PHACE syndrome. PHACE syndrome is characterized by vascular nerve and vascular cutaneous lesions of multiple systemic systems, often resulting in structural and functional impairments. Recent studies have demonstrated that the possible pathogeneses of PHACE syndrome mainly include hypoxia, abnormality of mesodermal vascular endothelial cells, genetic abnormality, and abnormality of interstitial mesenchymal stem cells. The current medications for hemangioma with PHACE syndrome include beta blockers, glucocorticoids, and mTOR inhibitors. This review article mainly describes the pathogenesis, diagnoses and treatments of PHACE syndrome, in order to provide directions for diagnosis and treatment of this disorder.
Collapse
Affiliation(s)
- Su-Hua Peng
- Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China.
| | | | | | | |
Collapse
|
30
|
Murphy T, Ramai D, Lai J, Sullivan K, Grimes C. Adult neck hemangiolymphangioma: a case and review of its etiology, diagnosis and management. J Surg Case Rep 2017; 2017:rjx168. [PMID: 28928923 PMCID: PMC5597788 DOI: 10.1093/jscr/rjx168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/01/2017] [Accepted: 08/09/2017] [Indexed: 01/19/2023] Open
Abstract
Vascular anomalies constitute some of the most difficult diagnostic and therapeutic enigmas in the practice of medicine, ranging from an asymptomatic birthmark to life-threatening congestive heart failure. Hemangiolymphangiomas (HLA) are extremely rare vascular malformations of both lymphatic and blood vessels in which 80-90% are diagnosed during the first 2 years of life. Though rare, these vascular malformations have promising clinical outcomes. We report a case of a 28-year-old male who presented with a neck mass of unknown etiology. A computed axial tomography scan revealed a cystic mass, and subsequent aspiration biopsy showed lymphatic fluid. The mass was surgically excised and identified as a 6 × 6 × 3 cm3 multilocular cystic mass weighing 81 g. Histopathology showed cellular characteristics consistent with HLA. We review the salient clinical and pathophysiologic features of vascular anomalies.
Collapse
Affiliation(s)
- Tyler Murphy
- Department of Anatomical Sciences, St. George's University School of Medicine, Grenada, WI, USA
| | - Daryl Ramai
- Department of Anatomical Sciences, St. George's University School of Medicine, Grenada, WI, USA
| | - Jonathan Lai
- Department of Anatomical Sciences, St. George's University School of Medicine, Grenada, WI, USA
| | - Kiyoe Sullivan
- Department of Pathology, Woodhull Medical Center, Brooklyn, NY, USA
| | - Cecil Grimes
- Department of Surgery, Woodhull Medical Center, Brooklyn, NY, USA
| |
Collapse
|
31
|
Harbi S, Park H, Gregory M, Lopez P, Chiriboga L, Mignatti P. Arrested Development: Infantile Hemangioma and the Stem Cell Teratogenic Hypothesis. Lymphat Res Biol 2017; 15:153-165. [PMID: 28520518 DOI: 10.1089/lrb.2016.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Early-life programming is defined by the adaptive changes made by the fetus in response to an adverse in utero environment. Infantile hemangioma (IH), a vascular anomaly, is the most common tumor of infancy. Here we take IH as the tumor model to propose the stem cell teratogenic hypothesis of tumorigenesis and the potential involvement of the immune system. OBJECTIVES Teratogenic agents include chemicals, heavy metals, pathogens, and ionizing radiation. To investigate the etiology and pathogenesis of IH, we hypothesized that they result from a teratogenic mechanism. Immature, incompletely differentiated, dysregulated progenitor cells (multipotential stem cells) are arrested in development with vasculogenic, angiogenic, and tumorigenic potential due to exposure to teratogenic agents such as extrinsic factors that disrupt intrinsic factors via molecular mimicry. During the critical period of immunological tolerance, environmental exposure to immunotoxic agents may harness the teratogenic potential in the developing embryo or fetus and modify the early-life programming algorithm by altering normal fetal development, causing malformations, and inducing tumorigenesis. Specifically, exposure to environmental agents may interfere with physiological signaling pathways and contribute to the generation of IH, by several mechanisms. DISCUSSION An adverse in utero environment no longer serves as a sustainable environment for proper embryogenesis and normal development. Targeted disruption of stem cells by extrinsic factors can alter the genetic program. CONCLUSIONS This article offers new perspectives to stimulate discussion, explore novel experimental approaches (such as immunotoxicity/vasculotoxicity assays and novel isogenic models), and to address the questions raised to convert the hypotheses into nontoxic, noninvasive treatments.
Collapse
Affiliation(s)
| | - Hannah Park
- 2 Department of Epidemiology, University of California , Irvine, School of Medicine, Irvine, California
| | - Michael Gregory
- 3 Department of Pathology, New York University School of Medicine , New York, New York
| | - Peter Lopez
- 3 Department of Pathology, New York University School of Medicine , New York, New York
| | - Luis Chiriboga
- 3 Department of Pathology, New York University School of Medicine , New York, New York
| | - Paolo Mignatti
- 4 Department of Medicine, New York University School of Medicine , New York, New York.,5 Department of Cell Biology, New York University School of Medicine , New York, New York
| |
Collapse
|
32
|
Blei F. Update December 2016. Lymphat Res Biol 2016. [DOI: 10.1089/lrb.2016.29016.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|