1
|
Lin YH, Chen CW, Chen MY, Xu L, Tian X, Cheung SH, Wu YL, Siriwon N, Wu SH, Mou KY. The Bacterial Outer Membrane Vesicle-Cloaked Immunostimulatory Nanoplatform Reinvigorates T Cell Function and Reprograms Tumor Immunity. ACS NANO 2025. [PMID: 40392526 DOI: 10.1021/acsnano.5c02541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Bacterial outer membrane vesicles (OMVs) represent powerful immunoadjuvant nanocarriers with the capacity to reprogram the tumor microenvironment (TME) and activate immune responses. Here, we investigate a nanotherapeutic platform integrating immunostimulatory cytosine-phosphate-guanine oligodeoxynucleotides (CpG-ODNs, hereafter termed CpG) into mesoporous silica nanoparticles cloaked with OMVs (CpG@MSN-PEG/PEI@OMVs) for cancer immunotherapy. Systemic administration of these nanohybrids facilitates precise tumor targeting, induces antitumor cytokines such as IFNγ, and suppresses immunosuppressive cytokine TGF-β, reshaping the TME. Additionally, CpG@MSN-PEG/PEI@OMVs promote M1 macrophage polarization, dendritic cell maturation, and the generation of durable tumor-specific immune memory, resulting in pronounced tumor regression with minimal systemic toxicity. The platform demonstrates efficacy against metastatic and solid tumor models including 4T1 breast and MC38 colorectal cancers. Transcriptomic analyses reveal that CpG@MSN-PEG/PEI@OMVs enhance mitochondrial oxidative phosphorylation in T cells within tumor-draining lymph nodes, mitigating T cell exhaustion and restoring metabolic fitness. These results support the potential of CpG@MSN-PEG/PEI@OMVs as a modular nanoplatform to modulate innate and adaptive immunity in cancer immunotherapy.
Collapse
Affiliation(s)
- Yu-Han Lin
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Wei Chen
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Mei-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Li Xu
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Xuejiao Tian
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Siu-Hung Cheung
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yen-Ling Wu
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Natnaree Siriwon
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand
| | - Si-Han Wu
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Kurt Yun Mou
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Zheng H, Chen Y, Luo W, Han S, Sun M, Lin M, Wu C, Gao L, Xie T, Kong N. Integration of active ingredients from traditional Chinese medicine with nano-delivery systems for tumor immunotherapy. J Nanobiotechnology 2025; 23:357. [PMID: 40382641 PMCID: PMC12085060 DOI: 10.1186/s12951-025-03378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/07/2025] [Indexed: 05/20/2025] Open
Abstract
Tumor immune escape presents a significant challenge in cancer treatment, characterized by the upregulation of immune inhibitory molecules and dysfunction of immune cells. Tumor immunotherapy seeks to restore normal anti-tumor immune responses to control and eliminate tumors effectively. The active ingredients of traditional Chinese medicine (TCM) demonstrate a variety of anti-tumor activities and mechanisms, including the modulation of immune cell functions and inhibiting tumor-related suppressive factors, thereby potentially enhancing anti-tumor immune responses. Furthermore, nano-delivery systems function as efficient carriers to enhance the bioavailability and targeted delivery of TCM active ingredients, augmenting therapeutic efficacy. This review comprehensively analyzes the impact of TCM active ingredients on the immune system and explores the synergistic application of nano-delivery systems in combination with TCM active ingredients for enhancing tumor immunotherapy.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yiquan Chen
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, Zhejiang, China
| | - Wei Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Shiqi Han
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, Zhejiang, China
| | - Mengjuan Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, Zhejiang, China
| | - Min Lin
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China
| | - Chenghan Wu
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China
| | - Lili Gao
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China.
| | - Tian Xie
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
3
|
Wu Y, Jia N, Sun J, Liao W, Xu J, Chen W, Zhao C. The roles of algal polysaccharides in modulating tumor immune microenvironment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156610. [PMID: 40085993 DOI: 10.1016/j.phymed.2025.156610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/26/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Polysaccharides from algae provide a range of biology and health benefits. Lately, there has been a significant interest in how algal polysaccharides affect the immune microenvironment around tumors. PURPOSE To elucidate the subtle interactions between algal polysaccharides and the tumor immune microenvironment to further understand the medicinal potential of algal polysaccharides. STUDY DESIGN To give a summary of the sources, bioactivities and characteristics of the tumor immune microenvironment of algal polysaccharides, and to analyze alteration of the immunological milieu surrounding tumors by algal polysaccharides and their potential as immunomodulators of chemotherapeutic agents. METHODS Search popular academic search engines using selected keywords for articles ending before September 2024 using selected keywords Google Scholar, PubMed, ScienceDirect, Scopus, Web of Science, Springer, and official websites. RESULTS Algal polysaccharides can fight tumors by changing how immune cells work and affecting inflammation in different ways. Moreover, algal polysaccharides have shown promise in mitigating the adverse effects associated with conventional cancer treatments, such as chemotherapy. Algal polysaccharides, through their immunomodulatory effects, can alleviate some of these side effects, leading to an enhanced overall treatment outcome. CONCLUSION As research continues to uncover the underlying mechanisms of their antitumor effects, algal polysaccharides are poised to become a vital component in the development of novel cancer treatments, providing new hope for patients and advancing the field of oncology.
Collapse
Affiliation(s)
- Yinfeng Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Nan Jia
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jingyu Sun
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Wei Liao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jingxiang Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
4
|
Ma G, Wu X, Agudamu, Shen J, Bao Z, Yang Z. M2 Macrophage-Extracellular Vesicle-Derived lncRNA-NEAT1 Regulates miR-204-5p/RRS1-mediated Cell Cycle to Promote the Occurrence and Development of Colorectal Cancer. J Biochem Mol Toxicol 2025; 39:e70168. [PMID: 40165491 DOI: 10.1002/jbt.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/06/2024] [Accepted: 01/26/2025] [Indexed: 04/02/2025]
Abstract
Colorectal cancer (CRC) is a prevalent malignancy of the digestive system. Here, we explored the role of M2 macrophage-derived extracellular vesicles (EVs) carrying long non-coding RNA-nuclear paraspeckle assembly transcript 1 (lncRNA-NEAT1) in promoting CRC progression via regulation of the miR-204-5p/regulator of ribosome synthesis 1 (RRS1) axis and cell cycle dynamics. Firstly, we differentiated WTHP-1 cells into M0 and M2 macrophages and transfected M2 macrophages with sh-NEAT1 lentivirus plasmids. EVs were isolated from M2 macrophages and administered to SW480 cells along with miR-204-5p inhibitors or si-RRS1 for 24 h. M2-EVs-derived lncRNA-NEAT1 enhanced CRC cell proliferation, migration, invasion, and viability while reducing apoptosis. This was accompanied by increased expression of RRS1, WEE1 G2 checkpoint kinase (WEE1), cyclin-dependent kinase 1 (CDK1), and CyclinB1, reduced miR-204-5p levels, and a lower proportion of cells in the G2/M phase. Knockdown of lncRNA-NEAT1 in M2 macrophages reversed these effects. Mechanistically, M2-EVs-derived lncRNA-NEAT1 functioned as a competing endogenous RNA (ceRNA), sponging miR-204-5p to upregulate RRS1 expression. In summary, M2 macrophage-derived EVs carrying lncRNA-NEAT1 promote CRC development by modulating the miR-204-5p/RRS1 axis, influencing the cell cycle and apoptosis. These findings provide insights into the tumor-promoting mechanisms of macrophage-derived EVs in CRC.
Collapse
Affiliation(s)
- Guorui Ma
- Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xinlin Wu
- Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Agudamu
- Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Junjie Shen
- Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhe Bao
- Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhiwen Yang
- Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
5
|
Han S, Luo Y, Hu Z, Li X, Zhou Y, Luo F. Tumor Microenvironment Targeted by Polysaccharides in Cancer Prevention: Expanding Roles of Gut Microbiota and Metabolites. Mol Nutr Food Res 2025; 69:e202400750. [PMID: 39757562 DOI: 10.1002/mnfr.202400750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025]
Abstract
Since the development of immune checkpoint inhibitors (ICIs), immunotherapy has been widely used as a novel cancer treatment. However, the efficacy of tumor immunotherapy is largely dependent on the tumor microenvironment (TME). The high degree of heterogeneity within TME remains a major obstacle to acquire satisfactory therapeutic. Emerging studies suggest that gut microbiota is becoming an important regulator of TME. Polysaccharides as tumor immunotherapeutic agents or immune adjuvants not only exhibit antitumor activity by targeting gut microbiota, but also expand their role in the tumor immunotherapy by remodeling TME. To date, the mechanism by which polysaccharides targeting TME for tumor prevention via gut microbiota has not been deeply investigated. In this review, recent advances in the regulation of TME by polysaccharides through gut microbiota were systematically outlined, and the challenges and possible solutions in the clinical application of TME-targeted polysaccharides were discussed. Exploring the relationship between polysaccharides and TME from the perspective of gut microbiota may provide new ideas for the application of polysaccharides in tumor immunotherapy. This is a new area with major challenges that deserve further exploration.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Tea and Food, Wuyi University, Wuyishan, Fujian, China
| | - Yi Luo
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xinhua Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
6
|
He X, Ran Q, Li X, Xiong A, Zhang L, Jiang M, Bai L, Peng D, Wang J, Sun B, Li G. Candida albicans-Derived β-Glucan as a Novel Modulator of Tumor Microenvironment: Targeting Macrophage Polarization and Inducing Ferroptosis in Lung Cancer. J Inflamm Res 2024; 17:10479-10494. [PMID: 39659749 PMCID: PMC11630740 DOI: 10.2147/jir.s489191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Tumor-associated macrophages (TAMs) play a crucial role in the tumor microenvironment (TME), and their polarization state significantly influences patient outcomes. This study investigates the inhibitory effects of β-glucan extracted from Candida albicans on lung cancer progression, focusing on its impact on TAM polarization and the induction of ferroptosis, a form of regulated cell death. Methods Utilizing both in vivo animal models and in vitro cellular assays, we assessed the impact of β-glucan on tumor growth, cellular proliferation, and migration. We evaluated TAM polarization by analyzing the expression of M1 and M2 markers and identified differentially expressed genes (DEGs) related to ferroptosis. The role of ferroptosis in TAM polarization was further confirmed by assessing the protein levels of ACSL4 and GPX4, intracellular ferrous ion levels, and lipid peroxides. Results β-glucan treatment significantly reduced tumor size and weight, along with cellular proliferation and migration, suggesting a potent suppressive effect on lung cancer cell growth. β-glucan promoted an M1-like phenotype in TAMs, as evidenced by increased CD86 expression and decreased CD206 expression, and modulated cytokine mRNA levels. RNA sequencing analysis post β-glucan treatment identified a substantial number of DEGs enriched in the ferroptosis pathway. The induction of ferroptosis by β-glucan was further confirmed through the significant upregulation of ACSL4 and downregulation of GPX4, alongside increased intracellular ferrous ion levels and lipid peroxides. The ferroptosis inhibitor Fer-1 abrogated these effects, highlighting the specificity of β-glucan-mediated polarization. Conclusion These results collectively provide novel insights into the immunotherapeutic potential of β-glucan from Candida albicans and its role in modulating TAM polarization and lung cancer growth, offering a promising avenue for cancer treatment strategies.
Collapse
Affiliation(s)
- Xiang He
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People’s Republic of China
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
- Department of Respiration, Chengdu third People’s hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Qin Ran
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
- Department of Respiration, Chengdu third People’s hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Xiaolan Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
- Department of Respiration, Chengdu third People’s hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
- Department of Respiration, Chengdu third People’s hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
- Department of Respiration, Chengdu third People’s hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Manling Jiang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
- Department of Respiration, Chengdu third People’s hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Lingling Bai
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
| | - Dan Peng
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
- Department of Respiration, Chengdu third People’s hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Baoqing Sun
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Guoping Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People’s Republic of China
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
- Department of Respiration, Chengdu third People’s hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| |
Collapse
|
7
|
Hrubesz G, Leigh J, Ng TL. Understanding the relationship between breast cancer, immune checkpoint inhibitors, and gut microbiota: a narrative review. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:31. [PMID: 39534584 PMCID: PMC11557166 DOI: 10.21037/tbcr-24-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024]
Abstract
Background and Objective The composition of gut microbiota plays an important role in predicting and influencing outcomes of cancer treated with immunotherapy. Our objective is to summarize the role of gut microbiota and immunotherapy in breast cancer. Methods A systematic search from inception until July 2024 of key search terms including immunity, breast neoplasm, gastrointestinal microbiome/microbiota, fecal microbiota transplantation, pro- and prebiotics, antibiotics and immunotherapy using EMBASE, MEDLINE and CENTRAL was conducted. The results were screened by two reviewers independently and synthesized and presented descriptively. Key Content and Findings Thirteen studies (5 clinical, 8 pre-clinical) met the eligibility criteria and were published from 2020-2024. Clinical studies showed that the composition and diversity of gut microbiota was associated with patient response to immunotherapy. In pre-clinical studies, dysbiotic states induced by obesity, antibiotics, and diet were associated with immunosuppression and influenced response to programmed cell death-ligand 1 (PD-L1) inhibitors. Microbiota-modulating treatments such as probiotics showed the ability to enhance response to immunotherapy, indicating their potential use as adjunct therapies in breast cancer treatment. Conclusions The composition of gut microbiota could help predict the chance of response to immunotherapy, and modulating gut microbiota has the potential to enhance the efficacy of chemo-immunotherapy in breast cancer. However, the available data relating to breast cancer are limited. Larger prospective studies are required to further elucidate their role as a biomarker and treatment.
Collapse
Affiliation(s)
- Gabriella Hrubesz
- Division of Medical Oncology, The Ottawa Hospital Cancer Center, Ottawa, Ontario, Canada
| | - Jennifer Leigh
- Division of Medical Oncology, The Ottawa Hospital Cancer Center, Ottawa, Ontario, Canada
| | - Terry L Ng
- Division of Medical Oncology, The Ottawa Hospital Cancer Center, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Aloliqi AA. Insights into the Gene Expression Profile of Classical Hodgkin Lymphoma: A Study towards Discovery of Novel Therapeutic Targets. Molecules 2024; 29:3476. [PMID: 39124881 PMCID: PMC11314437 DOI: 10.3390/molecules29153476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Classical Hodgkin lymphoma (cHL) is a common B-cell cancer and a significant health concern, especially in Western and Asian countries. Despite the effectiveness of chemotherapy, many relapse cases are being reported, highlighting the need for improved treatments. This study aimed to address this issue by discovering biomarkers through the analysis of gene expression data specific to cHL. Additionally, potential anticancer inhibitors were explored to target the discovered biomarkers. This study proceeded by retrieving microarray gene expression data from cHL patients, which was then analyzed to identify significant differentially expressed genes (DEGs). Functional and network annotation of the upregulated genes revealed the active involvement of matrix metallopeptidase 12 (MMP12) and C-C motif metallopeptidase ligand 22 (CCL22) genes in the progression of cHL. Additionally, the mentioned genes were found to be actively involved in cancer-related pathways, i.e., oxidative phosphorylation, complement pathway, myc_targets_v1 pathway, TNFA signaling via NFKB, etc., and showed strong associations with other genes known to promote cancer progression. MMP12, topping the list with a logFC value of +6.6378, was selected for inhibition using docking and simulation strategies. The known anticancer compounds were docked into the active site of the MMP12 molecular structure, revealing significant binding scores of -7.7 kcal/mol and -7.6 kcal/mol for BDC_24037121 and BDC_27854277, respectively. Simulation studies of the docked complexes further supported the effective binding of the ligands, yielding MMGBSA and MMPBSA scores of -78.08 kcal/mol and -82.05 kcal/mol for MMP12-BDC_24037121 and -48.79 kcal/mol and -49.67 kcal/mol for MMP12-BDC_27854277, respectively. Our findings highlight the active role of MMP12 in the progression of cHL, with known compounds effectively inhibiting its function and potentially halting the advancement of cHL. Further exploration of downregulated genes is warranted, as associated genes may play a role in cHL. Additionally, CCL22 should be considered for further investigation due to its significant role in the progression of cHL.
Collapse
Affiliation(s)
- Abdulaziz A Aloliqi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
10
|
Wang W, Zhao B, Zhang Z, Kikuchi T, Li W, Jantrawut P, Feng F, Liu F, Zhang J. Natural polysaccharides and their derivatives targeting the tumor microenvironment: A review. Int J Biol Macromol 2024; 268:131789. [PMID: 38677708 DOI: 10.1016/j.ijbiomac.2024.131789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Polysaccharides have gained attention as valuable supplements and natural medicinal resources, particularly for their anti-tumor properties. Their low toxicity and potent anti-tumor effects make them promising candidates for cancer prevention and treatment. The tumor microenvironment is crucial in tumor development and offers potential avenues for novel cancer therapies. Research indicates that polysaccharides can positively influence the tumor microenvironment. However, the structural complexity of most anti-tumor polysaccharides, often heteropolysaccharides, poses challenges for structural analysis. To enhance their pharmacological activity, researchers have modified the structure and properties of natural polysaccharides based on structure-activity relationships, and they have discovered that many polysaccharides exhibit significantly enhanced anti-tumor activity after chemical modification. This article reviews recent strategies for targeting the tumor microenvironment with polysaccharides and briefly discusses the structure-activity relationships of anti-tumor polysaccharides. It also summarises the main chemical modification methods of polysaccharides and discusses the impact of chemical modifications on the anti-tumor activity of polysaccharides. The review aims to lay a theoretical foundation for the development of anti-tumor polysaccharides and their derivatives.
Collapse
Affiliation(s)
- Wenli Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Bin Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Zhongtao Zhang
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China; Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China
| | - Takashi Kikuchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - FuLei Liu
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China; Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China.
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
11
|
Tu YC, Wang YM, Yao LJ. Macrophage-Targeting DNA Nanomaterials: A Future Direction of Biological Therapy. Int J Nanomedicine 2024; 19:3641-3655. [PMID: 38681094 PMCID: PMC11055528 DOI: 10.2147/ijn.s459288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
DNA can be used for precise construction of complex and flexible micro-nanostructures, including DNA origami, frame nucleic acids, and DNA hydrogels. DNA nanomaterials have good biocompatibility and can enter macrophages via scavenger receptor-mediated endocytosis. DNA nanomaterials can be uniquely and flexibly designed to ensure efficient uptake by macrophages, which represents a novel strategy to regulate macrophage function. With the development of nanotechnology, major advances have been made in the design and manufacturing of DNA nanomaterials for clinical therapy. In diseases accompanied by macrophage disturbances including tumor, infectious diseases, arthritis, fibrosis, acute lung injury, and atherosclerosis, DNA nanomaterials received considerable attention as potential treatments. However, we lack sufficient information to guarantee precise targeting of macrophages by DNA nanomaterials, which precludes their therapeutic applications. In this review, we summarize recent studies of macrophage-targeting DNA nanomaterials and discuss the limitations and challenges of this approach with regard to its potential use as a biological therapy.
Collapse
Affiliation(s)
- Yu-Chi Tu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yu-Mei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Li-Jun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
12
|
Burton C, Bitaraf A, Snyder K, Zhang C, Yoder SJ, Avram D, Du D, Yu X, Lau EK. The functional role of L-fucose on dendritic cell function and polarization. Front Immunol 2024; 15:1353570. [PMID: 38646527 PMCID: PMC11026564 DOI: 10.3389/fimmu.2024.1353570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/21/2024] [Indexed: 04/23/2024] Open
Abstract
Despite significant advances in the development and refinement of immunotherapies administered to combat cancer over the past decades, a number of barriers continue to limit their efficacy. One significant clinical barrier is the inability to mount initial immune responses towards the tumor. As dendritic cells are central initiators of immune responses in the body, the elucidation of mechanisms that can be therapeutically leveraged to enhance their functions to drive anti-tumor immune responses is urgently needed. Here, we report that the dietary sugar L-fucose can be used to enhance the immunostimulatory activity of dendritic cells (DCs). L-fucose polarizes immature myeloid cells towards specific DC subsets, specifically cDC1 and moDC subsets. In vitro, L-fucose treatment enhances antigen uptake and processing of DCs. Furthermore, our data suggests that L-fucose-treated DCs increase stimulation of T cell populations. Consistent with our functional assays, single-cell RNA sequencing of intratumoral DCs from melanoma- and breast tumor-bearing mice confirmed transcriptional regulation and antigen processing as pathways that are significantly altered by dietary L-fucose. Together, this study provides the first evidence of the ability of L-fucose to bolster DC functionality and provides rational to further investigate how L-fucose can be used to leverage DC function in order to enhance current immunotherapy.
Collapse
Affiliation(s)
- Chase Burton
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, United States
- Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Amirreza Bitaraf
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, United States
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Kara Snyder
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Molecular Medicine, University of South Florida, Tampa, FL, United States
| | - Chaomei Zhang
- Molecular Genomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Sean J. Yoder
- Molecular Genomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Dorina Avram
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Dongliang Du
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Eric K. Lau
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
13
|
Li H, Dong T, Tao M, Zhao H, Lan T, Yan S, Gong X, Hou Q, Ma X, Song Y. Fucoidan enhances the anti-tumor effect of anti-PD-1 immunotherapy by regulating gut microbiota. Food Funct 2024; 15:3463-3478. [PMID: 38456333 DOI: 10.1039/d3fo04807a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Currently, the clinical efficacy of anti-PD-1/PD-L1 monotherapy strategies against breast cancer is limited, and low response rates need to be improved. Gut microbiota plays a crucial role in the sensitization process of immunotherapy. As a natural dietary supplement, fucoidan has been reported to have immunomodulatory effects, while some studies have found that oral fucoidan may act as a potential prebiotic to modulate the gut microbiota. Therefore, this study investigated whether fucoidan could enhance the effects of anti-PD-1 monoclonal antibody antitumor immunotherapy by modulating gut microbiota and its metabolites. We found that the anti-tumor effect of the combination treatment was significantly enhanced, while fucoidan significantly improved the composition of the gut microbiota by increasing the number of potentially beneficial bacteria, such as Bifidobacterium, Faecalibaculum and Lactobacillus. Interference with the gut microbiota by antibiotics revealed impaired antitumor efficacy, confirming the necessity of gut microbiota in the antitumor effects of fucoidan in vivo. Metabolomics further revealed that fucoidan may have reversed the metabolic disturbances induced by the breast cancer model through tryptophan metabolism and glycerophospholipid metabolism pathways, with the most significant increase in the content of short-chain fatty acids, especially acetic and butyric acids. These modulations improved the function of effector T cells and suppressed Treg cell production. Thus, our findings suggest that fucoidan combined with the anti-PD-1 monoclonal antibody may be a novel strategy to sensitize breast cancer patients to anti-PD-1 monoclonal antibody immunotherapy. Meanwhile, the gut microbiota might serve as a new biomarker to predict the anti-PD-1 monoclonal antibody response to breast cancer immunotherapy.
Collapse
Affiliation(s)
- Hui Li
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Tieying Dong
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Meng Tao
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Haifeng Zhao
- Qingdao Institute of Food and Drug Inspection, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese, Medicine, China
| | - Tongtong Lan
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Shiyu Yan
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Xinyi Gong
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Qilong Hou
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| | - Xuezhen Ma
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Yang Song
- Department of Nutrition and Food Hygiene, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
Ge S, Zhao Y, Liang J, He Z, Li K, Zhang G, Hua B, Zheng H, Guo Q, Qi R, Shi Z. Immune modulation in malignant pleural effusion: from microenvironment to therapeutic implications. Cancer Cell Int 2024; 24:105. [PMID: 38475858 PMCID: PMC10936107 DOI: 10.1186/s12935-024-03211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 01/03/2024] [Indexed: 03/14/2024] Open
Abstract
Immune microenvironment and immunotherapy have become the focus and frontier of tumor research, and the immune checkpoint inhibitors has provided novel strategies for tumor treatment. Malignant pleural effusion (MPE) is a common end-stage manifestation of lung cancer, malignant pleural mesothelioma and other thoracic malignancies, which is invasive and often accompanied by poor prognosis, affecting the quality of life of affected patients. Currently, clinical therapy for MPE is limited to pleural puncture, pleural fixation, catheter drainage, and other palliative therapies. Immunization is a new direction for rehabilitation and treatment of MPE. The effusion caused by cancer cells establishes its own immune microenvironment during its formation. Immune cells, cytokines, signal pathways of microenvironment affect the MPE progress and prognosis of patients. The interaction between them have been proved. The relevant studies were obtained through a systematic search of PubMed database according to keywords search method. Then through screening and sorting and reading full-text, 300 literatures were screened out. Exclude irrelevant and poor quality articles, 238 literatures were cited in the references. In this study, the mechanism of immune microenvironment affecting malignant pleural effusion was discussed from the perspectives of adaptive immune cells, innate immune cells, cytokines and molecular targets. Meanwhile, this study focused on the clinical value of microenvironmental components in the immunotherapy and prognosis of malignant pleural effusion.
Collapse
Affiliation(s)
- Shan Ge
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, China
| | - Yuwei Zhao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Jun Liang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Zhongning He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Kai Li
- Beijing Shijitan Hospital, No.10 Yangfangdiantieyilu, Haidian District, Beijing, 100038, China
| | - Guanghui Zhang
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, 100029, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Qiujun Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Runzhi Qi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China.
| | - Zhan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
15
|
Kim J, Pena JV, McQueen HP, Kong L, Michael D, Lomashvili EM, Cook PR. Downstream STING pathways IRF3 and NF-κB differentially regulate CCL22 in response to cytosolic dsDNA. Cancer Gene Ther 2024; 31:28-42. [PMID: 37990062 DOI: 10.1038/s41417-023-00678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Double-stranded DNA (dsDNA) in the cytoplasm of eukaryotic cells is abnormal and typically indicates the presence of pathogens or mislocalized self-DNA. Multiple sensors detect cytosolic dsDNA and trigger robust immune responses via activation of type I interferons. Several cancer immunotherapy treatments also activate cytosolic nucleic acid sensing pathways, including oncolytic viruses, nucleic acid-based cancer vaccines, and pharmacological agonists. We report here that cytosolic dsDNA introduced into malignant cells can robustly upregulate expression of CCL22, a chemokine responsible for the recruitment of regulatory T cells (Tregs). Tregs in the tumor microenvironment are thought to repress anti-tumor immune responses and contribute to tumor immune evasion. Surprisingly, we found that CCL22 upregulation by dsDNA was mediated primarily by interferon regulatory factor 3 (IRF3), a key transcription factor that activates type I interferons. This finding was unexpected given previous reports that type I interferon alpha (IFN-α) inhibits CCL22 and that IRF3 is associated with strong anti-tumor immune responses, not Treg recruitment. We also found that CCL22 upregulation by dsDNA occurred concurrently with type I interferon beta (IFN-β) upregulation. IRF3 is one of two transcription factors downstream of the STimulator of INterferon Genes (STING), a hub adaptor protein through which multiple dsDNA sensors transmit their signals. The other transcription factor downstream of STING, NF-κB, has been reported to regulate CCL22 expression in other contexts, and NF-κB has also been associated with multiple pro-tumor functions, including Treg recruitment. However, we found that NF-κB in the context of activation by cytosolic dsDNA contributed minimally to CCL22 upregulation compared with IRF3. Lastly, we observed that two strains of the same cell line differed profoundly in their capacity to upregulate CCL22 and IFN-β in response to dsDNA, despite apparent STING activation in both cell lines. This finding suggests that during tumor evolution, cells can acquire, or lose, the ability to upregulate CCL22. This study adds to our understanding of factors that may modulate immune activation in response to cytosolic DNA and has implications for immunotherapy strategies that activate DNA sensing pathways in cancer cells.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jocelyn V Pena
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Hannah P McQueen
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Dina Michael
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Elmira M Lomashvili
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Pamela R Cook
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
16
|
Feng Y, Wu Y, Duan R, Wang P, Zhong X, Wu X. Structural characterization and anti-inflammatory effects of Enteromorpha prolifera polysaccharide-Fe/Zn complexes. Int J Biol Macromol 2023; 253:127166. [PMID: 37778595 DOI: 10.1016/j.ijbiomac.2023.127166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/07/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The structure of polysaccharide has a great influence on its biological functions, and the chelation with metal ions is an effective way to change polysaccharide structural configuration. Herein, the structure of Enteromorpha prolifera polysaccharide (EP)-Fe/Zn complexes were characterized and the results showed that the iron (III) existed in form of β-FeOOH in EP-Fe (III) complex and the zinc (II) existed in form of C-O-Zn in EP-Zn (II) complex. Besides, the chelation with iron (III) or zinc (II) completely changed the apparent forms, and improved the thermal stability of EP. Furthermore, the anti-inflammatory activities of EP, EP-Fe and EP-Zn were proved by a lipopolysaccharide (LPS)-induced RAW264.7 macrophages model. The results showed that EP, EP-Fe (III) and EP-Zn (II) could decrease the mitochondrial membrane potential and the secretion of NO and cytokines induced by LPS. One of the anti-inflammatory mechanisms of EP, EP-Fe (III) and EP-Zn (II) was that they could inhibit mitogen-activated protein kinase (MAPK) signaling pathway via increasing its inhibitor content in cells. Collectively, the research suggested that the chelation with iron (III) or zinc (II) could change the structure and improve the anti-inflammatory activities of EP.
Collapse
Affiliation(s)
- Yingying Feng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yuying Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ran Duan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Peng Wang
- Qingdao Seawin Biotech Group Co., LTD, Qingdao 266071, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Changsha, Hunan 410125, China.
| |
Collapse
|
17
|
Zayed A, Al-Saedi DA, Mensah EO, Kanwugu ON, Adadi P, Ulber R. Fucoidan's Molecular Targets: A Comprehensive Review of Its Unique and Multiple Targets Accounting for Promising Bioactivities Supported by In Silico Studies. Mar Drugs 2023; 22:29. [PMID: 38248653 PMCID: PMC10820140 DOI: 10.3390/md22010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Fucoidan is a class of multifunctional polysaccharides derived from marine organisms. Its unique and diversified physicochemical and chemical properties have qualified them for potential and promising pharmacological uses in human diseases, including inflammation, tumors, immunity disorders, kidney diseases, and diabetes. Physicochemical and chemical properties are the main contributors to these bioactivities. The previous literature has attributed such activities to its ability to target key enzymes and receptors involved in potential disease pathways, either directly or indirectly, where the anionic sulfate ester groups are mainly involved in these interactions. These findings also confirm the advantageous pharmacological uses of sulfated versus non-sulfated polysaccharides. The current review shall highlight the molecular targets of fucoidans, especially enzymes, and the subsequent responses via either the upregulation or downregulation of mediators' expression in various tissue abnormalities. In addition, in silico studies will be applied to support the previous findings and show the significant contributors. The current review may help in understanding the molecular mechanisms of fucoidan. Also, the findings of this review may be utilized in the design of specific oligomers inspired by fucoidan with the purpose of treating life-threatening human diseases effectively.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
- Department of Pharmacognosy, College of Pharmacy, Tanta University, El-Guish Street (Medical Campus), Tanta 31527, Egypt
| | - Dalal A. Al-Saedi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Emmanuel Ofosu Mensah
- Faculty of Ecotechnology, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russia;
| | - Osman Nabayire Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Mira Street 28, Yekaterinburg 620002, Russia;
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand;
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| |
Collapse
|
18
|
Patel B, Eskander MA, Fang-Mei Chang P, Chapa B, Ruparel SB, Lai Z, Chen Y, Akopian A, Ruparel NB. Understanding painful versus non-painful dental pain in female and male patients: A transcriptomic analysis of human biopsies. PLoS One 2023; 18:e0291724. [PMID: 37733728 PMCID: PMC10513205 DOI: 10.1371/journal.pone.0291724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
Dental pain from apical periodontitis is an infection induced-orofacial pain condition that presents with diversity in pain phenotypes among patients. While 60% of patients with a full-blown disease present with the hallmark symptom of mechanical allodynia, nearly 40% of patients experience no pain. Furthermore, a sexual dichotomy exists, with females exhibiting lower mechanical thresholds under basal and diseased states. Finally, the prevalence of post-treatment pain refractory to commonly used analgesics ranges from 7-19% (∼2 million patients), which warrants a thorough investigation of the cellular changes occurring in different patient cohorts. We, therefore, conducted a transcriptomic assessment of periapical biopsies (peripheral diseased tissue) from patients with persistent apical periodontitis. Surgical biopsies from symptomatic male (SM), asymptomatic male (AM), symptomatic female (SF), and asymptomatic female (AF) patients were collected and processed for bulk RNA sequencing. Using strict selection criteria, our study found several unique differentially regulated genes (DEGs) between symptomatic and asymptomatic patients, as well as novel candidate genes between sexes within the same pain group. Specifically, we found the role of cells of the innate and adaptive immune system in mediating nociception in symptomatic patients and the role of genes involved in tissue homeostasis in potentially inhibiting nociception in asymptomatic patients. Furthermore, sex-related differences appear to be tightly regulated by macrophage activity, its secretome, and/or migration. Collectively, we present, for the first time, a comprehensive assessment of peripherally diseased human tissue after a microbial insult and shed important insights into the regulation of the trigeminal system in female and male patients.
Collapse
Affiliation(s)
- Biraj Patel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Michael A. Eskander
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Phoebe Fang-Mei Chang
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Brett Chapa
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Shivani B. Ruparel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Armen Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Nikita B. Ruparel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
19
|
D'Urso A, Oltolina F, Borsotti C, Prat M, Colangelo D, Follenzi A. Macrophage Reprogramming via the Modulation of Unfolded Protein Response with siRNA-Loaded Magnetic Nanoparticles in a TAM-like Experimental Model. Pharmaceutics 2023; 15:1711. [PMID: 37376159 DOI: 10.3390/pharmaceutics15061711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
New therapeutic strategies are required in cancer therapy. Considering the prominent role of tumor-associated macrophages (TAMs) in the development and progression of cancer, the re-education of TAMs in the tumor microenvironment (TME) could represent a potential approach for cancer immunotherapy. TAMs display an irregular unfolded protein response (UPR) in their endoplasmic reticulum (ER) to endure environmental stress and ensure anti-cancer immunity. Therefore, nanotechnology could be an attractive tool to modulate the UPR in TAMs, providing an alternative strategy for TAM-targeted repolarization therapy. Herein, we developed and tested polydopamine-coupled magnetite nanoparticles (PDA-MNPs) functionalized with small interfering RNAs (siRNA) to downregulate the protein kinase R (PKR)-like ER kinase (PERK) expression in TAM-like macrophages derived from murine peritoneal exudate (PEMs). After the evaluation of the cytocompatibility, the cellular uptake, and the gene silencing efficiency of PDA-MNPs/siPERK in PEMs, we analyzed their ability to re-polarize in vitro these macrophages from M2 to the M1 inflammatory anti-tumor phenotype. Our results indicate that PDA-MNPs, with their magnetic and immunomodulator features, are cytocompatible and able to re-educate TAMs toward the M1 phenotype by PERK inhibition, a UPR effector contributing to TAM metabolic adaptation. These findings can provide a novel strategy for the development of new tumor immunotherapies in vivo.
Collapse
Affiliation(s)
- Annarita D'Urso
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | - Francesca Oltolina
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | - Maria Prat
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | - Donato Colangelo
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
20
|
Hao W, Li K, Liu S, Yu H, Li P, Xing R. Pleiotropic Modulation of Chitooligosaccharides on Inflammatory Signaling in LPS-Induced Macrophages. Polymers (Basel) 2023; 15:polym15071613. [PMID: 37050227 PMCID: PMC10096960 DOI: 10.3390/polym15071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Chitooligosaccharide (COS) is a green and non-toxic cationic carbohydrate that has attracted wide attention in recent years due to its anti-inflammatory activity. However, the anti-inflammatory mechanism of COS remains unclear. In this study, RNA-seq was used to investigate the integrated response of COS to LPS-induced damage in macrophages. The results showed that the experimental group with COS had 2570 genes with significant differences compared to the model group, and that these genes were more enriched in inflammatory and immune pathways. The KEGG results showed that COS induces the pleiotropic modulation of classical inflammatory pathways, such as the Toll-like receptor signaling pathway, NF-κB, MAPK, etc. Based on the RNA-seq data and the RT-qPCR, as well as the WB validation, COS can significantly upregulate the expression of membrane receptors, such as Tlr4, Tlr5, and MR, and significantly inhibits the phosphorylation of several important proteins, such as IκB and JNK. Overall, this study offers deep insights into the anti-inflammatory mechanism and lays the foundation for the early application of COS as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Wentong Hao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
21
|
Immunopotentiating Activity of Fucoidans and Relevance to Cancer Immunotherapy. Mar Drugs 2023; 21:md21020128. [PMID: 36827169 PMCID: PMC9961398 DOI: 10.3390/md21020128] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Fucoidans, discovered in 1913, are fucose-rich sulfated polysaccharides extracted mainly from brown seaweed. These versatile and nontoxic marine-origin heteropolysaccharides have a wide range of favorable biological activities, including antitumor, immunomodulatory, antiviral, antithrombotic, anticoagulant, antithrombotic, antioxidant, and lipid-lowering activities. In the early 1980s, fucoidans were first recognized for their role in supporting the immune response and later, in the 1990s, their effects on immune potentiation began to emerge. In recent years, the understanding of the immunomodulatory effects of fucoidan has expanded significantly. The ability of fucoidan(s) to activate CTL-mediated cytotoxicity against cancer cells, strong antitumor property, and robust safety profile make fucoidans desirable for effective cancer immunotherapy. This review focusses on current progress and understanding of the immunopotentiation activity of various fucoidans, emphasizing their relevance to cancer immunotherapy. Here, we will discuss the action of fucoidans in different immune cells and review how fucoidans can be used as adjuvants in conjunction with immunotherapeutic products to improve cancer treatment and clinical outcome. Some key rationales for the possible combination of fucoidans with immunotherapy will be discussed. An update is provided on human clinical studies and available registered cancer clinical trials using fucoidans while highlighting future prospects and challenges.
Collapse
|
22
|
Zhu B, Zheng J, Hong G, Bai T, Qian W, Liu J, Hou X. L-Fucose inhibits the progression of cholangiocarcinoma by causing microRNA-200b overexpression. Chin Med J (Engl) 2022; 135:2956-2967. [PMID: 36728287 PMCID: PMC10106127 DOI: 10.1097/cm9.0000000000002368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignant biliary tract tumor with an extremely poor prognosis. There is an urgent demand to explore novel therapeutic strategies. L-fucose has been confirmed to participate in anti-inflammation and antitumor activities. However, the effect of L-fucose on the progression of CCA has not been well investigated. This study aimed to determine whether L-fucose induced the inhibition of CCA and its possible mechanism. METHODS The anti-growth activity was determined using Cell Counting Kit-8 assay, colony formation assays, Annexin V-fluorescein isothiocyanate/propidium iodide (FITC/PI) assay, and cell cycle analysis. The anti-metastasis activity was determined by wound healing, transwell, and invasion assays. The anti-angiogenesis activity was determined by tube formation and transwell assays. MicroRNAs that may be involved in the L-fucose-induced CCA inhibition was analyzed using bioinformatics methods. The preclinical therapeutic efficacy was mainly estimated by ultrasound in xenograft nude mouse models. Differences were analyzed via Student's t test or one-way analysis of variance. RESULTS L-Fucose induced apoptosis and G0/G1 cell cycle arrest, inhibited cell epithelial-mesenchymal transition of CCA cells, and additionally inhibited tube formation of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner, leading to a decrease in cell proliferation, metastasis, and angiogenesis. Mechanistically, L-fucose induced microRNA-200b (miR-200b) upregulation, and mitogen-activated protein kinase 7 (MAPK7) downregulation was found to be targeted by miR-200b, with decreased cell proliferation and metastasis. Additionally, phosphorylated signal transducer and activator of transcription 3 was found to be downregulated after L-fucose treatment. Finally, in vivo experiments in CCA xenograft models also confirmed the antitumor properties of L-fucose. CONCLUSION L-Fucose inhibited the progression of CCA via the miR-200b/MAPK7 and signal transducer and activator of transcription 3 signaling pathways.
Collapse
Affiliation(s)
- Biqiang Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jingjing Zheng
- Department of Diagnostic Medical Sonography, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Gaichao Hong
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jinsong Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
23
|
Chen YL, Lowery AKT, Lin S, Walker AM, Chen KHE. Tumor cell-derived asymmetric dimethylarginine regulates macrophage functions and polarization. Cancer Cell Int 2022; 22:351. [PMID: 36376929 PMCID: PMC9664648 DOI: 10.1186/s12935-022-02769-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Asymmetric dimethylarginine (ADMA), which is significantly elevated in the plasma of cancer patients, is formed via intracellular recycling of methylated proteins and serves as a precursor for resynthesis of arginine. However, the cause of ADMA elevation in cancers and its impact on the regulation of tumor immunity is not known. METHODS Three mouse breast cell lines (normal breast epithelial HC11, breast cancer EMT6 and triple negative breast cancer 4T1) and their equivalent 3D stem cell culture were used to analyze the secretion of ADMA using ELISA and their responses to ADMA. Bone marrow-derived macrophages and/or RAW264.7 cells were used to determine the impact of increased extracellular ADMA on macrophage-tumor interactions. Gene/protein expression was analyzed through RNAseq, qPCR and flow cytometry. Protein functional analyses were conducted via fluorescent imaging (arginine uptake, tumor phagocytosis) and enzymatic assay (arginase activity). Cell viability was measured via MTS assay and/or direct cell counting using Countess III FL system. RESULTS For macrophages, ADMA impaired proliferation and phagocytosis of tumor cells, and even caused death in cultures incubated without arginine. ADMA also led to an unusual macrophage phenotype, with increased expression of arginase, cd163 and cd206 but decreased expression of il10 and dectin-1. In contrast to the severely negative impacts on macrophages, ADMA had relatively minor effects on proliferation and survival of mouse normal epithelial HC11 cells, mouse breast cancer EMT6 and 4T1 cells, but there was increased expression of the mesenchymal markers, vimentin and snail2, and decreased expression of the epithelial marker, mucin-1 in EMT6 cells. When tumor cells were co-cultured ex vivo with tumor antigen in vivo-primed splenocytes, the tumor cells secreted more ADMA and there were alterations in the tumor cell arginine metabolic landscape, including increased expression of genes involved in arginine uptake, metabolism and methylation, and decreased expression of a gene that is responsible for arginine demethylation. Additionally, interferon-gamma, a cytokine involved in immune challenge, increased secretion of ADMA in tumor cells, a process attenuated by an autophagy inhibitor. CONCLUSION Our results suggest initial immune attack promotes autophagy in tumor cells, which then secrete ADMA to manipulate macrophage polarization favoring tumor tolerance.
Collapse
Affiliation(s)
- Yi-Ling Chen
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - AKaychia T Lowery
- Division of Mathematics and Sciences, Delta State University, 38733, Cleveland, MS, USA
| | - Samuel Lin
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 92521, Riverside, CA, USA
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 92521, Riverside, CA, USA
| | - Kuan-Hui E Chen
- Division of Mathematics and Sciences, Delta State University, 38733, Cleveland, MS, USA.
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 92521, Riverside, CA, USA.
- Department of Biological Sciences, Texas Tech University, 79409, Lubbock, TX, USA.
| |
Collapse
|
24
|
Tang WW, Bauer KM, Barba C, Ekiz HA, O’Connell RM. miR-aculous new avenues for cancer immunotherapy. Front Immunol 2022; 13:929677. [PMID: 36248881 PMCID: PMC9554277 DOI: 10.3389/fimmu.2022.929677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
The rising toll of cancer globally necessitates ingenuity in early detection and therapy. In the last decade, the utilization of immune signatures and immune-based therapies has made significant progress in the clinic; however, clinical standards leave many current and future patients without options. Non-coding RNAs, specifically microRNAs, have been explored in pre-clinical contexts with tremendous success. MicroRNAs play indispensable roles in programming the interactions between immune and cancer cells, many of which are current or potential immunotherapy targets. MicroRNAs mechanistically control a network of target genes that can alter immune and cancer cell biology. These insights provide us with opportunities and tools that may complement and improve immunotherapies. In this review, we discuss immune and cancer cell-derived miRNAs that regulate cancer immunity and examine miRNAs as an integral part of cancer diagnosis, classification, and therapy.
Collapse
Affiliation(s)
- William W. Tang
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Kaylyn M. Bauer
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Cindy Barba
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Huseyin Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, İzmir, Turkey
| | - Ryan M. O’Connell
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
25
|
Deng Z, Wu N, Suo Q, Wang J, Yue Y, Geng L, Zhang Q. Fucoidan, as an immunostimulator promotes M1 macrophage differentiation and enhances the chemotherapeutic sensitivity of capecitabine in colon cancer. Int J Biol Macromol 2022; 222:562-572. [PMID: 36170928 DOI: 10.1016/j.ijbiomac.2022.09.201] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2023]
Abstract
Chemotherapy resistance is one of the most critical challenges in colorectal cancer (CRC) treatment. The occurrence and development of chemotherapy resistance closely related to the tumor immune microenvironment (TIME). As the most important immunosuppressive immune cells infiltrating into the TIME, macrophages are essential for chemotherapy resistance in CRC treatment. In this study, we found that a kind of fucoidan (FPS1M) induced macrophages differentiation to the M1 phenotype, and this transformation promoted cancer cells apoptosis both in vitro and in vivo. TNFα is a key mediator of FPS1M-induced tumorcidal activity of macrophages. Mechanistically, as a stimulator of TLR4, FPS1M enhanced macrophages glycolysis and regulated macrophages differentiation to the M1 phenotype by the activation of TLR4 mediated PI3K/AKT/mTOR signaling axis. In addition, FPS1M improved the immunosuppressed tumor microenvironment by increasing the infiltration of M1 macrophages in tumor tissue, which was conducive to improving the sensitivity of tumor to chemotherapy. Collectively, our findings demonstrated that FPS1M has the great potential to be used in tumor immunotherapy. The results also suggested that the combination of FPS1M with capecitabine is an alternative therapy method for colon cancer.
Collapse
Affiliation(s)
- Zhenzhen Deng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine drugs and biological products, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Qishan Suo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Lab for Marine Biology and Biotechnology, Qingdao National Lab for Marine Sci. & Tech, Qingdao 266071, China.
| |
Collapse
|
26
|
Oligo-Fucoidan supplementation enhances the effect of Olaparib on preventing metastasis and recurrence of triple-negative breast cancer in mice. J Biomed Sci 2022; 29:70. [PMID: 36109724 PMCID: PMC9479298 DOI: 10.1186/s12929-022-00855-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/08/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Seaweed polysaccharides have been recommended as anticancer supplements and for boosting human health; however, their benefits in the treatment of triple-negative breast cancers (TNBCs) and improving immune surveillance remain unclear. Olaparib is a first-in-class poly (ADP-ribose) polymerase inhibitor. Oligo-Fucoidan, a low-molecular-weight sulfated polysaccharide purified from brown seaweed (Laminaria japonica), exhibits significant bioactivities that may aid in disease management. METHODS Macrophage polarity, clonogenic assays, cancer stemness properties, cancer cell trajectory, glucose metabolism, the TNBC 4T1 cells and a 4T1 syngeneic mouse model were used to inspect the therapeutic effects of olaparib and Oligo-Fucoidan supplementation on TNBC aggressiveness and microenvironment. RESULTS Olaparib treatment increased sub-G1 cell death and G2/M arrest in TNBC cells, and these effects were enhanced when Oligo-Fucoidan was added to treat the TNBC cells. The levels of Rad51 and programmed death-ligand 1 (PD-L1) and the activation of epidermal growth factor receptor (EGFR) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) facilitate drug resistance and TNBC metastasis. However, the combination of olaparib and Oligo-Fucoidan synergistically reduced Rad51 and PD-L1 levels, as well as the activity of EGFR and AMPK; consistently, TNBC cytotoxicity and stemness were inhibited. Oligo-Fucoidan plus olaparib better inhibited the formation of TNBC stem cell mammospheroids with decreased subpopulations of CD44high/CD24low and EpCAMhigh cells than monotherapy. Importantly, Oligo-Fucoidan plus olaparib repressed the oncogenic interleukin-6 (IL-6)/p-EGFR/PD-L1 pathway, glucose uptake and lactate production. Oligo-Fucoidan induced immunoactive and antitumoral M1 macrophages and attenuated the side effects of olaparib, such as the promotion on immunosuppressive and protumoral M2 macrophages. Furthermore, olaparib plus Oligo-Fucoidan dramatically suppressed M2 macrophage invasiveness and repolarized M2 to the M0-like (F4/80high) and M1-like (CD80high and CD86high) phenotypes. In addition, olaparib- and Oligo-Fucoidan-pretreated TNBC cells resulted in the polarization of M0 macrophages into CD80(+) M1 but not CD163(+) M2 macrophages. Importantly, olaparib supplemented with oral administration of Oligo-Fucoidan in mice inhibited postsurgical TNBC recurrence and metastasis with increased cytotoxic T cells in the lymphatic system and decreased regulatory T cells and M2 macrophages in tumors. CONCLUSION Olaparib supplemented with natural compound Oligo-Fucoidan is a novel therapeutic strategy for reprogramming cancer stemness, metabolism and the microenvironment to prevent local postsurgical recurrence and distant metastasis. The combination therapy may advance therapeutic efficacy that prevent metastasis, chemoresistance and mortality in TNBC patients.
Collapse
|
27
|
Aripova N, Duryee MJ, Hunter CD, Ryan EM, Daubach EC, Jones SQ, Bierman MM, Ragland AS, Mitra A, England BR, Romberger DJ, Thiele GM, Mikuls TR. Peptidyl arginine deiminase expression and macrophage polarization following stimulation with citrullinated and malondialdehyde-acetaldehyde modified fibrinogen. Int Immunopharmacol 2022; 110:109010. [PMID: 35785731 DOI: 10.1016/j.intimp.2022.109010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Post-translational modifications of extracellular matrix proteins such as fibrinogen may lead to tolerance loss and have been implicated in rheumatoid arthritis (RA) pathogenesis. The purpose of this study was to determine whether fibrinogen (FIB) modified with citrulline (CIT), malondialdehyde-acetaldehyde (MAA) or both leads to altered macrophage polarization, peptidyl arginine deiminase (PAD) expression, or production of citrullinated proteins. METHODS PMA-treated U-937 cells (M0 cells) were stimulated with MAA, CIT or MAA-CIT modified FIB. Macrophage (M1/M2) phenotypes were evaluated by flow cytometry, RT-PCR, and ELISA. PAD enzyme expression and protein citrullination was evaluated using RT-PCR and Western Blot. RESULTS Flow cytometry revealed that M0 macrophages stimulated with FIB-MAA-CIT resulted in mixed M1/M2 phenotypes as demonstrated by cell surface expression and mRNA levels of CD14, CD192, CD163, and CD206 (p < 0.001 vs. others), and the release of IL-18, IP-10, CCL22, and IL-13 (p < 0.001 vs. others). While FIB-MAA treated M0 cells demonstrated a mixed M1/M2 phenotype, cytokine and cell surface markers differed from FIB-MAA-CIT. Finally, M0 cells treated with FIB-CIT demonstrated markers and cytokines consistent with only the M1-like phenotype. Exposure of M0 cells to FIB-MAA-CIT (at 48 h) and FIB-MAA (at 24 h) led to increased mRNA expression and protein expression of PAD2 (p < 0.001) with increased protein citrullination. CONCLUSION These findings suggest that MAA-modification and citrullination of FIB, in isolation or combination, yield specific effects on macrophage polarization, PAD expression and citrullination that ultimately may induce inflammatory and fibrotic responses associated with RA.
Collapse
Affiliation(s)
- Nozima Aripova
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael J Duryee
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA; Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Carlos D Hunter
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA; Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Evan M Ryan
- Department of Otolaryngology - Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric C Daubach
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Spencer Q Jones
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Madison M Bierman
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Austin S Ragland
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ananya Mitra
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bryant R England
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA; Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Debra J Romberger
- Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Omaha, NE, USA
| | - Geoffrey M Thiele
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA; Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ted R Mikuls
- Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA; Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
28
|
Anti-Inflammatory Potential of Fucoidan for Atherosclerosis: In Silico and In Vitro Studies in THP-1 Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103197. [PMID: 35630678 PMCID: PMC9146328 DOI: 10.3390/molecules27103197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/13/2023]
Abstract
Several diseases, including atherosclerosis, are characterized by inflammation, which is initiated by leukocyte migration to the inflamed lesion. Hence, genes implicated in the early stages of inflammation are potential therapeutic targets to effectively reduce atherogenesis. Algal-derived polysaccharides are one of the most promising sources for pharmaceutical application, although their mechanism of action is still poorly understood. The present study uses a computational method to anticipate the effect of fucoidan and alginate on interactions with adhesion molecules and chemokine, followed by an assessment of the cytotoxicity of the best-predicted bioactive compound for human monocytic THP-1 macrophages by lactate dehydrogenase and crystal violet assay. Moreover, an in vitro pharmacodynamics evaluation was performed. Molecular docking results indicate that fucoidan has a greater affinity for L-and E-selectin, monocyte chemoattractant protein 1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) as compared to alginate. Interestingly, there was no fucoidan cytotoxicity on THP-1 macrophages, even at 200 µg/mL for 24 h. The strong interaction between fucoidan and L-selectin in silico explained its ability to inhibit the THP-1 monocytes migration in vitro. MCP-1 and ICAM-1 expression levels in THP-1 macrophages treated with 50 µg/mL fucoidan for 24 h, followed by induction by IFN-γ, were shown to be significantly suppressed as eight- and four-fold changes, respectively, relative to cells treated only with IFN-γ. These results indicate that the electrostatic interaction of fucoidan improves its binding affinity to inflammatory markers in silico and reduces their expression in THP-1 cells in vitro, thus making fucoidan a good candidate to prevent inflammation.
Collapse
|
29
|
Fabrication of Sulfated Heterosaccharide/Poly (Vinyl Alcohol) Hydrogel Nanocomposite for Application as Wound Healing Dressing. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061801. [PMID: 35335165 PMCID: PMC8955895 DOI: 10.3390/molecules27061801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/13/2023]
Abstract
Nowadays, natural polysaccharides-based hydrogels have achieved promising results as dressings to promote skin healing. In the present study, we prepared a novel hydrogel nanocomposite with poly(vinyl alcohol) (PVA) and sulfated heterosaccharide (UF), named UPH. The SEM results showed that the UPH had dense porous structures with a high porosity and a specific surface area. The UPH had a good swelling property, which can effectively adsorb exudate and keep the wound moist. The in vitro experiments results showed that the UPH was non-cytotoxic and could regulate the inflammatory response and promote the migration of fibroblasts significantly. The phenotypic, histochemistry, and Western blot analyses showed UPH treatment accelerated the wound healing and recovery of skin tissue at wound sites in a C57BL/6 mouse model. Furthermore, the UPH could promote the inflammation process to onset earlier and last shorter than that in a normal process. Given its migration-promoting ability and physicochemical properties, the UPH may provide an effective application for the treatment and management of skin wounds.
Collapse
|
30
|
Liu N, Chang CW, Steer CJ, Wang XW, Song G. MicroRNA-15a/16-1 Prevents Hepatocellular Carcinoma by Disrupting the Communication Between Kupffer Cells and Regulatory T Cells. Gastroenterology 2022; 162:575-589. [PMID: 34678217 DOI: 10.1053/j.gastro.2021.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is characterized by intratumoral accumulation of regulatory T cells (Tregs), which suppresses antitumor immunity. This study was designed to investigate how microRNAs regulate immunosuppression in HCC. METHODS FVB/NJ mice were hydrodynamically injected with AKT/Ras or c-Myc and Sleeping Beauty transposon to induce HCC. The Sleeping Beauty system was used to deliver microRNA-15a/16-1 into livers of mice. Flow cytometry and immunostaining were used to determine changes in the immune system. RESULTS Hydrodynamic injection of AKT/Ras or c-Myc into mice resulted in hepatic enrichment of Tregs and reduced cytotoxic T cells (CTLs) and HCC development. HCC impaired microRNA-15a/16-1 biogenesis in Kupffer cells (KCs) of AKT/Ras and c-Myc mice. Hydrodynamic injection of microRNA-15a/16-1 fully prevented HCC in AKT/Ras and c-Myc mice, while 100% of control mice died of HCC. Therapeutically, microRNA-15a/16-1 promoted a regression of HCC in both mouse models, impaired hepatic enrichment of Tregs, and increased hepatic CTLs. Mechanistically, a significant increase was observed in serum C-C motif chemokine 22 (CCL22) and transcription of Ccl22 in KCs of AKT/Ras and c-Myc mice. MicroRNA-15a/16-1 prevented KCs from overproducing CCL22 by inhibiting nuclear factor-κB that activates transcription of Ccl22. By reducing CCL22 binding to C-C chemokine receptor type 4 on Tregs, microRNA-15a/16-1 impaired Treg chemotaxis. Disrupting the interaction between microRNA-15a/16-1 and nuclear factor-κB impaired the ability of microRNA-15a/16-1 to prevent hepatic Treg accumulation and HCC. Depletion of cluster of differentiation 8+ T cells and additional treatment of CCL22 recovered growth of HCC that was fully prevented by microRNA-15a/16. CONCLUSIONS MicroRNA-15a/16-1 attenuates immunosuppression by disrupting CCL22-mediated communication between KCs and Tregs. MicroRNA-15a/16-1 represents a potential immunotherapy against HCC.
Collapse
Affiliation(s)
- Ningning Liu
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ching Wen Chang
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Clifford J Steer
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Xin Wei Wang
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Guisheng Song
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
31
|
Hwang J, Yadav D, Lee PC, Jin JO. Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation. Phytother Res 2021; 36:761-777. [PMID: 34962325 DOI: 10.1002/ptr.7348] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
A significant rise in the occurrence and severity of adverse reactions to several synthetic drugs has fueled considerable interest in natural product-based therapeutics. In humans and animals, polysaccharides from marine microalgae and seaweeds have immunomodulatory effects. In addition, these polysaccharides may possess antiviral, anticancer, hypoglycemic, anticoagulant, and antioxidant properties. During inflammatory diseases, such as autoimmune diseases and sepsis, immunosuppressive molecules can serve as therapeutic agents. Similarly, molecules that participate in immune activation can induce immune responses against cancer and infectious diseases. We aim to discuss the chemical composition of the algal polysaccharides, namely alginate, fucoidan, ascophyllan, and porphyran. We also summarize their applications in the treatment of cancer, infectious disease, and inflammation. Recent applications of nanoparticles that are based on algal polysaccharides for the treatment of cancer and inflammatory diseases have also been addressed. In conclusion, these applications of marine algal polysaccharides could provide novel therapeutic alternatives for several diseases.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Peter Cw Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
32
|
Groysman L, Carlsen L, Huntington KE, Shen WH, Zhou L, El-Deiry WS. Chemotherapy-induced cytokines and prognostic gene signatures vary across breast and colorectal cancer. Am J Cancer Res 2021; 11:6086-6106. [PMID: 35018244 PMCID: PMC8727797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023] Open
Abstract
The mechanisms by which chemotherapeutic drugs mediate efficacy and toxicity in patients across cancers are not fully understood. A poorly understood aspect of the tumor cell response to chemotherapy is cytokine regulation. Some drug-induced cytokines promote the anti-cancer activity of the drugs, but others may promote proliferation, metastasis, and drug resistance. We evaluated effects of clinical chemotherapeutics oxaliplatin, cisplatin, 5-fluorouracil (5-FU), doxorubicin, paclitaxel, docetaxel, and carboplatin on a panel of 52 cytokines in MCF7 breast cancer (BC) cells. We observed pan-drug effects, such as the upregulation of TRAIL-R2 and Chitinase 3-like 1 and drug-specific effects on interleukin and CXCL cytokines. We compared cytokine regulation in MCF7 BC and HCT116 colorectal cancer (CRC) cells, revealing tissue-specific drug effects such as enhanced upregulation of TRAIL-R2 and downregulation of IFN-β and TRAIL in MCF7 by cisplatin, oxaliplatin, and 5-FU. We found that chemotherapy-inducible transcripts have varying potential for prognostic significance in CRC versus BC. Among the non-prognostic CRC genes that were prognostic in BC were NFKBIA and GADD45A, both of which support anti-cancer drug mechanisms. Thus, we establish a novel 7-drug, 52-cytokine signature in MCF7 BC cells and a 3-drug, 40-cytokine signature in HCT116 CRC cells that suggest drug-specific and tissue-specific cytokine regulation. Distinct differences across prognostic gene signatures in BC and CRC further support tissue specificity in the relative impact of drug-regulated genes on patient survival.
Collapse
Affiliation(s)
- Leya Groysman
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Macaulay Honors College at Hunter College, CUNYManhattan, NY 10065, USA
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell UniversityNY 10065, USA
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Graduate Program in Pathobiology, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University and The Lifespan Health SystemProvidence, RI 02903, USA
- Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Kelsey E Huntington
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Graduate Program in Pathobiology, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University and The Lifespan Health SystemProvidence, RI 02903, USA
- Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Wen H Shen
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell UniversityNY 10065, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University and The Lifespan Health SystemProvidence, RI 02903, USA
- Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Graduate Program in Pathobiology, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University and The Lifespan Health SystemProvidence, RI 02903, USA
- Hematology-Oncology Division, Brown University and The Lifespan Cancer InstituteProvidence, RI 02903, USA
- Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| |
Collapse
|
33
|
Sanjeewa KKA, Herath KHINM, Yang HW, Choi CS, Jeon YJ. Anti-Inflammatory Mechanisms of Fucoidans to Treat Inflammatory Diseases: A Review. Mar Drugs 2021; 19:678. [PMID: 34940677 PMCID: PMC8703547 DOI: 10.3390/md19120678] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Fucoidans are sulfated heteropolysaccharides found in the cell walls of brown seaweeds (Phaeophyceae) and in some marine invertebrates. Generally, fucoidans are composed of significant amounts of L-fucose and sulfate groups, and lesser amounts of arabinose, galactose, glucose, glucuronic acid, mannose, rhamnose, and xylose. In recent years, fucoidans isolated from brown seaweeds have gained considerable attention owing to their promising bioactive properties such as antioxidant, immunomodulatory, anti-inflammatory, antiobesity, antidiabetic, and anticancer properties. Inflammation is a complex immune response that protects the organs from infection and tissue injury. While controlled inflammatory responses are beneficial to the host, leading to the removal of immunostimulants from the host tissues and restoration of structural and physiological functions in the host tissues, chronic inflammatory responses are often associated with the pathogenesis of tumor development, arthritis, cardiovascular diseases, diabetes, obesity, and neurodegenerative diseases. In this review, the authors mainly discuss the studies since 2016 that have reported anti-inflammatory properties of fucoidans isolated from various brown seaweeds, and their potential as a novel functional material for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Kalu K. Asanka Sanjeewa
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pittpana, Homagoma 10200, Sri Lanka;
| | - Kalahe H. I. N. M. Herath
- Department of Biosystems Engineering, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila 60170, Sri Lanka;
| | - Hye-Won Yang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea;
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea;
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|
34
|
Sohn SI, Rathinapriya P, Balaji S, Jaya Balan D, Swetha TK, Durgadevi R, Alagulakshmi S, Singaraj P, Pandian S. Phytosterols in Seaweeds: An Overview on Biosynthesis to Biomedical Applications. Int J Mol Sci 2021; 22:12691. [PMID: 34884496 PMCID: PMC8657749 DOI: 10.3390/ijms222312691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
Seaweed extracts are considered effective therapeutic alternatives to synthetic anticancer, antioxidant, and antimicrobial agents, owing to their availability, low cost, greater efficacy, eco-friendliness, and non-toxic nature. Since the bioactive constituents of seaweed, in particular, phytosterols, possess plenty of medicinal benefits over other conventional pharmaceutical agents, they have been extensively evaluated for many years. Fortunately, recent advances in phytosterol-based research have begun to unravel the evidence concerning these important processes and to endow the field with the understanding and identification of the potential contributions of seaweed-steroidal molecules that can be used as chemotherapeutic drugs. Despite the myriad of research interests in phytosterols, there is an immense need to fill the void with an up-to-date literature survey elucidating their biosynthesis, pharmacological effects, and other biomedical applications. Hence, in the present review, we summarize studies dealing with several types of seaweed to provide a comprehensive overview of the structural determination of several phytosterol molecules, their properties, biosynthetic pathways, and mechanisms of action, along with their health benefits, which could significantly contribute to the development of novel drugs and functional foods.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Periyasamy Rathinapriya
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
- Department of Biotechnology, Vidhyaa Giri College of Arts and Science, Karaikudi 630 003, India
| | - Sekaran Balaji
- Independent Researcher, Madurai 625 020, India; (S.B.); (P.S.)
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | | | - Ravindran Durgadevi
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | - Selvaraj Alagulakshmi
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, India; (P.R.); (D.J.B.); (T.K.S.); (R.D.); (S.A.)
| | | | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
35
|
Ozga AJ, Chow MT, Luster AD. Chemokines and the immune response to cancer. Immunity 2021; 54:859-874. [PMID: 33838745 PMCID: PMC8434759 DOI: 10.1016/j.immuni.2021.01.012] [Citation(s) in RCA: 451] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 01/14/2023]
Abstract
Chemokines are chemotactic cytokines that regulate the migration of immune cells. Chemokines function as cues for the coordinated recruitment of immune cells into and out of tissue and also guide the spatial organization and cellular interactions of immune cells within tissues. Chemokines are critical in directing immune cell migration necessary to mount and then deliver an effective anti-tumor immune response; however, chemokines also participate in the generation and recruitment of immune cells that contribute to a pro-tumorigenic microenvironment. Here, we review the role of the chemokine system in anti-tumor and pro-tumor immune responses and discuss how malignant cells and the tumor microenvironment regulate the overall chemokine landscape to shape the type and outcome of immune responses to cancer and cancer treatment.
Collapse
Affiliation(s)
- Aleksandra J Ozga
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Melvyn T. Chow
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew D. Luster
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,Correspondence:
| |
Collapse
|
36
|
Geisberger S, Bartolomaeus H, Neubert P, Willebrand R, Zasada C, Bartolomaeus T, McParland V, Swinnen D, Geuzens A, Maifeld A, Krampert L, Vogl M, Mähler A, Wilck N, Markó L, Tilic E, Forslund SK, Binger KJ, Stegbauer J, Dechend R, Kleinewietfeld M, Jantsch J, Kempa S, Müller DN. Salt Transiently Inhibits Mitochondrial Energetics in Mononuclear Phagocytes. Circulation 2021; 144:144-158. [PMID: 33906377 PMCID: PMC8270232 DOI: 10.1161/circulationaha.120.052788] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Dietary high salt (HS) is a leading risk factor for mortality and morbidity. Serum sodium transiently increases postprandially but can also accumulate at sites of inflammation affecting differentiation and function of innate and adaptive immune cells. Here, we focus on how changes in extracellular sodium, mimicking alterations in the circulation and tissues, affect the early metabolic, transcriptional, and functional adaption of human and murine mononuclear phagocytes. Methods: Using Seahorse technology, pulsed stable isotope-resolved metabolomics, and enzyme activity assays, we characterize the central carbon metabolism and mitochondrial function of human and murine mononuclear phagocytes under HS in vitro. HS as well as pharmacological uncoupling of the electron transport chain under normal salt is used to analyze mitochondrial function on immune cell activation and function (as determined by Escherichiacoli killing and CD4+ T cell migration capacity). In 2 independent clinical studies, we analyze the effect of a HS diet during 2 weeks (URL: http://www.clinicaltrials.gov. Unique identifier: NCT02509962) and short-term salt challenge by a single meal (URL: http://www.clinicaltrials.gov. Unique identifier: NCT04175249) on mitochondrial function of human monocytes in vivo. Results: Extracellular sodium was taken up into the intracellular compartment, followed by the inhibition of mitochondrial respiration in murine and human macrophages. Mechanistically, HS reduces mitochondrial membrane potential, electron transport chain complex II activity, oxygen consumption, and ATP production independently of the polarization status of macrophages. Subsequently, cell activation is altered with improved bactericidal function in HS-treated M1-like macrophages and diminished CD4+ T cell migration in HS-treated M2-like macrophages. Pharmacological uncoupling of the electron transport chain under normal salt phenocopies HS-induced transcriptional changes and bactericidal function of human and murine mononuclear phagocytes. Clinically, also in vivo, rise in plasma sodium concentration within the physiological range reversibly reduces mitochondrial function in human monocytes. In both a 14-day and single meal HS challenge, healthy volunteers displayed a plasma sodium increase of and respectively, that correlated with decreased monocytic mitochondrial oxygen consumption. Conclusions: Our data identify the disturbance of mitochondrial respiration as the initial step by which HS mechanistically influences immune cell function. Although these functional changes might help to resolve bacterial infections, a shift toward proinflammation could accelerate inflammatory cardiovascular disease.
Collapse
Affiliation(s)
- Sabrina Geisberger
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Germany (S.G., C.Z., S.K.).,German Center for Cardiovascular Research, partner site Berlin (S.G., H.B., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,German Center for Cardiovascular Research, partner site Berlin (S.G., H.B., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (H.B., V.M., A. Maifeld, A. Mähler, L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Germany (P.N., L.K., M.V., J.J.)
| | - Ralf Willebrand
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, UHasselt, Campus Diepenbeek, Belgium (R.W., D.S., A.G., M.K.)
| | - Christin Zasada
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Germany (S.G., C.Z., S.K.)
| | | | - Victoria McParland
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (H.B., V.M., A. Maifeld, A. Mähler, L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| | - Dries Swinnen
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, UHasselt, Campus Diepenbeek, Belgium (R.W., D.S., A.G., M.K.)
| | - Anneleen Geuzens
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, UHasselt, Campus Diepenbeek, Belgium (R.W., D.S., A.G., M.K.)
| | - András Maifeld
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (H.B., V.M., A. Maifeld, A. Mähler, L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| | - Luka Krampert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Germany (P.N., L.K., M.V., J.J.)
| | - Marion Vogl
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Germany (P.N., L.K., M.V., J.J.)
| | - Anja Mähler
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,German Center for Cardiovascular Research, partner site Berlin (S.G., H.B., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (H.B., V.M., A. Maifeld, A. Mähler, L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| | - Nicola Wilck
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,German Center for Cardiovascular Research, partner site Berlin (S.G., H.B., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Germany (N.W.).,Department of Nephrology and Internal Intensive Care Medicine (N.W.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| | - Lajos Markó
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,German Center for Cardiovascular Research, partner site Berlin (S.G., H.B., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (H.B., V.M., A. Maifeld, A. Mähler, L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| | - Ekin Tilic
- Institute of Evolutionary Biology, University of Bonn, Germany (T.B., E.T.)
| | - Sofia K Forslund
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,German Center for Cardiovascular Research, partner site Berlin (S.G., H.B., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (H.B., V.M., A. Maifeld, A. Mähler, L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| | - Katrina J Binger
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia (K.J.B.)
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany (J.S.)
| | - Ralf Dechend
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,German Center for Cardiovascular Research, partner site Berlin (S.G., H.B., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (H.B., V.M., A. Maifeld, A. Mähler, L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, UHasselt, Campus Diepenbeek, Belgium (R.W., D.S., A.G., M.K.)
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Germany (P.N., L.K., M.V., J.J.)
| | - Stefan Kempa
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Germany (S.G., C.Z., S.K.)
| | - Dominik N Müller
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,German Center for Cardiovascular Research, partner site Berlin (S.G., H.B., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (H.B., V.M., A. Maifeld, A. Mähler, L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| |
Collapse
|
37
|
Chen W, Zhang F, Ju Y, Hong J, Ding Y. Gold Nanomaterial Engineering for Macrophage-Mediated Inflammation and Tumor Treatment. Adv Healthc Mater 2021; 10:e2000818. [PMID: 33128505 DOI: 10.1002/adhm.202000818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/24/2020] [Indexed: 12/23/2022]
Abstract
Macrophages play an important role in the body's immune defense process. Phenotype imbalance between M1 and M2 macrophages induced by inflammation-related disorders and tumor can also be reversibly converted to treat these diseases. As exogenous substances, a large part of gold-based nanomaterials interact with macrophages once they enter the body, which provides gold nanomaterials a huge advantage to act as imaging contrasts, active substance carriers, and therapeutic agents for macrophage modulation. By cutting off macrophage recruitment, inhibiting macrophage activities, and modulating M1/M2 polarization, gold nanomaterial engineering exerts therapeutic effects on inflammation-related diseases at target sites. In this review, biological functions of macrophages in inflammation-related diseases are introduced, the effect of physicochemical factors of gold nanomaterials including size, shape, and surface chemistry is focused on the interaction between macrophages and gold nanomaterials, and the applications of gold nanomaterials are elaborated for tracking and treating these diseases by macrophages. The rational and smart engineering of gold nanomaterials allows a promising platform for macrophage-mediated inflammation and tumor imaging and treatment.
Collapse
Affiliation(s)
- Wanting Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education China Pharmaceutical University Nanjing 210009 China
| | - Fenfen Zhang
- Research Center for Analysis and Measurement Donghua University Shanghai 201620 China
| | - Yanmin Ju
- Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 21009 China
| | - Jin Hong
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education China Pharmaceutical University Nanjing 210009 China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
38
|
Yang B, Gao J, Pei Q, Xu H, Yu H. Engineering Prodrug Nanomedicine for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002365. [PMID: 33304763 PMCID: PMC7709995 DOI: 10.1002/advs.202002365] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Immunotherapy has shifted the clinical paradigm of cancer management. However, despite promising initial progress, immunotherapeutic approaches to cancer still suffer from relatively low response rates and the possibility of severe side effects, likely due to the low inherent immunogenicity of tumor cells, the immunosuppressive tumor microenvironment, and significant inter- and intratumoral heterogeneity. Recently, nanoformulations of prodrugs have been explored as a means to enhance cancer immunotherapy by simultaneously eliciting antitumor immune responses and reversing local immunosuppression. Prodrug nanomedicines, which integrate engineering advances in chemistry, oncoimmunology, and material science, are rationally designed through chemically modifying small molecule drugs, peptides, or antibodies to yield increased bioavailability and spatiotemporal control of drug release and activation at the target sites. Such strategies can help reduce adverse effects and enable codelivery of multiple immune modulators to yield synergistic cancer immunotherapy. In this review article, recent advances and translational challenges facing prodrug nanomedicines for cancer immunotherapy are overviewed. Last, key considerations are outlined for future efforts to advance prodrug nanomedicines aimed to improve antitumor immune responses and combat immune tolerogenic microenvironments.
Collapse
Affiliation(s)
- Bin Yang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Department of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University School of MedicineTongji University Cancer CenterShanghai200072China
| | - Jing Gao
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Department of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University School of MedicineTongji University Cancer CenterShanghai200072China
| | - Qing Pei
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Huixiong Xu
- Department of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University School of MedicineTongji University Cancer CenterShanghai200072China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| |
Collapse
|
39
|
Cheng H, Sun L, Shen D, Ren A, Ma F, Tai G, Fan L, Zhou Y. Beta-1,6 glucan converts tumor-associated macrophages into an M1-like phenotype. Carbohydr Polym 2020; 247:116715. [PMID: 32829842 DOI: 10.1016/j.carbpol.2020.116715] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Tumor-associated macrophages (TAMs) with an M2-like phenotype have been linked to immunosuppression and resistance to chemotherapies of cancer, thus targeting TAMs has been an attractive therapeutic strategy to cancer immunotherapy. We have reported that the β-D-(1→6) glucan (AAMP-A70) isolated from Amillariella Mellea could promote macrophage activation. The present study showed that the β-1,6-glucan could promote the transformation of M2-like macrophages to M1-like phenotype and inhibit the viability of colon cancer cells in vitro and in vivo. On a cellular mechanistic level, the β-1,6-glucan reset tumor-promoting M2-like macrophages to tumor-inhibiting M1-like phenotype via increasing the phosphorylation of Akt/NF-κB and MAPK. Further, TLR2 was identified as the receptor of β-1,6-glucan in the transformation effect. In addition, a very similar β-1,6-glucan with side chains of β-Glc or α-Galρ which was purified from Lentinus edodes showed same activities with those from Amillariella Mellea. Our findings shed light on the action mode of β-1,6-glucan in cancer immunotherapy.
Collapse
Affiliation(s)
- Hairong Cheng
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Lin Sun
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Danyang Shen
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Ai Ren
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Fangli Ma
- Infinitus (China) Company Ltd., Guangzhou, 510663, China
| | - Guihua Tai
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Luodi Fan
- Infinitus (China) Company Ltd., Guangzhou, 510663, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
40
|
Albrahim T, Alnasser MM, Al-Anazi MR, ALKahtani MD, Alkahtani S, Al-Qahtani AA. Potential anti-inflammatory and anti-apoptotic effect of Coccinia grandis plant extract in LPS stimulated-THP-1 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21892-21904. [PMID: 32285384 DOI: 10.1007/s11356-020-08445-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Coccinia grandis (C. grandis) L is an Indian medicinal plant from the Cucurbitaceae family whose extracts possess anti-oxidant, anti-infective, and anti-inflammatory properties. The objective of the present study was to probe the potential immunomodulatory of C. grandis crude extract on different pathways in THP-1 cells as probed by changes in expression of several proteins. THP-1 cells were differentiated into macrophages after treatment with phorbol-12-myristate 13-acetate, followed by exposure to lipopolysaccharide (LPS) with or without 50 or 100 μg/ml of C. grandis extract. Treatment of the cells with the extract significantly downregulated the expression and release of pro-inflammatory cytokines (IL-6, IL-1β, CCL2, CCL22, CXCL10/IP-10, CX3CL1 and CXCL8/IL-8), proteins (ERK5, BAX, BCL2, Cyclin D, ERK1, NF-κB, P-IκBα,P- NF-κB and P-p38) and molecular signaling pathways (NF-κB, p38 MAPK, ERK1/2 and IL-6/JAK/STAT3 signaling cascades). This study is the first to highlight the ability of C. grandis extract to modulate several pathways, including proliferation, the expression of inflammatory cytokines, phagocytosis, migration properties and apoptosis, in human monocytic THP-1 cells.
Collapse
Affiliation(s)
- Tarfa Albrahim
- College of Health and Rehabilitation Sciences, Department of Health Sciences, Clinical Nutrition, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Moonerah M Alnasser
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mashael R Al-Anazi
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Muneera D ALKahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Ahmed A Al-Qahtani
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Alfaisal University, School of Medicine, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Zubair H, Khan MA, Anand S, Srivastava SK, Singh S, Singh AP. Modulation of the tumor microenvironment by natural agents: implications for cancer prevention and therapy. Semin Cancer Biol 2020; 80:237-255. [PMID: 32470379 PMCID: PMC7688484 DOI: 10.1016/j.semcancer.2020.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
The development of cancer is not just the growth and proliferation of a single transformed cell, but its surrounding environment also coevolves with it. Indeed, successful cancer progression depends on the ability of the tumor cells to develop a supportive tumor microenvironment consisting of various types of stromal cells. The interactions between the tumor and stromal cells are bidirectional and mediated through a variety of growth factors, cytokines, metabolites, and other biomolecules secreted by these cells. Tumor-stromal crosstalk creates optimal conditions for the tumor growth, metastasis, evasion of immune surveillance, and therapy resistance, and its targeting is being explored for clinical management of cancer. Natural agents from plants and marine life have been at the forefront of traditional medicine. Numerous epidemiological studies have reported the health benefits imparted on the consumption of certain fruits, vegetables, and their derived products. Indeed, a significant majority of anti-cancer drugs in clinical use are either naturally occurring compounds or their derivatives. In this review, we describe fundamental cellular and non-cellular components of the tumor microenvironment and discuss the significance of natural compounds in their targeting. Existing literature provides hope that novel prevention and therapeutic approaches will emerge from ongoing scientific efforts leading to the reduced tumor burden and improve clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
42
|
Reyes ME, Riquelme I, Salvo T, Zanella L, Letelier P, Brebi P. Brown Seaweed Fucoidan in Cancer: Implications in Metastasis and Drug Resistance. Mar Drugs 2020; 18:md18050232. [PMID: 32354032 PMCID: PMC7281670 DOI: 10.3390/md18050232] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/11/2022] Open
Abstract
Fucoidans are sulphated polysaccharides that can be obtained from brown seaweed and marine invertebrates. They have anti-cancer properties, through their targeting of several signaling pathways and molecular mechanisms within malignant cells. This review describes the chemical structure diversity of fucoidans and their similarity with other molecules such as glycosaminoglycan, which enable them to participation in diverse biological processes. Furthermore, this review summarizes their influence on the development of metastasis and drug resistance, which are the main obstacles to cure cancer. Finally, this article discusses how fucoidans have been used in clinical trials to evaluate their potential synergy with other anti-cancer therapies.
Collapse
Affiliation(s)
- María Elena Reyes
- Laboratory of Integrative Biology (LIBi), Center of Excellence in Translational Medicine- Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4710296, Chile
| | - Ismael Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Tomás Salvo
- Laboratory of Integrative Biology (LIBi), Center of Excellence in Translational Medicine- Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4710296, Chile
| | - Louise Zanella
- Laboratory of Integrative Biology (LIBi), Center of Excellence in Translational Medicine- Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4710296, Chile
| | - Pablo Letelier
- Precision Health Research Laboratory, Departamento de Procesos Diagnósticos y Evaluación, Facultad Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Center of Excellence in Translational Medicine- Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4710296, Chile
- Correspondence: ; Tel.: +56-9-92659362
| |
Collapse
|
43
|
Micro RNA Expression after Ingestion of Fucoidan; A Clinical Study. Mar Drugs 2020; 18:md18030143. [PMID: 32121066 PMCID: PMC7143719 DOI: 10.3390/md18030143] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Fucoidans are a class of fucose-rich sulfated polysaccharides derived from brown macroalgae that exert a range of biological activities in vitro and in vivo. To generate an unbiased assessment of pathways and processes affected by fucoidan, a placebo-controlled double-blind pilot study was performed in healthy volunteers. Blood samples were taken immediately before and 24 h after ingestion of a single dose of 1 g of Undaria pinnatifida fucoidan (UPF) or placebo. Levels of isolated miRNAs were analyzed using Taqman Open Array Human MicroRNA panels. Out of 754 miRNAs screened, UPF affected a total of 53 miRNAs. Pathway analysis using the TALOS data analysis tool predicted 29 different pathways and processes that were largely grouped into cell surface receptor signaling, cancer-related pathways, the majority of which were previously associated with fucoidans. However, this analysis also identified nine pathways and processes that have not been associated with fucoidans before. Overall, this study illustrates that even a single dose of fucoidans has the potential to affect the expression of genes related to fundamental cellular processes. Moreover, it confirms previous data that fucoidans influence immunity, cancer cells, inflammation, and neurological function.
Collapse
|
44
|
Florean C, Dicato M, Diederich M. Immune-modulating and anti-inflammatory marine compounds against cancer. Semin Cancer Biol 2020; 80:58-72. [PMID: 32070764 DOI: 10.1016/j.semcancer.2020.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The recent advances in cancer immunotherapy confirm the crucial role of the immune system in cancer progression and treatment. Chronic inflammation and reduced immune surveillance are both features of the tumor microenvironment. Strategies aimed at reverting pro-tumor inflammation and stimulating the antitumor immune components are being actively searched, and the anticancer effects of many candidate drugs have been linked to their ability to modulate the immune system. Marine organisms constitute a rich reservoir of new bioactive molecules; some of them have already been exploited for pharmaceutical use, whereas many others are undergoing clinical or preclinical investigations for the treatment of different diseases, including cancer. In this review, we will discuss the immune-modulatory properties of marine compounds for their potential use in cancer prevention and treatment and as possible tools in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
45
|
Chen LM, Tseng HY, Chen YA, Al Haq AT, Hwang PA, Hsu HL. Oligo-Fucoidan Prevents M2 Macrophage Differentiation and HCT116 Tumor Progression. Cancers (Basel) 2020; 12:cancers12020421. [PMID: 32059469 PMCID: PMC7072369 DOI: 10.3390/cancers12020421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) produced during intracellular metabolism or triggered by extrinsic factors can promote neoplastic transformation and malignant microenvironment that mediate tumor development. Oligo-Fucoidan is a sulfated polysaccharide isolated from the brown seaweed. Using human THP-1 monocytes and murine Raw264.7 macrophages as well as human HCT116 colorectal cancer cells, primary C6P2-L1 colorectal cancer cells and human MDA-MB231 breast cancer cells, we investigated the effect of Oligo-Fucoidan on inhibiting M2 macrophage differentiation and its therapeutic potential as a supplement in chemotherapy and tumor prevention. We now demonstrate that Oligo-Fucoidan is an antioxidant that suppresses intracellular ROS and mitochondrial superoxide levels in monocytes/macrophages and in aggressive cancer cells. Comparable to ROS inhibitors (DPI and NAC), Oligo-Fucoidan directly induced monocyte polarization toward M1-like macrophages and repolarized M2 macrophages into M1 phenotypes. DPI and Oligo-Fucoidan also cooperatively prevented M2 macrophage invasiveness. Indirectly, M1 polarity was advanced particularly when DPI suppressed ROS generation and supplemented with Oligo-Fucoidan in the cancer cells. Moreover, cisplatin chemoagent polarized monocytes and M0 macrophages toward M2-like phenotypes and Oligo-Fucoidan supplementation reduced these side effects. Furthermore, Oligo-Fucoidan promoted cytotoxicity of cisplatin and antagonized cisplatin effect on cancer cells to prevent M2 macrophage differentiation. More importantly, Oligo-Fucoidan inhibited tumor progression and M2 macrophage infiltration in tumor microenvironment, thus increasing of anti-tumor immunity.
Collapse
Affiliation(s)
- Li-Mei Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; (L.-M.C.); (H.-Y.T.); (Y.-A.C.); (A.T.A.H.)
| | - Hong-Yu Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; (L.-M.C.); (H.-Y.T.); (Y.-A.C.); (A.T.A.H.)
| | - Yen-An Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; (L.-M.C.); (H.-Y.T.); (Y.-A.C.); (A.T.A.H.)
| | - Aushia Tanzih Al Haq
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; (L.-M.C.); (H.-Y.T.); (Y.-A.C.); (A.T.A.H.)
| | - Pai-An Hwang
- National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Hsin-Ling Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; (L.-M.C.); (H.-Y.T.); (Y.-A.C.); (A.T.A.H.)
- Correspondence: ; Tel.: +886-37-246-166 (ext. 35329); Fax: +886-37-586-459
| |
Collapse
|
46
|
Xiao Z, Su Z, Han S, Huang J, Lin L, Shuai X. Dual pH-sensitive nanodrug blocks PD-1 immune checkpoint and uses T cells to deliver NF-κB inhibitor for antitumor immunotherapy. SCIENCE ADVANCES 2020; 6:eaay7785. [PMID: 32076650 PMCID: PMC7002126 DOI: 10.1126/sciadv.aay7785] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/22/2019] [Indexed: 05/03/2023]
Abstract
The response to programmed cell death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) blockade in cancer immunotherapy is limited because of multiple immune evasion mechanisms. Here, a previously unknown strategy is proposed to synergize the nuclear factor κB (NF-κB) inhibition and PD-1 blockade for antitumor immunotherapy. A dual pH-sensitive nanocarrier loading curcumin (CUR) and anti-PD-1 monoclonal antibody (aPD-1) may bind to circulating PD-1+ T cells and then follow their infiltration into the tumor. Furthermore, the nanodrug bound to PD-1+ T cells may be released in the tumor microenvironment, leaving aPD-1 to block PD-1 on T cells and generating a CUR-encapsulated cationic nanodrug that can be easily taken up by tumor cells/tumor associated macrophages (TAMs). Thus, not only the antitumor T cells mediate efficient CUR delivery to tumor but also the efficient CUR delivery promotes the tumor infiltration of antitumor T cells, thereby resulting in effective activation of antitumor immunity.
Collapse
Affiliation(s)
- Zecong Xiao
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenwei Su
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinsheng Huang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Liteng Lin
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510275, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Corresponding author.
| |
Collapse
|
47
|
Binesh A, Devaraj SN, Devaraj H. Expression of chemokines in macrophage polarization and downregulation of NFκB in aorta allow macrophage polarization by diosgenin in atherosclerosis. J Biochem Mol Toxicol 2019; 34:e22422. [PMID: 31729780 DOI: 10.1002/jbt.22422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
M1 macrophages serve one edge as proinflammatory and M2 macrophages serve the other edge as an anti-inflammatory macrophage. It appears that a related "switch" in macrophage morphology may also happen in the course of atherosclerosis, which has not yet been elucidated. An atherogenic diet (AD) was given to rats, and induction of macrophage differentiation and the nuclear localization of nuclear factor-kappa B (NFκB) were investigated by Western blot and immunofluorescence. Chemokines were analyzed using an antibody array with 32 target proteins. M2 macrophage transformation was confirmed in diosgenin-treated aorta by immunofluorescence and was validated in vitro using THP-1 cells. MAC387 (macrophage marker) and NFκBp65 (inflammatory hub) were upregulated in oxidatively-modified low-density lipoprotein (OxyLDL) and AD-induced condition. Macrophage differentiation, which induced the formation of inflammatory mediators, was not significantly suppressed by the inhibition of NFκB using dexamethasone. M1 macrophage polarization was identified in OxyLDL-induced monocytes, which are proinflammatory in nature, whereas M2 macrophage polarization was noticed in diosgenin-treated monocytes, which exhibit anti-inflammatory properties. M1-and M2-specific chemokines were analyzed using chemokine antibody array. Furthermore, the expression of proinflammatory macrophage (M1) was noticed in AD-induced aorta and anti-inflammatory macrophage (M2) was observed in diosgenin-treated aorta. This is the first report where, unifying the mechanism of diosgenin as aan nti-atherosclerotic and the expression of M1 and M2 specific chemokines is shown by downregulating NFκB and not by preventing the differentiation of monocyte into a macrophage, but by allowing macrophage to differentiate into M2, which aids in preventing the atherosclerotic progression.
Collapse
Affiliation(s)
- Ambika Binesh
- Department of Biotechnology, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Chennai, Tamil Nadu, India
| | | | - Halagowder Devaraj
- School of Life Sciences, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
48
|
He X, Xue M, Jiang S, Li W, Yu J, Xiang S. Fucoidan Promotes Apoptosis and Inhibits EMT of Breast Cancer Cells. Biol Pharm Bull 2019; 42:442-447. [PMID: 30828076 DOI: 10.1248/bpb.b18-00777] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fucoidan is an active component of seaweed, and could inhibit proliferation and induce apoptotic cell death in several tumor cells. However, the function of fucoidan in breast cancer is largely unknown. In the present study, we evaluated the anti-cancer potential of fucoidan in human breast cancer MCF-7 cells. Adult Sprague-Dawley rats were randomized to receive fucoidan (200 or 400 mg/kg·body weight per day) or normal saline via gastric gavage for 3 consecutive days. Serum samples were prepared from these rats, and used for subsequent experiments to examine the potential effects in MCF-7 cells. Cell viability was determined using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Apoptosis was examined with Hoechst33258 staining and flow cytometry. Cell migration and invasion were measured by wound scratch assay and Transwell assay, respectively. Western blot and enzyme-linked immunosorbent assay (ELISA) were used to examine the expression of secretory E-cadherin and matrix metalloproteinase-9 (MMP-9). Conditioned serum from fucoidan-treated rats significantly suppressed cell proliferation and enhanced apoptosis. Cell migration and invasion were also significantly decreased. Observed effects of conditioned serum were associated with upregulation of E-cadherin and downregulation of MMP-9. Conditioned serum of rats treated with fucoidan could inhibit the proliferation and promote apoptosis of MCF-7 cells. Cell invasion and migration were inhibited, possibly via decreased epithelial-mesenchymal transition (EMT) process. Fucoidan may be a promising therapeutic agent for human breast cancers.
Collapse
Affiliation(s)
- Xinjia He
- School of Medicine, Shandong University.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences.,Department of Radiation Oncology, Affiliated Hospital of Qingdao University Medical College
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine
| | - Shu Jiang
- The Affiliated Hospital of Qingdao University
| | - Weiwei Li
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences
| | - Shuai Xiang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine
| |
Collapse
|
49
|
Wang D, Yang L, Yue D, Cao L, Li L, Wang D, Ping Y, Shen Z, Zheng Y, Wang L, Zhang Y. Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion. Cancer Lett 2019; 452:244-253. [PMID: 30928379 DOI: 10.1016/j.canlet.2019.03.040] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/16/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022]
Abstract
Immune dysfunction often occurs in malignant pleural effusion (MPE). In our previous study, TGF-β derived predominantly from macrophages plays an important role in impairing T cell cytotoxicity in MPE. Therefore, we aimed to investigate whether other immunoregulatory cells and factors mediated TGF-β secretion from macrophages, involved in the immunosuppressive microenvironment of MPE, and to provide clues for potential immune therapy for MPE as well. We found that CCL22 level in MPE was significantly higher than that in non-malignant pleural effusion. The high level of CCL22 was closely associated with poor survival in MPE patients with lung cancer. CCL22 was dominantly produced by tumor-associated macrophages (TAMs) in MPE. Meanwhile, TAM-derived TGF-β mediated CCL22 expression in TAMs via c-Fos. CCL22 promoted the recruitment of regulatory T cells (Tregs) in MPE. Lastly, Treg-secreted high level of IL-8 further induced TGF-β production from TAMs, and promoted the immunosuppressive tumor microenvironment in MPE. Our results indicate that macrophage-derived CCL22 plays an important role in the immunosuppressive tumor microenvironment via IL-8 in MPE.
Collapse
Affiliation(s)
- Dong Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Dongli Yue
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Ling Cao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Lifeng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Dan Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Zhibo Shen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Yujia Zheng
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Liping Wang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, 450052, PR China.
| |
Collapse
|
50
|
Hsu HY, Hwang PA. Clinical applications of fucoidan in translational medicine for adjuvant cancer therapy. Clin Transl Med 2019; 8:15. [PMID: 31041568 PMCID: PMC6491526 DOI: 10.1186/s40169-019-0234-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/11/2019] [Indexed: 01/01/2023] Open
Abstract
The chemical composition of fucoidan, a kind of sulfated polysaccharide mainly derived from brown seaweed, includes a substantial percentage of l-fucose. Fucoidan has various biological and pharmacological activities, such as anti-cancer/anti-tumor, anti-proliferation, anti-inflammatory and immune-modulatory functions, and fucoidan-related dietary supplements and nutraceuticals have recently drawn considerable attention. In this review, we aim to provide a current view of different aspects of fucoidan biological activity, with a focus on the anti-cancer regulatory effects of fucoidan on growth signaling mechanisms. First, we discuss historical aspects of fucoidan and fucoidan products, as well as the anti-cancer effects of fucoidan on various cancer cells. Second, we discuss fucoidan’s biological activities and induction of cell death in cancer cells, including multiple mechanisms and signal transduction pathways related to its anti-cancer effects. Next, we focus on fucoidan and fucoidan-derived products that have been marketed as dietary supplements or nutraceuticals for cancer, including anti-cancer effects of fucoidan when combined as an adjuvant with clinical drugs. Finally, case studies of fucoidan in complementary therapy and as an alternative medicine in animal and mouse models and human clinical trials to alleviate side effects of anti-cancer chemotherapy are discussed. Combining fucoidan with clinical therapeutic agents in the treatment of cancer patients, dissecting the related signal transduction pathways and investigating their dynamic interactions may reveal potential molecular targets in cancer prevention, therapies and key obstacles in the current development of anti-cancer strategies.
Collapse
Affiliation(s)
- Hsien-Yeh Hsu
- Institute of Taiwan Fucoidan Development, 1F, No. 123-1, Sec. 4, Bade Rd., Songshan Dist., Taipei, 105, Taiwan. .,Department of Biotechnology and Laboratory Science in Medicine, Institute of Biotechnology in Medicine, National Yang-Ming University, 155 Li-Nong Street, Shih-Pai, Taipei, Taiwan.
| | - Pai-An Hwang
- Institute of Taiwan Fucoidan Development, 1F, No. 123-1, Sec. 4, Bade Rd., Songshan Dist., Taipei, 105, Taiwan.,Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City, Taiwan
| |
Collapse
|