1
|
Ashraf U, Morelli TL, Smith AB, Hernandez RR. Climate-Smart Siting for renewable energy expansion. iScience 2024; 27:110666. [PMID: 39351196 PMCID: PMC11439850 DOI: 10.1016/j.isci.2024.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
A massive expansion of renewable energy (RE) is underway to meet the world's climate goals. Although RE serves to reduce threats from climate change, it can also pose threats to species whose current and future ranges intersect with RE installations. Here, we propose a "Climate-Smart Siting" framework for addressing potential conflicts between RE expansion and biodiversity conservation. The framework engenders authentic consultation with affected and disadvantaged communities throughout and uses overlay and optimization routines to identify focal areas now and in the future where RE development poses promise and peril as species' ranges shift in response to climate change. We use this framework to demonstrate methods, identify decision outcomes, and discuss market-based levers for aligning RE expansion with the United Nations Global Biodiversity Framework now and as climate change progresses. In the face of the climate crisis, a Climate-Smart Siting strategy could help create solutions without causing further harm to biodiversity and human communities..
Collapse
Affiliation(s)
- Uzma Ashraf
- Wild Energy Center, Energy and Efficiency Institute, University of California, Davis, Davis, CA 95616, USA
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA 95616, USA
| | - Toni Lyn Morelli
- US Geological Survey, Northeast Climate Adaptation Science Center, Amherst, MA 24521, USA
| | - Adam B. Smith
- Center for Conservation & Sustainable Development, Missouri Botanical Garden, Saint Louis, MI 48880, USA
| | - Rebecca R. Hernandez
- Wild Energy Center, Energy and Efficiency Institute, University of California, Davis, Davis, CA 95616, USA
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Franzén M, Forsman A, Karimi B. Anthropogenic Influence on Moth Populations: A Comparative Study in Southern Sweden. INSECTS 2023; 14:702. [PMID: 37623412 PMCID: PMC10455763 DOI: 10.3390/insects14080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
As moths are vital components of ecosystems and serve as important bioindicators, understanding the dynamics of their communities and the factors influencing these dynamics, such as anthropogenic impacts, is crucial to understand the ecological processes. Our study focuses on two provinces in southern Sweden, Västergötland and Småland, where we used province records from 1974 to 2019 in combination with light traps (in 2020) to record the presence and abundance of moth species, subsequently assessing species traits to determine potential associations with their presence in anthropogenically modified landscapes. This study design provides a unique opportunity to assess temporal changes in moth communities and their responses to shifts in environmental conditions, including anthropogenic impacts. Across the Västergötland and Småland provinces in Sweden, we recorded 776 moth taxa belonging to fourteen different taxonomic families of mainly Macroheterocera. We captured 44% and 28% of the total moth species known from these provinces in our traps in Borås (Västergötland) and Kalmar (Småland), respectively. In 2020, the species richness and abundance were higher in Borås than in Kalmar, while the Shannon and Simpson diversity indices revealed a higher species diversity in Kalmar. Between 1974 and 2019, the colonisation rates of the provinces increased faster in Småland. Ninety-three species were found to have colonised these provinces since 1974, showing that species richness increased over the study period. We reveal significant associations between the probability of a species being present in the traps and distinct traits compared to a provincial species pool. Traits over-represented in the traps included species with a high variation in colour patterns, generalist habitat preferences, extended flight periods, lower host plant specificity, and overwintering primarily as eggs. Our findings underscore the ongoing ecological filtering that favours certain species-specific traits. This study sheds light on the roles of climate change and anthropogenic impacts in shaping moth biodiversity, offers key insights into the ecological processes involved, and can guide future conservation efforts.
Collapse
Affiliation(s)
- Markus Franzén
- Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden; (A.F.); (B.K.)
| | | | | |
Collapse
|
3
|
Sunde J, Franzén M, Betzholtz PE, Francioli Y, Pettersson LB, Pöyry J, Ryrholm N, Forsman A. Century-long butterfly range expansions in northern Europe depend on climate, land use and species traits. Commun Biol 2023; 6:601. [PMID: 37270651 DOI: 10.1038/s42003-023-04967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Climate change is an important driver of range shifts and community composition changes. Still, little is known about how the responses are influenced by the combination of land use, species interactions and species traits. We integrate climate and distributional data for 131 butterfly species in Sweden and Finland and show that cumulative species richness has increased with increasing temperature over the past 120 years. Average provincial species richness increased by 64% (range 15-229%), from 46 to 70. The rate and direction of range expansions have not matched the temperature changes, in part because colonisations have been modified by other climatic variables, land use and vary according to species characteristics representing ecological generalisation and species interactions. Results emphasise the role of a broad ecological filtering, whereby a mismatch between environmental conditions and species preferences limit the ability to disperse and establish populations in emerging climates and novel areas, with potentially widespread implications for ecosystem functioning.
Collapse
Affiliation(s)
- Johanna Sunde
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden.
| | - Markus Franzén
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Per-Eric Betzholtz
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Yannick Francioli
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Lars B Pettersson
- Biodiversity Unit, Department of Biology, Lund University, SE-22362, Lund, Sweden
| | - Juha Pöyry
- Finnish Environment Institute (SYKE), Nature Solutions, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Nils Ryrholm
- Department of Electronics, Mathematics and Natural Sciences, Faculty of Engineering and Sustainable Development, University of Gävle, SE-80176, Gävle, Sweden
| | - Anders Forsman
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden
| |
Collapse
|
4
|
Nemaungwe TM, van Dalen EMSP, Waniwa EO, Makaya PV, Chikowore G, Chidawanyika F. Biogeography of the theileriosis vector, Rhipicephalus appendiculatus under current and future climate scenarios of Zimbabwe. EXPERIMENTAL & APPLIED ACAROLOGY 2023:10.1007/s10493-023-00796-1. [PMID: 37171505 PMCID: PMC10293362 DOI: 10.1007/s10493-023-00796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Climate directly influences the epidemiology of vector-borne diseases at various spatial and temporal scales. Following the recent increased incidences of theileriosis in Zimbabwe, a disease mainly transmitted by Rhipicephalus appendiculatus, we determined lethal temperatures for the species and current and possible future distribution using the machine learning algorithm 'Maxent'. Rhipicephalus appendiculatus larvae had an upper lethal temperature (ULT50) of about 44 ± 0.5 °C and this was marginally higher for nymphs and adults at 46 ± 0.5 °C. Environmental temperatures recorded in selected zonal tick microhabitats were below the determined lethal limits, indicating the ability of the tick to survive these regions. The resultant model under current climatic conditions showed areas with high suitability indices to the eastern, northeastern and southeastern parts of the country, mainly in Masvingo, Manicaland and Mashonaland Central provinces. Future predictions as determined by 2050 climatic conditions indicate a reduction in suitable habitats with the tick receding to presently cooler high elevation areas such as the eastern Highlands of Zimbabwe and a few isolated pockets in the interior of the country. Lowveld areas show low suitability under current climatic conditions and are expected to remain unsuitable in future. Overall, the study shows that R. appendiculatus distribution is constrained by climatic factors and helps identify areas of where occurrence of the species and the disease it transmits is highly likely. This will assist in optimizing disease surveillance and vector management strategies targeted at the species.
Collapse
Affiliation(s)
- Tinotenda M Nemaungwe
- Division of Veterinary Technical Services, Ministry of Lands, Fisheries, Water and Rural Development, Harare, Zimbabwe
- Department of Zoology and Entomology, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Ellie M S P van Dalen
- Department of Zoology and Entomology, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Emily O Waniwa
- Division of Veterinary Technical Services, Ministry of Lands, Fisheries, Water and Rural Development, Harare, Zimbabwe
| | - Pious V Makaya
- Division of Veterinary Technical Services, Ministry of Lands, Fisheries, Water and Rural Development, Harare, Zimbabwe
| | - Gerald Chikowore
- Department of Zoology and Entomology, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Frank Chidawanyika
- Department of Zoology and Entomology, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa.
- International Centre of Insect Physiology and Ecology (icipe), PO Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
5
|
Betzholtz PE, Forsman A, Franzén M. Associations of 16-Year Population Dynamics in Range-Expanding Moths with Temperature and Years since Establishment. INSECTS 2023; 14:55. [PMID: 36661983 PMCID: PMC9864116 DOI: 10.3390/insects14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Parallel to the widespread decline of plants and animals, there is also an ongoing expansion of many species, which is especially pronounced in certain taxonomic groups and in northern latitudes. In order to inform an improved understanding of population dynamics in range-expanding taxa, we studied species richness, abundance and population growth in a sample of 25,138 individuals representing 107 range-expanding moth species at three light-trap sites in southeastern Sweden over 16 years (from 2005 to 2020) in relation to temperature and years since colonisation. Species richness and average abundance across range-expanding moths increased significantly over time, indicating a continuous influx of species expanding their ranges northward. Furthermore, average abundance and population growth increased significantly with increasing average ambient air temperature during the recording year, and average abundance also increased significantly with increasing temperature during the previous year. In general, population growth increased between years (growth rate > 1), although the population growth rate decreased significantly in association with years since colonisation. These findings highlight that, in contrast to several other studies in different parts of the world, species richness and abundance have increased in southeastern Sweden, partly because the warming climate enables range-expanding moths to realise their capacity for rapid distribution shifts and population growth. This may lead to fast and dramatic changes in community composition, with consequences for species interactions and the functioning of ecosystems. These findings are also of applied relevance for agriculture and forestry in that they can help to forecast the impacts of future invasive pest species.
Collapse
|
6
|
Differences in phenology, daily timing of activity, and associations of temperature utilization with survival in three threatened butterflies. Sci Rep 2022; 12:7534. [PMID: 35534513 PMCID: PMC9085768 DOI: 10.1038/s41598-022-10676-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
We used observational data collected during a mark-recapture study that generated a total of 7503 captures of 6108 unique individuals representing three endangered butterfly species to quantify inter-and intraindividual variation in temperature utilization and examine how activity patterns vary according to season, time of day, and ambient temperature. The Marsh Fritillary, the Apollo, and the Large Blue differed in utilized temperatures and phenology. Their daily activity patterns responded differently to temperature, in part depending on whether they were active in the beginning, middle or end of the season, in part reflecting interindividual variation and intraindividual flexibility, and in part owing to differences in ecology, morphology, and colouration. Activity temperatures varied over the season, and the Apollo and the Large Blue were primarily active at the highest available ambient temperatures (on the warmest days and during the warmest part of the day). The Marsh Fritillary was active early in the season and decreased activity during the highest temperatures. The relationship between individual lifespan and the average temperature was qualitatively different in the three species pointing to species-specific selection. Lifespan increased with an increasing range of utilized temperatures in all species, possibly reflecting that intra-individual flexibility comes with a general survival benefit.
Collapse
|
7
|
Pardee GL, Griffin SR, Stemkovski M, Harrison T, Portman ZM, Kazenel MR, Lynn JS, Inouye DW, Irwin RE. Life-history traits predict responses of wild bees to climate variation. Proc Biol Sci 2022; 289:20212697. [PMID: 35440209 PMCID: PMC9019520 DOI: 10.1098/rspb.2021.2697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Life-history traits, which are physical traits or behaviours that affect growth, survivorship and reproduction, could play an important role in how well organisms respond to environmental change. By looking for trait-based responses within groups, we can gain a mechanistic understanding of why environmental change might favour or penalize certain species over others. We monitored the abundance of at least 154 bee species for 8 consecutive years in a subalpine region of the Rocky Mountains to ask whether bees respond differently to changes in abiotic conditions based on their life-history traits. We found that comb-building cavity nesters and larger bodied bees declined in relative abundance with increasing temperatures, while smaller, soil-nesting bees increased. Further, bees with narrower diet breadths increased in relative abundance with decreased rainfall. Finally, reduced snowpack was associated with reduced relative abundance of bees that overwintered as prepupae whereas bees that overwintered as adults increased in relative abundance, suggesting that overwintering conditions might affect body size, lipid content and overwintering survival. Taken together, our results show how climate change may reshape bee pollinator communities, with bees with certain traits increasing in abundance and others declining, potentially leading to novel plant-pollinator interactions and changes in plant reproduction.
Collapse
Affiliation(s)
- Gabriella L Pardee
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27607, USA.,Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA.,Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Sean R Griffin
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Michael Stemkovski
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA.,Department of Biology and Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Tina Harrison
- Department of Biology, University of Louisiana, Lafayette, LA 70501, USA
| | - Zachary M Portman
- Department of Entomology, University of Minnesota, Twin Cities, Saint Paul, MN, 55108
| | - Melanie R Kazenel
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Joshua S Lynn
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA.,Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - David W Inouye
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA.,Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27607, USA.,Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
8
|
Hill GM, Kawahara AY, Daniels JC, Bateman CC, Scheffers BR. Climate change effects on animal ecology: butterflies and moths as a case study. Biol Rev Camb Philos Soc 2021; 96:2113-2126. [PMID: 34056827 PMCID: PMC8518917 DOI: 10.1111/brv.12746] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/10/2023]
Abstract
Butterflies and moths (Lepidoptera) are one of the most studied, diverse, and widespread animal groups, making them an ideal model for climate change research. They are a particularly informative model for studying the effects of climate change on species ecology because they are ectotherms that thermoregulate with a suite of physiological, behavioural, and phenotypic traits. While some species have been negatively impacted by climatic disturbances, others have prospered, largely in accordance with their diversity in life-history traits. Here we take advantage of a large repertoire of studies on butterflies and moths to provide a review of the many ways in which climate change is impacting insects, animals, and ecosystems. By studying these climate-based impacts on ecological processes of Lepidoptera, we propose appropriate strategies for species conservation and habitat management broadly across animals.
Collapse
Affiliation(s)
- Geena M. Hill
- Florida Natural Areas InventoryFlorida State University1018 Thomasville Rd., #200‐CTallahasseeFL323303U.S.A.
| | - Akito Y. Kawahara
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
- Department of BiologyUniversity of Florida876 Newell Dr.GainesvilleFL32611U.S.A.
| | - Jaret C. Daniels
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
- Department of Entomology and NematologyUniversity of Florida1881 Natural Area Dr.GainesvilleFL32608U.S.A.
| | - Craig C. Bateman
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
| | - Brett R. Scheffers
- Department of Wildlife Ecology and ConservationUniversity of Florida110 Newins‐Ziegler Hall, P.O. Box 110430GainesvilleFL32611U.S.A.
| |
Collapse
|
9
|
Vasiliev D, Greenwood S. The role of climate change in pollinator decline across the Northern Hemisphere is underestimated. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145788. [PMID: 33618305 DOI: 10.1016/j.scitotenv.2021.145788] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Pollinator biodiversity loss occurs at unprecedented rates globally, with particularly sharp declines documented in the North Temperate Zone. There is currently no consensus on the main drivers of the decline. Although climate change is expected to drive biodiversity loss in the future, current warming is often suggested to have positive impacts on pollinator assemblages in higher latitudes. Consequently, pollinator conservation initiatives in Europe and the USA tend to lack climate adaptation initiatives, an omission of which may be risky if climate change has significant negative impacts on pollinators. To gain an understanding of the impacts of climate change on pollinator biodiversity in the Northern Hemisphere, we conducted a literature review on genetic, species and community level diversity. Our findings suggest that global heating most likely causes homogenization of pollinator assemblages at all levels of pollinator biodiversity, making them less resilient to future stochasticity. Aspects of biodiversity that are rarely measured (e.g. genetic diversity, β-diversity, species evenness) tend to be most affected, while some dimensions of climate change, such as fluctuations in winter weather conditions, changes in the length of the vegetational season and increased frequency of extreme weather events, that seldom receive attention in empirical studies, tend to be particularly detrimental to pollinators. Negative effects of global heating on pollinator biodiversity are most likely exacerbated by homogenous and fragmented landscapes, widespread across Europe and the US, which limit opportunities for range-shifts and reduce micro-climatic buffering. This suggests the need for conservation initiatives to focus on increasing landscape connectivity and heterogeneity at multiple spatial scales.
Collapse
Affiliation(s)
- Denis Vasiliev
- Biodiversity, Wildlife and Ecosystem Health MSc, Biomedical Sciences, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, United Kingdom of Great Britain and Northern Ireland.
| | - Sarah Greenwood
- Biodiversity, Wildlife and Ecosystem Health MSc, Biomedical Sciences, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
10
|
Lenoir J, Bertrand R, Comte L, Bourgeaud L, Hattab T, Murienne J, Grenouillet G. Species better track climate warming in the oceans than on land. Nat Ecol Evol 2020; 4:1044-1059. [PMID: 32451428 DOI: 10.1101/765776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/03/2020] [Indexed: 05/23/2023]
Abstract
There is mounting evidence of species redistribution as climate warms. Yet, our knowledge of the coupling between species range shifts and isotherm shifts remains limited. Here, we introduce BioShifts-a global geo-database of 30,534 range shifts. Despite a spatial imbalance towards the most developed regions of the Northern Hemisphere and a taxonomic bias towards the most charismatic animals and plants of the planet, data show that marine species are better at tracking isotherm shifts, and move towards the pole six times faster than terrestrial species. More specifically, we find that marine species closely track shifting isotherms in warm and relatively undisturbed waters (for example, the Central Pacific Basin) or in cold waters subject to high human pressures (for example, the North Sea). On land, human activities impede the capacity of terrestrial species to track isotherm shifts in latitude, with some species shifting in the opposite direction to isotherms. Along elevational gradients, species follow the direction of isotherm shifts but at a pace that is much slower than expected, especially in areas with warm climates. Our results suggest that terrestrial species are lagging behind shifting isotherms more than marine species, which is probably related to the interplay between the wider thermal safety margin of terrestrial versus marine species and the more constrained physical environment for dispersal in terrestrial versus marine habitats.
Collapse
Affiliation(s)
- Jonathan Lenoir
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN), UMR7058, CNRS and Université de Picardie Jules Verne, Amiens, France.
| | - Romain Bertrand
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, UMR5321, CNRS and Université Toulouse III - Paul Sabatier, Moulis, France
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Toulouse III - Paul Sabatier, CNRS, IRD and UPS, Toulouse, France
| | - Lise Comte
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, TN, USA
| | - Luana Bourgeaud
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Toulouse III - Paul Sabatier, CNRS, IRD and UPS, Toulouse, France
| | - Tarek Hattab
- MARBEC, Univ Montpellier, CNRS, IFREMER and IRD, Sète, France
| | - Jérôme Murienne
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Toulouse III - Paul Sabatier, CNRS, IRD and UPS, Toulouse, France
| | - Gaël Grenouillet
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Toulouse III - Paul Sabatier, CNRS, IRD and UPS, Toulouse, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
11
|
Forsman A, De Moor T, van Weeren R, Bravo G, Ghorbani A, Ale Ebrahim Dehkordi M, Farjam M. Eco-evolutionary perspectives on emergence, dispersion and dissolution of historical Dutch commons. PLoS One 2020; 15:e0236471. [PMID: 32730285 PMCID: PMC7392261 DOI: 10.1371/journal.pone.0236471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/07/2020] [Indexed: 11/18/2022] Open
Abstract
Historical commons represent self-governed governance regimes that regulate the use and management of natural and man-made shared resources. Despite growing scientific interests, analyses of commons evolution and temporal dynamics are rare and drivers of change (birth, adaptation, dissolution) remain obscure. We apply an interdisciplinary approach and address these issues from an eco-evolutionary perspective. Analyses of > 400 Dutch commons over more than a millennium (between the 9th and the 20th century) uncovered that most commons originated between 1200 and 1700, and that there was a particularly high rate of evolution during 1300-1550, a pattern intermediate to gradualism and punctuated equilibrium in biological evolution. Dissolutions of commons were rare prior to 1800 and peaked around 1850, comparable to a mass extinction in biology. Temporal trends in number, spatial distribution, density, and dispersion of historical commons were distinctive and resembled developments seen at the levels of species and individuals in the growth of biological communities and populations, in that they showed signs of saturation determined by the abundance and distribution of resources. The spatiotemporal dynamics of commons also pointed to important roles of social, economic and political factors, such as new reclamations of resources and pressure on resources due to population growth. Despite internal and external pressures, the self-governing commons studied here were very successful, in the sense that they persisted for on average >350 years. There was a weak positive relationship between the use of multiple resources and the lifespan of commons, resembling associations between diversity and persistence seen in biological systems. It is argued that eco-evolutionary perspectives can further the understanding of the long-term dynamics of commons as institutions for collective action, vitalize future research, improve management of shared goods, and advise about sustainable utilization of finite resources.
Collapse
Affiliation(s)
- Anders Forsman
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
- * E-mail:
| | - Tine De Moor
- Department of History and Art History, Utrecht University, Utrecht, The Netherlands
| | - René van Weeren
- Department of History and Art History, Utrecht University, Utrecht, The Netherlands
| | - Giangiacomo Bravo
- Department of Social Studies and Centre for Data Intensive Sciences and Applications, Linnaeus University, Växjö, Sweden
| | - Amineh Ghorbani
- Faculty of Technology, Policy and Management, Delft University of Technology, Delft, The Netherlands
| | | | - Mike Farjam
- Department of Social Studies and Centre for Data Intensive Sciences and Applications, Linnaeus University, Växjö, Sweden
| |
Collapse
|
12
|
Franzén M, Betzholtz PE, Pettersson LB, Forsman A. Urban moth communities suggest that life in the city favours thermophilic multi-dimensional generalists. Proc Biol Sci 2020; 287:20193014. [PMID: 32517620 DOI: 10.1098/rspb.2019.3014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biodiversity is challenged worldwide by exploitation, global warming, changes in land use and increasing urbanization. It is hypothesized that communities in urban areas should consist primarily of generalist species with broad niches that are able to cope with novel, variable, fragmented, warmer and unpredictable environments shaped by human pressures. We surveyed moth communities in three cities in northern Europe and compared them with neighbouring moth assemblages constituting species pools of potential colonizers. We found that urban moth communities consisted of multi-dimensional generalist species that had larger distribution ranges, more variable colour patterns, longer reproductive seasons, broader diets, were more likely to overwinter as an egg, more thermophilic, and occupied more habitat types compared with moth communities in surrounding areas. When body size was analysed separately, results indicated that city occupancy was associated with larger size, but this effect disappeared when body size was analysed together with the other traits. Our findings indicate that urbanization imposes a spatial filtering process in favour of thermophilic species characterized by high intraspecific diversity and multi-dimensional generalist lifestyles over specialized species with narrow niches.
Collapse
Affiliation(s)
- Markus Franzén
- Ecology and Evolution in Microbial Model Systems, EEMIS, Department of Biology and Environmental Science, Linnaeus University, 39182 Kalmar, Sweden
| | | | - Lars B Pettersson
- Biodiversity Unit, Department of Biology, Lund University, 22362 Lund, Sweden
| | - Anders Forsman
- Ecology and Evolution in Microbial Model Systems, EEMIS, Department of Biology and Environmental Science, Linnaeus University, 39182 Kalmar, Sweden
| |
Collapse
|
13
|
Species better track climate warming in the oceans than on land. Nat Ecol Evol 2020; 4:1044-1059. [PMID: 32451428 DOI: 10.1038/s41559-020-1198-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/03/2020] [Indexed: 12/30/2022]
Abstract
There is mounting evidence of species redistribution as climate warms. Yet, our knowledge of the coupling between species range shifts and isotherm shifts remains limited. Here, we introduce BioShifts-a global geo-database of 30,534 range shifts. Despite a spatial imbalance towards the most developed regions of the Northern Hemisphere and a taxonomic bias towards the most charismatic animals and plants of the planet, data show that marine species are better at tracking isotherm shifts, and move towards the pole six times faster than terrestrial species. More specifically, we find that marine species closely track shifting isotherms in warm and relatively undisturbed waters (for example, the Central Pacific Basin) or in cold waters subject to high human pressures (for example, the North Sea). On land, human activities impede the capacity of terrestrial species to track isotherm shifts in latitude, with some species shifting in the opposite direction to isotherms. Along elevational gradients, species follow the direction of isotherm shifts but at a pace that is much slower than expected, especially in areas with warm climates. Our results suggest that terrestrial species are lagging behind shifting isotherms more than marine species, which is probably related to the interplay between the wider thermal safety margin of terrestrial versus marine species and the more constrained physical environment for dispersal in terrestrial versus marine habitats.
Collapse
|
14
|
Takahashi Y, Noriyuki S. Colour polymorphism influences species' range and extinction risk. Biol Lett 2019; 15:20190228. [PMID: 31337289 DOI: 10.1098/rsbl.2019.0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polymorphisms in a population are expected to increase the growth rate and the stability of the population, leading to the expansion of geographical distribution and mitigation of extinction risk of a species. However, the generality of such ecological consequences of colour polymorphism remains uncertain. Here, via a comparative approach, we assessed whether colour polymorphisms influence climatic niche breadth and extinction risk in some groups of damselflies, butterflies and vertebrates. The climatic niche breadth was greater, and extinction risk was lower in polymorphic species than in monomorphic species in all taxa analysed. The results suggest that colour polymorphism facilitates range expansion and species persistence.
Collapse
Affiliation(s)
- Yuma Takahashi
- Graduate School of Science, Chiba University, Chiba, Japan
| | - Suzuki Noriyuki
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| |
Collapse
|
15
|
Sunde J, Larsson P, Forsman A. Adaptations of early development to local spawning temperature in anadromous populations of pike (Esox lucius). BMC Evol Biol 2019; 19:148. [PMID: 31331267 PMCID: PMC6647320 DOI: 10.1186/s12862-019-1475-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/11/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In the wake of climate change many environments will be exposed to increased and more variable temperatures. Knowledge about how species and populations respond to altered temperature regimes is therefore important to improve projections of how ecosystems will be affected by global warming, and to aid management. We conducted a common garden, split-brood temperature gradient (4.5 °C, 9.7 °C and 12.3 °C) experiment to study the effects of temperature in two populations (10 families from each population) of anadromous pike (Esox lucius) that normally experience different temperatures during spawning. Four offspring performance measures (hatching success, day degrees until hatching, fry survival, and fry body length) were compared between populations and among families. RESULTS Temperature affected all performance measures in a population-specific manner. Low temperature had a positive effect on the Harfjärden population and a negative effect on the Lervik population. Further, the effects of temperature differed among families within populations. CONCLUSIONS The population-specific responses to temperature indicate genetic differentiation in developmental plasticity between populations, and may reflect an adaptation to low temperature during early fry development in Harfjärden, where the stream leading up to the wetland dries out relatively early in the spring, forcing individuals to spawn early. The family-specific responses to temperature treatment indicate presence of genetic variation for developmental plasticity (G x E) within both populations. Protecting between- and within-population genetic variation for developmental plasticity and high temperature-related adaptive potential of early life history traits will be key to long-term viability and persistence in the face of continued climate change.
Collapse
Affiliation(s)
- Johanna Sunde
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, SE-392 31 Kalmar, Sweden
| | - Per Larsson
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, SE-392 31 Kalmar, Sweden
| | - Anders Forsman
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, SE-392 31 Kalmar, Sweden
| |
Collapse
|
16
|
Tamario C, Sunde J, Petersson E, Tibblin P, Forsman A. Ecological and Evolutionary Consequences of Environmental Change and Management Actions for Migrating Fish. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00271] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
17
|
Nordahl O, Tibblin P, Koch-Schmidt P, Berggren H, Larsson P, Forsman A. Sun-basking fish benefit from body temperatures that are higher than ambient water. Proc Biol Sci 2019; 285:rspb.2018.0639. [PMID: 29848654 PMCID: PMC5998101 DOI: 10.1098/rspb.2018.0639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/03/2018] [Indexed: 01/14/2023] Open
Abstract
In terrestrial environments, cold-blooded animals can attain higher body temperatures by sun basking, and thereby potentially benefit from broader niches, improved performance and higher fitness. The higher heat capacity and thermal conductivity of water compared with air have been universally assumed to render heat gain from sun basking impossible for aquatic ectotherms, such that their opportunities to behaviourally regulate body temperature are largely limited to choosing warmer or colder habitats. Here we challenge this paradigm. Using physical models we first show that submerged objects exposed to natural sunlight attain temperatures in excess of ambient water. We next demonstrate that free-ranging carp (Cyprinus carpio) can increase their body temperature during aquatic sun basking close to the surface. The temperature excess gained by basking was larger in dark than in pale individuals, increased with behavioural boldness, and was associated with faster growth. Overall, our results establish aquatic sun basking as a novel ecologically significant mechanism for thermoregulation in fish. The discovery of this previously overlooked process has practical implications for aquaculture, offers alternative explanations for behavioural and phenotypic adaptations, will spur future research in fish ecology, and calls for modifications of models concerning climate change impacts on biodiversity in marine and freshwater environments.
Collapse
Affiliation(s)
- Oscar Nordahl
- Department of Biology and Environmental Science, Linnaeus University, Barlastgatan 11, 392 31, Kalmar, Sweden
| | - Petter Tibblin
- Department of Biology and Environmental Science, Linnaeus University, Barlastgatan 11, 392 31, Kalmar, Sweden
| | - Per Koch-Schmidt
- Department of Biology and Environmental Science, Linnaeus University, Barlastgatan 11, 392 31, Kalmar, Sweden
| | - Hanna Berggren
- Department of Biology and Environmental Science, Linnaeus University, Barlastgatan 11, 392 31, Kalmar, Sweden
| | - Per Larsson
- Department of Biology and Environmental Science, Linnaeus University, Barlastgatan 11, 392 31, Kalmar, Sweden
| | - Anders Forsman
- Department of Biology and Environmental Science, Linnaeus University, Barlastgatan 11, 392 31, Kalmar, Sweden
| |
Collapse
|
18
|
Franzén M, Forsman A, Betzholtz P. Variable color patterns influence continental range size and species–area relationships on islands. Ecosphere 2019. [DOI: 10.1002/ecs2.2577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Markus Franzén
- Department of Biology and Environmental Science Center for Ecology and Evolution in Microbial Model Systems EEMiS Linnaeus University SE‐391 82 Kalmar Sweden
| | - Anders Forsman
- Department of Biology and Environmental Science Center for Ecology and Evolution in Microbial Model Systems EEMiS Linnaeus University SE‐391 82 Kalmar Sweden
| | - Per‐Eric Betzholtz
- Department of Biology and Environmental Science Linnaeus University SE‐391 82 Kalmar Sweden
| |
Collapse
|
19
|
Yıldırım Y, Tinnert J, Forsman A. Contrasting patterns of neutral and functional genetic diversity in stable and disturbed environments. Ecol Evol 2018; 8:12073-12089. [PMID: 30598801 PMCID: PMC6303714 DOI: 10.1002/ece3.4667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 01/05/2023] Open
Abstract
Genetic structure among and diversity within natural populations is influenced by a combination of ecological and evolutionary processes. These processes can differently influence neutral and functional genetic diversity and also vary according to environmental settings. To investigate the roles of interacting processes as drivers of population-level genetic diversity in the wild, we compared neutral and functional structure and diversity between 20 Tetrix undulata pygmy grasshopper populations in disturbed and stable habitats. Genetic differentiation was evident among the different populations, but there was no genetic separation between stable and disturbed environments. The incidence of long-winged phenotypes was higher in disturbed habitats, indicating that these populations were recently established by flight-capable colonizers. Color morph diversity and dispersion of outlier genetic diversity, estimated using AFLP markers, were higher in disturbed than in stable environments, likely reflecting that color polymorphism and variation in other functionally important traits increase establishment success. Neutral genetic diversity estimated using AFLP markers was lower in disturbed habitats, indicating stronger eroding effects on neutral diversity of genetic drift associated with founding events in disturbed compared to stable habitats. Functional diversity and neutral diversity were negatively correlated across populations, highlighting the utility of outlier loci in genetics studies and reinforcing that estimates of genetic diversity based on neutral markers do not infer evolutionary potential and the ability of populations and species to cope with environmental change.
Collapse
Affiliation(s)
- Yeşerin Yıldırım
- Ecology and Evolution in Microbial Model SystemsEEMISDepartment of Biology and Environmental ScienceLinnaeus UniversityKalmarSweden
| | - Jon Tinnert
- Ecology and Evolution in Microbial Model SystemsEEMISDepartment of Biology and Environmental ScienceLinnaeus UniversityKalmarSweden
| | - Anders Forsman
- Ecology and Evolution in Microbial Model SystemsEEMISDepartment of Biology and Environmental ScienceLinnaeus UniversityKalmarSweden
| |
Collapse
|
20
|
Forsman A. On the role of sex differences for evolution in heterogeneous and changing fitness landscapes: insights from pygmy grasshoppers. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170429. [PMID: 30150227 PMCID: PMC6125723 DOI: 10.1098/rstb.2017.0429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 12/16/2022] Open
Abstract
Much research has been devoted to study evolution of local adaptations by natural selection, and to explore the roles of neutral processes and developmental plasticity for patterns of diversity among individuals, populations and species. Some aspects, such as evolution of adaptive variation in phenotypic traits in stable environments, and the role of plasticity in predictable changing environments, are well understood. Other aspects, such as the role of sex differences for evolution in spatially heterogeneous and temporally changing environments and dynamic fitness landscapes, remain elusive. An increased understanding of evolution requires that sex differences in development, physiology, morphology, life-history and behaviours are more broadly considered. Studies of selection should take into consideration that the relationships linking phenotypes to fitness may vary not only according to environmental conditions but also differ between males and females. Such opposing selection, sex-by-environment interaction effects of selection and sex-specific developmental plasticity can have consequences for population differentiation, local adaptations and for the dynamics of polymorphisms. Integrating sex differences in analytical frameworks and population comparisons can therefore illuminate neglected evolutionary drivers and reconcile unexpected patterns. Here, I illustrate these issues using empirical examples from over 20 years of research on colour polymorphic Tetrix subulata and Tetrix undulata pygmy grasshoppers, and summarize findings from observational field studies, manipulation experiments, common garden breeding experiments and population genetics studies.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Anders Forsman
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden
| |
Collapse
|
21
|
Affiliation(s)
- Sarah E. Diamond
- Department of BiologyCase Western Reserve University Cleveland OH USA
| |
Collapse
|
22
|
To What Extent Can Existing Research Help Project Climate Change Impacts on Biodiversity in Aquatic Environments? A Review of Methodological Approaches. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2016. [DOI: 10.3390/jmse4040075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|