1
|
Mares-Barbosa TB, Cuellar-Santoyo AO, Ruiz-Rodríguez VM, Hernández-Balderas K, González-Hernández O, Portales-Pérez DP, Estrada-Sánchez AM. Repeated administration of a subanesthetic dose of ketamine results in impaired motor and cognitive behavior and differential expression of hippocampal P2X1 and P2X7 receptors in adult mice. Behav Brain Res 2025; 482:115441. [PMID: 39842642 DOI: 10.1016/j.bbr.2025.115441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Ketamine hydrochloride serves multiple purposes, including its use as a general anesthetic, treatment for depression, and recreational drug. In studies involving rodents, ketamine is utilized as a model for schizophrenia. However, it is unclear whether age affects the behavioral response induced by repeated ketamine administration and if it modifies the expression levels of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and purinergic receptors (P2X1, P2X4, P2X7). In the present study, we evaluated the effect of intraperitoneal administration of subanesthetic ketamine dose (30 mg/Kg) for fourteen days on young (35 days of age) and adult (76 days of age) mice on different behavioral tests. Nest-building behavior was evaluated during the fourteen-day treatment; short-term memory and social interaction tests were assessed twenty-four hours after the last administration of ketamine. Interestingly, only adult mice treated with ketamine showed impaired nest-building and novel object recognition. In the hippocampus, an area related to memory and cognition, ketamine administration showed no changes in the relative expression of GluN1, P2X4, and P2X7 while increasing GluA2 and P2X1 only in young mice. In contrast, when assessing the protein levels of P2X1 and P2X7 in the hippocampus following ketamine treatment, young mice exhibited a decrease in P2X1 levels while P2X7 levels increased. In contrast, adult mice showed the opposite pattern; P2X1 levels were higher, and P2X7 levels decreased. These results suggest that adult mice are more vulnerable to repeated ketamine administration than young mice and that a differential response of P2X1 and P2X7 might contribute to ketamine-induced behavioral changes.
Collapse
Affiliation(s)
- Teresa Belem Mares-Barbosa
- Laboratorio de Neurobiología, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico; Laboratorio de Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Ares Orlando Cuellar-Santoyo
- Laboratorio de Neurobiología, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Victor Manuel Ruiz-Rodríguez
- Laboratorio de Neurobiología, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Karen Hernández-Balderas
- Laboratorio de Neurobiología, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Osiel González-Hernández
- Laboratorio de Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Diana Patricia Portales-Pérez
- Laboratorio de Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Ana María Estrada-Sánchez
- Laboratorio de Neurobiología, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico.
| |
Collapse
|
2
|
von Mücke-Heim IA, Oldekamp J, Metzger MW, Kläffgen S, Tang H, Walser SM, Dedic N, Rammes G, Holsboer F, Wurst W, Deussing JM. Establishment and behavioural characterization of a novel constitutive P2X7 receptor knockout mouse line. Purinergic Signal 2025:10.1007/s11302-025-10074-x. [PMID: 40024982 DOI: 10.1007/s11302-025-10074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
The P2X7 receptor is an adenosine triphosphate (ATP)-gated ion channel expressed in different cell types of the brain. Polymorphisms in the P2RX7 gene have repeatedly been associated with psychiatric disorders including major depression. Depression is a stress-related disorder in which a dysregulation of the immune system has attracted increasing attention as a potential disease mechanism. The well-documented role of P2X7 in inflammatory conditions advocates its involvement in immune system dysregulation and depression genesis. However, understanding its exact role requires further research using appropriate animal models. Unfortunately, some of the most widely used P2X7 knockout mouse models are limited in their utility by the continuous expression of certain P2rx7 splice variants or even activation of de novo transcripts. To overcome this limitation, we generated a novel constitutive and complete P2X7 KO mouse line. These KO mice lack all known murine splice variants and protein expression resulting in a loss-of-function as confirmed by calcium imaging and by the inability of P2X7-deficient peritoneal macrophages to mount an appropriate interleukin (IL)-1β response. Comprehensive characterization using a battery of tests assessing locomotion, anxiety- and depression-related as well as social behaviour revealed differences in locomotor and exploratory behaviours. P2X7 KO mice showed slightly increased locomotor activity and reduced anxiety-related behaviour at baseline. Under conditions of chronic stress exposure, genotype-dependent differences largely dissolved while P2X7 deficiency promoted enhanced stress resilience with regard to social behaviour. Taken together, our findings add further evidence for an involvement of the P2X7 in shaping different behavioural responses and their modulation by stressful environments. This novel loss-of-function model will contribute to a better understanding of P2X7 in stress-associated behaviours in basic and translational neuropsychiatric research.
Collapse
Affiliation(s)
- Iven-Alex von Mücke-Heim
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Max Planck Institute of Psychiatry, Research Clinic, 80804, Munich, Germany
| | - Judit Oldekamp
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Michael W Metzger
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Sarah Kläffgen
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Hao Tang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Sandra M Walser
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Nina Dedic
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care, Klinikum Rechts Der Isar, 81675, Munich, Germany
| | - Florian Holsboer
- Max Planck Institute of Psychiatry, Present Address: HMNC Brain Health, 80539, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Munich, 81377, Munich, Germany
| | - Jan M Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
3
|
Chen YH, Lin S, Jin SY, Gao TM. Extracellular ATP Is a Homeostatic Messenger That Mediates Cell-Cell Communication in Physiological Processes and Psychiatric Diseases. Biol Psychiatry 2025; 97:41-53. [PMID: 38679359 DOI: 10.1016/j.biopsych.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Neuronal activity is the basis of information encoding and processing in the brain. During neuronal activation, intracellular ATP (adenosine triphosphate) is generated to meet the high-energy demands. Simultaneously, ATP is secreted, increasing the extracellular ATP concentration and acting as a homeostatic messenger that mediates cell-cell communication to prevent aberrant hyperexcitability of the nervous system. In addition to the confined release and fast synaptic signaling of classic neurotransmitters within synaptic clefts, ATP can be released by all brain cells, diffuses widely, and targets different types of purinergic receptors on neurons and glial cells, making it possible to orchestrate brain neuronal activity and participate in various physiological processes, such as sleep and wakefulness, learning and memory, and feeding. Dysregulation of extracellular ATP leads to a destabilizing effect on the neural network, as found in the etiopathology of many psychiatric diseases, including depression, anxiety, schizophrenia, and autism spectrum disorder. In this review, we summarize advances in the understanding of the mechanisms by which extracellular ATP serves as an intercellular signaling molecule to regulate neural activity, with a focus on how it maintains the homeostasis of neural networks. In particular, we also focus on neural activity issues that result from dysregulation of extracellular ATP and propose that aberrant levels of extracellular ATP may play a role in the etiopathology of some psychiatric diseases, highlighting the potential therapeutic targets of ATP signaling in the treatment of these psychiatric diseases. Finally, we suggest potential avenues to further elucidate the role of extracellular ATP in intercellular communication and psychiatric diseases.
Collapse
Affiliation(s)
- Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Song Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Shi-Yang Jin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Papp ZT, Ribiczey P, Kató E, Tóth ZE, Varga ZV, Giricz Z, Hanuska A, Al-Khrasani M, Zsembery Á, Zelles T, Harsing LG, Köles L. Angiotensin IV Receptors in the Rat Prefrontal Cortex: Neuronal Expression and NMDA Inhibition. Biomedicines 2024; 13:71. [PMID: 39857655 PMCID: PMC11760436 DOI: 10.3390/biomedicines13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT1 receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC. At the same time, it suggests that alternative angiotensin pathways, presumably involving AT4 receptors (AT4Rs), might exert inhibitory effects. Angiotensin IV (Ang IV) and its analogs have demonstrated cognitive benefits in animal models of learning and memory deficits. METHODS Immunohistochemistry and whole-cell patch-clamp techniques were used to map the cell-type-specific localization of AT4R, identical to insulin-regulated aminopeptidase (IRAP), and to investigate the modulatory effects of Ang IV on NMDAR function in layer V pyramidal cells of the rat PFC. RESULTS AT4R/IRAP expression was detected in pyramidal cells and GABAergic interneurons, but not in microglia or astrocytes, in layer V of the PFC in 9-12-day-old and 6-month-old rats. NMDA (30 μM) induced stable inward cation currents, significantly inhibited by Ang IV (1 nM-1 µM) in a subset of pyramidal neurons. This inhibition was reproduced by the IRAP inhibitor LVVYP-H7 (10-100 nM). Synaptic isolation of pyramidal neurons did not affect the Ang IV-mediated inhibition of NMDA currents. CONCLUSIONS Ang IV/IRAP-mediated inhibition of NMDA currents in layer V pyramidal neurons of the PFC may represent a way of regulating cognitive functions and thus a potential pharmacological target for cognitive impairments and related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zsolt Tamás Papp
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Polett Ribiczey
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Erzsébet Kató
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Zsuzsanna E. Tóth
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary;
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Adrienn Hanuska
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
| | - Tibor Zelles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Laszlo G. Harsing
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| |
Collapse
|
5
|
Domingos LB, Silva Júnior AFD, Diniz CRAF, Rosa J, Terzian ALB, Resstel LBM. P2X7 receptors modulate acquisition of cue fear extinction and contextual background memory generalization in male mice. Neuropharmacology 2024; 261:110177. [PMID: 39366651 DOI: 10.1016/j.neuropharm.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The purinergic P2X7 receptors (P2X7R) are activated by adenosine triphosphate (ATP) in several brain regions, particularly those involved with emotional control and the regulation of fear-related memories. Here, we investigate the role of P2X7R in fear learning memory, specifically in the acquisition and consolidation phases of the cued fear conditioning paradigm. C57Bl/6 wildtype (WT) male mice that received a single i.p. injection of the selective P2X7R antagonist A438079 prior the conditioning session showed generalization of cued fear memory and impaired fear extinction recall in the test session, while those treated prior the extinction session exhibited a similar behavior profile accompanied by resistance in the extinction learning. However, no effects were observed when this drug was administered immediately after the conditioning, extinction, or before the test session. Our results with P2X7R knockout (P2X7 KO) mice showed a behavioral profile that mirrored the collective effects observed across all pharmacological treatment conditions. This suggests that the P2X7R KO model effectively replicates the behavioral changes induced by the pharmacological interventions, demonstrating that we have successfully isolated the role of P2X7R in the fear and extinction phases of memory. These findings highlight the role of P2X7R in the acquisition and recall of extinction memory and supports P2X7R as a promising candidate for controlling abnormal fear processing, with potential applications for stress exposure-related disorders such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Luana Barreto Domingos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | | | - Cassiano Ricardo Alves Faria Diniz
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Center for Neuroscience, University of California, Davis, CA, USA
| | | | - Ana Luisa B Terzian
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
6
|
Najdaghi S, Davani DN, Fouladseresht H, Ebrahimi N, Sullman MJM, Moradi M, Eskandari N. The Role of Extracellular Vesicles and Microparticles in Central Nervous System Disorders: Mechanisms, Biomarkers, and Therapeutic Potential. Cell Mol Neurobiol 2024; 44:82. [PMID: 39625540 PMCID: PMC11614997 DOI: 10.1007/s10571-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
Microscopic, membranous vesicles known as extracellular vesicles (EVs) have been proposed to play a role in the mechanisms underlying central nervous system (CNS) diseases. EVs are secreted by a variety of cells, including myeloid, endothelial, microglial, oligodendroglial, and mesenchymal stem cells (MSCs). Body fluids such as plasma, urine, and cerebrospinal fluid (CSF) contain microparticles (MPs). The detection of MPs in CSF may indicate genetic or environmental susceptibility to conditions such as schizophrenia, schizoaffective disorder, and bipolar disorder. MPs of different origins can exhibit changes in specific biomarkers at various stages of the disease, aiding in the diagnosis and monitoring of neurological conditions. However, understanding the role and clinical applications of MPs is complicated by challenges such as their isolation and dual roles within the CNS. In this review, we discuss the history, characteristics, and roles of MPs in CNS diseases. We also provide practical insights for future research and highlight the challenges that obscure the therapeutic potential of MPs.
Collapse
Affiliation(s)
- Soroush Najdaghi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Hamed Fouladseresht
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Ebrahimi
- Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Social Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Life and Health Sciences, School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Marjan Moradi
- Departement of Genetics, School of Science, Shahrekord University, Shahrakord, Iran
| | - Nahid Eskandari
- Immunology Department, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran.
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Huang L, Mut-Arbona P, Varga B, Török B, Brunner J, Arszovszki A, Iring A, Kisfali M, Vizi ES, Sperlágh B. P2X7 purinergic receptor modulates dentate gyrus excitatory neurotransmission and alleviates schizophrenia-like symptoms in mouse. iScience 2023; 26:107560. [PMID: 37649698 PMCID: PMC10462828 DOI: 10.1016/j.isci.2023.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
ATP-gated P2X7 receptors (P2X7Rs) play a crucial role in brain disorders. However, how they affect normal and pathological synaptic transmission is still largely unclear. Here, by using whole-cell patch-clamp technique to record AMPA- and NMDA receptor-mediated excitatory postsynaptic currents (s/mEPSCs) in dentate gyrus granule cells (DG GCs), we revealed a modulation by P2X7Rs of presynaptic sites, especially originated from entorhinal cortex (EC)-GC path but not the mossy cell (MC)-GC path. The involvement of P2X7Rs was confirmed using a pharmacological approach. Additionally, the acute activation of P2X7Rs directly elevated calcium influx from EC-GC terminals. In postnatal phencyclidine (PCP)-induced mouse model of schizophrenia, we observed that P2X7R deficiency restored the EC-GC synapse alteration and alleviated PCP-induced symptoms. To summarize, P2X7Rs participate in the modulation of GC excitatory neurotransmission in the DG via EC-GC pathway, contributing to pathological alterations of neuronal functions leading to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lumei Huang
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Bernadett Varga
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Bibiana Török
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - János Brunner
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Antonia Arszovszki
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - András Iring
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Máté Kisfali
- Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - E. Sylvester Vizi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
8
|
Mut-Arbona P, Huang L, Baranyi M, Tod P, Iring A, Calzaferri F, de Los Ríos C, Sperlágh B. Dual Role of the P2X7 Receptor in Dendritic Outgrowth during Physiological and Pathological Brain Development. J Neurosci 2023; 43:1125-1142. [PMID: 36732073 PMCID: PMC9962779 DOI: 10.1523/jneurosci.0805-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 02/04/2023] Open
Abstract
At high levels, extracellular ATP operates as a "danger" molecule under pathologic conditions through purinergic receptors, including the ionotropic P2X7 receptor (P2X7R). Its endogenous activation is associated with neurodevelopmental disorders; however, its function during early embryonic stages remains largely unclear. Our objective was to determine the role of P2X7R in the regulation of neuronal outgrowth. For this purpose, we performed Sholl analysis of dendritic branches on primary hippocampal neurons and in acute hippocampal slices from WT mice and mice with genetic deficiency or pharmacological blockade of P2X7R. Because abnormal dendritic branching is a hallmark of certain neurodevelopmental disorders, such as schizophrenia, a model of maternal immune activation (MIA)-induced schizophrenia, was used for further morphologic investigations. Subsequently, we studied MIA-induced behavioral deficits in young adult mice females and males. Genetic deficiency or pharmacological blockade of P2X7R led to branching deficits under physiological conditions. Moreover, pathologic activation of the receptor led to deficits in dendritic outgrowth on primary neurons from WT mice but not those from P2X7R KO mice exposed to MIA. Likewise, only MIA-exposed WT mice displayed schizophrenia-like behavioral and cognitive deficits. Therefore, we conclude that P2X7R has different roles in the development of hippocampal dendritic arborization under physiological and pathologic conditions.SIGNIFICANCE STATEMENT Our main finding is a novel role for P2X7R in neuronal branching in the early stages of development under physiological conditions. We show how a decrease in the expression of P2X7R during brain development causes the receptor to play pathologic roles in adulthood. Moreover, we studied a neurodevelopmental model of schizophrenia and found that, at higher ATP concentrations, endogenous activation of P2X7R is necessary and sufficient for the development of positive and cognitive symptoms.
Collapse
Affiliation(s)
- Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085, Budapest, Hungary
| | - Lumei Huang
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
| | - Pál Tod
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
| | - András Iring
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
| | - Francesco Calzaferri
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Cristobal de Los Ríos
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085, Budapest, Hungary
| |
Collapse
|
9
|
Alnafisah R, Lundh A, Asah SM, Hoeflinger J, Wolfinger A, Hamoud AR, McCullumsmith RE, O'Donovan SM. Altered purinergic receptor expression in the frontal cortex in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:96. [PMID: 36376358 PMCID: PMC9663420 DOI: 10.1038/s41537-022-00312-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/03/2022] [Indexed: 04/27/2023]
Abstract
ATP functions as a neurotransmitter, acting on the ubiquitously expressed family of purinergic P2 receptors. In schizophrenia (SCZ), the pathways that modulate extracellular ATP and its catabolism to adenosine are dysregulated. However, the effects of altered ATP availability on P2 receptor expression in the brain in SCZ have not been assessed. We assayed P2 receptor mRNA and protein expression in the DLPFC and ACC in subjects diagnosed with SCZ and matched, non-psychiatrically ill controls (n = 20-22/group). P2RX7, P2RX4 and male P2RX5 mRNA expression were significantly increased (p < 0.05) in the DLPFC in SCZ. Expression of P2RX7 protein isoform was also significantly increased (p < 0.05) in the DLPFC in SCZ. Significant increases in P2RX4 and male P2RX5 mRNA expression may be associated with antipsychotic medication effects. We found that P2RX4 and P2RX7 mRNA are significantly correlated with the inflammatory marker SERPINA3, and may suggest an association between upregulated P2XR and neuroinflammation in SCZ. These findings lend support for brain-region dependent dysregulation of the purinergic system in SCZ.
Collapse
Affiliation(s)
- Rawan Alnafisah
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Anna Lundh
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Sophie M Asah
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Julie Hoeflinger
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Alyssa Wolfinger
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- Neurosciences Institute, Promedica, Toledo, OH, USA
| | | |
Collapse
|
10
|
Zhang Y, Yin HY, Rubini P, Tang Y, Illes P. A Possible Causal Involvement of Neuroinflammatory, Purinergic P2X7 Receptors in Psychiatric Disorders. Curr Neuropharmacol 2022; 20:2142-2155. [PMID: 35236262 PMCID: PMC9886837 DOI: 10.2174/1570159x20666220302152400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/26/2022] [Indexed: 11/22/2022] Open
Abstract
P2X7 receptors (Rs) are prominent members of the P2XR family, which after binding ATP, open non-selective cationic channels, thereby allowing the transmembrane passage of Na+, Ca2+, and K+. Long-lasting and repetitive stimulation of the receptor by its agonist leads to the formation of large membrane pores permeable for organic cations of up to 900 Da molecular size. These pores are believed to play a role in apoptosis and inflammation. P2X7Rs are located primarily at peripheral macrophages and microglial cells, the resident macrophages of the CNS. The coactivation of toll-like receptors 4 (TLR4) by lipopolysaccharide, a constituent of the cell membrane of gram-negative bacteria, and the P2X7R by ATP leads to the generation and release of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α. Together with the microglial release of chemokines, reactive oxygen and nitrogen species, proteases, and excitotoxic glutamate, these cytokines result in neurodegeneration. P2X7Rs were found not only to amplify various neurodegenerative illnesses, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis, but also to participate in a range of psychiatric diseases, such as major depression, bipolar disorder, schizophrenia, and autism spectrum disorder. Based on the prevention/reversal of neuroinflammation, pharmacological antagonists of P2X7Rs and their genetic deletion in animal experiments counteract these deleterious psychiatric conditions. Hence, brain penetrant P2X7R antagonists are potential therapeutics for psychiatric diseases, although the available evidence still needs to be extended and validated by further clinical data.
Collapse
Affiliation(s)
- Ying Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hai-Yan Yin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Patrizia Rubini
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,Address correspondence to these authors at the Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany; Tel/Fax: (+49)341-9724614, (+49)341-9724609; E-mail: or at Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China; Tel/Fax: (+86) 28-87689918, (+86) 28-87683962; E-mail:
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109 Leipzig, Germany,Address correspondence to these authors at the Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany; Tel/Fax: (+49)341-9724614, (+49)341-9724609; E-mail: or at Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China; Tel/Fax: (+86) 28-87689918, (+86) 28-87683962; E-mail:
| |
Collapse
|
11
|
Ozdamar Unal G, Hekimler Ozturk K, Inci HE. Increased NLRP3 inflammasome expression in peripheral blood mononuclear cells of patients with schizophrenia: a case-control study. Int J Psychiatry Clin Pract 2022:1-7. [PMID: 35938405 DOI: 10.1080/13651501.2022.2106245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
OBJECTIVE This study aimed to evaluate the gene expression of the P2X purinoceptor 7 (P2X7R)- nod-like receptor pyrin domain-containing protein 3 (NLRP3) signal pathway in peripheral blood mononuclear cells (PBMCs) between schizophrenia (SCZ) patients and healthy controls (HC) to reveal its relationship with clinical variables. METHODS Thirty-two SCZ patients and 41 healthy controls were included in this study. The Scale for the Assessment of Positive Symptoms (SAPS) and the Scale for the Assessment of Negative Symptoms (SANS), The Global Assessment of Functioning (GAF) scale and the Functioning Assessment Short Test (FAST) scales were applied. P2X7R, NLRP3, IL-1β and IL-18 gene expression levels were evaluated by real-time polymerase chain reaction in PBMCs. RESULTS NLRP3, P2RX7, IL-1β and IL-18 expression levels were significantly higher in PBMCs of SCZ patients than in HC subjects. Negative correlations were found between NLRP3 gene expression levels and GAF and FAST scales scores. There was a negative correlation between IL-18 expression levels and the GAF and FAST scales scores and a positive correlation with the SAPS scale scores. CONCLUSIONS Systemic inflammation is implicated in SCZ pathogenesis, according to our findings, which suggest that the NLRP3 pathway may be involved. The NLRP3 inflammasome may serve as a biomarker for SCZ, and its pharmacological regulation may be a promising treatment approach.Key pointsWe hypothesised that the NLRP3 pathway may contribute to the etiopathogenesis of schizophrenia.NLRP3, IL-1β and IL-18 mRNA levels were higher in patients with schizophrenia compared to healthy controls.Negative correlations were found between NLRP3 gene expression levels and GAF and FAST scales scores.There was a negative correlation between IL-18 expression levels and the GAF and FAST scales scores.The SAPS scale scores and IL-18 expression levels had a positive correlation.Given all these findings, it can be stated that NLRP3 inflammasome may play a role in the pathogenesis and symptoms of schizophrenia.
Collapse
Affiliation(s)
- Gulin Ozdamar Unal
- Department of Psychiatry, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Kuyas Hekimler Ozturk
- Department of Medical Genetics, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Huseyin Emre Inci
- Department of Psychiatry, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| |
Collapse
|
12
|
Kristóf Z, Baranyi M, Tod P, Mut-Arbona P, Demeter K, Bitter I, Sperlágh B. Elevated Serum Purine Levels in Schizophrenia: A Reverse Translational Study to Identify Novel Inflammatory Biomarkers. Int J Neuropsychopharmacol 2022; 25:645-659. [PMID: 35443035 PMCID: PMC9380717 DOI: 10.1093/ijnp/pyac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/15/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Immunological markers and related signaling molecules in the blood are altered in schizophrenia mouse models, in acutely relapsed patients with schizophrenia, and in persons at a clinically high risk for subsequently developing psychosis, highlighting their potential as prognostic and theranostic biomarkers. Therefore, we herein aimed to identify novel potential biomarkers in the serum that are associated with purinergic signaling. METHODS To our knowledge, this is the first study to assess the correlations among the levels of human serum adenine nucleotides (ATP, ADP), adenosine, P2X7 receptor, and disease activity in patients hospitalized due to an acute relapse of schizophrenia (n = 53) and healthy controls (n = 47). In addition, to validate these findings using a reverse translational approach, we examined the same parameters in an acute phencyclidine-induced schizophrenia mouse model. RESULTS We found consistently elevated levels of ATP, ADP, interleukin (IL)-6, and IL-10 in both schizophrenia groups compared with the controls. The levels of adenosine, IL-1β, IL-12, and C-reactive protein were also increased in the human patient samples. Moreover, ATP and ADP were significantly positively correlated with the Positive and Negative Symptom Scale item "lack of judgment and insight"; IL-1β, IL-12, and tumour necrosis factor alpha were significantly positively correlated with "tension" and "depression"; and "disorientation" and "poor attention" were correlated significantly with IL-6 and IL-8. CONCLUSIONS Our study suggests the promising potential of blood purines and inflammatory markers as future prognostic tools.
Collapse
Affiliation(s)
- Zsüliet Kristóf
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary,Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Pál Tod
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary,János Szentágothai Neuroscience Doctoral School, Semmelweis University, Budapest, Hungary
| | - Kornél Demeter
- Behavior Unit, Institute of Experimental Medicine, Budapest, Hungary
| | | | - Beáta Sperlágh
- Correspondence: Beáta Sperlágh, MD, PhD, 1083 Budapest, Szigony 43, Hungary ()
| |
Collapse
|
13
|
Glial Purinergic Signaling-Mediated Oxidative Stress (GPOS) in Neuropsychiatric Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1075440. [PMID: 35281471 PMCID: PMC8916856 DOI: 10.1155/2022/1075440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022]
Abstract
Oxidative stress (OS) has been implicated in the progression of multiple neuropsychiatric disorders, including schizophrenia (SZ), major depressive disorder (MDD), bipolar disorder, and autism. However, whether glial purinergic signaling interaction with oxidative/antioxidative system displays an important role in neuropsychiatric disorders is still unclear. In this review, we firstly summarize the oxidative/antioxidative pathways shared in different glial cells and highlight the cell type-specific difference in response to OS. Then, we collect the evidence showing the regulation of purinergic signaling in OS with an emphasis on adenosine and its receptors, P2Y1 receptor in the P2Y family and P2X7receptor in the P2X family. Available data shows that the activation of P1 receptors and P2X accelerates the OS; reversely, the activation of the P2Y family (P2Y1) causes protective effect against OS. Finally, we discuss current findings demonstrating the contribution of the purinergic signaling system to neuropsychiatric disorders and point out the potential role of OS in this process to propose a “glial purinergic-oxidative stress” (“GPOS”) hypothesis for future development of therapeutic strategies against a variety of neuropsychiatric disorders.
Collapse
|
14
|
Maternal P2X7 receptor inhibition prevents autism-like phenotype in male mouse offspring through the NLRP3-IL-1β pathway. Brain Behav Immun 2022; 101:318-332. [PMID: 35065198 DOI: 10.1016/j.bbi.2022.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/29/2021] [Accepted: 01/16/2022] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition caused by interactions of environmental and genetic factors. Recently we showed that activation of the purinergic P2X7 receptors is necessary and sufficient to convert maternal immune activation (MIA) to ASD-like features in male offspring mice. Our aim was to further substantiate these findings and identify downstream signaling pathways coupled to P2X7 upon MIA. Maternal treatment with the NLRP3 antagonist MCC950 and a neutralising IL-1β antibody during pregnancy counteracted the development of autistic characteristics in offspring mice. We also explored time-dependent changes of a widespread cytokine and chemokine profile in maternal blood and fetal brain samples of poly(I:C)/saline-treated dams. MIA-induced increases in plasma IL-1β, RANTES, MCP-1, and fetal brain IL-1β, IL-2, IL-6, MCP-1 concentrations are regulated by the P2X7/NLRP3 pathway. Offspring treatment with the selective P2X7 receptor antagonist JNJ47965567 was effective in the prevention of autism-like behavior in mice using a repeated dosing protocol. Our results highlight that in addition to P2X7, NLRP3, as well as inflammatory cytokines, may also be potential biomarkers and therapeutic targets of social deficits and repetitive behaviors observed in autism spectrum disorder.
Collapse
|
15
|
Beyond Seizure Control: Treating Comorbidities in Epilepsy via Targeting of the P2X7 Receptor. Int J Mol Sci 2022; 23:ijms23042380. [PMID: 35216493 PMCID: PMC8875404 DOI: 10.3390/ijms23042380] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is one of the most common chronic diseases of the central nervous system (CNS). Treatment of epilepsy remains, however, a clinical challenge with over 30% of patients not responding to current pharmacological interventions. Complicating management of treatment, epilepsy comes with multiple comorbidities, thereby further reducing the quality of life of patients. Increasing evidence suggests purinergic signalling via extracellularly released ATP as shared pathological mechanisms across numerous brain diseases. Once released, ATP activates specific purinergic receptors, including the ionotropic P2X7 receptor (P2X7R). Among brain diseases, the P2X7R has attracted particular attention as a therapeutic target. The P2X7R is an important driver of inflammation, and its activation requires high levels of extracellular ATP to be reached under pathological conditions. Suggesting the therapeutic potential of drugs targeting the P2X7R for epilepsy, P2X7R expression increases following status epilepticus and during epilepsy, and P2X7R antagonism modulates seizure severity and epilepsy development. P2X7R antagonism has, however, also been shown to be effective in treating conditions most commonly associated with epilepsy such as psychiatric disorders and cognitive deficits, which suggests that P2X7R antagonisms may provide benefits beyond seizure control. This review summarizes the evidence suggesting drugs targeting the P2X7R as a novel treatment strategy for epilepsy with a particular focus of its potential impact on epilepsy-associated comorbidities.
Collapse
|
16
|
Iring A, Tóth A, Baranyi M, Otrokocsi L, Módis LV, Gölöncsér F, Varga B, Hortobágyi T, Bereczki D, Dénes Á, Sperlágh B. The dualistic role of the purinergic P2Y12-receptor in an in vivo model of Parkinson's disease: Signalling pathway and novel therapeutic targets. Pharmacol Res 2022; 176:106045. [PMID: 34968684 DOI: 10.1016/j.phrs.2021.106045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is a chronic, progressive neurodegenerative condition; characterized with the degeneration of the nigrostriatal dopaminergic pathway and neuroinflammation. During PD progression, microglia, the resident immune cells in the central nervous system (CNS) display altered activity, but their role in maintaining PD development has remained unclear to date. The purinergic P2Y12-receptor (P2Y12R), which is expressed on the microglia in the CNS has been shown to regulate microglial activity and responses; however, the function of the P2Y12R in PD is unknown. Here we show that MPTP-induced PD symptoms in mice are associated with marked neuroinflammatory changes and P2Y12R contribute to the activation of microglia and progression of the disease. Surprisingly, while pharmacological or genetic targeting of the P2Y12R augments acute mortality in MPTP-treated mice, these interventions protect against the neurodegenerative cell loss and the development of neuroinflammation in vivo. Pharmacological inhibition of receptors during disease development reverses the symptoms of PD and halts disease progression. We found that P2Y12R regulates ROCK and p38 MAPK activity and control cytokine production. Our principal finding is that the receptor has a dualistic role in PD: functional P2Y12Rs are essential to initiate a protective inflammatory response, since the lack of the receptor leads to reduced survival; however, at later stages of neurodegeneration, P2Y12Rs are apparently responsible for maintaining the activated state of microglia and stimulating pro-inflammatory cytokine response. Understanding protective and detrimental P2Y12R-mediated actions in the CNS may reveal novel approaches to control neuroinflammation and modify disease progression in PD.
Collapse
Affiliation(s)
- András Iring
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Adrián Tóth
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D. Studies, 1085 Budapest, Hungary; Department of Neurology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Lilla Otrokocsi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - László V Módis
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
| | - Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Bernadett Varga
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D. Studies, 1085 Budapest, Hungary
| | - Tibor Hortobágyi
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary; Institute of Pathology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK; Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, 4011 Stavanger, Norway
| | - Dániel Bereczki
- Department of Neurology, Faculty of Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D. Studies, 1085 Budapest, Hungary.
| |
Collapse
|
17
|
Huang H, Zheng S, Chen M, Xie L, Li Z, Guo M, Wang J, Lu M, Zhu X. The potential of the P2X7 receptor as a therapeutic target in a sub-chronic PCP-induced rodent model of schizophrenia. J Chem Neuroanat 2021; 116:101993. [PMID: 34147620 DOI: 10.1016/j.jchemneu.2021.101993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We studied the role of the P2X7 receptor on cognitive dysfunction in a mouse model of schizophrenia. METHODS An adult mouse model was established by treatment with phencyclidine (PCP), an N-methyl-D-aspartate (NMDA) receptor antagonist. Young mice were divided into three groups: 1) the control (saline-injected) group; 2) experimental 5 mg/kg PCP-injected group; and 3) experimental 10 mg/kg PCP-injected group. The mice were subjected to the open-field and Morris water maze tests at 7 weeks. After intraperitoneal injection of the P2X7 receptor antagonist JNJ-47965567, the behaviour tests were performed again. Samples were taken after testing. The P2X7 receptor protein and mRNA expression levels were detected by immunohistochemistry, Western blotting and PCR. RESULTS This study revealed that the infant sub-chronic PCP mice model showed severe spatial learning and memory impairment in the Morris water maze and schizophrenia-like symptoms (hypermotor behaviour) in the open-field test. The P2X7 receptor protein was highly expressed in the sub-chronic PCP mouse model and more highly expressed in the hippocampus than the prefrontal lobe. After the P2X7 receptor was blocked with JNJ-47965567, P2X7 receptor protein and mRNA expression in the frontal lobe were significantly increased, and the spatial memory impairment and hypermotor behaviour induced by PCP were reversed. CONCLUSION PCP-induced cognitive impairment can be significantly improved by antagonizing the P2X7 receptor. Therefore, we believe that the P2X7 receptor plays an important role in the cognition of schizophrenic-like mice.
Collapse
Affiliation(s)
- Hui Huang
- Department of Neurosurgery, Second Affiliation Hospital, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Suyue Zheng
- Department of Neurosurgery, First Affiliation Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Min Chen
- Department of Neurosurgery, Second Affiliation Hospital, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Liyuan Xie
- Department of Neurosurgery, Second Affiliation Hospital, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Ziyi Li
- Department of Neurosurgery, Second Affiliation Hospital, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Min Guo
- Psychosomatic Medicine, Second Affiliation Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jianhong Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Mingwei Lu
- Department of Neurosurgery, Second Affiliation Hospital, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China.
| | - Xingen Zhu
- Department of Neurosurgery, Second Affiliation Hospital, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
18
|
Zeng Y, Luo H, Gao Z, Zhu X, Shen Y, Li Y, Hu J, Yang J. Reduction of prefrontal purinergic signaling is necessary for the analgesic effect of morphine. iScience 2021; 24:102213. [PMID: 33733073 PMCID: PMC7940985 DOI: 10.1016/j.isci.2021.102213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/26/2021] [Accepted: 02/17/2021] [Indexed: 01/14/2023] Open
Abstract
Morphine is commonly used to relieve moderate to severe pain, but repeated doses cause opioid tolerance. Here, we used ATP sensor and fiber photometry to detect prefrontal ATP level. It showed that prefrontal ATP level decreased after morphine injection and the event amplitude tended to decrease with continuous morphine exposure. Morphine had little effect on prefrontal ATP due to its tolerance. Therefore, we hypothesized that the analgesic effect of morphine might be related to ATP in the medial prefrontal cortex (mPFC). Moreover, local infusion of ATP partially antagonized morphine analgesia. Then we found that inhibiting P2X7R in the mPFC mimicked morphine analgesia. In morphine-tolerant mice, pretreatment with P2X4R or P2X7R antagonists in the mPFC enhanced analgesic effect. Our findings suggest that reduction of prefrontal purinergic signaling is necessary for the morphine analgesia, which help elucidate the mechanism of morphine analgesia and may lead to the development of new clinical treatments for neuropathic pain.
Collapse
Affiliation(s)
- Yeting Zeng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zilong Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing 102206, China
| | - Xiaona Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yinbo Shen
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yulong Li
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing 102206, China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, 200030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
- gCAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200030, China
| | - Jiajun Yang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
19
|
Suresh P, Phasuk S, Liu IY. Modulation of microglia activation and Alzheimer's disease: CX3 chemokine ligand 1/CX3CR and P2X 7R signaling. Tzu Chi Med J 2021; 33:1-6. [PMID: 33505871 PMCID: PMC7821819 DOI: 10.4103/tcmj.tcmj_144_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive deficits. Two hallmarks of AD that cause chronic inflammation and lead to neuronal dysfunction and damage are tau tangles and amyloid plaques. Microglial cells, the primary immune cells of the central nervous system, maintain a homeostatic active/inactive state via a bidirectional, dynamic communication with neurons. Several studies have revealed that dysregulated microglial activation leads to AD pathology. Therefore, we reviewed the relationship between AD and two important signaling complexes, CX3 chemokine ligand 1 (CX3CL1)/CX3CR1 and ATP/P2X7R, that play critical roles in the regulation of microglial activation. CX3CL1/CX3CR1 is one important signaling which controls the microglia function. Altering this pathway can have opposite effects on amyloid and tau pathology in AD. Another important molecule is P2X7R which involves in the activation of microglia. Over activation of P2X7R is evident in AD pathogenesis. In this review, we discuss influence of the two signaling pathways at different stages of AD pathology as well as the drug candidates that can modulate CX3CL1/CX3CR1 and ATP/P2X7R.
Collapse
Affiliation(s)
- Pavithra Suresh
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Sarayut Phasuk
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ingrid Y Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
20
|
Calovi S, Mut-Arbona P, Tod P, Iring A, Nicke A, Mato S, Vizi ES, Tønnesen J, Sperlagh B. P2X7 Receptor-Dependent Layer-Specific Changes in Neuron-Microglia Reactivity in the Prefrontal Cortex of a Phencyclidine Induced Mouse Model of Schizophrenia. Front Mol Neurosci 2020; 13:566251. [PMID: 33262687 PMCID: PMC7686553 DOI: 10.3389/fnmol.2020.566251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
Background: It has been consistently reported that the deficiency of the adenosine triphosphate (ATP) sensitive purinergic receptor P2X7 (P2X7R) ameliorates symptoms in animal models of brain diseases. Objective: This study aimed to investigate the role of P2X7R in rodent models of acute and subchronic schizophrenia based on phencyclidine (PCP) delivery in animals lacking or overexpressing P2X7R, and to identify the underlying mechanisms involved. Methods: The psychotomimetic effects of acute i.p. PCP administration in C57Bl/6J wild-type, P2X7R knockout (P2rx7−/−) and overexpressing (P2X7-EGFP) young adult mice were quantified. The medial prefrontal cortex (mPFC) of P2rx7−/− and heterozygous P2X7-EGFP acutely treated animals was characterized through immunohistochemical staining. The prefrontal cortices of young adult P2rx7−/− and P2rx7tg/+ mice were examined with tritiated dopamine release experiments and the functional properties of the mPFC pyramidal neurons in layer V from P2rx7−/− mice were assessed by patch-clamp recordings. P2rx7−/− animals were subjected to a 7 days subchronic systemic PCP treatment. The animals working memory performance and PFC cytokine levels were assessed. Results: Our data strengthen the hypothesis that P2X7R modulates schizophrenia-like positive and cognitive symptoms in NMDA receptor antagonist models in a receptor expression level-dependent manner. P2X7R expression leads to higher medial PFC susceptibility to PCP-induced circuit hyperactivity. The mPFC of P2X7R knockout animals displayed distinct alterations in the neuronal activation pattern, microglial organization, specifically around hyperactive neurons, and were associated with lower intrinsic excitability of mPFC neurons. Conclusions: P2X7R expression exacerbated PCP-related effects in C57Bl/6J mice. Our findings suggest a pleiotropic role of P2X7R in the mPFC, consistent with the observed behavioral phenotype, regulating basal dopamine concentration, layer-specific neuronal activation, intrinsic excitability of neurons in the mPFC, and the interaction of microglia with hyperactive neurons. Direct measurements of P2X7R activity concerning microglial ramifications and dynamics could help to further elucidate the molecular mechanisms involved.
Collapse
Affiliation(s)
- Stefano Calovi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary.,János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary
| | - Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary.,János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary
| | - Pál Tod
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - András Iring
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Susana Mato
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Biocruces Bizkaia, Barakaldo, Spain
| | - E Sylvester Vizi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Jan Tønnesen
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
21
|
Andrejew R, Oliveira-Giacomelli Á, Ribeiro DE, Glaser T, Arnaud-Sampaio VF, Lameu C, Ulrich H. The P2X7 Receptor: Central Hub of Brain Diseases. Front Mol Neurosci 2020; 13:124. [PMID: 32848594 PMCID: PMC7413029 DOI: 10.3389/fnmol.2020.00124] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/17/2020] [Indexed: 12/27/2022] Open
Abstract
The P2X7 receptor is a cation channel activated by high concentrations of adenosine triphosphate (ATP). Upon long-term activation, it complexes with membrane proteins forming a wide pore that leads to cell death and increased release of ATP into the extracellular milieu. The P2X7 receptor is widely expressed in the CNS, such as frontal cortex, hippocampus, amygdala and striatum, regions involved in neurodegenerative diseases and psychiatric disorders. Despite P2X7 receptor functions in glial cells have been extensively studied, the existence and roles of this receptor in neurons are still controversially discussed. Regardless, P2X7 receptors mediate several processes observed in neuropsychiatric disorders and brain tumors, such as activation of neuroinflammatory response, stimulation of glutamate release and neuroplasticity impairment. Moreover, P2X7 receptor gene polymorphisms have been associated to depression, and isoforms of P2X7 receptors are implicated in neuropsychiatric diseases. In view of that, the P2X7 receptor has been proposed to be a potential target for therapeutic intervention in brain diseases. This review discusses the molecular mechanisms underlying P2X7 receptor-mediated signaling in neurodegenerative diseases, psychiatric disorders, and brain tumors. In addition, it highlights the recent advances in the development of P2X7 receptor antagonists that are able of penetrating the central nervous system.
Collapse
Affiliation(s)
- Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Doǧan E, Aygün H, Arslan G, Rzayev E, Avcı B, Ayyıldız M, Ağar E. The Role of NMDA Receptors in the Effect of Purinergic P2X7 Receptor on Spontaneous Seizure Activity in WAG/Rij Rats With Genetic Absence Epilepsy. Front Neurosci 2020; 14:414. [PMID: 32435183 PMCID: PMC7218146 DOI: 10.3389/fnins.2020.00414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
P2X7 receptors (P2X7Rs) are ATP sensitive cation channels and have been shown to be effective in various epilepsy models. Absence epilepsy is a type of idiopathic, generalized, non-convulsive epilepsy. Limited data exist on the role of P2X7Rs and no data has been reported regarding the interaction between P2X7Rs and glutamate receptor NMDA in absence epilepsy. Thus, this study was designed to investigate the role of P2X7 and NMDA receptors and their possible interaction in WAG/Rij rats with absence epilepsy. Permanent cannula and electrodes were placed on the skulls of the animals. After the healing period of the electrode and cannula implantation, ECoG recordings were obtained during 180 min before and after drug injections. P2X7R agonist BzATP, at doses of 50 μg and 100 μg (intracerebroventricular; i.c.v.) and antagonist A-438079, at doses of 20 μg and 40 μg (i.c.v.) were administered alone or prior to memantine (5 mg/kg, intraperitoneal; i.p.) injection. The total number (in every 20 min), the mean duration, and the amplitude of spike-wave discharges (SWDs) were calculated and compared. Rats were decapitated and the right and left hemisphere, cerebellum, and brainstem were separated for the measurements of the advanced oxidation protein product (AOPP), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), glutathione peroxide (GPx), and glutathione reductase (GR). BzATP and A-438079 did not alter measured SWDs parameters, whereas memantine reduced them, which is considered anticonvulsant. BzATP did not alter the anticonvulsant effect of memantine, while A-438079 decreased the effect of memantine. Administration of BzATP increased the levels of SOD and GR in cerebrum hemispheres. A-438079 did not alter any of the biochemical parameters. Memantine reduced the levels of MDA, GSH, and GR while increased the level of CAT in the cerebrum. Administration of BzATP before memantine abolished the effect of memantine on MDA levels. The evidence from this study suggests that P2X7Rs does not directly play a role in the formation of absence seizures. P2X7Rs agonist, reduced the antioxidant activity of memantine whereas agonist of P2X7Rs reduced the anticonvulsant action of memantine, suggesting a partial interaction between P2X7 and NMDA receptors in absence epilepsy model.
Collapse
Affiliation(s)
- Elif Doǧan
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Hatice Aygün
- Department of Physiology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Emil Rzayev
- Department of Clinical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Bahattin Avcı
- Department of Clinical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Mustafa Ayyıldız
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Erdal Ağar
- Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
23
|
Ly D, Dongol A, Cuthbertson P, Guy TV, Geraghty NJ, Sophocleous RA, Sin L, Turner BJ, Watson D, Yerbury JJ, Sluyter R. The P2X7 receptor antagonist JNJ-47965567 administered thrice weekly from disease onset does not alter progression of amyotrophic lateral sclerosis in SOD1 G93A mice. Purinergic Signal 2020; 16:109-122. [PMID: 32170537 PMCID: PMC7166237 DOI: 10.1007/s11302-020-09692-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
The ATP-gated P2X7 ion channel has emerging roles in amyotrophic lateral sclerosis (ALS) progression. Pharmacological blockade of P2X7 with Brilliant Blue G can ameliorate disease in SOD1G93A mice, but recent data suggests that this antagonist displays poor penetration of the central nervous system (CNS). Therefore, the current study aimed to determine whether the CNS-penetrant P2X7 antagonist, JNJ-47965567, could ameliorate ALS progression in SOD1G93A mice. A flow cytometric assay revealed that JNJ-47965567 impaired ATP-induced cation dye uptake in a concentration-dependent manner in murine J774 macrophages. Female and male SOD1G93A mice were injected intraperitoneally with JNJ-47965567 (30 mg/kg) or 2-(hydroxypropyl)-beta-cyclodextrin (vehicle control) three times a week from disease onset until end stage, when tissues were collected and studied. JNJ-47965567 did not impact weight loss, clinical score, motor (rotarod) coordination or survival compared to control mice. NanoString analysis revealed altered spinal cord gene expression in JNJ-47965567 mice compared to control mice, but such differences were not confirmed by quantitative PCR. Flow cytometric analyses revealed no differences between treatments in the frequencies or activation status of T cell or dendritic cell subsets in lymphoid tissues or in the concentrations of serum cytokines. Notably, serum IL-27, IFNβ and IL-10 were present in relatively high concentrations compared to other cytokines in both groups. In conclusion, JNJ-47965567 administered thrice weekly from disease onset did not alter disease progression or molecular and cellular parameters in SOD1G93A mice.
Collapse
Affiliation(s)
- Diane Ly
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Anjila Dongol
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Peter Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Thomas V Guy
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Nicholas J Geraghty
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Reece A Sophocleous
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Lucia Sin
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
24
|
Smith KL, Todd SM, Boucher A, Bennett MR, Arnold JC. P2X 7 receptor knockout mice display less aggressive biting behaviour correlating with increased brain activation in the piriform cortex. Neurosci Lett 2020; 714:134575. [PMID: 31693933 DOI: 10.1016/j.neulet.2019.134575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/27/2022]
Abstract
P2X7 receptors are implicated in the pathophysiology of psychiatric conditions such as depression and bipolar disorder. P2X7 receptors regulate the release of pro-inflammatory cytokines from microglia, and gain-of-function P2X7 mutations may contribute to the neuroinflammation found in affective disorders. However, the role of this receptor in mediating other mental health conditions and aberrant behaviours requires further examination. The current study we investigated the effects of germline genetic deletion of P2xr7 on social and marble burying behaviours in mice throughout the critical adolescent developmental period. Marble burying behaviour is thought to provide a mouse model of obsessive-compulsive disorder (OCD). We also characterised the effects of P2rx7 deletion on aggressive attack behaviour in adult mice and subsequently quantifieded microglial cell densities and c-Fos expression, a marker of neuronal activation. P2rx7 knockout mice displayed reduced OCD-related marble burying behaviour which was most pronounced in late adolescence/early adulthood. P2rx7 knockout mice also exhibited reduced aggressive attack behaviours in adulthood in the resident-intruder test. Reduced aggression in P2xr7 knockout mice did not coincide with changes to microglial cell densities, however c-Fos expression was elevated in the piriform cortex of P2rx7 knockout mice compared to wildtype mice. This study suggests that the P2X7 receptor might serve as a novel target for serenic or anti-OCD therapeutics.
Collapse
Affiliation(s)
- Kristie Leigh Smith
- Brain and Mind Centre, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Discipline of Pharmacology, University of Sydney, Australia
| | - Stephanie M Todd
- Brain and Mind Centre, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Discipline of Pharmacology, University of Sydney, Australia
| | - Aurelie Boucher
- Brain and Mind Centre, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Discipline of Pharmacology, University of Sydney, Australia
| | - Maxwell R Bennett
- Brain and Mind Centre, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Discipline of Physiology, University of Sydney, Australia
| | - Jonathon C Arnold
- Brain and Mind Centre, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Discipline of Pharmacology, University of Sydney, Australia.
| |
Collapse
|
25
|
Rodrigues RJ, Marques JM, Cunha RA. Purinergic signalling and brain development. Semin Cell Dev Biol 2019; 95:34-41. [DOI: 10.1016/j.semcdb.2018.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 11/27/2022]
|
26
|
Van Weehaeghe D, Koole M, Schmidt ME, Deman S, Jacobs AH, Souche E, Serdons K, Sunaert S, Bormans G, Vandenberghe W, Van Laere K. [ 11C]JNJ54173717, a novel P2X7 receptor radioligand as marker for neuroinflammation: human biodistribution, dosimetry, brain kinetic modelling and quantification of brain P2X7 receptors in patients with Parkinson's disease and healthy volunteers. Eur J Nucl Med Mol Imaging 2019; 46:2051-2064. [PMID: 31243495 DOI: 10.1007/s00259-019-04369-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/23/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE The P2X7 receptor (P2X7R) is an ATP-gated ion channel predominantly expressed on activated microglia and is important in neurodegenerative diseases including Parkinson's disease (PD). In this first-in-human study, we investigated [11C]JNJ54173717 ([11C]JNJ717), a selective P2X7R tracer, in healthy volunteers (HV) and PD patients. Biodistribution, dosimetry, kinetic modelling and short-term test-retest variation (TRV), as well as possible genotype effects, were investigated. METHODS Biodistribution and radiation dosimetry studies were performed in three HV (mean age 30 ± 2 years, two women) using whole-body PET/CT. The most appropriate kinetic model was determined in 11 HV (mean age 62 ± 10 years, six women) and 10 PD patients (mean age 64 ± 8 years, three women; mean UPDRS motor score 21 ± 8) using 90-min dynamic simultaneous PET/MR scans. The total volume of distribution (VT) was calculated using a one-tissue and a two-tissue compartment model (1TCM, 2TCM) and Logan graphical analysis, and its time stability was assessed. Seven subjects underwent retest scans (mean age 60 ± 13 years, four HV, one woman). A group analysis was performed to compare PD patients and HV. Finally, 13 exons of P2X7R were genotyped in all subjects included in the second part of the study. RESULTS The mean effective dose was 4.47 ± 0.32 μSv/MBq, with the highest absorbed doses to the gallbladder, liver and small intestine. A reversible 2TCM was the most appropriate kinetic model with relatively homogeneous VT values in the grey and white matter. Average VT values were 3.4 ± 0.8 in HV and 3.3 ± 0.7 in PD patients, with no significant difference between the groups, but a possible genotype effect (rs3751143) was identified which can affect VT. Average TRV was 10-15%. The stability of VT over time allowed a reduction in scan time to 70 min. CONCLUSION [11C]JNJ717 is safe and suitable for quantifying P2X7R expression in human brain. In this pilot study, no significant differences in P2X7R binding were found between HV and PD patients. The results also suggest that genotype effects need to be incorporated in future P2X7R PET analyses.
Collapse
Affiliation(s)
- Donatienne Van Weehaeghe
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Leuven and KU Leuven, Leuven, Belgium.
| | - Michel Koole
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Leuven and KU Leuven, Leuven, Belgium
| | - Mark E Schmidt
- Janssen Research and Development: Beerse, Beerse, Belgium
| | - Stephanie Deman
- Genomics Core, UZ Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfalian Wilhelms University (WWU) Münster, Münster, Germany
- Department of Geriatrics and Neurology, Johanniter Hospital Bonn, Bonn, Germany
| | - Erika Souche
- Genomics Core, UZ Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Kim Serdons
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Leuven and KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospitals Leuven, Gasthuisberg, UZ, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, KU Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Van Laere
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Leuven and KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
P2X7 Receptor Signaling in Stress and Depression. Int J Mol Sci 2019; 20:ijms20112778. [PMID: 31174279 PMCID: PMC6600521 DOI: 10.3390/ijms20112778] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/31/2022] Open
Abstract
Stress exposure is considered to be the main environmental cause associated with the development of depression. Due to the limitations of currently available antidepressants, a search for new pharmacological targets for treatment of depression is required. Recent studies suggest that adenosine triphosphate (ATP)-mediated signaling through the P2X7 receptor (P2X7R) might play a prominent role in regulating depression-related pathology, such as synaptic plasticity, neuronal degeneration, as well as changes in cognitive and behavioral functions. P2X7R is an ATP-gated cation channel localized in different cell types in the central nervous system (CNS), playing a crucial role in neuron-glia signaling. P2X7R may modulate the release of several neurotransmitters, including monoamines, nitric oxide (NO) and glutamate. Moreover, P2X7R stimulation in microglia modulates the innate immune response by activating the NLR family pyrin domain containing 3 (NLRP3) inflammasome, consistent with the neuroimmune hypothesis of MDD. Importantly, blockade of P2X7R leads to antidepressant-like effects in different animal models, which corroborates the findings that the gene encoding for the P2X7R is located in a susceptibility locus of relevance to depression in humans. This review will discuss recent findings linked to the P2X7R involvement in stress and MDD neuropathophysiology, with special emphasis on neurochemical, neuroimmune, and neuroplastic mechanisms.
Collapse
|
28
|
Huang L, Otrokocsi L, Sperlágh B. Role of P2 receptors in normal brain development and in neurodevelopmental psychiatric disorders. Brain Res Bull 2019; 151:55-64. [PMID: 30721770 DOI: 10.1016/j.brainresbull.2019.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022]
Abstract
The purinergic signaling system, including P2 receptors, plays an important role in various central nervous system (CNS) disorders. Over the last few decades, a substantial amount of accumulated data suggest that most P2 receptor subtypes (P2X1, 2, 3, 4, 6, and 7, and P2Y1, 2, 6, 12, and 13) regulate neuronal/neuroglial developmental processes, such as proliferation, differentiation, migration of neuronal precursors, and neurite outgrowth. However, only a few of these subtypes (P2X2, P2X3, P2X4, P2X7, P2Y1, and P2Y2) have been investigated in the context of neurodevelopmental psychiatric disorders. The activation of these potential target receptors and their underlying mechanisms mainly influence the process of neuroinflammation. In particular, P2 receptor-mediated inflammatory cytokine release has been indicated to contribute to the complex mechanisms of a variety of CNS disorders. The released inflammatory cytokines could be utilized as biomarkers for neurodevelopmental and psychiatric disorders to improve the early diagnosis intervention, and prognosis. The population changes in gut microbiota after birth are closely linked to neurodevelopmental/neuropsychiatric disorders in later life; thus, the dynamic expression and function of P2 receptors on gut epithelial cells during disease processes indicate a novel avenue for the evaluation of disease progression and for the discovery of related therapeutic compounds.
Collapse
Affiliation(s)
- Lumei Huang
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Lilla Otrokocsi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
29
|
P2X7 Receptors Drive Poly(I:C) Induced Autism-like Behavior in Mice. J Neurosci 2019; 39:2542-2561. [PMID: 30683682 DOI: 10.1523/jneurosci.1895-18.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 02/08/2023] Open
Abstract
Maternal immune activation (MIA) is a principal environmental risk factor contributing to autism spectrum disorder (ASD), which compromises fetal brain development at critical periods of pregnancy and might be causally linked to ASD symptoms. We report that endogenous activation of the purinergic ion channel P2X7 (P2rx7) is necessary and sufficient to transduce MIA to autistic phenotype in male offspring. MIA induced by poly(I:C) injections to P2rx7 WT mouse dams elicited an autism-like phenotype in their offspring, and these alterations were not observed in P2rx7-deficient mice, or following maternal treatment with a specific P2rx7 antagonist, JNJ47965567. Genetic deletion and pharmacological inhibition of maternal P2rx7s also counteracted the induction of IL-6 in the maternal plasma and fetal brain, and disrupted brain development, whereas postnatal P2rx7 inhibition alleviated behavioral and morphological alterations in the offspring. Administration of ATP to P2rx7 WT dams also evoked autistic phenotype, but not in KO dams, implying that P2rx7 activation by ATP is sufficient to induce autism-like features in offspring. Our results point to maternal and offspring P2rx7s as potential therapeutic targets for the early prevention and treatment of ASD.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a neurodevelopmental psychiatric disorder caused by genetic and environmental factors. Recent studies highlighted the importance of perinatal risks, in particular, maternal immune activation (MIA), showing strong association with the later emergence of ASD in the affected children. MIA could be mimicked in animal models via injection of a nonpathogenic agent poly(I:C) during pregnancy. This is the first report showing the key role of a ligand gated ion channel, the purinergic P2X7 receptor in MIA-induced autism-like behavioral and biochemical features. We show that genetic or pharmacological inhibition of both maternal and offspring P2X7 receptors could reverse the compromised brain development and autistic phenotype pointing to new possibilities for prevention and treatment of ASD.
Collapse
|
30
|
Regulation of P2X7 receptor expression and function in the brain. Brain Res Bull 2018; 151:153-163. [PMID: 30593878 DOI: 10.1016/j.brainresbull.2018.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/19/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Because of its prominent role in driving inflammatory processes, the ATP-gated purinergic P2X7 receptor has attracted much attention over the past decade as a potential therapeutic target for numerous human conditions, particularly diseases of the central nervous system, including neurodegenerative diseases (e.g. Alzheimer's and Huntington's disease), psychiatric disorders (e.g. schizophrenia and depression) and the neurological disease, epilepsy. Evidence stems from studies using experimental models and patient tissue showing changes in P2X7 expression and function under pathological conditions and beneficial effects provided by P2X7 antagonism. Apart from promoting neuroinflammation, P2X7, however, also impacts on other pathological processes in the brain, including cell death, hyperexcitability, changes in neurotransmitter release and neurogenesis. Reports also suggest a role for P2X7 in the maintenance of blood-brain-barrier integrity. It therefore comes as no surprise that the regulation of P2X7 expression and function is complex, providing tight control on P2X7 activation. Much progress has been made in understanding how P2X7 is regulated during physiological and pathological conditions and what the consequences are of pathological P2X7 expression and function. Regulatory mechanisms altering P2X7 expression include transcriptional and post-translational regulation including nucleotide polymorphisms, promoter regulation via DNA methylation, transcription factors (e.g. Sp1 and HIF-1α), the generation of different splice variants and receptor phosphorylation, glycosylation and palmitoylation. Finally, more recently, reports have also shown P2X7-targeting by microRNAs, blocking P2X7 translation into functional proteins. The present review provides a broad overview of what is known to-date about the complex regulation of P2X7 expression with a particular emphasis on the brain and how each of these regulatory mechanisms impacts on receptor function and pathology.
Collapse
|
31
|
Bhattacharya A, Lord B, Grigoleit JS, He Y, Fraser I, Campbell SN, Taylor N, Aluisio L, O’Connor JC, Papp M, Chrovian C, Carruthers N, Lovenberg TW, Letavic MA. Neuropsychopharmacology of JNJ-55308942: evaluation of a clinical candidate targeting P2X7 ion channels in animal models of neuroinflammation and anhedonia. Neuropsychopharmacology 2018; 43:2586-2596. [PMID: 30026598 PMCID: PMC6224414 DOI: 10.1038/s41386-018-0141-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 11/09/2022]
Abstract
Emerging data continues to point towards a relationship between neuroinflammation and neuropsychiatric disorders. ATP-induced activation of P2X7 results in IL-1β release causing neuroinflammation and microglial activation. This study describes the in-vitro and in-vivo neuropharmacology of a novel brain-penetrant P2X7 antagonist, JNJ-55308942, currently in clinical development. JNJ-55308942 is a high-affinity, selective, brain-penetrant (brain/plasma of 1) P2X7 functional antagonist. In human blood and in mouse blood and microglia, JNJ-55308942 attenuated IL-1β release in a potent and concentration-dependent manner. After oral dosing, the compound exhibited both dose and concentration-dependent occupancy of rat brain P2X7 with an ED50 of 0.07 mg/kg. The P2X7 antagonist (3 mg/kg, oral) blocked Bz-ATP-induced brain IL-1β release in conscious rats, demonstrating functional effects of target engagement in the brain. JNJ-55308942 (30 mg/kg, oral) attenuated LPS-induced microglial activation in mice, assessed at day 2 after a single systemic LPS injection (0.8 mg/kg, i.p.), suggesting a role for P2X7 in microglial activation. In a model of BCG-induced depression, JNJ-55308942 dosed orally (30 mg/kg), reversed the BCG-induced deficits of sucrose preference and social interaction, indicating for the first time a role of P2X7 in the BCG model of depression, probably due to the neuroinflammatory component induced by BCG inoculation. Finally, in a rat model of chronic stress induced sucrose intake deficit, JNJ-55308942 reversed the deficit with concurrent high P2X7 brain occupancy as measured by autoradiography. This body of data demonstrates that JNJ-55308942 is a potent P2X7 antagonist, engages the target in brain, modulates IL-1β release and microglial activation leading to efficacy in two models of anhedonia in rodents.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA, 92131, USA.
| | - Brian Lord
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | | | - Yingbo He
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | - Ian Fraser
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | - Shannon N. Campbell
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | - Natalie Taylor
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | - Leah Aluisio
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | - Jason C. O’Connor
- 0000 0004 0617 9080grid.414059.dDepartment of Pharmacology, UT Health San Antonio, 7703 Floyd Curl Dr. and Audie L. Murphy VA Hospital, 7400 Merton Minter Blvd, San Antonio, TX 78229 USA
| | - Mariusz Papp
- 0000 0001 2227 8271grid.418903.7Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, Krakow, 31-343 Poland
| | - Christa Chrovian
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | - Nicholas Carruthers
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | - Timothy W. Lovenberg
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| | - Michael A. Letavic
- Janssen Research & Development, LLC. Neuroscience Therapeutic Area, San Diego, CA 92131 USA
| |
Collapse
|
32
|
Ossato A, Bilel S, Gregori A, Talarico A, Trapella C, Gaudio RM, De-Giorgio F, Tagliaro F, Neri M, Fattore L, Marti M. Neurological, sensorimotor and cardiorespiratory alterations induced by methoxetamine, ketamine and phencyclidine in mice. Neuropharmacology 2018; 141:167-180. [PMID: 30165078 DOI: 10.1016/j.neuropharm.2018.08.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 01/01/2023]
Abstract
Novel psychoactive substances are intoxicating compounds developed to mimic the effects of well-established drugs of abuse. They are not controlled by the United Nations drug convention and pose serious health concerns worldwide. Among them, the dissociative drug methoxetamine (MXE) is structurally similar to ketamine (KET) and phencyclidine (PCP) and was created to purposely mimic the psychotropic effects of its "parent" compounds. Recent animal studies show that MXE is able to stimulate the mesolimbic dopaminergic transmission and to induce KET-like discriminative and rewarding effects. In light of the renewed interest in KET and PCP analogs, we decided to deepen the investigation of MXE-induced effects by a battery of behavioral tests widely used in studies of "safety-pharmacology" for the preclinical characterization of new molecules. To this purpose, the acute effects of MXE on neurological and sensorimotor functions in mice, including visual, acoustic and tactile responses, thermal and mechanical pain, motor activity and acoustic startle reactivity were evaluated in comparisons with KET and PCP to better appreciate its specificity of action. Cardiorespiratory parameters and blood pressure were also monitored in awake and freely moving animals. Acute systemic administrations of MXE, KET and PCP (0.01-30 mg/kg i.p.) differentially alter neurological and sensorimotor functions in mice depending in a dose-dependent manner specific for each parameter examined. MXE and KET (1 and 30 mg/kg i.p.) and PCP (1 and 10 mg/kg i.p.) also affect significantly cardiorespiratory parameters, systolic and diastolic blood pressure in mice.
Collapse
Affiliation(s)
- Andrea Ossato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy; Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Sabrine Bilel
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - Adolfo Gregori
- Carabinieri, Department of Scientific Investigation (RIS), 00191, Rome, Italy
| | - Anna Talarico
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Claudio Trapella
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Rosa Maria Gaudio
- Department of Medical Sciences, Section of Forensic Pathology, University of Ferrara, Italy
| | - Fabio De-Giorgio
- Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Policlinico ''G.B. Rossi'', Verona, Italy; Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, Russian Federation
| | - Margherita Neri
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine, University of Ferrara, Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council (CNR), Italy
| | - Matteo Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine, University of Ferrara, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
33
|
Bhattacharya A. Recent Advances in CNS P2X7 Physiology and Pharmacology: Focus on Neuropsychiatric Disorders. Front Pharmacol 2018; 9:30. [PMID: 29449810 PMCID: PMC5799703 DOI: 10.3389/fphar.2018.00030] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/10/2018] [Indexed: 12/17/2022] Open
Abstract
The ATP-gated P2X7 ion channel is an abundant microglial protein in the CNS that plays an important pathological role in executing ATP-driven danger signal transduction. Emerging data has generated scientific interest and excitement around targeting the P2X7 ion channel as a potential drug target for CNS disorders. Over the past years, a wealth of data has been published on CNS P2X7 biology, in particular the role of P2X7 in microglial cells, and in vivo effects of brain-penetrant P2X7 antagonists. Likewise, significant progress has been made around the medicinal chemistry of CNS P2X7 ligands, as antagonists for in vivo target validation in models of CNS diseases, to identification of two clinical compounds (JNJ-54175446 and JNJ-55308942) and finally, discovery of P2X7 PET ligands. This review is an attempt to bring together the current understanding of P2X7 in the CNS with a focus on P2X7 as a drug target in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, San Diego, CA, United States
| |
Collapse
|
34
|
Purinergic system in psychiatric diseases. Mol Psychiatry 2018; 23:94-106. [PMID: 28948971 DOI: 10.1038/mp.2017.188] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
Psychiatric disorders are debilitating diseases, affecting >80 million people worldwide. There are no causal cures for psychiatric disorders and available therapies only treat the symptoms. The etiology of psychiatric disorders is unknown, although it has been speculated to be a combination of environmental, stress and genetic factors. One of the neurotransmitter systems implicated in the biology of psychiatric disorders is the purinergic system. In this review, we performed a comprehensive search of the literature about the role and function of the purinergic system in the development and predisposition to psychiatric disorders, with a focus on depression, schizophrenia, bipolar disorder, autism, anxiety and attention deficit/hyperactivity disorder. We also describe how therapeutics used for psychiatric disorders act on the purinergic system.
Collapse
|
35
|
Fumagalli M, Lecca D, Abbracchio MP, Ceruti S. Pathophysiological Role of Purines and Pyrimidines in Neurodevelopment: Unveiling New Pharmacological Approaches to Congenital Brain Diseases. Front Pharmacol 2017; 8:941. [PMID: 29375373 PMCID: PMC5770749 DOI: 10.3389/fphar.2017.00941] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
Abstract
In recent years, a substantial body of evidence has emerged demonstrating that purine and pyrimidine synthesis and metabolism play major roles in controlling embryonic and fetal development and organogenesis. Dynamic and time-dependent changes in the expression of purine metabolizing enzymes (such as ectonucleotidases and adenosine deaminase) represent a key checkpoint for the correct sequential generation of the different signaling molecules, that in turn activate their specific membrane receptors. In neurodevelopment, Ca2+ release from radial glia mediated by P2Y1 purinergic receptors is fundamental to allow neuroblast migration along radial glia processes, and their correct positioning in the different layers of the developing neocortex. Moreover, ATP is involved in the development of synaptic transmission and contributes to the establishment of functional neuronal networks in the developing brain. Additionally, several purinergic receptors (spanning from adenosine to P2X and P2Y receptor subtypes) are differentially expressed by neural stem cells, depending on their maturation stage, and their activation tightly regulates cell proliferation and differentiation to either neurons or glial cells, as well as their correct colonization of the developing telencephalon. The purinergic control of neurodevelopment is not limited to prenatal life, but is maintained in postnatal life, when it plays fundamental roles in controlling oligodendrocyte maturation from precursors and their terminal differentiation to fully myelinating cells. Based on the above-mentioned and other literature evidence, it is now increasingly clear that any defect altering the tight regulation of purinergic transmission and of purine and pyrimidine metabolism during pre- and post-natal brain development may translate into functional deficits, which could be at the basis of severe pathologies characterized by mental retardation or other disturbances. This can occur either at the level of the recruitment and/or signaling of specific nucleotide or nucleoside receptors or through genetic alterations in key steps of the purine salvage pathway. In this review, we have provided a critical analysis of what is currently known on the pathophysiological role of purines and pyrimidines during brain development with the aim of unveiling new future strategies for pharmacological intervention in different neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
36
|
Gölöncsér F, Baranyi M, Balázsfi D, Demeter K, Haller J, Freund TFF, Zelena D, Sperlágh B. Regulation of Hippocampal 5-HT Release by P2X7 Receptors in Response to Optogenetic Stimulation of Median Raphe Terminals of Mice. Front Mol Neurosci 2017; 10:325. [PMID: 29075178 PMCID: PMC5643475 DOI: 10.3389/fnmol.2017.00325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/27/2017] [Indexed: 01/01/2023] Open
Abstract
Serotonergic and glutamatergic neurons of median raphe region (MRR) play a pivotal role in the modulation of affective and cognitive functions. These neurons synapse both onto themselves and remote cortical areas. P2X7 receptors (P2rx7) are ligand gated ion channels expressed by central presynaptic excitatory nerve terminals and involved in the regulation of neurotransmitter release. P2rx7s are implicated in various neuropsychiatric conditions such as schizophrenia and depression. Here we investigated whether 5-HT release released from the hippocampal terminals of MRR is subject to modulation by P2rx7s. To achieve this goal, an optogenetic approach was used to selectively activate subpopulation of serotonergic terminals derived from the MRR locally, and one of its target area, the hippocampus. Optogenetic activation of neurons in the MRR with 20 Hz was correlated with freezing and enhanced locomotor activity of freely moving mice and elevated extracellular levels of 5-HT, glutamate but not GABA in vivo. Similar optical stimulation (OS) significantly increased [3H]5-HT and [3H]glutamate release in acute MRR and hippocampal slices. We examined spatial and temporal patterns of [3H]5-HT release and the interaction between the serotonin and glutamate systems. Whilst [3H]5-HT release from MRR neurons was [Ca2+]o-dependent and sensitive to TTX, CNQX and DL-AP-5, release from hippocampal terminals was not affected by the latter drugs. Hippocampal [3H]5-HT released by electrical but not OS was subject to modulation by 5- HT1B/D receptors agonist sumatriptan (1 μM), whereas the selective 5-HT1A agonist buspirone (0.1 μM) was without effect. [3H]5-HT released by electrical and optical stimulation was decreased in mice genetically deficient in P2rx7s, and after perfusion with selective P2rx7 antagonists, JNJ-47965567 (0.1 μM), and AZ-10606120 (0.1 μM). Optical and electrical stimulation elevated the extracellular level of ATP. Our results demonstrate for the first time the modulation of 5-HT release from hippocampal MRR terminals by the endogenous activation of P2rx7s. P2rx7 mediated modulation of 5-HT release could contribute to various physiological and pathophysiological phenomena, related to hippocampal serotonergic transmission.
Collapse
Affiliation(s)
- Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D. Studies, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Diána Balázsfi
- János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D. Studies, Budapest, Hungary.,Laboratory of Stress and Behavior Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kornél Demeter
- Unit of Behavioral Studies, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - József Haller
- Laboratory of Stress and Behavior Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Unit of Behavioral Studies, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás F F Freund
- Laboratory of Cerebral Cortex, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dóra Zelena
- Laboratory of Stress and Behavior Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
37
|
Beamer E, Kovács G, Sperlágh B. ATP released from astrocytes modulates action potential threshold and spontaneous excitatory postsynaptic currents in the neonatal rat prefrontal cortex. Brain Res Bull 2017; 135:129-142. [PMID: 29030320 DOI: 10.1016/j.brainresbull.2017.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 01/12/2023]
Abstract
Maternal immune activation during pregnancy is a risk factor for neurodevelopmental disorders, such as schizophrenia; however, a full mechanistic understanding has yet to be established. The activity of a transient cell population, the subplate neurons, is critical for the development of cortical inhibition and functional thalamocortical connections. Sensitivity of these cells to factors released during inflammation, therefore, may offer a link between maternal immune activation and the aberrant cortical development underlying some neuropsychiatric disorders. An elevated extracellular ATP concentration is associated with inflammation and has been shown to have an effect on neuronal activity. Here, we investigated the effect of ATP on the electrophysiological properties of subplate neurons. Exogenous ATP increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) at micromolar concentrations. Further, ATP released by astrocytes activated by the PAR-1 agonist, TFLLR-NH2, also increased the amplitude and frequency of sEPSCs in subplate neurons. The electrophysiological properties of subplate neurons recorded from prefrontal cortical (PFC) slices from neonatal rats were also disrupted in a maternal immune activation rat model of schizophrenia, with a suramin-sensitive increase in frequency and amplitude of sEPSCs. An alternative neurodevelopmental rat model of schizophrenia, MAM-E17, which did not rely on maternal immune activation, however, showed no change in subplate neuron activity. Both models were validated with behavioral assays, showing schizophrenia-like endophenotypes in young adulthood. The purinergic modulation of subplate neuron activity offers a potential explanatory link between maternal immune activation and disruptions in cortical development that lead to the emergence of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Edward Beamer
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Kovács
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beata Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
38
|
Letavic MA, Savall BM, Allison BD, Aluisio L, Andres JI, De Angelis M, Ao H, Beauchamp DA, Bonaventure P, Bryant S, Carruthers NI, Ceusters M, Coe KJ, Dvorak CA, Fraser IC, Gelin CF, Koudriakova T, Liang J, Lord B, Lovenberg TW, Otieno MA, Schoetens F, Swanson DM, Wang Q, Wickenden AD, Bhattacharya A. 4-Methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridine-Based P2X7 Receptor Antagonists: Optimization of Pharmacokinetic Properties Leading to the Identification of a Clinical Candidate. J Med Chem 2017; 60:4559-4572. [PMID: 28493698 DOI: 10.1021/acs.jmedchem.7b00408] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis and preclinical characterization of novel 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are potent and selective brain penetrant P2X7 antagonists are described. Optimization efforts based on previously disclosed unsubstituted 6,7-dihydro-4H-triazolo[4,5-c]pyridines, methyl substituted 5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-a]pyrazines, and several other series lead to the identification of a series of 4-(R)-methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridines that are selective P2X7 antagonists with potency at the rodent and human P2X7 ion channels. These novel P2X7 antagonists have suitable physicochemical properties, and several analogs have an excellent pharmacokinetic profile, good partitioning into the CNS and show robust in vivo target engagement after oral dosing. Improvements in metabolic stability led to the identification of JNJ-54175446 (14) as a candidate for clinical development. The drug discovery efforts and strategies that resulted in the identification of the clinical candidate are described herein.
Collapse
Affiliation(s)
- Michael A Letavic
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Brad M Savall
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Brett D Allison
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Leah Aluisio
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Jose Ignacio Andres
- Janssen Research & Development, a Division of Janssen-Cilag , Jarama 75, 45007 Toledo, Spain
| | - Meri De Angelis
- Janssen Research & Development, a Division of Janssen-Cilag , Jarama 75, 45007 Toledo, Spain
| | - Hong Ao
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Derek A Beauchamp
- Janssen Research & Development, LLC , 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Pascal Bonaventure
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Stewart Bryant
- Janssen Research & Development, LLC , 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Nicholas I Carruthers
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Marc Ceusters
- Janssen Research & Development, Janssen Pharmaceutica NV , Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Kevin J Coe
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Curt A Dvorak
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Ian C Fraser
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Christine F Gelin
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Tatiana Koudriakova
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Jimmy Liang
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Brian Lord
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Timothy W Lovenberg
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Monicah A Otieno
- Janssen Research & Development, LLC , 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Freddy Schoetens
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Devin M Swanson
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Qi Wang
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Alan D Wickenden
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | - Anindya Bhattacharya
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| |
Collapse
|
39
|
Ham S, Kim TK, Chung S, Im HI. Drug Abuse and Psychosis: New Insights into Drug-induced Psychosis. Exp Neurobiol 2017; 26:11-24. [PMID: 28243163 PMCID: PMC5326711 DOI: 10.5607/en.2017.26.1.11] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 01/20/2023] Open
Abstract
Addictive drug use or prescribed medicine abuse can cause psychosis. Some representative symptoms frequently elicited by patients with psychosis are hallucination, anhedonia, and disrupted executive functions. These psychoses are categorized into three classifications of symptoms: positive, negative, and cognitive. The symptoms of DIP are not different from the symptoms of schizophrenia, and it is difficult to distinguish between them. Due to this ambiguity of distinction between the DIP and schizophrenia, the DIP animal model has been frequently used as the schizophrenia animal model. However, although the symptoms may be the same, its causes are clearly different in that DIP is acquired and schizophrenia is heritable. Therefore, in this review, we cover several DIP models such as of amphetamine, PCP/ketamine, scopolamine, and LSD, and then we also address three schizophrenia models through a genetic approach with a new perspective that distinguishes DIP from schizophrenia.
Collapse
Affiliation(s)
- Suji Ham
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Department of Neuroscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Tae Kyoo Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Department of Biology, Boston University, Boston 02215, USA
| | - Sooyoung Chung
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Heh-In Im
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Department of Neuroscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea.; Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| |
Collapse
|