1
|
Ma H, Jia L, Feng J, Li T, Li C, Li J, Xuan X, Sun Y. Functional annotation and analysis of the hard tick Dermacentor nuttalli midgut genes. Parasitol Res 2025; 124:52. [PMID: 40369327 DOI: 10.1007/s00436-025-08480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/05/2025] [Indexed: 05/16/2025]
Abstract
Ticks are hematophagous vectors that transmit a variety of pathogens, posing significant threats to the health of both humans and animals. Tick midgut proteins play essential roles in blood digestion, feeding, toxic waste processing, and pathogen transmission. Dermacentor nuttalli is the primary vector of tick-borne pathogens, including rickettsioses in the Qinghai-Tibet Plateau. However, there is a lack of genomic, transcriptomic, and proteomic information regarding the biology of D. nuttalli. In this study, we assembled and compared the midgut transcriptomes of female D. nuttalli ticks at 0, 24, 48, 72, and 96 h during blood feeding, identifying the genes with differentially regulated expression following feeding. The obtained data were compiled and annotated in multiple databases including Nr, NT, PFAM, KOG, KEGG, and GO. The high-quality clean readings of midgut tissue at the different blood-feeding times were recorded as 22,524,912, 23,752,325, 20,377,718, 21,300,710, and 20,378,658, respectively. The transcripts were classified into eight large categories, including immunogenic proteases (8.37%), protease inhibitors (0.85%), transporters (3.96%), ligand binding proteins (1.98%), ribosomal function proteins (0.94%), heat shock proteins (0.30%), other proteases and miscellaneous proteins (57.61%), and unknown proteins (26.00%). Significant differences were observed in the genes obtained at 0, 24, 48, 72, and 96 h during blood feeding. The differentially expressed genes include catalytic proteins that play an important role in accelerating biochemical reactions, binding activity proteins which are involved in various molecular interactions, and proteins that actively participate in multiple metabolic pathways and cellular processes. Notably, the gene expression in the midgut of D. nuttalli shows dynamic changes every 24 h throughout the blood-feeding process. This change may represent an equivalent strategy of antigenic variation for ticks, designed to protect their essential feeding function against the host's immune system. The tick antigens identified in this study may serve as promising candidates for the development of effective vaccines or as drug targets for acaricides.
Collapse
Affiliation(s)
- Hejia Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Lijun Jia
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China
| | - Jian Feng
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China
| | - Tianshuai Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Chao Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Jixu Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, 810016, China
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 0808555, Japan.
| | - Yali Sun
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China.
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, 810016, China.
| |
Collapse
|
2
|
Chen S, Hu S, Zhou Y, Cao J, Zhang H, Wang Y, Zhou J. Tick HRF-dependent ferroptosis pathway to promote tick acquisition of Babesia microti. Front Cell Infect Microbiol 2025; 15:1560152. [PMID: 40144593 PMCID: PMC11936993 DOI: 10.3389/fcimb.2025.1560152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
B. microti is a tick-transmitted zoonotic erythrocytic intracellular parasite. Ferroptosis is an iron-dependent form of programmed cell death that affects pathogen replication in the host. Currently, there is limited research concerning the effect of tick ferroptosis on Babesia infection and the underlying mechanism of action. The present study used a B. microti -mouse- Haemaphysalis longicornis infection model in which nymphs fed on the blood of B. microti-infected mice. The midgut divalent iron (p<0.01) and reactive oxygen species (ROS) (p<0.05) levels were significantly elevated in infected ticks, and transmission electron microscopy (TEM) showed that mitochondrial ridges were absent or decreased in size. Downregulation of ferritin 1 and glutathione peroxidase 4 (GPX4) in ticks infected with B. microti suggests that these changes promote ferroptosis. In vivo studies demonstrated that the ferroptosis promoter Erastin increased B. microti load (p<0.05), while the inhibitor Ferrostatin-1 effectively decreased load (p<0.01). Tick histamine-releasing factor (HRF), a protein related to the antioxidant system, was downregulated in infected nymphs compared with uninfected nymphs (p<0.05), and interference with HRF promoted tick acquisition of B. microti (p<0.001). Transcriptomic analyses showed that HRF interference promotes tick ferroptosis by downregulating ferritin 1 and GPX4. Meanwhile, interference with tick HRF molecules showed increased divalent iron and ROS and decreased mitochondrial ridges compared with controls. These findings highlight the critical role of tick HRF molecules in regulating ferroptosis and acquisition of B. microti, thereby providing important insights for a deeper understanding of the tick-Babesia interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinlin Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural
Sciences, Shanghai, China
| |
Collapse
|
3
|
Khogali R, Bastos A, Getange D, Bargul JL, Kalayou S, Ongeso N, Verhoeven JTP, Kabii J, Ngiela J, Masiga D, Villinger J. Exploring the microbiomes of camel ticks to infer vector competence: insights from tissue-level symbiont-pathogen relationships. Sci Rep 2025; 15:5574. [PMID: 39955302 PMCID: PMC11830091 DOI: 10.1038/s41598-024-81313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/26/2024] [Indexed: 02/17/2025] Open
Abstract
Ticks are blood-feeding ectoparasites that harbor diverse pathogens and endosymbionts. Their microbial communities vary based on tick species, stage, sex, geographical location, surrounding environment, and tissue type. Understanding tick microbiota at the tissue level is crucial for unraveling how microbiomes are distributed in tick tissues and influence pathogen transmission. We used V1-V2 16 S rRNA gene sequencing to analyze tissue-specific bacterial compositions (hemolymph, saliva, salivary glands, and midgut) of Amblyomma gemma, Rhipicephalus pulchellus, Hyalomma dromedarii, and Hyalomma rufipes ticks collected from camels in Marsabit County, northern Kenya. The V1-V2 region of the 16 S rRNA gene effectively differentiated 43 Rickettsia africae and 16 Rickettsia aeschlimannii tick samples from other rickettsial species, as well as Coxiella endosymbionts from Coxiella burnetii. In contrast, the V3-V4 region sequences of these species could not be clearly distinguished. Coxiella endosymbionts were most common in Am. gemma and Rh. pulchellus, while Francisella endosymbionts predominated in Hyalomma ticks; both were primarily localized in the salivary glands. High abundances of Coxiella endosymbionts, as well as Pseudomonas, were associated with the absence or low abundance of Rickettsia pathogens in both Am. gemma and Rh. pulchellus, suggesting competitive interactions between these microbes. Additionally, Proteus mirabilis, an opportunistic pathogen of the urinary tract in humans, was found predominantly in Hyalomma ticks, except for the salivary glands, which were most abundant with Francisella endosymbionts. Furthermore, we detected the Acinetobacter, Pseudomonas, and Corynebacterium genera in all the tick tissues, supporting the hypothesis that these bacteria might circulate between camel blood and ticks. Saliva and hemolymph generally harbored more extracellular bacteria than the salivary glands and midgut. This study provides a new approach to unravel tick-endosymbiont-pathogen interactions by examining the tissue localization of tick-borne pathogens and symbionts in Am. gemma, Rh. pulchellus, Hy. dromedarii, and Hy. rufipes from camels in northern Kenya. Our findings establish a baseline for developing an understanding of the functional capacities of symbionts and for designing symbiont-based control strategies.
Collapse
Affiliation(s)
- Rua Khogali
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria, 0028, South Africa.
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, P.O. Box 32, Khartoum North, Sudan.
| | - Armanda Bastos
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria, 0028, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Dennis Getange
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Joel L Bargul
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya
| | - Shewit Kalayou
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Nehemiah Ongeso
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern, CH-3012, Switzerland
| | - Joost Theo Petra Verhoeven
- Centre for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 1353, Denmark
| | - James Kabii
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - John Ngiela
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
4
|
Cerqueira de Araujo A, Noel B, Bretaudeau A, Labadie K, Boudet M, Tadrent N, Istace B, Kritli S, Cruaud C, Olaso R, Deleuze JF, Voordouw MJ, Hervet C, Plantard O, Zamoto-Niikura A, Chertemps T, Maïbèche M, Hilliou F, Le Goff G, Chmelař J, Mazák V, Jmel MA, Kotsyfakis M, Medina JM, Hackenberg M, Šimo L, Koutroumpa FA, Wincker P, Kopáček P, Perner J, Aury JM, Rispe C. Genome sequences of four Ixodes species expands understanding of tick evolution. BMC Biol 2025; 23:17. [PMID: 39838418 PMCID: PMC11752866 DOI: 10.1186/s12915-025-02121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Ticks, hematophagous Acari, pose a significant threat by transmitting various pathogens to their vertebrate hosts during feeding. Despite advances in tick genomics, high-quality genomes were lacking until recently, particularly in the genus Ixodes, which includes the main vectors of Lyme disease. RESULTS Here, we present the genome sequences of four tick species, derived from a single female individual, with a particular focus on the European species Ixodes ricinus, achieving a chromosome-level assembly. Additionally, draft assemblies were generated for the three other Ixodes species, I. persulcatus, I. pacificus, and I. hexagonus. The quality of the four genomes and extensive annotation of several important gene families have allowed us to study the evolution of gene repertoires at the level of the genus Ixodes and of the tick group. We have determined gene families that have undergone major amplifications during the evolution of ticks, while an expression atlas obtained for I. ricinus reveals striking patterns of specialization both between and within gene families. Notably, several gene family amplifications are associated with a proliferation of single-exon genes-most strikingly for fatty acid elongases and sulfotransferases. CONCLUSIONS The integration of our data with existing genomes establishes a solid framework for the study of gene evolution, improving our understanding of tick biology. In addition, our work lays the foundations for applied research and innovative control targeting these organisms.
Collapse
Affiliation(s)
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | | | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Matéo Boudet
- University of Rennes, INRIA, CNRS, IRISA, Rennes, France
- IGEPP, INRAE, Institut Agro, BIPAA, University of Rennes, Rennes, France
| | - Nachida Tadrent
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Salima Kritli
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Maarten J Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | - Aya Zamoto-Niikura
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Thomas Chertemps
- Institut d'Ecologie Et Des Sciences de L'Environnement de Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Paris, France
| | - Martine Maïbèche
- Institut d'Ecologie Et Des Sciences de L'Environnement de Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Paris, France
| | - Frédérique Hilliou
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Vilém Mazák
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Mohamed Amine Jmel
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| | - Michalis Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, 70013, Heraklion, Crete, Greece
| | - José María Medina
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva S/N, 18071, Granada, Spain
- Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento S/N, 18100, Granada, Spain
| | - Michael Hackenberg
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva S/N, 18071, Granada, Spain
- Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento S/N, 18100, Granada, Spain
| | - Ladislav Šimo
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 22 Rue Pierre Et Marie Curie, Maisons-Alfort, France
| | - Fotini A Koutroumpa
- INRAE, Université de Tours, UMR1282 Infectiologie Et Santé Publique, 37380, Nouzilly, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | | |
Collapse
|
5
|
Abbasi AM, Nasir S, Bajwa AA, Akbar H, Artigas-Jerónimo S, Muñoz-Hernández C, Sánchez-Sánchez M, Moraga-Fernández A, de Mera IGF, de la Fuente J, Rashid MI. De novo assembly of sialotranscriptome of Hyalomma anatolicum and insights into expression dynamics in response to Theileria annulata infection. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:887-906. [PMID: 39271544 DOI: 10.1007/s10493-024-00962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Hyalomma anatolicum is a tick of significant one-health importance due to its role as a vector for various pathogens affecting humans, animals and the environment, such as Theileria annulata, which causes tropical theileriosis in cattle, leading to severe economic losses. When infected with pathogens like T. annulata, the salivary glands of H. anatolicum undergo gene expression changes, secrete modified proteins and activate immune responses, all of which facilitate pathogen survival and transmission by modulating the host immune response and optimizing conditions for pathogen development. Understanding these responses is crucial for developing control strategies for tick-borne diseases. To understand the interaction between H. anatolicum and T. annulata, we performed a differential gene expression analysis of H. anatolicum salivary glands. An average of approximately 25 million raw sequencing reads were generated in each replicate using Illumina Sequencing. The sequenced reads were de novo assembled and the assembled transcriptome yielded approximately 50,231 non-redundant transcripts after clustering with CD-HIT using a sequence identity of 95% and alignment coverage of 90%. The assembly quality was evaluated with BUSCO analysis and found to be 86% complete using the Arachnida dataset and then blasted against non-redundant protein sequence database from NCBI followed by counting of reads and differential expression analysis. Overall, around 2400 and 400 genes were found differentially expressed with logFC > 1 and logFC > 2 respectively at FDR < 0.05. Top up-regulated genes included Calpain, Papilin, Neprilysin, and Ankyrin repeat-containing protein. Top down-regulated genes included Scoloptoxin, and Selenoprotein S and other uncharacterized proteins. Many other up-regulated proteins with high significance were uncharacterized suggesting room for further H. anatolicum functional and structural characterization studies. To our best knowledge, this is the first study of H. anatolicum sialotranscriptome which greatly contributes to sialotranscriptome information not only as sequence database but also indicates the potential targets for development of vaccine against ticks and transmission-blocking vaccines against T. annulata.
Collapse
Affiliation(s)
| | - Shiza Nasir
- University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan
| | | | - Haroon Akbar
- University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan
| | - Sara Artigas-Jerónimo
- Biochemistry Section, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071, Ciudad Real, Spain
- DOE Research Group, Institute of Biomedicine of the University of Castilla-La Mancha (IB-UCLM), Ciudad Real, Spain
| | - Clara Muñoz-Hernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Marta Sánchez-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Alberto Moraga-Fernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | | |
Collapse
|
6
|
Piou V, Arafah K, Bocquet M, Bulet P, Vétillard A. The proteomic content of Varroa destructor gut varies according to the developmental stage of its host. PLoS Pathog 2024; 20:e1012802. [PMID: 39774526 PMCID: PMC11723617 DOI: 10.1371/journal.ppat.1012802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/10/2025] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
The nutritional physiology of parasites is often overlooked although it is at the basis of host-parasite interactions. In the case of Varroa destructor, one of the major pests of the Western honey bee Apis mellifera, the nature of molecules and tissues ingested by the parasite is still not completely understood. Here, the V. destructor feeding biology was explored through artificial feeding, dissection of the mite's gut and proteomic analyses. More specifically, the proteome of guts extracted from starved mites and honey bee-fed mites was compared to highlight both the parasite proteins likely involved in food processing and the honey bee proteins actually ingested by the mite. We could identify 25 V. destructor candidate proteins likely involved in the parasite digestion. As the host developmental stages infested by the mite are diverse, we also focused on the identity and on the origin of honey bee proteins ingested by the mite when it feeds on larvae, pupae or adults. We highlighted profiles of consumed honey bee proteins and their variations throughout the V. destructor life cycle. These variations matched the ones observed in the honey bee hemolymph, showing that this tissue is an important part of the mite's diet. Based on the variations of abundance of the most consumed honey bee proteins and on their functions, the potential implication of these key candidate nutrients in V. destructor reproduction is also discussed.
Collapse
Affiliation(s)
- Vincent Piou
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), UMR5174, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, France
| | - Karim Arafah
- Plateforme BioPark d’Archamps, Archparc, Archamps, France
| | | | - Philippe Bulet
- Plateforme BioPark d’Archamps, Archparc, Archamps, France
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Grenoble, France
| | - Angélique Vétillard
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), UMR5174, CNRS-Université de Toulouse III-IRD, Université Paul Sabatier, Toulouse, France
- Conservatoire National des Arts et Métiers (CNAM Paris), Unité Métabiot, Ploufragan, France
| |
Collapse
|
7
|
Reyes JB, McVicar M, Beniwal S, Sharma A, Tillett R, Petereit J, Nuss A, Gulia-Nuss M. A multi-omics approach for understanding blood digestion dynamics in Ixodes scapularis and identification of anti-tick vaccine targets. Ticks Tick Borne Dis 2024; 15:102379. [PMID: 39033644 PMCID: PMC11793013 DOI: 10.1016/j.ttbdis.2024.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Ixodes scapularis, the black-legged tick, is a major arthropod vector that transmits the causative agents of Lyme disease and several other pathogens of human significance. The tick midgut is the main tissue involved in blood acquisition and digestion and the first organ to have contact with pathogens ingested through the blood meal. Gene expression in the midgut before, during, and after a blood meal may vary in response to the physiological changes due to blood feeding. A systems biology approach based on RNA and protein sequencing was used to gain insight into the changes in tick midgut transcripts and proteins during blood ingestion (unfed and partially fed) and digestion (1-, 2-, 7-, and 14 days post detachment from the host) by the Ixodes scapularis female ticks. A total of 2,726 differentially expressed transcripts, and 449 proteins were identified across the time points. Genes involved in detoxification of xenobiotics, proteases, protease inhibitors, metabolism, and immunity were differentially expressed in response to blood feeding. Similarly, proteins corresponding to the same groups were also differentially expressed. Nine genes from major gene categories were chosen as potential vaccine candidates, and, using RNA interference, the effect of these gene knockdowns on tick biology was investigated. Knockdown of these genes had variable negative impacts on tick physiology, such as the inability to engorge fully and to produce eggs and increased mortality. These and additional gene targets provide opportunities to explore novel tick control strategies.
Collapse
Affiliation(s)
- Jeremiah B Reyes
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA, 89557; Nevada Bioinformatics Center, University of Nevada Reno, USA, 89557
| | - Molly McVicar
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA, 89557
| | - Saransh Beniwal
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA, 89557; Department of Computer Science and Engineering, University of Nevada, Reno, USA, 89557
| | - Arvind Sharma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA, 89557
| | - Richard Tillett
- Nevada Bioinformatics Center, University of Nevada Reno, USA, 89557
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada Reno, USA, 89557
| | - Andrew Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA, 89557; Department of Agriculture, Veterinary, and Rangeland Science, University of Nevada Reno, USA, 89557
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, USA, 89557.
| |
Collapse
|
8
|
Lu S, de Sousa-Paula LC, Ribeiro JMC, Tirloni L. Exploring the longitudinal expression dynamics of midguts in adult female Amblyomma americanum ticks. BMC Genomics 2024; 25:996. [PMID: 39448894 PMCID: PMC11515579 DOI: 10.1186/s12864-024-10905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Female ticks remain attached to their host for multiple days to complete a blood meal. This prolonged feeding period is accompanied by a significant increase in the tick's size and body weight, paralleled by noteworthy changes to the tick midgut. While the midgut is recognized for its established role in blood storage and processing, its importance extends to playing a crucial role in the acquisition, survival, and proliferation of pathogens. Despite this, our overall understanding of tick midgut biology is limited. RESULTS Our transcriptome analysis identified 15,599 putative DNA coding sequences (CDS), which were classified into 26 functional groups. Dimensional and differential expression analyses revealed four primary transcriptional profiles corresponding to unfed, slow-feeding, transitory (from slow- to rapid-feeding), and rapid-feeding stages. Additionally, comparing the current dataset with previously deposited transcriptome from other tick species allowed the identification of commonly expressed transcripts across different feeding stages. CONCLUSION Our findings provide a detailed temporal resolution of numerous metabolic pathways in the midgut of A. americanum adult females throughout the feeding process, highlighting the dynamic transcriptional regulation of the tick's midgut as feeding progresses. Furthermore, we identified conserved transcripts across three different tick species that exhibit similar expression patterns. This knowledge not only enhances our understanding of the physiological processes within the tick midgut but also opens up potential avenues for developing control methods that target multiple tick species.
Collapse
Affiliation(s)
- Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucas C de Sousa-Paula
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Jose M C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| |
Collapse
|
9
|
Lu S, de Sousa Paula LC, Ribeiro JM, Tirloni L. Exploring midgut expression dynamics: longitudinal transcriptomic analysis of adult female Amblyomma americanum midgut and comparative insights with other hard tick species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614175. [PMID: 39372786 PMCID: PMC11451607 DOI: 10.1101/2024.09.20.614175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Female ticks remain attached to their host for multiple days to complete a blood meal. This prolonged feeding period is accompanied by a significant increase in the tick's size and body weight, paralleled by noteworthy changes to the tick midgut. While the midgut is recognized for its established role in blood storage and processing, its importance extends to playing a crucial role in the acquisition, survival, and proliferation of pathogens. Despite this, our overall understanding of tick midgut biology is limited. Results We conducted a comprehensive longitudinal transcriptome analysis of the midgut in adult female A. americanum ticks across various feeding stages, including unfed, slow-feeding, and rapid-feeding phases. Our analysis revealed 15,599 putative DNA coding sequences (CDS) classified within 26 functional groups. Dimensional and differential expression analysis highlighted the dynamic transcriptional changes in the tick midgut as feeding progresses, particularly during the initial period of feeding and the transition from the slow-feeding to the rapid-feeding phase. Additionally, we performed an orthology analysis comparing our dataset with midgut transcriptomes from other hard ticks, such as Ixodes scapularis and Rhipicephalus microplus. This comparison allowed us to identify transcripts commonly expressed during different feeding phases across these three species. Conclusion Our findings provide a detailed temporal resolution of numerous metabolic pathways in A. americanum, emphasizing the dynamic transcriptional changes occurring in the tick midgut throughout the feeding process. Furthermore, we identified conserved transcripts across three different tick species that exhibit similar expression patterns. This knowledge has significant implications for future research aimed at deciphering the physiological pathways relevant within the tick midgut. It also offers potential avenues for developing control methods that target multiple tick species.
Collapse
Affiliation(s)
- Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucas C. de Sousa Paula
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Jose M.C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| |
Collapse
|
10
|
Guizzo MG, Frantová H, Lu S, Kozelková T, Číhalová K, Dyčka F, Hrbatová A, Tonk-Rügen M, Perner J, Ribeiro JM, Fogaça AC, Zurek L, Kopáček P. The immune factors involved in the rapid clearance of bacteria from the midgut of the tick Ixodes ricinus. Front Cell Infect Microbiol 2024; 14:1450353. [PMID: 39193502 PMCID: PMC11347951 DOI: 10.3389/fcimb.2024.1450353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Ticks are obligate hematophagous arthropods that transmit a wide range of pathogens to humans as well as wild and domestic animals. They also harbor a non-pathogenic microbiota, although our previous study has shown that the diverse bacterial microbiome in the midgut of Ixodes ricinus is quantitatively poor and lacks a core. In artificial infections by capillary feeding of ticks with two model bacteria (Gram-positive Micrococcus luteus and Gram-negative Pantoea sp.), rapid clearance of these microbes from the midgut was observed, indicating the presence of active immune mechanisms in this organ. In the current study, RNA-seq analysis was performed on the midgut of I. ricinus females inoculated with either M. luteus or Pantoea sp. or with sterile water as a control. While no immune-related transcripts were upregulated by microbial inoculation compared to that of the sterile control, capillary feeding itself triggered dramatic transcriptional changes in the tick midgut. Manual curation of the transcriptome from the midgut of unfed I. ricinus females, complemented by the proteomic analysis, revealed the presence of several constitutively expressed putative antimicrobial peptides (AMPs) that are independent of microbial stimulation and are referred to here as 'guard' AMPs. These included two types of midgut-specific defensins, two different domesticated amidase effector 2 (Dae2), microplusin/ricinusin-related molecules, two lysozymes, and two gamma interferon-inducible lysosomal thiol reductases (GILTs). The in vitro antimicrobial activity assays of two synthetic mature defensins, defensin 1 and defensin 8, confirmed their specificity against Gram-positive bacteria showing exceptional potency to inhibit the growth of M. luteus at nanomolar concentrations. The antimicrobial activity of midgut defensins is likely part of a multicomponent system responsible for the rapid clearance of bacteria in the tick midgut. Further studies are needed to evaluate the role of other identified 'guard' AMPs in controlling microorganisms entering the tick midgut.
Collapse
Affiliation(s)
- Melina Garcia Guizzo
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Helena Frantová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Tereza Kozelková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Kristýna Číhalová
- Department of Microbiology, Nutrition and Dietetics/CINeZ, Czech University of Life Sciences, Prague, Czechia
| | - Filip Dyčka
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Alena Hrbatová
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czechia
| | - Miray Tonk-Rügen
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - José M. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Andrea C. Fogaça
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ludek Zurek
- Department of Microbiology, Nutrition and Dietetics/CINeZ, Czech University of Life Sciences, Prague, Czechia
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
11
|
de Souza RP, Valentina MVD, Leal BF, Oliveira SD, Ferreira CAS. Glycine rich proteins of ticks: more than a cement component. Parasitology 2024; 151:1063-1073. [PMID: 39632718 PMCID: PMC11772090 DOI: 10.1017/s0031182024001410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024]
Abstract
Glycine-rich proteins (GRPs) are arbitrarily defined as those containing 20% or more glycine residues and constitute a superfamily divided into subfamilies based on their structure and/or function. GRPs have been identified in a diverse array of organisms and have been shown to possess a number of distinctive biological characteristics, including nucleic acid binding, adhesive glue-like properties, antimicrobial activity, involvement in the stress response and in the formation of cuticle components. In ticks, their expression has been described and studied mainly in the salivary glands, and their primary function is usually associated with cement formation and/or structure. Conversely, several GRPs are present in all tick developmental stages, and the expression of many GRP genes is modulated by physiological processes and immune challenges, such as feeding and pathogen infection. Considering that some tick GRPs appear to play essential roles in the tick life cycle, they have been evaluated as immune targets, with a focus on their potential application in vaccine development. This review highlights the roles that tick GRPs may perform beyond the formation and maintenance of the cement scaffold, including structural characterization, locations and functional relevance, hypothetical functions, and their potential use in anti-tick vaccine development.
Collapse
Affiliation(s)
- Renata Perotto de Souza
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Mariana Vieira Dalla Valentina
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Bruna Ferreira Leal
- Laboratório Central, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Governo do Estado do Rio Grande do Sul (LACEN/SES-RS), Porto Alegre, RS, Brazil
| | - Sílvia Dias Oliveira
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Carlos Alexandre Sanchez Ferreira
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Schoville SD, Burke RL, Dong DY, Ginsberg HS, Maestas L, Paskewitz SM, Tsao JI. Genome resequencing reveals population divergence and local adaptation of blacklegged ticks in the United States. Mol Ecol 2024; 33:e17460. [PMID: 38963031 DOI: 10.1111/mec.17460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
Tick vectors and tick-borne disease are increasingly impacting human populations globally. An important challenge is to understand tick movement patterns, as this information can be used to improve management and predictive modelling of tick population dynamics. Evolutionary analysis of genetic divergence, gene flow and local adaptation provides insight on movement patterns at large spatiotemporal scales. We develop low coverage, whole genome resequencing data for 92 blacklegged ticks, Ixodes scapularis, representing range-wide variation across the United States. Through analysis of population genomic data, we find that tick populations are structured geographically, with gradual isolation by distance separating three population clusters in the northern United States, southeastern United States and a unique cluster represented by a sample from Tennessee. Populations in the northern United States underwent population contractions during the last glacial period and diverged from southern populations at least 50 thousand years ago. Genome scans of selection provide strong evidence of local adaptation at genes responding to host defences, blood-feeding and environmental variation. In addition, we explore the potential of low coverage genome sequencing of whole-tick samples for documenting the diversity of microbial pathogens and recover important tick-borne pathogens such as Borrelia burgdorferi. The combination of isolation by distance and local adaptation in blacklegged ticks demonstrates that gene flow, including recent expansion, is limited to geographical scales of a few hundred kilometres.
Collapse
Affiliation(s)
- Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Russell L Burke
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Dahn-Young Dong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Howard S Ginsberg
- United States Geological Survey, Eastern Ecological Science Center, Woodward Hall - PSE, Field Station at the University of Rhode Island, Kingston, Rhode Island, USA
| | - Lauren Maestas
- Cattle Fever Tick Research Laboratory, USDA, Agricultural Research Service, Edinburg, Texas, USA
| | - Susan M Paskewitz
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jean I Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
13
|
Ghani MU, Yang Z, Feng T, Chen J, Khosravi Z, Wu Q, Cui H. Comprehensive review on glucose 6 phosphate dehydrogenase: A critical immunometabolic and redox switch in insects. Int J Biol Macromol 2024; 273:132867. [PMID: 38838892 DOI: 10.1016/j.ijbiomac.2024.132867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Mounting an active immune response is energy intensive and demands the reallocation of nutrients to maintain the body's resistance and tolerance against infections. Central to this metabolic adaptation is Glucose-6-phosphate dehydrogenase (G6PDH), a housekeeping enzyme involve in pentose phosphate pathway (PPP). PPP play an essential role in generating ribose, which is critical for nicotinamide adenine dinucleotide phosphate (NADPH). It is vital for physiological and cellular processes such as generating nucleotides, fatty acids and reducing oxidative stress. The G6PDH is extremely conserved enzyme across species in PP shunt. The deficiency of enzymes leads to serious consequences on organism, particularly on adaptation and development. Acute deficiency can lead to impaired cell development, halted embryonic growth, reduce sensitivity to insulin, hypertension and increase inflammation. Historically, research focusing on G6PDH and PPP have primarily targeted diseases on mammalian. However, our review has investigated the unique functions of the G6PDH enzyme in insects and greatly improved mechanistic understanding of its operations. This review explore how G6PDH in insects plays a crucial role in managing the redox balance and immune related metabolism. This study aims to investigate the enzyme's role in different metabolic adaptations.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Zihan Yang
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Tianxiang Feng
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Zahra Khosravi
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Qishu Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
14
|
Hendawy SHM, Alzan HF, Abdel-Ghany HSM, Suarez CE, Kamel G. Biochemical analysis of Hyalomma dromedarii salivary glands and gut tissues using SR-FTIR micro-spectroscopy. Sci Rep 2024; 14:8515. [PMID: 38609442 PMCID: PMC11014997 DOI: 10.1038/s41598-024-59165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Ticks are obligatory voracious blood feeders infesting diverse vertebrate hosts, that have a crucial role in the transmission of diverse pathogens that threaten human and animal health. The continuous emergence of tick-borne diseases due to combined worldwide climatic changes, human activities, and acaricide-resistant tick strains, necessitates the development of novel ameliorative tick control strategies such as vaccines. The synchrotron-based Fourier transform infrared micro-spectroscopy (SR-FTIR) is a bioanalytical microprobe capable of exploring the molecular chemistry within microstructures at a cellular or subcellular level and is considered as a nondestructive analytical approach for biological specimens. In this study, SR-FTIR analysis was able to explore a qualitative and semi-quantitative biochemical composition of gut and salivary glands of Hyalomma dromedarii (H. dromedarii) tick detecting differences in the biochemical composition of both tissues. A notable observation regarding Amide I secondary structure protein profile was the higher ratio of aggregated strands in salivary gland and beta turns in gut tissues. Regarding the lipid profile, there was a higher intensity of lipid regions in gut tissue when compared to salivary glands. This detailed information on the biochemical compositions of tick tissues could assist in selecting vaccine and/or control candidates. Altogether, these findings confirmed SR-FTIR spectroscopy as a tool for detecting differences in the biochemical composition of H. dromedarii salivary glands and gut tissues. This approach could potentially be extended to the analysis of other ticks that are vectors of important diseases such as babesiosis and theileriosis.
Collapse
Affiliation(s)
- Seham H M Hendawy
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt.
- Tick and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt.
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA.
| | - Heba F Alzan
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
- Tick and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA
| | - Hoda S M Abdel-Ghany
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
- Tick and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, USA
- Animal Disease Research Unit, United States Department of Agricultural-Agricultural Research Service, Pullman, WA, USA
| | - Gihan Kamel
- SESAME Synchrotron (Synchrotron-light for Experimental Science and Applications in the Middle East), Allan, 19252, Jordan.
- Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
15
|
Oraby AK, Marchant DJ. CCHFV entry via LDLR keeps it 'ticking'? Cell Res 2024; 34:271-272. [PMID: 38253654 PMCID: PMC10978823 DOI: 10.1038/s41422-024-00928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Affiliation(s)
- Ahmed K Oraby
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - David J Marchant
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
16
|
Lu S, Waldman J, Parizi LF, Junior IDSV, Tirloni L. A longitudinal transcriptomic analysis of Rhipicephalus microplus midgut upon feeding. Ticks Tick Borne Dis 2024; 15:102304. [PMID: 38159432 PMCID: PMC10947743 DOI: 10.1016/j.ttbdis.2023.102304] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Rhipicephalus microplus, a highly host-specific tick that primarily feeds on cattle, posing a significant threat to livestock production. The investigation of tick physiology is crucial for identifying potential targets in tick control. Of particular interest adult female ticks undergo a significant expansion of the midgut during feeding, leading to an over 100-fold increase in body weight. Beyond the functions of storing and digesting blood meals, the tick midgut plays a crucial role in acquiring and transmitting pathogens. However, our understanding of tick midgut physiology remains limited. In this study we conducted a comprehensive longitudinal transcriptome analysis of the midgut from adult female R. microplus ticks collected at various feeding stages, providing an overview of the transcriptional modulation in this organ as feeding progress. By employing a de novo assembly approach followed by coding-sequences (CDS) extraction, 60,599 potential CDS were identified. In preparation for functional annotation and differential expression analysis, transcripts that showed an average transcript per million (TPM) ≥ 3 in at least one of the biological conditions were extracted. This selection process resulted in a total of 10,994 CDS, which were categorized into 24 functional classes. Notably, our differential expression analysis revealed three main transcriptional profiles. In the first one, representing the slow-feeding stage, the most abundant functional classes were the "protein synthesis" and "secreted" groups, reflecting the highly active state of the tick midgut. The second profile partially accounts for the rapid-feeding stage, in which a high number of differentially expressed transcripts was observed. Lastly, the third transcriptional profile represents post-detached ticks. Notably the highest number of modulated transcripts was observed up to 48 h post-detachment (hpd), however no major differences was observed up to 168 hpd. Overall, the data presented here offers a temporal insight into tick midgut physiology, contributing to the identification of potential targets for the development of anti-tick control strategies.
Collapse
Affiliation(s)
- Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Jéssica Waldman
- Centro de Biotecnologia, Universidade and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States.
| |
Collapse
|
17
|
Matoušková Z, Orsághová K, Srb P, Pytelková J, Kukačka Z, Buša M, Hajdušek O, Šíma R, Fábry M, Novák P, Horn M, Kopáček P, Mareš M. An Unusual Two-Domain Thyropin from Tick Saliva: NMR Solution Structure and Highly Selective Inhibition of Cysteine Cathepsins Modulated by Glycosaminoglycans. Int J Mol Sci 2024; 25:2240. [PMID: 38396918 PMCID: PMC10889554 DOI: 10.3390/ijms25042240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The structure and biochemical properties of protease inhibitors from the thyropin family are poorly understood in parasites and pathogens. Here, we introduce a novel family member, Ir-thyropin (IrThy), which is secreted in the saliva of Ixodes ricinus ticks, vectors of Lyme borreliosis and tick-borne encephalitis. The IrThy molecule consists of two consecutive thyroglobulin type-1 (Tg1) domains with an unusual disulfide pattern. Recombinant IrThy was found to inhibit human host-derived cathepsin proteases with a high specificity for cathepsins V, K, and L among a wide range of screened cathepsins exhibiting diverse endo- and exopeptidase activities. Both Tg1 domains displayed inhibitory activities, but with distinct specificity profiles. We determined the spatial structure of one of the Tg1 domains by solution NMR spectroscopy and described its reactive center to elucidate the unique inhibitory specificity. Furthermore, we found that the inhibitory potency of IrThy was modulated in a complex manner by various glycosaminoglycans from host tissues. IrThy was additionally regulated by pH and proteolytic degradation. This study provides a comprehensive structure-function characterization of IrThy-the first investigated thyropin of parasite origin-and suggests its potential role in host-parasite interactions at the tick bite site.
Collapse
Affiliation(s)
- Zuzana Matoušková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Praha, Czech Republic
| | - Katarína Orsághová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
- First Faculty of Medicine, Charles University, Katerinska 32, 12108 Praha, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| | - Jana Pytelková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| | - Zdeněk Kukačka
- Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Michal Buša
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| | - Ondřej Hajdušek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Radek Šíma
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
- Biopticka Laborator, Mikulasske Namesti 4, 32600 Plzen, Czech Republic
| | - Milan Fábry
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| | - Petr Novák
- Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| |
Collapse
|
18
|
Urbanová V, Lu S, Kalinová E, Martins L, Kozelková T, Dyčka F, Ribeiro JM, Hajdušek O, Perner J, Kopáček P. From the fat body to the hemolymph: Profiling tick immune and storage proteins through transcriptomics and proteomics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104072. [PMID: 38185274 DOI: 10.1016/j.ibmb.2024.104072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Ticks are blood-feeding arachnids that are known to transmit various pathogenic microorganisms to their hosts. During blood feeding, ticks activate their metabolism and immune system to efficiently utilise nutrients from the host's blood and complete the feeding process. In contrast to insects, in which the fat body is known to be a central organ that controls essential metabolic processes and immune defense mechanisms, the function of the fat body in tick physiology is still relatively unexplored. To fill this gap, we sought to uncover the repertoire of genes expressed in the fat body associated with trachea (FB/Tr) by analyzing the transcriptome of individual, partially fed (previtellogenic) Ixodes ricinus females. The resulting catalog of individual mRNA sequences reveals a broad repertoire of transcripts encoding proteins involved in nutrient storage and distribution, as well as components of the tick immune system. To gain a detailed insight into the secretory products of FB/Tr specifically involved in inter-tissue transport and humoral immunity, the transcriptomic data were complemented with the proteome of soluble proteins in the hemolymph of partially fed female ticks. Among these proteins, the hemolipoglyco-carrier proteins were predominant. When comparing immune peptides and proteins from the fat body with those produced by hemocytes, we found that the fat body serves as a unique producer of certain immune components. Finally, time-resolved transcriptional regulation of selected immune transcripts from the FB/Tr was examined in response to experimental challenges with model microbes and analyzed by RT-qPCR. Overall, our data show that the fat body of ticks, similar to insects, is an important metabolic tissue that also plays a remarkable role in immune defense against invading microbes. These findings improve our understanding of tick biology and its impact on the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Veronika Urbanová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Eliška Kalinová
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Larissa Martins
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories - NIH/NIAID, Hamilton, MT, USA
| | - Tereza Kozelková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Filip Dyčka
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - José M Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Ondřej Hajdušek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
| |
Collapse
|
19
|
Adegoke A, Ribeiro JMC, Smith R, Karim S. Tick innate immune responses to hematophagy and Ehrlichia infection at single-cell resolution. Front Immunol 2024; 14:1305976. [PMID: 38274813 PMCID: PMC10808623 DOI: 10.3389/fimmu.2023.1305976] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Ticks rely on robust cellular and humoral responses to control microbial infection. However, several aspects of the tick's innate immune system remain uncharacterized, most notably that of the immune cells (called hemocytes), which are known to play a significant role in cellular and humoral responses. Despite the importance of hemocytes in regulating microbial infection, our understanding of their basic biology and molecular mechanisms remains limited. Therefore, we believe that a more detailed understanding of the role of hemocytes in the interactions between ticks and tick-borne microbes is crucial to illuminating their function in vector competence and to help identify novel targets for developing new strategies to block tick-borne pathogen transmission. Methods This study examined hemocytes from the lone star tick (Amblyomma americanum) at the transcriptomic level using the 10X genomics single-cell RNA sequencing platform to analyze hemocyte populations from unfed, partially blood-fed, and Ehrlichia chaffeensis-infected ticks. The functional role of differentially expressed hemocyte markers in hemocyte proliferation and Ehrlichia dissemination was determined using an RNA interference approach. Results and discussion Our data exhibit the identification of fourteen distinct hemocyte populations. Our results uncover seven distinct lineages present in uninfected and Ehrlichia-infected hemocyte clusters. The functional characterization of hemocytin, cystatin, fibronectin, and lipocalin demonstrate their role in hemocyte population changes, proliferation, and Ehrlichia dissemination. Conclusion Our results uncover the tick immune responses to Ehrlichia infection and hematophagy at a single-cell resolution. This work opens a new field of tick innate immunobiology to understand the role of hemocytes, particularly in response to prolonged blood-feeding (hematophagy), and tick-microbial interactions.
Collapse
Affiliation(s)
- Abdulsalam Adegoke
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Jose M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
20
|
Zhang YK, Li SS, Yang C, Zhang YF, Liu JZ. Mechanism of the toxic effects of tetracycline on blood meal digestion in Haemaphysalis longicornis. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:681-695. [PMID: 37987890 DOI: 10.1007/s10493-023-00858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
The extensive utilization of antibiotics in the field of animal husbandry gives rise to various concerns pertaining to the environment and human health. Here, we demonstrate that the administration of tetracycline impedes blood meal digestion in the tick Haemaphysalis longicornis. Tissue sectioning, 16S rRNA high-throughput sequencing, and transcriptome sequencing of the midgut were employed to elucidate the mechanism underlying tetracycline toxicity. The treatment group consisted of engorged female ticks that were subjected to tetracycline microinjections (75 µg per tick), whereas the control group received sterile water injections. On days 2 and 4 following the injections, the tick body weight changes were assessed and the midguts were dissected and processed. Change in tick body weight in tetracycline-treated group was less than in the control group. In tetracycline-treated ticks, midgut epithelial cells were loosely connected and blood meal digestion was impaired compared to the control group. There was no significant change in midgut bacterial diversity after tetracycline treatment. On day 2 following treatment, the relative abundance of Escherichia-Shigella was significantly decreased, whereas the relative abundance of Allorhizobium was significantly increased compared to the control group. On day 4 following treatment, the relative abundance of Escherichia-Shigella, Allorhizobium, Ochrobactrum, and Acidibacter decreased significantly, whereas the relative abundance of Paraburkholderia and Pelomonas increased significantly. Tetracycline treatment also affected midgut gene expression, producing a cumulative effect wherein the differentially expressed genes (DEGs) were mostly down-regulated. KEGG enrichment pathway analysis revealed that on day 2 the up-regulated DEGs were significantly enriched in 21 pathways, including apoptosis and phagosome. Comparatively, the down-regulated DEGs were significantly enriched in 26 pathways, including N-glycan biosynthesis, lysosome, and autophagy. In contrast, on day 4 the up-regulated DEGs were significantly enriched in 10 pathways including aminoacyl-tRNA biosynthesis, ribosome biogenesis, RNA transport, and DNA replication, whereas the down-regulated differential genes were significantly enriched in 11 pathways including lysosome, peroxisome, N-glycan biosynthesis, and fatty acid synthesis. This indicates that tetracycline injection inhibited blood meal digestion by affecting midgut digestive cells, gut flora diversity, and gene expression. These findings could contribute to tick control by inhibiting blood meal digestion.
Collapse
Affiliation(s)
- Yan-Kai Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| | - Si-Si Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
- Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui University, Hengshui, 053000, Hebei, China
| | - Chen Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Yu-Fan Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Jing-Ze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| |
Collapse
|
21
|
Kozelková T, Dyčka F, Lu S, Urbanová V, Frantová H, Sojka D, Šíma R, Horn M, Perner J, Kopáček P. Insight Into the Dynamics of the Ixodes ricinus Nymphal Midgut Proteome. Mol Cell Proteomics 2023; 22:100663. [PMID: 37832788 PMCID: PMC10665701 DOI: 10.1016/j.mcpro.2023.100663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Ticks are ectoparasites that feed on blood and have an impressive ability to consume and process enormous amounts of host blood, allowing extremely long periods of starvation between blood meals. The central role in the parasitic lifestyle of ticks is played by the midgut. This organ efficiently stores and digests ingested blood and serves as the primary interface for the transmission of tick-borne pathogens. In this study, we used a label-free quantitative approach to perform a novel dynamic proteomic analysis of the midgut of Ixodesricinus nymphs, covering their development from unfed to pre-molt stages. We identified 1534 I. ricinus-specific proteins with a relatively low proportion of host proteins. This proteome dataset, which was carefully examined by manual scrutiny, allowed precise annotation of proteins important for blood meal processing and their dynamic changes during nymphal ontogeny. We focused on midgut molecules related to lipid hydrolysis, storage, and transport, opening a yet unexplored avenue for studying lipid metabolism in ticks. Further dynamic profiling of the tick's multi-enzyme digestive network, protease inhibitors, enzymes involved in redox homeostasis and detoxification, antimicrobial peptides, and proteins responsible for midgut colonization by Borrelia spirochetes promises to uncover new targets for targeting tick nymphs, the most critical life stage for transmission the pathogens that cause tick-borne diseases.
Collapse
Affiliation(s)
- Tereza Kozelková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Sciences, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Filip Dyčka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Sciences, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Veronika Urbanová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Helena Frantová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Radek Šíma
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Bioptic Laboratory, Ltd, Plzen, Czech Republic
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
| |
Collapse
|
22
|
Omondi D, Zweygarth E, Murungi E, Jongejan F, Nijhof AM. De novo assembly and annotation of the Amblyomma hebraeum tick midgut transcriptome response to Ehrlichia ruminantium infection. PLoS Negl Trop Dis 2023; 17:e0011554. [PMID: 37578991 PMCID: PMC10449191 DOI: 10.1371/journal.pntd.0011554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/24/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
The South African bont tick Amblyomma hebraeum is a hematophagous vector for the heartwater disease pathogen Ehrlichia ruminantium in southern Africa. During feeding, the tick's enterocytes express proteins that perform vital functions in blood digestion, including proteins that may be involved in E. ruminantium acquisition, colonization or immunity. To delineate the molecular mechanism of midgut response to E. ruminantium infection, we performed comparative analyses of midgut transcriptomes of E. ruminantium infected engorged A. hebraeum nymphs, and infected adult male and female ticks with their corresponding matched uninfected controls, before and during feeding. A total of 102,036 unigenes were annotated in public databases and their expression levels analyzed for engorged nymphs as well as unfed and partly-fed adult ticks. There were 2,025 differentially expressed genes (DEGs) in midguts, of which 1,225 unigenes were up-regulated and 800 unigenes were down-regulated in the midguts of infected ticks. Annotation of DEGs revealed an increase in metabolic and cellular processes among E. ruminantium infected ticks. Notably, among the infected ticks, there was up-regulation in the expression of genes involved in tick immunity, histone proteins and oxidative stress responses. We also observed up-regulation of glycoproteins that E. ruminantium could potentially use as docking sites for host cell entry. Insights uncovered in this study offer a platform for further investigations into the molecular interaction between E. ruminantium and A. hebraeum.
Collapse
Affiliation(s)
- David Omondi
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Erich Zweygarth
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Edwin Murungi
- Department of Medical Biochemistry, School of Health Sciences, Kisii University, Kisii, Kenya
| | - Frans Jongejan
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Ard M. Nijhof
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
23
|
Lu S, Martins LA, Kotál J, Ribeiro JMC, Tirloni L. A longitudinal transcriptomic analysis from unfed to post-engorgement midguts of adult female Ixodes scapularis. Sci Rep 2023; 13:11360. [PMID: 37443274 PMCID: PMC10345007 DOI: 10.1038/s41598-023-38207-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The hematophagy behavior has evolved independently several times within the Arthropoda phylum. Interestingly, the process of acquiring a blood meal in ticks is considerably distinct from that observed in other blood-feeding arthropods. Instead of taking seconds to minutes to complete a blood meal, an adult female Ixodes scapularis tick can remain attached to its host for numerous days. During this extended feeding period, the tick undergoes drastic morphological changes. It is well established that the tick midgut plays a pivotal role not only in blood meal digestion but also in pathogen acquisition and transmission. However, our understanding of the underlying molecular mechanisms involved in these events remains limited. To expedite tick research, we conducted a comprehensive longitudinal RNA-sequencing of the tick midgut before, during, and after feeding. By collecting ticks in different feeding stages (unfed, slow feeding, rapid feeding, and early post-detached), we obtained a comprehensive overview of the transcripts present in each stage and the dynamic transcriptional changes that occur between them. This provides valuable insights into tick physiology. Additionally, through unsupervised clustering, we identified transcripts with similar patterns and stage-specific sequences. These findings serve as a foundation for selecting targets in the development of anti-tick control strategies and facilitate a better understanding of how blood feeding and pathogen infection impact tick physiology.
Collapse
Affiliation(s)
- Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Larissa A Martins
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
- Laboratory of Persistent Viral Diseases, Neuroimmunology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jan Kotál
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - José M C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| |
Collapse
|
24
|
Chiyoda S, Oguchi K, Miura T. Appearance of a transparent protrusion containing two pairs of legs on the apodous ring preceding the anamorphic molt in a millipede, Niponia nodulosa. Front Zool 2023; 20:14. [PMID: 37072790 PMCID: PMC10111702 DOI: 10.1186/s12983-023-00493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Arthropods gradually change their forms through repeated molting events during postembryonic development. Anamorphosis, i.e., segment addition during postembryonic development, is seen in some arthropod lineages. In all millipede species (Myriapoda, Diplopoda), for example, postembryonic processes go through anamorphosis. Jean-Henri Fabre proposed 168 years ago the "law of anamorphosis", that is, "new rings appear between the penultimate ring and the telson" and "all apodous rings in a given stadium become podous rings in the next stadium", but the developmental process at the anamorphic molt remains largely unknown. In this study, therefore, by observing the morphological and histological changes at the time of molting, the detailed processes of leg- and ring-addition during anamorphosis were characterized in a millipede, Niponia nodulosa (Polydesmida, Cryptodesmidae). RESULTS In the preparatory period, a few days before molting, scanning electron microscopy, confocal laser scanning microscopy, and histological observations revealed that two pairs of wrinkled leg primordia were present under the cuticle of each apodous ring. In the rigidation period, just prior to molt, observations of external morphology showed that a transparent protrusion was observed on the median line of the ventral surface on each apodous ring. Confocal laser scanning microscopy and histological observations revealed that the transparent protrusion covered by an arthrodial membrane contained a leg bundle consisting of two pairs of legs. On the other hand, ring primordia were observed anterior to the telson just before molts. CONCLUSIONS Preceding the anamorphic molt in which two pairs of legs are added on an apodous ring, a transparent protrusion containing the leg pairs (a leg bundle) appears on each apodous ring. The morphogenetic process of the rapid protrusion of leg bundles, that is enabled by thin and elastic cuticle, suggested that millipedes have acquired a resting period and unique morphogenesis to efficiently add new legs and rings.
Collapse
Affiliation(s)
- Soma Chiyoda
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, 238-0225, Japan
| | - Kohei Oguchi
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, 238-0225, Japan
| | - Toru Miura
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, 238-0225, Japan.
| |
Collapse
|
25
|
Rana VS, Kitsou C, Dutta S, Ronzetti MH, Zhang M, Bernard Q, Smith AA, Tomás-Cortázar J, Yang X, Wu MJ, Kepple O, Li W, Dwyer JE, Matias J, Baljinnyam B, Oliver JD, Rajeevan N, Pedra JHF, Narasimhan S, Wang Y, Munderloh U, Fikrig E, Simeonov A, Anguita J, Pal U. Dome1-JAK-STAT signaling between parasite and host integrates vector immunity and development. Science 2023; 379:eabl3837. [PMID: 36634189 PMCID: PMC10122270 DOI: 10.1126/science.abl3837] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/08/2022] [Indexed: 01/14/2023]
Abstract
Ancestral signaling pathways serve critical roles in metazoan development, physiology, and immunity. We report an evolutionary interspecies communication pathway involving a central Ixodes scapularis tick receptor termed Dome1, which acquired a mammalian cytokine receptor motif exhibiting high affinity for interferon-gamma (IFN-γ). Host-derived IFN-γ facilitates Dome1-mediated activation of the Ixodes JAK-STAT pathway. This accelerates tick blood meal acquisition and development while upregulating antimicrobial components. The Dome1-JAK-STAT pathway, which exists in most Ixodid tick genomes, regulates the regeneration and proliferation of gut cells-including stem cells-and dictates metamorphosis through the Hedgehog and Notch-Delta networks, ultimately affecting Ixodes vectorial competence. We highlight the evolutionary dependence of I. scapularis on mammalian hosts through cross-species signaling mechanisms that dually influence arthropod immunity and development.
Collapse
Affiliation(s)
- Vipin S. Rana
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Shraboni Dutta
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Michael H. Ronzetti
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Min Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Quentin Bernard
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Alexis A. Smith
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Julen Tomás-Cortázar
- CIC bioGUNE-BRTA (Basque Research & Technology Alliance), 48160 Derio, Bizkaia, Spain
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Ming-Jie Wu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Oleksandra Kepple
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Weizhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Jennifer E. Dwyer
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | | | - Nallakkandi Rajeevan
- Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Ulrike Munderloh
- Department of Entomology, University of Minnesota, Minneapolis, MN, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Juan Anguita
- CIC bioGUNE-BRTA (Basque Research & Technology Alliance), 48160 Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Bizkaia, Spain
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
- Virginia-Maryland College of Veterinary Medicine, College Park, MD, USA
| |
Collapse
|
26
|
Adegoke A, Kumar D, Budachetri K, Karim S. Hematophagy and tick-borne Rickettsial pathogen shape the microbial community structure and predicted functions within the tick vector, Amblyomma maculatum. Front Cell Infect Microbiol 2022; 12:1037387. [PMID: 36478675 PMCID: PMC9719966 DOI: 10.3389/fcimb.2022.1037387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
Background Ticks are the primary vectors of emerging and resurging pathogens of public health significance worldwide. Analyzing tick bacterial composition, diversity, and functionality across developmental stages and tissues is crucial for designing new strategies to control ticks and prevent tick-borne diseases. Materials and methods Here, we explored the microbial communities across the developmental timeline and in different tissues of the Gulf-Coast ticks (Amblyomma maculatum). Using a high-throughput sequencing approach, the influence of blood meal and Rickettsia parkeri, a spotted fever group rickettsiae infection in driving changes in microbiome composition, diversity, and functionality was determined. Results This study shows that the core microbiome of Am. maculatum comprises ten core bacterial genera. The genus Rickettsia, Francisella, and Candidatus_Midichloria are the key players, with positive interactions within each developmental stage and adult tick organ tested. Blood meal and Rickettsia parkeri led to an increase in the bacterial abundance in the tissues. According to functional analysis, the increase in bacterial numbers is positively correlated to highly abundant energy metabolism orthologs with blood meal. Correlation analysis identified an increase in OTUs identified as Candidatus Midichloria and a subsequent decrease in Francisella OTUs in Rickettsia parkeri infected tick stages and tissues. Results demonstrate the abundance of Rickettsia and Francisella predominate in the core microbiome of Am. maculatum, whereas Candidatus_Midichloria and Cutibacterium prevalence increase with R. parkeri-infection. Network analysis and functional annotation suggest that R. parkeri interacts positively with Candidatus_Midichloria and negatively with Francisella. Conclusion We conclude that tick-transmitted pathogens, such as R. parkeri establishes infection by interacting with the core microbiome of the tick vector.
Collapse
Affiliation(s)
- Abdulsalam Adegoke
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Khemraj Budachetri
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
27
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
28
|
Haug JT, Haug C. 100 Million-year-old straight-jawed lacewing larvae with enormously inflated trunks represent the oldest cases of extreme physogastry in insects. Sci Rep 2022; 12:12760. [PMID: 35882894 PMCID: PMC9325756 DOI: 10.1038/s41598-022-16698-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/13/2022] [Indexed: 12/05/2022] Open
Abstract
Physogastry is a phenomenon occurring in Euarthropoda and describes an extreme inflation of (parts of) the trunk. It is best known from ticks, termite queens, or honey-pot ants, but can also be found in several other representatives of Euarthropoda. Physogastry has so far rarely been seen in the fossil record. We describe here an example of physogastry in two lacewing larvae (Neuroptera) enclosed in a single piece of Kachin amber (ca. 100 Ma old). We measured head and trunk ratios of different physogastric and non-physogastric representatives of Euarthropoda. Plotting these ratios shows that the new larvae, which display quite extremely inflated trunks, are very similar to ticks or honey-pot ants, but also to certain lacewing larvae of the group Berothidae (beaded lacewings). Outline analysis of head capsule and mouthparts (stylets) further suggests a position within Berothidae. Physogastry is presumed to be linked with living in confined spaces such as wood galleries or soil. Indeed, at least some larvae of Berothidae are known to live inside termite nests for part of their larval life phase, a habit the new larvae may also have had. The new record represents the oldest case of extreme physogastry in insects known to date.
Collapse
Affiliation(s)
- Joachim T Haug
- Biocenter, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany. .,GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333, Munich, Germany.
| | - Carolin Haug
- Biocenter, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.,GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333, Munich, Germany
| |
Collapse
|
29
|
Chen X, Xu Z, Zhao B, Yang Y, Mi J, Zhao Z, Liu J. Physiological and Proteomic Analysis Responsive Mechanisms for Salt Stress in Oat. FRONTIERS IN PLANT SCIENCE 2022; 13:891674. [PMID: 35783977 PMCID: PMC9240473 DOI: 10.3389/fpls.2022.891674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Oat is considered as a moderately salt-tolerant crop that can be used to improve saline and alkaline soils. Previous studies have focused on short-term salt stress exposure, and the molecular mechanisms of salt tolerance in oat have not yet been elucidated. In this study, the salt-tolerant oat cultivar Vao-9 and the salt-sensitive oat cultivar Bai5 were treated with 6 days of 0 and 150 mmol L-1 salt stress (nNaCl:nNa2SO4 = 1:1). Label-Free technology was then used to analyze the differentially expressed proteins in leaves under 0 and 150 mmol L-1 salt stress. The obtained results indicated that total of 2,631 proteins were identified by mass spectrometry in the four samples. The salt-tolerant cultivar Vao-9 mainly enhances its carbohydrate and energy metabolism through the pentose and glucuronate interconversions, and carbon fixation pathways in prokaryotes, thereby reducing the damage caused by salt stress. In addition, the down-regulation of ribosomes expression and the up-regulated expression of HSPs and CRT are all through the regulation of protein synthesis in response to salt stress. However, GABA metabolism presents a different synthesis pattern in Bai5 and Vao-9. The main KEGG function of differential expressed protein (DEP) in Bai5 is classified into protein processing in the endoplasmic reticulum, estrogen signaling pathway, antigen processing and presentation, longevity regulating pathway-multiple species, arginine and proline metabolism, beta-alanine metabolism, vitamin B6 metabolism, salmonella infection, chloroalkane and chloroalkene degradation, and limonene and pinene degradation. Moreover, the main KEGG functions of DEP in Vao-9 are classified as ribosome and carbon fixation pathways in prokaryotes, pentose and glucuronate interconversions, GABA ergic synapse, and taurine and hypotaurine metabolism. The results obtained in this study provide an important basis for further research on the underlying mechanisms of salt response and tolerance in oat and other plant species.
Collapse
Affiliation(s)
- Xiaojing Chen
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Zhongshan Xu
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Baoping Zhao
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Yanming Yang
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Junzhen Mi
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Zhou Zhao
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| | - Jinghui Liu
- Cereal Industry Collaborative Innovation Center, Inner Mongolia Agricultural University, Hohhot, China
- National Outstanding Talents in Agricultural Research and Their Innovative Teams, Hohhot, China
| |
Collapse
|
30
|
Perner J, Hajdusek O, Kopacek P. Independent somatic distribution of heme and iron in ticks. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100916. [PMID: 35346896 DOI: 10.1016/j.cois.2022.100916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 05/27/2023]
Abstract
Ticks are blood-feeding ectoparasites with distinct genomic reductions, inevitably linking them to a parasitic lifestyle. Ticks have lost the genomic coding and, thus, biochemical capacity to synthesize heme, an essential metabolic cofactor, de novo. Instead, they are equipped with acquisition and distribution pathways for reuse of host heme. Unlike insects or mammals, ticks and mites cannot cleave the porphyrin ring of heme to release iron. Bioavailable iron is thus acquired by ticks from the host serum transferrin. Somatic trafficking of iron, however, is independent of heme and is mediated by a secretory type of ferritin. Heme and iron systemic homeostasis in ticks represents, therefore, key adaptive traits enabling successful feeding and reproduction.
Collapse
Affiliation(s)
- Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
31
|
Song R, Ge T, Hu E, Fan X, Zhang Y, Zhai X, Li M, Zhang W, Wu L, Cheung AKL, Chahan B. Recombinant cysteine proteinase as anti-tick targeting Hyalomma asiaticum infestation. Exp Parasitol 2022; 235:108234. [PMID: 35218759 DOI: 10.1016/j.exppara.2022.108234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/31/2021] [Accepted: 02/15/2022] [Indexed: 01/01/2023]
Abstract
Cysteine proteases are involved in the digestion of host blood and the degradation of yolk proteins of arthropod ectoparasites. In this study, a cathepsin L-like cysteine proteinase gene (HasCPL) of Hyalomma asiaticum was cloned, and recombinant (r)HasCPL protein was generated for immunization study. Bioinformatic analysis confirmed HasCPL was a member of the papain family (clan CA) and have high sequence identities with CPLs of other Ixodid ticks. The efficacy of immunization against H. asiaticum infestations in rabbits was assessed. Rabbits (n = 3) were immunized three times with rHasCPL before challenged with 250 larvae per rabbit four weeks post-immunization. A high antibody titer was detected in immunized rabbits in comparison to control. Western blot analysis detected CPLs in midgut, salivary gland, and ovary. Increase of rejection percentage of larvae were noted in ticks fed on immunized animals in comparison to control. Overall, a 55.09% protection against larva ticks was noted.
Collapse
Affiliation(s)
- Ruiqi Song
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China.
| | - Ting Ge
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China.
| | - Ercha Hu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China.
| | - Xinli Fan
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China.
| | - Yang Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xuejie Zhai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China.
| | - Min Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China.
| | - Wei Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China.
| | - Lijiang Wu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China.
| | - Allen Ka Loon Cheung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, 999077, China.
| | - Bayin Chahan
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China.
| |
Collapse
|
32
|
Perner J, Kucera M, Frantova H, Urbanova V, Kopacek P, Sima R. Lyme disease transmission by severely impaired ticks. Open Biol 2022; 12:210244. [PMID: 35167765 PMCID: PMC8846998 DOI: 10.1098/rsob.210244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
It has been demonstrated that impairing protein synthesis using drugs targeted against tRNA amino acid synthetases presents a promising strategy for the treatment of a wide variety of parasitic diseases, including malaria and toxoplasmosis. This is the first study evaluating tRNA synthetases as potential drug targets in ticks. RNAi knock-down of all tested tRNA synthetases had a strong deleterious phenotype on Ixodes ricinus feeding. Our data indicate that tRNA synthetases represent attractive, anti-tick targets warranting the design of selective inhibitors. Further, we tested whether these severely impaired ticks were capable of transmitting Borrelia afzelii spirochaetes. Interestingly, biologically handicapped I. ricinus nymphs transmitted B. afzelii in a manner quantitatively sufficient to develop a systemic infection in mice. These data suggest that initial blood-feeding, despite the incapability of ticks to fully feed and salivate, is sufficient for activating B. afzelii from a dormant to an infectious mode, enabling transmission and dissemination in host tissues.
Collapse
Affiliation(s)
- Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Matej Kucera
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Helena Frantova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Veronika Urbanova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Radek Sima
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| |
Collapse
|
33
|
Perner J, Hatalova T, Cabello-Donayre M, Urbanova V, Sojka D, Frantova H, Hartmann D, Jirsova D, Pérez-Victoria JM, Kopacek P. Haem-responsive gene transporter enables mobilization of host haem in ticks. Open Biol 2021; 11:210048. [PMID: 34465215 PMCID: PMC8437232 DOI: 10.1098/rsob.210048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ticks, notorious blood-feeders and disease-vectors, have lost a part of their genetic complement encoding haem biosynthetic enzymes and are, therefore, dependent on the acquisition and distribution of host haem. Solute carrier protein SLC48A1, aka haem-responsive gene 1 protein (HRG1), has been implicated in haem transport, regulating the availability of intracellular haem. HRG1 transporter has been identified in both free-living and parasitic organisms ranging from unicellular kinetoplastids, nematodes, up to vertebrates. However, an HRG1 homologue in the arthropod lineage has not yet been identified. We have identified a single HRG1 homologue in the midgut transcriptome of the tick Ixodes ricinus, denoted as IrHRG, and have elucidated its role as a haem transporter. Data from haem biosynthesis-deficient yeast growth assays, systemic RNA interference and the evaluation of gallium protoporphyrin IX-mediated toxicity through tick membrane feeding clearly show that IrHRG is the bona fide tetrapyrrole transporter. We argue that during evolution, ticks profited from retaining a functional hrg1 gene in the genome because its protein product facilitates host haem escort from intracellularly digested haemoglobin, rendering haem bioavailable for a haem-dependent network of enzymes.
Collapse
Affiliation(s)
- J. Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - T. Hatalova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - M. Cabello-Donayre
- Institute of Parasitology and Biomedicine ‘López-Neyra’, CSIC, (IPBLN-CSIC), Granada, Spain
| | - V. Urbanova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - D. Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - H. Frantova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - D. Hartmann
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - D. Jirsova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - J. M. Pérez-Victoria
- Institute of Parasitology and Biomedicine ‘López-Neyra’, CSIC, (IPBLN-CSIC), Granada, Spain
| | - P. Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
34
|
Vasquez AA, Mohiddin O, Li Z, Bonnici BL, Gurdziel K, Ram JL. Molecular diet studies of water mites reveal prey biodiversity. PLoS One 2021; 16:e0254598. [PMID: 34324525 PMCID: PMC8321515 DOI: 10.1371/journal.pone.0254598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/29/2021] [Indexed: 11/19/2022] Open
Abstract
Water mites are diverse aquatic invertebrates that provide potentially important ecosystem and economic services as bioindicators and mosquito biocontrol; however, little is known about water mite digestive physiology, including their diet in nature. Water mites, much like their spider relatives, liquefy their prey upon consumption. This results in the absence of morphologically identifiable prey in water mite mid-gut. Previous studies have reported associations in the field of water mites with presumed prey and laboratory observations of water mites feeding on specific organisms offered for ingestion; however, the present work aims to determine what water mites have ingested in nature based on molecular studies of gut contents from freshly collected organisms from the field. To elucidate water mite prey, we used next-generation sequencing to detect diverse cytochrome oxidase I DNA barcode sequences of putative prey in the guts of 54 specimens comprising two species of Lebertia and a few specimens of Arrenurus (2) and Limnesia (1). To our knowledge this is the first molecular study of the diets of water mites as they feed in nature. While the presence of chironomid DNA confirmed previous observations of midge larvae as part of the diets of Lebertia, we also found the DNA of diverse organisms in all four species of water mites, including the DNA of mosquitoes in 6 specimens of Lebertia and a large number of previously unknown prey, especially from oligochaete worms. These studies thereby reveal a greater diversity of prey and a potentially broader significance than previously appreciated for water mites in aquatic food webs. Molecular studies like this can detect water mite predators of mosquito larvae and add knowledge of water mite predatory contributions to freshwater food webs.
Collapse
Affiliation(s)
- Adrian A. Vasquez
- Healthy Urban Waters, Department of Civil and Environmental Engineering, Wayne State University, Detroit, Michigan, United States of America
- Cooperative Institute for Great Lakes Research, School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Obadeh Mohiddin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Zeyu Li
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Brittany L. Bonnici
- Healthy Urban Waters, Department of Civil and Environmental Engineering, Wayne State University, Detroit, Michigan, United States of America
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Katherine Gurdziel
- Genome Sciences Core, Wayne State University, Detroit, Michigan, United States of America
| | - Jeffrey L. Ram
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
35
|
Kitsou C, Fikrig E, Pal U. Tick host immunity: vector immunomodulation and acquired tick resistance. Trends Immunol 2021; 42:554-574. [PMID: 34074602 PMCID: PMC10089699 DOI: 10.1016/j.it.2021.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/25/2022]
Abstract
Ticks have an unparalleled ability to parasitize diverse land vertebrates. Their natural persistence and vector competence are supported by the evolution of sophisticated hematophagy and remarkable host immune-evasion activities. We analyze the immunomodulatory roles of tick saliva which facilitates their acquisition of a blood meal from natural hosts and allows pathogen transmission. We also discuss the contrasting immunological events of tick-host associations in non-reservoir or incidental hosts, in which the development of acquired tick resistance can deter tick attachment. A critical appraisal of the intricate immunobiology of tick-host associations can plant new seeds of innovative research and contribute to the development of novel preventive strategies against ticks and tick-transmitted infections.
Collapse
Affiliation(s)
- Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA; Virginia-Maryland College of Veterinary Medicine, College Park, MD, USA.
| |
Collapse
|
36
|
Kotál J, Buša M, Urbanová V, Řezáčová P, Chmelař J, Langhansová H, Sojka D, Mareš M, Kotsyfakis M. Mialostatin, a Novel Midgut Cystatin from Ixodes ricinus Ticks: Crystal Structure and Regulation of Host Blood Digestion. Int J Mol Sci 2021; 22:5371. [PMID: 34065290 PMCID: PMC8161381 DOI: 10.3390/ijms22105371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022] Open
Abstract
The hard tick Ixodes ricinus is a vector of Lyme disease and tick-borne encephalitis. Host blood protein digestion, essential for tick development and reproduction, occurs in tick midgut digestive cells driven by cathepsin proteases. Little is known about the regulation of the digestive proteolytic machinery of I. ricinus. Here we characterize a novel cystatin-type protease inhibitor, mialostatin, from the I. ricinus midgut. Blood feeding rapidly induced mialostatin expression in the gut, which continued after tick detachment. Recombinant mialostatin inhibited a number of I. ricinus digestive cysteine cathepsins, with the greatest potency observed against cathepsin L isoforms, with which it co-localized in midgut digestive cells. The crystal structure of mialostatin was determined at 1.55 Å to explain its unique inhibitory specificity. Finally, mialostatin effectively blocked in vitro proteolysis of blood proteins by midgut cysteine cathepsins. Mialostatin is likely to be involved in the regulation of gut-associated proteolytic pathways, making midgut cystatins promising targets for tick control strategies.
Collapse
Affiliation(s)
- Jan Kotál
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (J.K.); (V.U.); (D.S.)
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760c, 37005 České Budějovice, Czech Republic; (J.C.); (H.L.)
| | - Michal Buša
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, 16610 Praha, Czech Republic; (M.B.); (P.Ř.)
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12800 Prague, Czech Republic
| | - Veronika Urbanová
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (J.K.); (V.U.); (D.S.)
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, 16610 Praha, Czech Republic; (M.B.); (P.Ř.)
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760c, 37005 České Budějovice, Czech Republic; (J.C.); (H.L.)
| | - Helena Langhansová
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760c, 37005 České Budějovice, Czech Republic; (J.C.); (H.L.)
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (J.K.); (V.U.); (D.S.)
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, 16610 Praha, Czech Republic; (M.B.); (P.Ř.)
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (J.K.); (V.U.); (D.S.)
| |
Collapse
|
37
|
González J, Bickerton M, Toledo A. Applications of artificial membrane feeding for ixodid ticks. Acta Trop 2021; 215:105818. [PMID: 33406442 DOI: 10.1016/j.actatropica.2020.105818] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/18/2022]
Abstract
Ticks are obligatory hematophagous ectoparasites that feed on a large variety of vertebrates. In the laboratory, animals (mainly mice and rabbits) are used to maintain tick colonies. However, the use of animals to rear ticks can be expensive and requires dedicated animal facilities. In addition, research institutions are committed to the principle of 3Rs (Replacement, Reduction and Refinement), which encourages the use of alternatives to animals when possible. The development of artificial membrane systems has provided an alternative to animals, at least for some tick species. Over the years, different modifications in artificial feeding systems have led to new applications, including acaricide testing, tick-pathogen interaction, and novel approaches to study tick physiology. Although artificial membrane feeding still has some limitations, the method can provide numerous advantages, including the standardization of acaricide treatments under controlled conditions, an alternative to animals for tick rearing, and reduction of cost associated with animals and animal housing facilities. In this review, we summarized the evolution of tick feeding membranes and their applications over time, explaining the modifications incorporated to study tick physiology, tick-pathogen interactions, and acaricide testing.
Collapse
Affiliation(s)
- Julia González
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901, USA
| | - Mathew Bickerton
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901, USA; Bergen County Department of Health, Division of Environmental Health, 220 East Ridgewood Avenue, Paramus, NJ 07652, USA
| | - Alvaro Toledo
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ 08901, USA.
| |
Collapse
|
38
|
Kozelková T, Doležel D, Grunclová L, Kučera M, Perner J, Kopáček P. Functional characterization of the insulin signaling pathway in the hard tick Ixodes ricinus. Ticks Tick Borne Dis 2021; 12:101694. [PMID: 33706210 DOI: 10.1016/j.ttbdis.2021.101694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/21/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
Ticks are blood-feeding arachnids transmitting a variety of pathogens to humans and animals. A unique trait in tick physiology is their ability to engorge and digest large amounts of host blood, ensuring their high reproductive potential. Activation of the blood digestive machinery in the tick gut, as well as processes controlling maturation of ovaries, are triggered upon blood meal uptake by still largely unknown mechanisms. Sensing of the nutritional status in metazoan organisms is facilitated by the evolutionarily conserved Insulin Signaling Pathway (ISP) and the interlinked Target of Rapamycin (TOR) pathway. Recently, we have identified three components of these pathways in the hard tick Ixodes ricinus midgut transcriptome, namely a putative insulin receptor (InR), and the downstream intracellular serine/threonine kinases AKT and TOR. In this study, we primarily focus on the molecular and functional characterization of the I. ricinus insulin receptor (IrInR), the first InR characterized in Chelicerates. A phylogenetic analysis across the major Arthropod lineages demonstrated that ticks possess only one gene encoding an InR-related molecule. Tissue expression profiling by quantitative PCR in semi-engorged I. ricinus females revealed that the IrInR, as well as AKT (IrAKT) and TOR (IrTOR) are expressed in various organs, with the highest expression being detected in ovaries. We have further evaluated the impact of RNAi-mediated knock-down (KD) of IrInR, IrAKT, and IrTOR on tick blood-feeding and reproductive capacity. Weights of engorged IrInR KD females and laid egg clutches were reduced compared to the control group, and these quantitative parameters clearly correlated with the efficiency of RNAi-KD achieved in individual ticks. The most striking phenotype was observed for IrAKT KD that impaired tick feeding and completely aborted egg production. A recombinant extracellular fragment of the IrInR α-subunit was used to produce antibodies in experimental rabbits to assess its potential as a protective antigen against tick feeding and reproduction. Our data clearly indicate the functionality of the ISP in ticks and demonstrate the need for further investigation of specific roles played by the endogenous insulin-like peptides in tick physiological processes.
Collapse
Affiliation(s)
- Tereza Kozelková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - David Doležel
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Lenka Grunclová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Matěj Kučera
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
39
|
Hernandez EP, Talactac MR, Vitor RJS, Yoshii K, Tanaka T. An Ixodes scapularis glutathione S-transferase plays a role in cell survival and viability during Langat virus infection of a tick cell line. Acta Trop 2021; 214:105763. [PMID: 33242485 DOI: 10.1016/j.actatropica.2020.105763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Ticks are important vectors of diseases affecting both humans and animals. To be an efficient vector, ticks have to survive infection by pathogens such as the Langat virus (LGTV). One method utilized by ticks is their complex antioxidant mechanism. Included in the vast antioxidant processes are several enzymes involved in redox homeostasis. The ubiquitous glutathione S-transferases (GSTs) belong to the antioxidant family of enzymes. In this study, we evaluated the role of a GST during LGTV infection. ISE6 cells were infected with LGTV with a multiplicity of infection (MOI) of 0.01 and observed daily. The infection success was monitored via indirect immunofluorescent antibody test (IFAT) for LGTV for up to 4 days. The gene expression of IsGST1 was determined by real-time polymerase chain reaction (PCR) using IsGST1 gene-specific primers. Knockdown of the IsGST1 gene with subsequent LGTV infection was also performed. Afterward, ISE6 cell mortality and viability were checked daily until the fourth day. The virus titer from supernatants of IsGST1-knockdown cells was quantified using a focus-formation assay. IFAT data showed that LGTV infects ISE6 cells in a time-dependent manner with increasing infection from day 0 to day 4. The IsGST1 genes showed an increasing expression until day 2 of infection, while decreased expression was observed from day 3 to day 4 post-infection. Knockdown of the IsGST1 resulted in increased mortality on the third day of infection, while the cell viability was also negatively affected by the knockdown of the IsGST1 genes from day 0 to day 4 post-infection. Knockdown of the IsGST1 genes also resulted in a decreased viral titer from the supernatants of the ISE6 cells infected with LGTV. Based on the results, GSTs are possibly utilized both by cells and the virus for mutual survival and proliferation.
Collapse
|
40
|
Sabadin GA, Salomon TB, Leite MS, Benfato MS, Oliveira PL, da Silva Vaz I. An insight into the functional role of antioxidant and detoxification enzymes in adult Rhipicephalus microplus female ticks. Parasitol Int 2020; 81:102274. [PMID: 33352319 DOI: 10.1016/j.parint.2020.102274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
Ticks have developed physiological adaptations to transport, store, metabolize and secrete toxic components from the diet and environment. Different classes of enzymes are involved in these processes, however, the role of several of them is not yet characterized in Rhipicephalus microplus. In this context, this work investigated the action of antioxidant and detoxification enzymes, as well as the levels of essential cellular reductants in R. microplus partially engorged females (PEF) and fully engorged females (FEF). Results demonstrated that enzymes transcriptional levels and enzymatic activity from ovary and fat body were higher in PEF than in FEF, except for ovary Glutathione peroxidase (GPx), which was the only enzyme showing highest activity in the FEF stage. These results indicated a higher demand for antioxidant potential in these organs at the initial feeding phase than during egg-laying. In midgut, however, there was more variability in the transcriptional levels and activity of the different enzymes between the PEF and FEF phases. Similar NADPH levels were found in PEF and FEF phases, suggesting a remarkable capacity to maintain a regular supply of reducing power, despite the developmental changes and large intake of heme and iron. However, reduced glutathione (GSH) levels were variable between PEF and FEF when distinct organs were compared. Taken together, our data suggest a higher demand for reducing potential in FEF ticks. The silencing of catalase (CAT) or thioredoxin reductase (TRx) genes in females did not impair feeding, egg-laying capacity, or larvae hatching. CAT-silenced ticks had increased ovary peroxidase activity, a possible compensatory antioxidant mechanism. Altogether, the results shed light on the complexity of the antioxidant and detoxification enzyme system in ticks and its involvement in different physiological mechanisms.
Collapse
Affiliation(s)
- Gabriela A Sabadin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Tiago B Salomon
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Milane S Leite
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mara S Benfato
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090 Porto Alegre, RS, Brazil.
| |
Collapse
|
41
|
Pal U, Kitsou C, Drecktrah D, Yaş ÖB, Fikrig E. Interactions Between Ticks and Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:113-144. [PMID: 33289683 PMCID: PMC8045411 DOI: 10.21775/cimb.042.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Borrelia burgdorferi sensu lato causes Lyme borreliosis in a variety of animals and humans. These atypical bacterial pathogens are maintained in a complex enzootic life cycle that primarily involves a vertebrate host and Ixodes spp. ticks. In the Northeastern United States, I. scapularis is the main vector, while wild rodents serve as the mammalian reservoir host. As B. burgdorferi is transmitted only by I. scapularis and closely related ticks, the spirochete-tick interactions are thought to be highly specific. Various borrelial and arthropod proteins that directly or indirectly contribute to the natural cycle of B. burgdorferi infection have been identified. Discrete molecular interactions between spirochetes and tick components also have been discovered, which often play critical roles in pathogen persistence and transmission by the arthropod vector. This review will focus on the past discoveries and future challenges that are relevant to our understanding of the molecular interactions between B. burgdorferi and Ixodes ticks. This information will not only impact scientific advancements in the research of tick- transmitted infections but will also contribute to the development of novel preventive measures that interfere with the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Utpal Pal
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
- Virginia-Maryland College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Özlem Büyüktanir Yaş
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Istinye University, Zeytinburnu, İstanbul, 34010, Turkey
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
42
|
Hu E, Meng Y, Ma Y, Song R, Hu Z, Li M, Hao Y, Fan X, Wei L, Fan S, Chen S, Zhai X, Li Y, Zhang W, Zhang Y, Guo Q, Bayin C. De novo assembly and analysis of the transcriptome of the Dermacentor marginatus genes differentially expressed after blood-feeding and long-term starvation. Parasit Vectors 2020; 13:563. [PMID: 33172483 PMCID: PMC7654163 DOI: 10.1186/s13071-020-04442-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background The ixodid tick Dermacentor marginatus is a vector of many pathogens wide spread in Eurasia. Studies of gene sequence on many tick species have greatly increased the information on tick protective antigen which might have the potential to function as effective vaccine candidates or drug targets for eco-friendly acaricide development. In the current study, RNA-seq was applied to identify D. marginatus sequences and analyze differentially expressed unigenes. Methods To obtain a broader picture of gene sequences and changes in expression level, RNA-seq was performed to obtain the whole-body transcriptome data of D. marginatus adult female ticks after engorgement and long-term starvation. Subsequently, the real-time quantitative PCR (RT-qPCR) was applied to validate the RNA-seq data. Results RNA-seq produced 30,251 unigenes, of which 32% were annotated. Gene expression was compared among groups that differed by status as newly molted, starved and engorged female adult ticks. Nearly one third of the unigenes in each group were differentially expressed compared to the other two groups, and the most numerous were genes encoding proteins involved in catalytic and binding activities and apoptosis. Selected up-regulated differentially expressed genes in each group were associated to protein, lipids, carbohydrate and chitin metabolism. Blood-feeding and long-term starvation also caused genes differentially expressed in the defense response and antioxidant response. RT-qPCR results indicated 6 differentially expressed transcripts showed similar trends in expression changes with RNA-seq results confirming that the gene expression profiles in transcriptome data is in consistent with RT-qPCR validation. Conclusions Obtaining the sequence information of D. marginatus and characterizing the expression pattern of the genes involved in blood-feeding and during starvation would be helpful in understanding molecular physiology of D. marginatus and provides data for anti-tick vaccine and drug development for controlling the tick.![]()
Collapse
Affiliation(s)
- Ercha Hu
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.,College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yuan Meng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Ying Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Ruiqi Song
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.,College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Zhengxiang Hu
- Bayingol Vocational and Technical College, Korla, 841000, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Min Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yunwei Hao
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Xinli Fan
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Liting Wei
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Shilong Fan
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Songqin Chen
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Xuejie Zhai
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yongchang Li
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.,National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Wei Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yang Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.
| | - Chahan Bayin
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
43
|
Tirloni L, Braz G, Nunes RD, Gandara ACP, Vieira LR, Assumpcao TC, Sabadin GA, da Silva RM, Guizzo MG, Machado JA, Costa EP, Santos D, Gomes HF, Moraes J, dos Santos Mota MB, Mesquita RD, de Souza Leite M, Alvarenga PH, Lara FA, Seixas A, da Fonseca RN, Fogaça AC, Logullo C, Tanaka AS, Daffre S, Oliveira PL, da Silva Vaz I, Ribeiro JMC. A physiologic overview of the organ-specific transcriptome of the cattle tick Rhipicephalus microplus. Sci Rep 2020. [DOI: 10.1246/nikkashi.1979.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractTo further obtain insights into the Rhipicephalus microplus transcriptome, we used RNA-seq to carry out a study of expression in (i) embryos; (ii) ovaries from partially and fully engorged females; (iii) salivary glands from partially engorged females; (iv) fat body from partially and fully engorged females; and (v) digestive cells from partially, and (vi) fully engorged females. We obtained > 500 million Illumina reads which were assembled de novo, producing > 190,000 contigs, identifying 18,857 coding sequences (CDS). Reads from each library were mapped back into the assembled transcriptome giving a view of gene expression in different tissues. Transcriptomic expression and pathway analysis showed that several genes related in blood digestion and host-parasite interaction were overexpressed in digestive cells compared with other tissues. Furthermore, essential genes for the cell development and embryogenesis were overexpressed in ovaries. Taken altogether, these data offer novel insights into the physiology of production and role of saliva, blood digestion, energy metabolism, and development with submission of 10,932 novel tissue/cell specific CDS to the NCBI database for this important tick species.
Collapse
|
44
|
A physiologic overview of the organ-specific transcriptome of the cattle tick Rhipicephalus microplus. Sci Rep 2020; 10:18296. [PMID: 33106528 PMCID: PMC7588415 DOI: 10.1038/s41598-020-75341-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
To further obtain insights into the Rhipicephalus microplus transcriptome, we used RNA-seq to carry out a study of expression in (i) embryos; (ii) ovaries from partially and fully engorged females; (iii) salivary glands from partially engorged females; (iv) fat body from partially and fully engorged females; and (v) digestive cells from partially, and (vi) fully engorged females. We obtained > 500 million Illumina reads which were assembled de novo, producing > 190,000 contigs, identifying 18,857 coding sequences (CDS). Reads from each library were mapped back into the assembled transcriptome giving a view of gene expression in different tissues. Transcriptomic expression and pathway analysis showed that several genes related in blood digestion and host-parasite interaction were overexpressed in digestive cells compared with other tissues. Furthermore, essential genes for the cell development and embryogenesis were overexpressed in ovaries. Taken altogether, these data offer novel insights into the physiology of production and role of saliva, blood digestion, energy metabolism, and development with submission of 10,932 novel tissue/cell specific CDS to the NCBI database for this important tick species.
Collapse
|
45
|
Ma Y, Hao Y, Li M, Hu Z, Song R, Wei L, Fan S, Chen S, Fan X, Zhai X, Guo Q, Bayin C. Sequence identification and expression profile of seven Dermacentor marginatus glutathione S-transferase genes. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 82:295-308. [PMID: 32995924 PMCID: PMC7524029 DOI: 10.1007/s10493-020-00546-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 05/09/2023]
Abstract
Dermacentor marginatus is a widespread tick species and a vector of many pathogens in Eurasia. Due to the medical importance of D. marginatus, control measures are needed for this tick species. Currently tick control approaches rely mostly on acaricide application, whereas wrong and irrational acaricide use may result in drug resistance and residue problems. Vaccination as an alternative approach for tick control has been proven to be effective towards some tick species. However, immunization against D. marginatus has not yet reached satisfactory protection. The effort of in silico based analysis could predict antigenicity and identify candidates for anti-tick vaccine development. We carried out an in silico analysis of D. marginatus glutathione S-transferases (DmGSTs) in order to identify blood-feeding induced GSTs as antigens that can be used in anti-tick vaccine development. Phylogenetic analysis, linear B-cell epitope prediction, homology modeling, and conformational B-cell epitope mapping on the GST models were performed to identify highly antigenic DmGSTs. Relative gene expressions of the seven GSTs were profiled through real-time quantitative PCR (RT-qPCR) to outline GSTs up-regulated during blood feeding. The phylogenetic analysis indicated that the seven GSTs belonged to four classes of GST, including one in epsilon-class, one in zeta-class, one in omega-class, and four in mu-class. Linear B-cell epitope prediction revealed mu-class GSTs share similar conserved antigenic regions. The conformational B-cell epitope mapped on the homology model of the GSTs displayed that GSTs of mu-class showed stronger antigenicity than that of other classes. RT-qPCR revealed DmGSTM1 and DmGSTM2 were positively related to blood feeding. In sum, the data suggest that DmGSTM1 and DmGSTM2 could be tested for potential anti-tick vaccine trials.
Collapse
Affiliation(s)
- Ying Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, No.311 Nongda Road, Ürümqi, 830052, Xinjiang, China
| | - Yunwei Hao
- College of Veterinary Medicine, Xinjiang Agricultural University, No.311 Nongda Road, Ürümqi, 830052, Xinjiang, China
| | - Min Li
- College of Veterinary Medicine, Xinjiang Agricultural University, No.311 Nongda Road, Ürümqi, 830052, Xinjiang, China
| | - Zhengxiang Hu
- Bayingol Vocational and Technical College, Korla, 841000, Xinjiang, China
| | - Ruiqi Song
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang, China
- College of Veterinary Medicine, Xinjiang Agricultural University, No.311 Nongda Road, Ürümqi, 830052, Xinjiang, China
| | - Liting Wei
- College of Veterinary Medicine, Xinjiang Agricultural University, No.311 Nongda Road, Ürümqi, 830052, Xinjiang, China
| | - Shilong Fan
- College of Veterinary Medicine, Xinjiang Agricultural University, No.311 Nongda Road, Ürümqi, 830052, Xinjiang, China
| | - Songqin Chen
- College of Veterinary Medicine, Xinjiang Agricultural University, No.311 Nongda Road, Ürümqi, 830052, Xinjiang, China
| | - Xinli Fan
- College of Veterinary Medicine, Xinjiang Agricultural University, No.311 Nongda Road, Ürümqi, 830052, Xinjiang, China
| | - Xuejie Zhai
- College of Veterinary Medicine, Xinjiang Agricultural University, No.311 Nongda Road, Ürümqi, 830052, Xinjiang, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, No.311 Nongda Road, Ürümqi, 830052, Xinjiang, China.
| | - Chahan Bayin
- College of Veterinary Medicine, Xinjiang Agricultural University, No.311 Nongda Road, Ürümqi, 830052, Xinjiang, China.
| |
Collapse
|
46
|
Transcriptomic analyses of Aedes aegypti cultured cells and ex vivo midguts in response to an excess or deficiency of heme: a quest for transcriptionally-regulated heme transporters. BMC Genomics 2020; 21:604. [PMID: 32867680 PMCID: PMC7460771 DOI: 10.1186/s12864-020-06981-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/11/2020] [Indexed: 12/26/2022] Open
Abstract
Background Aedes aegypti is the principle vector of many arboviruses, including dengue virus and Zika virus, which are transmitted when an infected female mosquito takes a blood meal in order to initiate vitellogenesis. During blood digestion, ~ 10 mM heme-iron is ingested into the midgut lumen. While heme acts as both a nutrient and signaling molecule during blood digestion, it can also be highly toxic if left unchaperoned. Both signaling by, and degradation of, heme are intracellular processes, occurring in the nucleus and cytoplasm, respectively. However, the precise mechanism of heme uptake into the midgut epithelium is not currently known. Results We used next generation RNA sequencing with the goal to identify genes that code for membrane bound heme import protein(s) responsible for heme uptake into the midgut epithelium. Heme deprivation increased uptake of a heme fluorescent analog in cultured cells, while treatment of midguts with an excess of heme decreased uptake, confirming physiological changes were occurring in these heme-sensitive cells/tissues prior to sequencing. A list of candidate genes was assembled for each of the experimental sample sets, which included Aag2 and A20 cultured cells as well as midgut tissue, based on the results of a differential expression analysis, soft cluster analysis and number of predicted transmembrane domains. Lastly, the functions related to heme transport were examined through RNAi knockdown. Conclusions Despite a large number of transmembrane domain containing genes differentially expressed in response to heme, very few were highly differentially expressed in any of the datasets examined. RNAi knockdown of a subset of candidates resulted in subtle changes in heme uptake, but minimal overall disruption to blood digestion/egg production. These results could indicate that heme import in Ae. aegypti may be controlled by a redundant system of multiple distinct transport proteins. Alternatively, heme membrane bound transport in Ae. aegypti could be regulated post-translationally.
Collapse
|
47
|
Githaka NW, Konnai S, Isezaki M, Goto S, Xavier MA, Fujisawa S, Yamada S, Okagawa T, Maekawa N, Logullo C, da Silva Vaz I, Murata S, Ohashi K. Identification and functional analysis of ferritin 2 from the Taiga tick Ixodes persulcatus Schulze. Ticks Tick Borne Dis 2020; 11:101547. [PMID: 32993953 DOI: 10.1016/j.ttbdis.2020.101547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/14/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022]
Abstract
Ferritin 2 (FER2) is an iron storage protein, which has been shown to be critical for iron homeostasis during blood feeding and reproduction in ticks and is therefore suitable as a component for anti-tick vaccines. In this study, we identified the FER2 of Ixodes persulcatus, a major vector for zoonotic diseases such as Lyme borreliosis and tick-borne relapsing fever in Japan, and investigated its functions. Ixodes persulcatus-derived ferritin 2 (Ip-FER2) showed concentration-dependent iron-binding ability and high amino acid conservation, consistent with FER2s of other tick species. Vaccines containing the recombinant Ip-FER2 elicited a significant reduction of the engorgement weight of adult I. persulcatus. Interestingly, the reduction of engorgement weight was also observed in Ixodes ovatus, a sympatric species of I. persulcatus. In silico analyses of FER2 sequences of I. persulcatus and other ticks showed a greater similarity with I. scapularis and I. ricinus and lesser similarity with Hyalomma anatolicum, Haemaphysalis longicornis, Rhipicephalus microplus, and R. appendiculatus. Moreover, it was observed that the tick FER2 sequences possess conserved regions within the primary structures, and in silico epitope mapping analysis revealed that antigenic regions were also conserved, particularly among Ixodes spp ticks. In conclusion, the data support further protective tick vaccination applications using the Ip-FER2 antigens identified herein.
Collapse
Affiliation(s)
- Naftaly Wang'ombe Githaka
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan.
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Shinya Goto
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Shinji Yamada
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
48
|
Catalogue of stage-specific transcripts in Ixodes ricinus and their potential functions during the tick life-cycle. Parasit Vectors 2020; 13:311. [PMID: 32546252 PMCID: PMC7296661 DOI: 10.1186/s13071-020-04173-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background The castor bean tick Ixodes ricinus is an important vector of several clinically important diseases, whose prevalence increases with accelerating global climate changes. Characterization of a tick life-cycle is thus of great importance. However, researchers mainly focus on specific organs of fed life stages, while early development of this tick species is largely neglected. Methods In an attempt to better understand the life-cycle of this widespread arthropod parasite, we sequenced the transcriptomes of four life stages (egg, larva, nymph and adult female), including unfed and partially blood-fed individuals. To enable a more reliable identification of transcripts and their comparison in all five transcriptome libraries, we validated an improved-fit set of five I. ricinus-specific reference genes for internal standard normalization of our transcriptomes. Then, we mapped biological functions to transcripts identified in different life stages (clusters) to elucidate life stage-specific processes. Finally, we drew conclusions from the functional enrichment of these clusters specifically assigned to each transcriptome, also in the context of recently published transcriptomic studies in ticks. Results We found that reproduction-related transcripts are present in both fed nymphs and fed females, underlining the poorly documented importance of ovaries as moulting regulators in ticks. Additionally, we identified transposase transcripts in tick eggs suggesting elevated transposition during embryogenesis, co-activated with factors driving developmental regulation of gene expression. Our findings also highlight the importance of the regulation of energetic metabolism in tick eggs during embryonic development and glutamate metabolism in nymphs. Conclusions Our study presents novel insights into stage-specific transcriptomes of I. ricinus and extends the current knowledge of this medically important pathogen, especially in the early phases of its development.![]()
Collapse
|
49
|
Guizzo MG, Neupane S, Kucera M, Perner J, Frantová H, da Silva Vaz I, de Oliveira PL, Kopacek P, Zurek L. Poor Unstable Midgut Microbiome of Hard Ticks Contrasts With Abundant and Stable Monospecific Microbiome in Ovaries. Front Cell Infect Microbiol 2020; 10:211. [PMID: 32457850 PMCID: PMC7225584 DOI: 10.3389/fcimb.2020.00211] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/17/2020] [Indexed: 01/17/2023] Open
Abstract
Culture-independent metagenomic methodologies have enabled detection and identification of microorganisms in various biological systems and often revealed complex and unknown microbiomes. In many organisms, the microbiome outnumbers the host cells and greatly affects the host biology and fitness. Ticks are hematophagous ectoparasites with a wide host range. They vector a number of human and animal pathogens and also directly cause major economic losses in livestock. Although several reports on a tick midgut microbiota show a diverse bacterial community, in most cases the size of the bacterial population has not been determined. In this study, the microbiome was quantified in the midgut and ovaries of the ticks Ixodes ricinus and Rhipicephalus microplus before, during, and after blood feeding. Although the size of bacterial community in the midgut fluctuated with blood feeding, it was overall extremely low in comparison to that of other hematophagous arthropods. In addition, the tick ovarian microbiome of both tick species exceeded the midgut 16S rDNA copy numbers by several orders of magnitude. This indicates that the ratio of a tick midgut/ovary microbiome represents an exception to the general biology of other metazoans. In addition to the very low abundance, the tick midgut diversity in I. ricinus was variable and that is in contrast to that found in the tick ovary. The ovary of I. ricinus had a very low bacterial diversity and a very high and stable bacterial abundance with the dominant endosymbiont, Midichloria sp. The elucidation of this aspect of tick biology highlights a unique tissue-specific microbial-invertebrate host interaction.
Collapse
Affiliation(s)
- Melina Garcia Guizzo
- Central European Institute of Technology (CEITEC), Center for Zoonoses, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Saraswoti Neupane
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Matej Kucera
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Jan Perner
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Helena Frantová
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Itabajara da Silva Vaz
- Laboratório de Imunologia Aplicada a Sanidade Animal, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro L de Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Petr Kopacek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Ludek Zurek
- Central European Institute of Technology (CEITEC), Center for Zoonoses, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia.,Department of Chemistry and Biochemistry, Mendel University, Brno, Czechia
| |
Collapse
|
50
|
Heggland EI, Dondrup M, Nilsen F, Eichner C. Host gill attachment causes blood-feeding by the salmon louse (Lepeophtheirus salmonis) chalimus larvae and alters parasite development and transcriptome. Parasit Vectors 2020; 13:225. [PMID: 32375890 PMCID: PMC7201535 DOI: 10.1186/s13071-020-04096-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Blood-feeding is a common strategy among parasitizing arthropods, including the ectoparasitic salmon louse (Lepeophtheirus salmonis), feeding off its salmon host's skin and blood. Blood is rich in nutrients, among these iron and heme. These are essential molecules for the louse, yet their oxidative properties render them toxic to cells if not handled appropriately. Blood-feeding might therefore alter parasite gene expression. METHODS We infected Atlantic salmon with salmon louse copepodids and sampled the lice in two different experiments at day 10 and 18 post-infestation. Parasite development and presence of host blood in their intestines were determined. Lice of similar instar age sampled from body parts with differential access to blood, namely from gills versus lice from skin epidermis, were analysed for gene expression by RNA-sequencing in samples taken at day 10 for both experiments and at day 18 for one of the experiments. RESULTS We found that lice started feeding on blood when becoming mobile preadults if sitting on the fish body; however, they may initiate blood-feeding at the chalimus I stage if attached to gills. Lice attached to gills develop at a slower rate. By differential expression analysis, we found 355 transcripts elevated in lice sampled from gills and 202 transcripts elevated in lice sampled from skin consistent in all samplings. Genes annotated with "peptidase activity" were among the ones elevated in lice sampled from gills, while in the other group genes annotated with "phosphorylation" and "phosphatase" were pervasive. Transcripts elevated in lice sampled from gills were often genes relatively highly expressed in the louse intestine compared with other tissues, while this was not the case for transcripts elevated in lice sampled from skin. In both groups, more than half of the transcripts were from genes more highly expressed after attachment. CONCLUSIONS Gill settlement results in an alteration in gene expression and a premature onset of blood-feeding likely causes the parasite to develop at a slower pace.
Collapse
Affiliation(s)
- Erna Irene Heggland
- Department of Biological Sciences and Sea Lice Research Centre (SLRC), University of Bergen, Bergen, Norway
| | - Michael Dondrup
- Department of Informatics and Sea Lice Research Centre (SLRC), University of Bergen, Bergen, Norway
| | - Frank Nilsen
- Department of Biological Sciences and Sea Lice Research Centre (SLRC), University of Bergen, Bergen, Norway
| | - Christiane Eichner
- Department of Biological Sciences and Sea Lice Research Centre (SLRC), University of Bergen, Bergen, Norway.
| |
Collapse
|