1
|
Liao L, Zheng Z, Deng M, Xu W, Zhang Q, Wang Z, Li C, Li J, Bian Y, Wang K, Miao J, Li R, Yin Y, Zhou X, Hou G. MG53 deficiency mediated skeletal muscle dysfunction in chronic obstructive pulmonary disease via impairing mitochondrial fission. Redox Biol 2025; 83:103663. [PMID: 40345073 DOI: 10.1016/j.redox.2025.103663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Myokine dysregulation and mitochondrial dysfunction are implicated in the pathogenesis of sarcopenia in chronic obstructive pulmonary disease. The objective of this study is to explore the role of myokines and mitochondrial dysfunction in sarcopenia in chronic obstructive pulmonary disease. METHODS We identified mitsugumin 53 and its clinical correlation through an enzyme-linked immunosorbent assay using the plasma samples of patients with chronic obstructive pulmonary disease. The role of mitsugumin 53 was confirmed in mitsugumin 53-knockout mice. The underlying mechanisms were investigated using multi-omics sequencing, live-cell imaging, and histological and molecular experiments. The effectiveness and safety of recombinant mitsugumin 53 in treating cigarette smoke-induced muscle dysfunction were evaluated in vitro and in vivo. RESULTS Plasma mitsugumin 53 levels were decreased in patients with chronic obstructive pulmonary disease and were associated with skeletal muscle dysfunction. Mitsugumin 53 deficiency exacerbated cigarette smoking-induced skeletal muscle atrophy. In muscle cells, mitsugumin 53 co-localized with the mitochondria and regulated mitochondrial fission. As a lipid transporter, mitsugumin 53 directly bound to the mitochondria-specific lipid cardiolipin and participated in maintaining mitochondrial homeostasis and membrane integrity. As an E3-ligase, mitsugumin 53 deletion triggered BCL2L13-mediated mitochondrial fission upon cigarette smoking stimulation. Supplementation with recombinant mitsugumin 53 significantly alleviated cigarette smoking-induced muscle atrophy and rescued mitochondrial dysfunction in vitro and in vivo. CONCLUSIONS Mitsugumin 53 is a vital regulator of sarcopenia in patients with chronic obstructive pulmonary disease. Thus, mitsugumin 53 and mitochondrial fission may be promising therapeutic targets for muscle dysfunction in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Liwei Liao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ziwen Zheng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Mingming Deng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Weidong Xu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qin Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zilin Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chang Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jiaye Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yiding Bian
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Kai Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jinrui Miao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruixia Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoming Zhou
- Respiratory Department, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Gang Hou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
2
|
Bulgart HR, Lopez Perez MA, Weisleder N. Enhancing Membrane Repair Using Recombinant MG53/TRIM72 (rhMG53) Reduces Neurotoxicity in Alzheimer's Disease Models. Biomolecules 2025; 15:418. [PMID: 40149954 PMCID: PMC11940288 DOI: 10.3390/biom15030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease that involves neuronal cell death initiated by the breakdown of the plasma membrane. Amyloid beta (Aβ), a hallmark protein that contributes to AD pathogenesis, is known to interact directly with the plasma membrane and induce increased intracellular calcium levels, reactive oxygen species (ROS), and cell death. Our recent studies revealed that elevated levels of Aβ42 induce a plasma membrane repair defect in neurons that compromises this conserved cellular response that would normally repair the disruption. Here, we tested if recombinant MG53/TRIM72 protein (rhMG53), a therapeutic protein known to increase plasma membrane repair capacity, could enhance membrane repair in AD neurons. rhMG53 increased plasma membrane repair in ex vivo and in vitro tissue treated with Aβ42 or cerebrospinal fluid from AD patients, normalizing intracellular calcium levels, ROS, and cell death in treated cells. This study demonstrates that increasing plasma membrane repair can rescue neural cells from the neurotoxic effects of Aβ, indicating that elevating plasma membrane repair could be a viable therapeutic approach to reduce neuronal death in AD.
Collapse
Affiliation(s)
- Hannah R. Bulgart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA;
| | - Miguel A. Lopez Perez
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA;
| | - Noah Weisleder
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA;
| |
Collapse
|
3
|
Conte E, Mantuano P, Boccanegra B, Imbrici P, Dinoi G, Lenti R, Cappellari O, Cappetta D, De Angelis A, Berrino L, Gordish-Dressman H, Bianchini G, Aramini A, Allegretti M, Liantonio A, De Luca A. Branched-chain amino acids and L-alanine supplementation ameliorate calcium dyshomeostasis in sarcopenia: New insights for nutritional interventions. Front Pharmacol 2024; 15:1393746. [PMID: 38962308 PMCID: PMC11220240 DOI: 10.3389/fphar.2024.1393746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/24/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction: During aging, sarcopenia and decline in physiological processes lead to partial loss of muscle strength, atrophy, and increased fatigability. Muscle changes may be related to a reduced intake of essential amino acids playing a role in proteostasis. We have recently shown that branched-chain amino acid (BCAA) supplements improve atrophy and weakness in models of muscle disuse and aging. Considering the key roles that the alteration of Ca2+-related homeostasis and store-operated calcium entry (SOCE) play in several muscle dysfunctions, this study has been aimed at gaining insight into the potential ability of BCAA-based dietary formulations in aged mice on various players of Ca2+ dyshomeostasis. Methods: Seventeen-month-old male C57BL/6J mice received a 12-week supplementation with BCAAs alone or boosted with two equivalents of L-alanine (2-Ala) or with dipeptide L-alanyl-L-alanine (Di-Ala) in drinking water. Outcomes were evaluated on ex vivo skeletal muscles indices vs. adult 3-month-old male C57BL/6J mice. Results: Ca2+ imaging confirmed a decrease in SOCE and an increase of resting Ca2+ concentration in aged vs. adult mice without alteration in the canonical components of SOCE. Aged muscles vs. adult muscles were characterized by a decrease in the expression of ryanodine receptor 1 (RyR1), the Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) pump, and sarcalumenin together with an alteration of the expression of mitsugumin 29 and mitsugumin 53, two recently recognized players in the SOCE mechanism. BCAAs, particularly the formulation BCAAs+2-Ala, were able to ameliorate all these alterations. Discussion: These results provide evidence that Ca2+ homeostasis dysfunction plays a role in the functional deficit observed in aged muscle and supports the interest of dietary BCAA supplementation in counteracting sarcopenia-related SOCE dysregulation.
Collapse
Affiliation(s)
- Elena Conte
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Brigida Boccanegra
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Imbrici
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Giorgia Dinoi
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Roberta Lenti
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Donato Cappetta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Heather Gordish-Dressman
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States
| | - Gianluca Bianchini
- Research & Early Development, Dompé farmaceutici S.p.A., L’Aquila, Italy
| | - Andrea Aramini
- Research & Early Development, Dompé farmaceutici S.p.A., L’Aquila, Italy
| | | | - Antonella Liantonio
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
4
|
Quinn CJ, Cartwright EJ, Trafford AW, Dibb KM. On the role of dysferlin in striated muscle: membrane repair, t-tubules and Ca 2+ handling. J Physiol 2024; 602:1893-1910. [PMID: 38615232 DOI: 10.1113/jp285103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/05/2024] [Indexed: 04/15/2024] Open
Abstract
Dysferlin is a 237 kDa membrane-associated protein characterised by multiple C2 domains with a diverse role in skeletal and cardiac muscle physiology. Mutations in DYSF are known to cause various types of human muscular dystrophies, known collectively as dysferlinopathies, with some patients developing cardiomyopathy. A myriad of in vitro membrane repair studies suggest that dysferlin plays an integral role in the membrane repair complex in skeletal muscle. In comparison, less is known about dysferlin in the heart, but mounting evidence suggests that dysferlin's role is similar in both muscle types. Recent findings have shown that dysferlin regulates Ca2+ handling in striated muscle via multiple mechanisms and that this becomes more important in conditions of stress. Maintenance of the transverse (t)-tubule network and the tight coordination of excitation-contraction coupling are essential for muscle contractility. Dysferlin regulates the maintenance and repair of t-tubules, and it is suspected that dysferlin regulates t-tubules and sarcolemmal repair through a similar mechanism. This review focuses on the emerging complexity of dysferlin's activity in striated muscle. Such insights will progress our understanding of the proteins and pathways that regulate basic heart and skeletal muscle function and help guide research into striated muscle pathology, especially that which arises due to dysferlin dysfunction.
Collapse
Affiliation(s)
- C J Quinn
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - E J Cartwright
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - A W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - K M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| |
Collapse
|
5
|
Sui B, Zheng J, Fu Z, Zhao L, Zhou M. TRIM72 restricts lyssavirus infection by inducing K48-linked ubiquitination and proteasome degradation of the matrix protein. PLoS Pathog 2024; 20:e1011718. [PMID: 38408103 PMCID: PMC10919858 DOI: 10.1371/journal.ppat.1011718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/07/2024] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
The tripartite motif (TRIM) protein family is the largest subfamily of E3 ubiquitin ligases, playing a crucial role in the antiviral process. In this study, we found that TRIM72, a member of the TRIM protein family, was increased in neuronal cells and mouse brains following rabies lyssavirus (RABV) infection. Over-expression of TRIM72 significantly reduced the viral titer of RABV in neuronal cells and mitigated the pathogenicity of RABV in mice. Furthermore, we found that TRIM72 over-expression effectively prevents the assembly and/or release of RABV. In terms of the mechanism, TRIM72 promotes the K48-linked ubiquitination of RABV Matrix protein (M), leading to the degradation of M through the proteasome pathway. TRIM72 directly interacts with M and the interaction sites were identified and confirmed through TRIM72-M interaction model construction and mutation analysis. Further investigation revealed that the degradation of M induced by TRIM72 was attributed to TRIM72's promotion of ubiquitination at site K195 in M. Importantly, the K195 site was found to be partially conserved among lyssavirus's M proteins, and TRIM72 over-expression induced the degradation of these lyssavirus M proteins. In summary, our study has uncovered a TRIM family protein, TRIM72, that can restrict lyssavirus replication by degrading M, and we have identified a novel ubiquitination site (K195) in lyssavirus M.
Collapse
Affiliation(s)
- Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiaxin Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenfang Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Ma Y, Ding L, Li Z, Zhou C. Structural basis for TRIM72 oligomerization during membrane damage repair. Nat Commun 2023; 14:1555. [PMID: 36944613 PMCID: PMC10030467 DOI: 10.1038/s41467-023-37198-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Tripartite Motif Protein 72 (TRIM72, also named MG53) mediates membrane damage repair through membrane fusion and exocytosis. During injury, TRIM72 molecules form intermolecular disulfide bonds in response to the oxidative environment and TRIM72 oligomers are proposed to connect vesicles to the plasma membrane and promote membrane fusion in conjunction with other partners like dysferlin and caveolin. However, the detailed mechanism of TRIM72 oligomerization and action remains unclear. Here we present the crystal structure of TRIM72 B-box-coiled-coil-SPRY domains (BCC-SPRY), revealing the molecular basis of TRIM72 oligomerization, which is closely linked to disulfide bond formation. Through structure-guided mutagenesis, we have identified and characterized key residues that are important for the membrane repair function of TRIM72. Our results also demonstrate that TRIM72 interacts with several kinds of negatively charged lipids in addition to phosphatidylserine. Our work provides a structural foundation for further mechanistic studies as well as the clinical application of TRIM72.
Collapse
Affiliation(s)
- Yuemin Ma
- School of Public Health, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Lei Ding
- School of Public Health, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Zhenhai Li
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, China
| | - Chun Zhou
- School of Public Health, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
7
|
Drescher DG, Drescher MJ, Selvakumar D, Annam NP. Analysis of Dysferlin Direct Interactions with Putative Repair Proteins Links Apoptotic Signaling to Ca 2+ Elevation via PDCD6 and FKBP8. Int J Mol Sci 2023; 24:4707. [PMID: 36902136 PMCID: PMC10002499 DOI: 10.3390/ijms24054707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Quantitative surface plasmon resonance (SPR) was utilized to determine binding strength and calcium dependence of direct interactions between dysferlin and proteins likely to mediate skeletal muscle repair, interrupted in limb girdle muscular dystrophy type 2B/R2. Dysferlin canonical C2A (cC2A) and C2F/G domains directly interacted with annexin A1, calpain-3, caveolin-3, affixin, AHNAK1, syntaxin-4, and mitsugumin-53, with cC2A the primary target and C2F lesser involved, overall demonstrating positive calcium dependence. Dysferlin C2 pairings alone showed negative calcium dependence in almost all cases. Like otoferlin, dysferlin directly interacted via its carboxy terminus with FKBP8, an anti-apoptotic outer mitochondrial membrane protein, and via its C2DE domain with apoptosis-linked gene (ALG-2/PDCD6), linking anti-apoptosis with apoptosis. Confocal Z-stack immunofluorescence confirmed co-compartmentalization of PDCD6 and FKBP8 at the sarcolemmal membrane. Our evidence supports the hypothesis that prior to injury, dysferlin C2 domains self-interact and give rise to a folded, compact structure as indicated for otoferlin. With elevation of intracellular Ca2+ in injury, dysferlin would unfold and expose the cC2A domain for interaction with annexin A1, calpain-3, mitsugumin 53, affixin, and caveolin-3, and dysferlin would realign from its interactions with PDCD6 at basal calcium levels to interact strongly with FKBP8, an intramolecular rearrangement facilitating membrane repair.
Collapse
Affiliation(s)
- Dennis G. Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Marian J. Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Dakshnamurthy Selvakumar
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Neeraja P. Annam
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Sarcoplasmic Reticulum Ca 2+ Buffer Proteins: A Focus on the Yet-To-Be-Explored Role of Sarcalumenin in Skeletal Muscle Health and Disease. Cells 2023; 12:cells12050715. [PMID: 36899851 PMCID: PMC10000884 DOI: 10.3390/cells12050715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Sarcalumenin (SAR) is a luminal Ca2+ buffer protein with high capacity but low affinity for calcium binding found predominantly in the longitudinal sarcoplasmic reticulum (SR) of fast- and slow-twitch skeletal muscles and the heart. Together with other luminal Ca2+ buffer proteins, SAR plays a critical role in modulation of Ca2+ uptake and Ca2+ release during excitation-contraction coupling in muscle fibers. SAR appears to be important in a wide range of other physiological functions, such as Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) stabilization, Store-Operated-Calcium-Entry (SOCE) mechanisms, muscle fatigue resistance and muscle development. The function and structural features of SAR are very similar to those of calsequestrin (CSQ), the most abundant and well-characterized Ca2+ buffer protein of junctional SR. Despite the structural and functional similarity, very few targeted studies are available in the literature. The present review provides an overview of the role of SAR in skeletal muscle physiology, as well as of its possible involvement and dysfunction in muscle wasting disorders, in order to summarize the current knowledge on SAR and drive attention to this important but still underinvestigated/neglected protein.
Collapse
|
9
|
Choi JH, Jeong SY, Kim J, Woo JS, Lee EH. Tripartite motif-containing protein 32 regulates Ca 2+ movement in skeletal muscle. Am J Physiol Cell Physiol 2022; 323:C1860-C1871. [PMID: 36374170 DOI: 10.1152/ajpcell.00426.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in tripartite motif-containing protein 32 (TRIM32), especially in NHL repeats, have been found in skeletal muscle in patients with type 2H limb-girdle muscular dystrophy (LGMD2H). However, the roles of the NHL repeats of TRIM32 in skeletal muscle functions have not been well addressed. In the present study, to examine the functional role(s) of the TRIM32 NHL repeats in skeletal muscle, TRIM32-binding proteins in skeletal muscle were first searched using a binding assay and MALDI-TOF/TOF. Sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a (SERCA1a) was found to be a TRIM32-binding protein. Next, a deletion mutant of TRIM32 missing the NHL repeats (NHL-Del) was expressed in mouse primary skeletal myotubes during myoblast differentiation into myotubes. Ca2+ movement in the myotubes was examined using single-cell Ca2+ imaging. Unlike wild-type (WT) TRIM32, NHL-Del did not enhance the amount of Ca2+ release from the sarcoplasmic reticulum (SR), Ca2+ release for excitation-contraction (EC) coupling, or extracellular Ca2+ entry via store-operated Ca2+ entry (SOCE). In addition, even compared with the vector control, NHL-Del resulted in reduced SOCE due to reduced expression of extracellular Ca2+ entry channels. Transmission electron microscopy (TEM) observation of the myotubes revealed that NHL-Del induced the formation of abnormal vacuoles and tubular structures in the cytosol. Therefore, by binding to SERCA1a via its NHL repeats, TRIM32 may participate in the regulation of Ca2+ movement for skeletal muscle contraction and the formation of cellular vacuoles and tubular structures in skeletal muscle. Functional defects in TRIM32 due to mutations in NHL repeats may be pathogenic toward LGMD2H.
Collapse
Affiliation(s)
- Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Jooho Kim
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
10
|
Calsequestrin 1 Is an Active Partner of Stromal Interaction Molecule 2 in Skeletal Muscle. Cells 2021; 10:cells10112821. [PMID: 34831044 PMCID: PMC8616366 DOI: 10.3390/cells10112821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Calsequestrin 1 (CASQ1) in skeletal muscle buffers and senses Ca2+ in the sarcoplasmic reticulum (SR). CASQ1 also regulates store-operated Ca2+ entry (SOCE) by binding to stromal interaction molecule 1 (STIM1). Abnormal SOCE and/or abnormal expression or mutations in CASQ1, STIM1, or STIM2 are associated with human skeletal, cardiac, or smooth muscle diseases. However, the functional relevance of CASQ1 along with STIM2 has not been studied in any tissue, including skeletal muscle. First, in the present study, it was found by biochemical approaches that CASQ1 is bound to STIM2 via its 92 N-terminal amino acids (C1 region). Next, to examine the functional relevance of the CASQ1-STIM2 interaction in skeletal muscle, the full-length wild-type CASQ1 or the C1 region was expressed in mouse primary skeletal myotubes, and the myotubes were examined using single-myotube Ca2+ imaging experiments and transmission electron microscopy observations. The CASQ1-STIM2 interaction via the C1 region decreased SOCE, increased intracellular Ca2+ release for skeletal muscle contraction, and changed intracellular Ca2+ distributions (high Ca2+ in the SR and low Ca2+ in the cytosol were observed). Furthermore, the C1 region itself (which lacks Ca2+-buffering ability but has STIM2-binding ability) decreased the expression of Ca2+-related proteins (canonical-type transient receptor potential cation channel type 6 and calmodulin 1) and induced mitochondrial shape abnormalities. Therefore, in skeletal muscle, CASQ1 plays active roles in Ca2+ movement and distribution by interacting with STIM2 as well as Ca2+ sensing and buffering.
Collapse
|
11
|
Huang Y, Xiao Y, Zhang X, Huang X, Li Y. The Emerging Roles of Tripartite Motif Proteins (TRIMs) in Acute Lung Injury. J Immunol Res 2021; 2021:1007126. [PMID: 34712740 PMCID: PMC8548118 DOI: 10.1155/2021/1007126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022] Open
Abstract
Acute lung injury (ALI) is an inflammatory disorder of the lung that causes high mortality and lacks any pharmacological intervention. Ubiquitination plays a critical role in the pathogenesis of ALI as it regulates the alveolocapillary barrier and the inflammatory response. Tripartite motif (TRIM) proteins are one of the subfamilies of the RING-type E3 ubiquitin ligases, which contains more than 80 distinct members in humans involved in a broad range of biological processes including antivirus innate immunity, development, and tumorigenesis. Recently, some studies have shown that several members of TRIM family proteins play important regulatory roles in inflammation and ALI. Herein, we integrate emerging evidence regarding the roles of TRIMs in ALI. Articles were selected from the searches of PubMed database that had the terms "acute lung injury," "ubiquitin ligases," "tripartite motif protein," "inflammation," and "ubiquitination" using both MeSH terms and keywords. Better understanding of these mechanisms may ultimately lead to novel therapeutic approaches by targeting TRIMs for ALI treatment.
Collapse
Affiliation(s)
- Yingjie Huang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Xiao
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Xuekang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Conte E, Imbrici P, Mantuano P, Coppola MA, Camerino GM, De Luca A, Liantonio A. Alteration of STIM1/Orai1-Mediated SOCE in Skeletal Muscle: Impact in Genetic Muscle Diseases and Beyond. Cells 2021; 10:2722. [PMID: 34685702 PMCID: PMC8534495 DOI: 10.3390/cells10102722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023] Open
Abstract
Intracellular Ca2+ ions represent a signaling mediator that plays a critical role in regulating different muscular cellular processes. Ca2+ homeostasis preservation is essential for maintaining skeletal muscle structure and function. Store-operated Ca2+ entry (SOCE), a Ca2+-entry process activated by depletion of intracellular stores contributing to the regulation of various function in many cell types, is pivotal to ensure a proper Ca2+ homeostasis in muscle fibers. It is coordinated by STIM1, the main Ca2+ sensor located in the sarcoplasmic reticulum, and ORAI1 protein, a Ca2+-permeable channel located on transverse tubules. It is commonly accepted that Ca2+ entry via SOCE has the crucial role in short- and long-term muscle function, regulating and adapting many cellular processes including muscle contractility, postnatal development, myofiber phenotype and plasticity. Lack or mutations of STIM1 and/or Orai1 and the consequent SOCE alteration have been associated with serious consequences for muscle function. Importantly, evidence suggests that SOCE alteration can trigger a change of intracellular Ca2+ signaling in skeletal muscle, participating in the pathogenesis of different progressive muscle diseases such as tubular aggregate myopathy, muscular dystrophy, cachexia, and sarcopenia. This review provides a brief overview of the molecular mechanisms underlying STIM1/Orai1-dependent SOCE in skeletal muscle, focusing on how SOCE alteration could contribute to skeletal muscle wasting disorders and on how SOCE components could represent pharmacological targets with high therapeutic potential.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.I.); (P.M.); (M.A.C.); (G.M.C.); (A.D.L.)
| | | | | | | | | | | | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.I.); (P.M.); (M.A.C.); (G.M.C.); (A.D.L.)
| |
Collapse
|
13
|
Park JH, Jeong SY, Choi JH, Lee EH. Pathological Mechanism of a Constitutively Active Form of Stromal Interaction Molecule 1 in Skeletal Muscle. Biomolecules 2021; 11:biom11081064. [PMID: 34439731 PMCID: PMC8394508 DOI: 10.3390/biom11081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) is the main protein that, along with Orai1, mediates store-operated Ca2+ entry (SOCE) in skeletal muscle. Abnormal SOCE due to mutations in STIM1 is one of the causes of human skeletal muscle diseases. STIM1-R304Q (a constitutively active form of STIM1) has been found in human patients with skeletal muscle phenotypes such as muscle weakness, myalgia, muscle stiffness, and contracture. However, the pathological mechanism(s) of STIM1-R304Q in skeletal muscle have not been well studied. To examine the pathological mechanism(s) of STIM1-R304Q in skeletal muscle, STIM1-R304Q was expressed in mouse primary skeletal myotubes, and the properties of the skeletal myotubes were examined using single-myotube Ca2+ imaging, transmission electron microscopy (TEM), and biochemical approaches. STIM1-R304Q did not interfere with the terminal differentiation of skeletal myoblasts to myotubes and retained the ability of STIM1 to attenuate dihydropyridine receptor (DHPR) activity. STIM1-R304Q induced hyper-SOCE (that exceeded the SOCE by wild-type STIM1) by affecting both the amplitude and the onset rate of SOCE. Unlike that by wild-type STIM1, hyper-SOCE by STIM1-R304Q contributed to a disturbance in Ca2+ distribution between the cytosol and the sarcoplasmic reticulum (SR) (high Ca2+ in the cytosol and low Ca2+ in the SR). Moreover, the hyper-SOCE and the high cytosolic Ca2+ level induced by STIM1-R304Q involve changes in mitochondrial shape. Therefore, a series of these cellular defects induced by STIM1-R304Q could induce deleterious skeletal muscle phenotypes in human patients carrying STIM1-R304Q.
Collapse
Affiliation(s)
- Ji Hee Park
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.H.P.); (S.Y.J.); (J.H.C.)
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.H.P.); (S.Y.J.); (J.H.C.)
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.H.P.); (S.Y.J.); (J.H.C.)
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.H.P.); (S.Y.J.); (J.H.C.)
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
14
|
Benissan-Messan DZ, Zhu H, Zhong W, Tan T, Ma J, Lee PHU. Multi-Cellular Functions of MG53 in Muscle Calcium Signaling and Regeneration. Front Physiol 2020; 11:583393. [PMID: 33240103 PMCID: PMC7677405 DOI: 10.3389/fphys.2020.583393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022] Open
Abstract
Since its identification in 2009, multiple studies have indicated the importance of MG53 in muscle physiology. The protein is produced in striated muscles but has physiologic implications reaching beyond the confines of striated muscles. Roles in muscle regeneration, calcium homeostasis, excitation-contraction coupling, myogenesis, and the mitochondria highlight the protein's wide-reaching impact. Numerous therapeutic applications could potentially emerge from these physiologic roles. This review summarizes the current literature regarding the role of MG53 in the skeletal muscle. Therapeutic applications are discussed.
Collapse
Affiliation(s)
| | - Hua Zhu
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Weina Zhong
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Tao Tan
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Peter H. U. Lee
- Department of Surgery, The Ohio State University, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States
| |
Collapse
|
15
|
Choi JH, Jeong SY, Oh MR, Allen PD, Lee EH. TRPCs: Influential Mediators in Skeletal Muscle. Cells 2020; 9:cells9040850. [PMID: 32244622 PMCID: PMC7226745 DOI: 10.3390/cells9040850] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ itself or Ca2+-dependent signaling pathways play fundamental roles in various cellular processes from cell growth to death. The most representative example can be found in skeletal muscle cells where a well-timed and adequate supply of Ca2+ is required for coordinated Ca2+-dependent skeletal muscle functions, such as the interactions of contractile proteins during contraction. Intracellular Ca2+ movements between the cytosol and sarcoplasmic reticulum (SR) are strictly regulated to maintain the appropriate Ca2+ supply in skeletal muscle cells. Added to intracellular Ca2+ movements, the contribution of extracellular Ca2+ entry to skeletal muscle functions and its significance have been continuously studied since the early 1990s. Here, studies on the roles of channel proteins that mediate extracellular Ca2+ entry into skeletal muscle cells using skeletal myoblasts, myotubes, fibers, tissue, or skeletal muscle-originated cell lines are reviewed with special attention to the proposed functions of transient receptor potential canonical proteins (TRPCs) as store-operated Ca2+ entry (SOCE) channels under normal conditions and the potential abnormal properties of TRPCs in muscle diseases such as Duchenne muscular dystrophy (DMD).
Collapse
Affiliation(s)
- Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Mi Ri Oh
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Paul D. Allen
- Leeds Institute of Biomedical & Clinical Sciences, St. James’s University Hospital, University of Leeds, Leeds LS97TF, UK
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-7279
| |
Collapse
|
16
|
A muscular hypotonia-associated STIM1 mutant at R429 induces abnormalities in intracellular Ca 2+ movement and extracellular Ca 2+ entry in skeletal muscle. Sci Rep 2019; 9:19140. [PMID: 31844136 PMCID: PMC6915709 DOI: 10.1038/s41598-019-55745-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) mediates extracellular Ca2+ entry into the cytosol through a store-operated Ca2+ entry (SOCE) mechanism, which is involved in the physiological functions of various tissues, including skeletal muscle. STIM1 is also associated with skeletal muscle diseases, but its pathological mechanisms have not been well addressed. The present study focused on examining the pathological mechanism(s) of a mutant STIM1 (R429C) that causes human muscular hypotonia. R429C was expressed in mouse primary skeletal myotubes, and the properties of the skeletal myotubes were examined using single-cell Ca2+ imaging of myotubes and transmission electron microscopy (TEM) along with biochemical approaches. R429C did not interfere with the terminal differentiation of myoblasts to myotubes. Unlike wild-type STIM1, there was no further increase of SOCE by R429C. R429C bound to endogenous STIM1 and slowed down the initial rate of SOCE that were mediated by endogenous STIM1. Moreover, R429C increased intracellular Ca2+ movement in response to membrane depolarization by eliminating the attenuation on dihydropyridine receptor-ryanodine receptor (DHPR-RyR1) coupling by endogenous STIM1. The cytosolic Ca2+ level was also increased due to the reduction in SR Ca2+ level. In addition, R429C-expressing myotubes showed abnormalities in mitochondrial shape, a significant decrease in ATP levels, and the higher expression levels of mitochondrial fission-mediating proteins. Therefore, serial defects in SOCE, intracellular Ca2+ movement, and cytosolic Ca2+ level along with mitochondrial abnormalities in shape and ATP level could be a pathological mechanism of R429C for human skeletal muscular hypotonia. This study also suggests a novel clue that STIM1 in skeletal muscle could be related to mitochondria via regulating intra and extracellular Ca2+ movements.
Collapse
|
17
|
Sustained elevation of MG53 in the bloodstream increases tissue regenerative capacity without compromising metabolic function. Nat Commun 2019; 10:4659. [PMID: 31604915 PMCID: PMC6789113 DOI: 10.1038/s41467-019-12483-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 09/04/2019] [Indexed: 01/01/2023] Open
Abstract
MG53 is a muscle-specific TRIM-family protein that presides over the cell membrane repair response. Here, we show that MG53 present in blood circulation acts as a myokine to facilitate tissue injury-repair and regeneration. Transgenic mice with sustained elevation of MG53 in the bloodstream (tPA-MG53) have a healthier and longer life-span when compared with littermate wild type mice. The tPA-MG53 mice show normal glucose handling and insulin signaling in skeletal muscle, and sustained elevation of MG53 in the bloodstream does not have a deleterious impact on db/db mice. More importantly, the tPA-MG53 mice display remarkable dermal wound healing capacity, enhanced muscle performance, and improved injury-repair and regeneration. Recombinant human MG53 protein protects against eccentric contraction-induced acute and chronic muscle injury in mice. Our findings highlight the myokine function of MG53 in tissue protection and present MG53 as an attractive biological reagent for regenerative medicine without interference with glucose handling in the body. MG53 is a protein that regulates the cell membrane repair process, and it’s been suggested that it might play a role in diabetes. Here, the authors demonstrate that circulating MG53 functions as a myokine to facilitate tissue injury-repair and regeneration without impacting glucose handling.
Collapse
|
18
|
Luo Y, Xie HQ, Chen Y, Xia Y, Sha R, Liu Y, Ma Y, Xu T, Xu L, Wah-Keung Tsim K, Zhao B. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on acetylcholinesterase during myogenic differentiation of contractile rat primary skeletal muscle cells. Chem Biol Interact 2019; 308:164-169. [DOI: 10.1016/j.cbi.2019.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
|
19
|
Yin W, Liu Y, Bian Z. MG53 Inhibits the Progression of Tongue Cancer Cells through Regulating PI3K-AKT Signaling Pathway: Evidence from 3D Cell Culture and Animal Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805492. [PMID: 30690890 DOI: 10.1002/smll.201805492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/08/2019] [Indexed: 06/09/2023]
Abstract
MG53 is transcriptionally activated by the IRS-1/PI3K/AKT signal pathway, which is closely related with oncogenesis of several tumors. Here, the role of MG53 in the tumorigenesis of tongue cancer is analyzed in vitro and in vivo. The stable MG53 overexpression/knockdown SCC9 and SCC25 cells are constructed through retrovirus infection. Then a PLGA cylinder is used to provide a 3D culture environment for cell growth. Cell counting results suggest that overexpression of MG53 inhibits the cell proliferation and colony formation of SCC9 and SCC25 cells. While knockdown of MG53 has the opposite effect. Furthermore, knockdown of MG53 significantly promotes the invasion of SCC9 and SCC25 cells. Western blotting data confirm that MG53 affects the expression of the AKT signaling pathway. In a xenograft assay, knockdown of MG53 promotes the growth of xenograft which is induced by SCC25 cells in nude mice. The findings demonstrate that MG53 affects the biological behavior of human tongue cancer SCC9 and SCC25 cells.
Collapse
Affiliation(s)
- Wei Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yaoli Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
20
|
Cho CH, Lee KJ, Lee EH. With the greatest care, stromal interaction molecule (STIM) proteins verify what skeletal muscle is doing. BMB Rep 2018; 51:378-387. [PMID: 29898810 PMCID: PMC6130827 DOI: 10.5483/bmbrep.2018.51.8.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle contracts or relaxes to maintain the body position and locomotion. For the contraction and relaxation of skeletal muscle, Ca2+ in the cytosol of skeletal muscle fibers acts as a switch to turn on and off a series of contractile proteins. The cytosolic Ca2+ level in skeletal muscle fibers is governed mainly by movements of Ca2+ between the cytosol and the sarcoplasmic reticulum (SR). Store-operated Ca2+ entry (SOCE), a Ca2+ entryway from the extracellular space to the cytosol, has gained a significant amount of attention from muscle physiologists. Orai1 and stromal interaction molecule 1 (STIM1) are the main protein identities of SOCE. This mini-review focuses on the roles of STIM proteins and SOCE in the physiological and pathophysiological functions of skeletal muscle and in their correlations with recently identified proteins, as well as historical proteins that are known to mediate skeletal muscle function.
Collapse
Affiliation(s)
- Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul 08826, Korea
| | - Keon Jin Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea; Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea; Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
21
|
TRPC channels in exercise-mimetic therapy. Pflugers Arch 2018; 471:507-517. [PMID: 30298191 PMCID: PMC6515694 DOI: 10.1007/s00424-018-2211-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 11/21/2022]
Abstract
Physical exercise yields beneficial effects on all types of muscle cells, which are essential for the maintenance of cardiovascular homeostasis and good blood circulation. Daily moderate exercise increases systemic antioxidative capacity, which can lead to the prevention of the onset and progression of oxidative stress-related diseases. Therefore, exercise is now widely accepted as one of the best therapeutic strategies for the treatment of ischemic (hypoxic) diseases. Canonical transient receptor potential (TRPC) proteins are non-selective cation channels activated by mechanical stress and/or stimulation of phospholipase C-coupled surface receptors. TRPC channels, especially diacylglycerol-activated TRPC channels (TRPC3 and TRPC6; TRPC3/6), play a key role in the development of cardiovascular remodeling. We have recently found that physical interaction between TRPC3 and NADPH oxidase (Nox) 2 under hypoxic stress promotes Nox2-dependent reactive oxygen species (ROS) production and mediates rodent cardiac plasticity, and inhibition of the TRPC3-Nox2 protein complex results in enhancement of myocardial compliance and flexibility similar to that observed in exercise-treated hearts. In this review, we describe current understanding of the roles of TRPC channels in striated muscle (patho)physiology and propose that targeting TRPC-based protein complexes could be a new strategy to imitate exercise therapy.
Collapse
|
22
|
Zhou L, Middel V, Reischl M, Strähle U, Nienhaus GU. Distinct amino acid motifs carrying multiple positive charges regulate membrane targeting of dysferlin and MG53. PLoS One 2018; 13:e0202052. [PMID: 30092031 PMCID: PMC6084962 DOI: 10.1371/journal.pone.0202052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/26/2018] [Indexed: 11/17/2022] Open
Abstract
Dysferlin (Dysf) and mitsugumin53 (MG53) are two key proteins involved in membrane repair of muscle cells which are efficiently recruited to the sarcolemma upon lesioning. Plasma membrane localization and recruitment of a Dysf fragment to membrane lesions in zebrafish myofibers relies on the presence of a short, polybasic amino acid motif, WRRFK. Here we show that the positive charges carried by this motif are responsible for this function. In mouse MG53, we have identified a similar motif with multiple basic residues, WKKMFR. A single amino acid replacement, K279A, leads to severe aggregation of MG53 in inclusion bodies in HeLa cells. This result is due to the loss of positive charge, as shown by studying the effects of other neutral amino acids at position 279. Consequently, our data suggest that positively charged amino acid stretches play an essential role in the localization and function of Dysf and MG53.
Collapse
Affiliation(s)
- Lu Zhou
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Volker Middel
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Markus Reischl
- Institute for Applied Computer Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
23
|
Oh MR, Lee KJ, Huang M, Kim JO, Kim DH, Cho CH, Lee EH. STIM2 regulates both intracellular Ca 2+ distribution and Ca 2+ movement in skeletal myotubes. Sci Rep 2017; 7:17936. [PMID: 29263348 PMCID: PMC5738411 DOI: 10.1038/s41598-017-18256-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Stromal interaction molecule 1 (STIM1) along with Orai1 mediates extracellular Ca2+ entry into the cytosol through a store-operated Ca2+ entry (SOCE) mechanism in various tissues including skeletal muscle. However, the role(s) of STIM2, a homolog of STIM1, in skeletal muscle has not been well addressed. The present study, first, was focused on searching for STIM2-binding proteins from among proteins mediating skeletal muscle functions. This study used a binding assay, quadrupole time-of-flight mass spectrometry, and co-immunoprecipitation assay with bona-fide STIM2- and SERCA1a-expressing rabbit skeletal muscle. The region for amino acids from 453 to 729 of STIM2 binds to sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a (SERCA1a). Next, oxalate-supported 45Ca2+-uptake experiments and various single-myotube Ca2+ imaging experiments using STIM2-knockdown mouse primary skeletal myotubes have suggested that STIM2 attenuates SERCA1a activity during skeletal muscle contraction, which contributes to the intracellular Ca2+ distribution between the cytosol and the SR at rest. In addition, STIM2 regulates Ca2+ movement through RyR1 during skeletal muscle contraction as well as SOCE. Therefore, via regulation of SERCA1a activity, STIM2 regulates both intracellular Ca2+ distribution and Ca2+ movement in skeletal muscle, which makes it both similar to, yet different from, STIM1.
Collapse
Affiliation(s)
- Mi Ri Oh
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Keon Jin Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mei Huang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jin Ock Kim
- School of Life Sciences, GIST, Gwangju, 61005, Republic of Korea
| | - Do Han Kim
- School of Life Sciences, GIST, Gwangju, 61005, Republic of Korea
| | - Chung-Hyun Cho
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
24
|
A focus on extracellular Ca 2+ entry into skeletal muscle. Exp Mol Med 2017; 49:e378. [PMID: 28912570 PMCID: PMC5628281 DOI: 10.1038/emm.2017.208] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 01/06/2023] Open
Abstract
The main task of skeletal muscle is contraction and relaxation for body movement and posture maintenance. During contraction and relaxation, Ca2+ in the cytosol has a critical role in activating and deactivating a series of contractile proteins. In skeletal muscle, the cytosolic Ca2+ level is mainly determined by Ca2+ movements between the cytosol and the sarcoplasmic reticulum. The importance of Ca2+ entry from extracellular spaces to the cytosol has gained significant attention over the past decade. Store-operated Ca2+ entry with a low amplitude and relatively slow kinetics is a main extracellular Ca2+ entryway into skeletal muscle. Herein, recent studies on extracellular Ca2+ entry into skeletal muscle are reviewed along with descriptions of the proteins that are related to extracellular Ca2+ entry and their influences on skeletal muscle function and disease.
Collapse
|
25
|
Zhang Y, Wu HK, Lv F, Xiao RP. MG53: Biological Function and Potential as a Therapeutic Target. Mol Pharmacol 2017; 92:211-218. [PMID: 28432201 DOI: 10.1124/mol.117.108241] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/12/2017] [Indexed: 02/14/2025] Open
Abstract
MG53 (also known as tripartite motif, TRIM72) is a cardiac and skeletal muscle-specific TRIM-family protein that exhibits multiple biologic functions. First, MG53 participates in plasma membrane repair of the heart, skeletal muscle, and, other tissues. Second, MG53 is essentially involved in the cardioprotection of cardiac ischemic, preconditioning, and postconditioning by activating the PI3K-Akt-GSK3β and ERK1/2 survival signaling pathways. Moreover, systemic delivery of recombinant MG53 protein ameliorates the impact of a range of injury insults on the heart, skeletal muscle, lung, kidney, skin, and brain. It is noteworthy that chronic upregulation of MG53 induces insulin resistance and metabolic diseases, such as type 2 diabetes and its cardiovascular complications, by acting as an E3 ligase to mediate the degradation of insulin receptor and insulin receptor substrate-1. In addition, MG53 negatively regulates myogenesis. In summary, MG53 is a multifunctional protein involved in the vital physiologic and pathologic processes of multiple organs and is a promising therapeutic target for various human diseases. In this review, we comprehensively summarize current research progress on the biologic functions and therapeutic potential of MG53.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (Y.Z., H.-K.W., F.L., R.-P.X.), Peking-Tsinghua Center for Life Sciences (R.-P.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.-P.X.), Peking University, Beijing, China
| | - Hong-Kun Wu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (Y.Z., H.-K.W., F.L., R.-P.X.), Peking-Tsinghua Center for Life Sciences (R.-P.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.-P.X.), Peking University, Beijing, China
| | - Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (Y.Z., H.-K.W., F.L., R.-P.X.), Peking-Tsinghua Center for Life Sciences (R.-P.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.-P.X.), Peking University, Beijing, China
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine (Y.Z., H.-K.W., F.L., R.-P.X.), Peking-Tsinghua Center for Life Sciences (R.-P.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.-P.X.), Peking University, Beijing, China
| |
Collapse
|
26
|
Treatment with Recombinant Human MG53 Protein Increases Membrane Integrity in a Mouse Model of Limb Girdle Muscular Dystrophy 2B. Mol Ther 2017; 25:2360-2371. [PMID: 28750735 DOI: 10.1016/j.ymthe.2017.06.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
Limb girdle muscular dystrophy type 2B (LGMD2B) and other dysferlinopathies are degenerative muscle diseases that result from mutations in the dysferlin gene and have limited treatment options. The dysferlin protein has been linked to multiple cellular functions including a Ca2+-dependent membrane repair process that reseals disruptions in the sarcolemmal membrane. Recombinant human MG53 protein (rhMG53) can increase the membrane repair process in multiple cell types both in vitro and in vivo. Here, we tested whether rhMG53 protein can improve membrane repair in a dysferlin-deficient mouse model of LGMD2B (B6.129-Dysftm1Kcam/J). We found that rhMG53 can increase the integrity of the sarcolemmal membrane of isolated muscle fibers and whole muscles in a Ca2+-independent fashion when assayed by a multi-photon laser wounding assay. Intraperitoneal injection of rhMG53 into mice before acute eccentric treadmill exercise can decrease the release of intracellular enzymes from skeletal muscle and decrease the entry of immunoglobulin G and Evans blue dye into muscle fibers in vivo. These results indicate that short-term rhMG53 treatment can ameliorate one of the underlying defects in dysferlin-deficient muscle by increasing sarcolemmal membrane integrity. We also provide evidence that rhMG53 protein increases membrane integrity independently of the canonical dysferlin-mediated, Ca2+-dependent pathway known to be important for sarcolemmal membrane repair.
Collapse
|
27
|
Transient receptor potential canonical type 3 channels: Interactions, role and relevance - A vascular focus. Pharmacol Ther 2017; 174:79-96. [DOI: 10.1016/j.pharmthera.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|