1
|
Defant MJ. Reevaluating gender-affirming care: biological foundations, ethical dilemmas, and the complexities of gender dysphoria. JOURNAL OF SEX & MARITAL THERAPY 2025; 51:200-210. [PMID: 39841090 DOI: 10.1080/0092623x.2025.2456066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
This paper critically examines the scientific and ethical underpinnings of gender-affirming care, particularly for minors. While major medical organizations endorse such interventions as medically necessary, the evidence supporting their long-term safety and efficacy remains limited. Research into hormonal, neuroanatomic, and genetic influences reveals a strong biological basis for gender identity, challenging social constructionist arguments. There is a lack of robust, long-term studies that definitively demonstrate the outcomes of gender-affirming medical treatments, such as puberty blockers or hormone therapy, for minors. Questions remain about how these interventions affect physical health (e.g., bone density, fertility) and mental well-being over decades. These gaps in the evidence, particularly for adolescents, raise ethical concerns about the appropriateness of irreversible medical treatments. This analysis highlights the tension between the social constructivist framework of gender and the medicalization of gender dysphoria. It explores the implications of rising desistance rates, co-occurring mental health conditions, and increasing non-binary identities within current clinical paradigms. Drawing on evidence from cases involving gender detransitioning, the impact of hormones, and neurological development in both straight, gay, and trans individuals, the paper underscores the importance of cautious, evidence-based approaches that prioritize psychological maturity and comprehensive mental health assessments. Ultimately, the paper advocates for rigorous longitudinal research, enhanced mental health evaluations, and the development of noninvasive therapeutic options in particular anda reevaluation of treatment models to ensure ethically sound and scientifically supported care for individuals experiencing gender dysphoria.
Collapse
Affiliation(s)
- Marc J Defant
- Department of Interdisciplinary Studies, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Rubin JB, Abou-Antoun T, Ippolito JE, Llaci L, Marquez CT, Wong JP, Yang L. Epigenetic developmental mechanisms underlying sex differences in cancer. J Clin Invest 2024; 134:e180071. [PMID: 38949020 PMCID: PMC11213507 DOI: 10.1172/jci180071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cancer risk is modulated by hereditary and somatic mutations, exposures, age, sex, and gender. The mechanisms by which sex and gender work alone and in combination with other cancer risk factors remain underexplored. In general, cancers that occur in both the male and female sexes occur more commonly in XY compared with XX individuals, regardless of genetic ancestry, geographic location, and age. Moreover, XY individuals are less frequently cured of their cancers, highlighting the need for a greater understanding of sex and gender effects in oncology. This will be necessary for optimal laboratory and clinical cancer investigations. To that end, we review the epigenetics of sexual differentiation and its effect on cancer hallmark pathways throughout life. Specifically, we will touch on how sex differences in metabolism, immunity, pluripotency, and tumor suppressor functions are patterned through the epigenetic effects of imprinting, sex chromosome complement, X inactivation, genes escaping X inactivation, sex hormones, and life history.
Collapse
Affiliation(s)
| | | | - Joseph E. Ippolito
- Department of Radiology
- Department of Biochemistry and Molecular Biophysics
| | - Lorida Llaci
- Deartment of Genetics Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
3
|
Li H, Jiang W, Liu S, Yang M, Chen S, Pan Y, Cui M. Connecting the mechanisms of tumor sex differences with cancer therapy. Mol Cell Biochem 2024; 479:213-231. [PMID: 37027097 DOI: 10.1007/s11010-023-04723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
Sex differences in cancer incidence and survival are constant and pronounced globally, across all races and all age groups of cancer types. In 2016, after the National Institutes of Health proposed a policy of utilizing sex as a biological variable, researchers started paying more attention to the molecular mechanisms behind gender variations in cancer. Historically, most previous studies investigating sex differences have been centered on gonadal sex hormones. Nevertheless, sex differences also involve genetic and molecular pathways that run throughout the entire process of cancer cell proliferation, metastasis, and treatment response, in addition to sex hormones. In particular, there is significant gender dimorphism in the efficacy and toxicity of oncology treatments, including conventional radiotherapy and chemotherapy, as well as the emerging targeted therapies and immunotherapy. To be clear, not all mechanisms will exhibit gender bias, and not all gender bias will affect cancer risk. Our goal in this review is to discuss some of the significant sex-related changes in fundamental cancer pathways. To this purpose, we summarize the differential impact of gender on cancer development in three dimensions: sex hormones, genetics, and epigenetics, and focus on current hot subjects including tumor suppressor function, immunology, stem cell renewal, and non-coding RNAs. Clarifying the essential mechanisms of gender differences will help guide the clinical treatment of both sexes in tumor radiation and chemotherapy, medication therapy with various targets, immunotherapy, and even drug development. We anticipate that sex-differentiated research will help advance sex-based cancer personalized medicine models and encourage future basic scientific and clinical research to take sex into account.
Collapse
Affiliation(s)
- Huan Li
- The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Weibo Jiang
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Shui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Manshi Yang
- The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Siyuan Chen
- The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Yihan Pan
- The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| |
Collapse
|
4
|
Szakats S, McAtamney A, Cross H, Wilson MJ. Sex-biased gene and microRNA expression in the developing mouse brain is associated with neurodevelopmental functions and neurological phenotypes. Biol Sex Differ 2023; 14:57. [PMID: 37679839 PMCID: PMC10486049 DOI: 10.1186/s13293-023-00538-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Sex differences pose a challenge and an opportunity in biomedical research. Understanding how sex chromosomes and hormones affect disease-causing mechanisms will shed light on the mechanisms underlying predominantly idiopathic sex-biased neurodevelopmental disorders such as ADHD, schizophrenia, and autism. Gene expression is a crucial conduit for the influence of sex on developmental processes; therefore, this study focused on sex differences in gene expression and the regulation of gene expression. The increasing interest in microRNAs (miRNAs), small, non-coding RNAs, for their contribution to normal and pathological neurodevelopment prompted us to test how miRNA expression differs between the sexes in the developing brain. METHODS High-throughput sequencing approaches were used to identify transcripts, including miRNAs, that showed significantly different expression between male and female brains on day 15.5 of development (E15.5). RESULTS Robust sex differences were identified for some genes and miRNAs, confirming the influence of biological sex on RNA. Many miRNAs that exhibit the greatest differences between males and females have established roles in neurodevelopment, implying that sex-biased expression may drive sex differences in developmental processes. In addition to highlighting sex differences for individual miRNAs, gene ontology analysis suggested several broad categories in which sex-biased RNAs might act to establish sex differences in the embryonic mouse brain. Finally, mining publicly available SNP data indicated that some sex-biased miRNAs reside near the genomic regions associated with neurodevelopmental disorders. CONCLUSIONS Together, these findings reinforce the importance of cataloguing sex differences in molecular biology research and highlight genes, miRNAs, and pathways of interest that may be important for sexual differentiation in the mouse and possibly the human brain.
Collapse
Affiliation(s)
- Susanna Szakats
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Alice McAtamney
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Hugh Cross
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Megan J Wilson
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
5
|
Niemann T, Greiner JFW, Kaltschmidt C, Kaltschmidt B. EPO regulates neuronal differentiation of adult human neural-crest derived stem cells in a sex-specific manner. BMC Neurosci 2023; 24:19. [PMID: 36879191 PMCID: PMC9990360 DOI: 10.1186/s12868-023-00789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Sexual differences in the biology of human stem cells are increasingly recognized to influence their proliferation, differentiation and maturation. Especially in neurodegenerative diseases such as Alzheimers disease (AD), Parkinson's disease (PD) or ischemic stroke, sex is a key player for disease progression and recovery of damaged tissue. Recently, the glycoprotein hormone erythropoietin (EPO) has been implicated as a regulator of neuronal differentiation and maturation in female rats. METHODS In this study, we used adult human neural crest-derived stem cells (NCSCs) as a model system for exploring potential sex specific effects of EPO on human neuronal differentiation. We started with expression validation of the specific EPO receptor (EPOR) by performing PCR analysis in the NCSCs. Next, EPO mediated activation of nuclear factor-κB (NF-κB) via Immunocytochemistry (ICC) was performed, followed by investigating the sex-specific effects of EPO on neuronal differentiation by determining morphological changes in axonal growth and neurite formation accompanied by ICC. RESULTS Undifferentiated male and female NCSCs showed a ubiquitous expression of the EPO receptor (EPOR). EPO treatment resulted in a statistically profound (male p = 0.0022, female p = 0.0012) nuclear translocation of NF-κB RELA in undifferentiated NCSCs of both sexes. But after one week of neuronal differentiation, we could show a highly significant (p = 0,0079) increase of nuclear NF-κB RELA in females only. In contrast, we observed a strong decrease (p = 0,0022) of RELA activation in male neuronal progenitors. Extending the view on the role of sex during human neuronal differentiation, here we demonstrate a significant increase of axon lengths in female NCSCs-derived neurons upon EPO-treatment (+ EPO: 167,73 (SD = 41,66) µm, w/o EPO: 77,68 (SD = 18,31) µm) compared to their male counterparts (+ EPO: 68,37 (SD = 11,97) µm, w/o EPO: 70,23 (SD = 12,89) µm). CONCLUSION Our present findings therefore show for the first time an EPO-driven sexual dimorphism in neuronal differentiation of human neural-crest derived stem cells and emphasize sex-specific variability as a crucial parameter in stem cell biology and for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Tarek Niemann
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | | | | | | |
Collapse
|
6
|
Neugarten J, Golestaneh L. Gender-dependent mechanisms of injury and repair. REGENERATIVE NEPHROLOGY 2022:303-318. [DOI: 10.1016/b978-0-12-823318-4.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Abstract
Significant sex differences exist across cellular, tissue organization, and body system scales to serve the distinct sex-specific functions required for reproduction. They are present in all animals that reproduce sexually and have widespread impacts on normal development, aging, and disease. Observed from the moment of fertilization, sex differences are patterned by sexual differentiation, a lifelong process that involves mechanisms related to sex chromosome complement and the epigenetic and acute activational effects of sex hormones. In this mini-review, we examine evidence for sex differences in cellular responses to DNA damage, their underlying mechanisms, and how they might relate to sex differences in cancer incidence and response to DNA-damaging treatments.
Collapse
Affiliation(s)
- Lauren Broestl
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
8
|
Carrano A, Juarez JJ, Incontri D, Ibarra A, Cazares HG. Sex-Specific Differences in Glioblastoma. Cells 2021; 10:cells10071783. [PMID: 34359952 PMCID: PMC8303471 DOI: 10.3390/cells10071783] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences have been well identified in many brain tumors. Even though glioblastoma (GBM) is the most common primary malignant brain tumor in adults and has the worst outcome, well-established differences between men and women are limited to incidence and outcome. Little is known about sex differences in GBM at the disease phenotype and genetical/molecular level. This review focuses on a deep understanding of the pathophysiology of GBM, including hormones, metabolic pathways, the immune system, and molecular changes, along with differences between men and women and how these dimorphisms affect disease outcome. The information analyzed in this review shows a greater incidence and worse outcome in male patients with GBM compared with female patients. We highlight the protective role of estrogen and the upregulation of androgen receptors and testosterone having detrimental effects on GBM. Moreover, hormones and the immune system work in synergy to directly affect the GBM microenvironment. Genetic and molecular differences have also recently been identified. Specific genes and molecular pathways, either upregulated or downregulated depending on sex, could potentially directly dictate GBM outcome differences. It appears that sexual dimorphism in GBM affects patient outcome and requires an individualized approach to management considering the sex of the patient, especially in relation to differences at the molecular level.
Collapse
Affiliation(s)
- Anna Carrano
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Juan Jose Juarez
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Edo. de México, Mexico; (J.J.J.); (D.I.); (A.I.)
| | - Diego Incontri
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Edo. de México, Mexico; (J.J.J.); (D.I.); (A.I.)
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Edo. de México, Mexico; (J.J.J.); (D.I.); (A.I.)
| | - Hugo Guerrero Cazares
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
- Correspondence:
| |
Collapse
|
9
|
Srancikova A, Mihalj D, Bacova Z, Bakos J. The effects of testosterone on gene expression of cell-adhesion molecules and scaffolding proteins: The role of sex in early development. Andrologia 2021; 53:e14153. [PMID: 34138481 DOI: 10.1111/and.14153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Sex-specific differences in brain plasticity appear to be organised by testosterone, which is particularly important during the early stages of development. The main purpose of the present study was to examine the sex differences in mRNA and protein levels of selected cell-adhesion molecules and scaffolding proteins on postnatal days 5 (P5) and 9 (P9) in the rat hippocampus, as well as evaluate the effects of testosterone treatment (100 nM, 48 hr) on synaptic proteins in SH-SY5Y (neuron-like) and U-87MG (astrocyte-like) cells. The gene expression levels of Neuroligin 3 and 'SH3 and multiple ankyrin repeat domains protein' 1 and 3 (SHANK1 and SHANK3) were significantly lower in males compared to females at P5. At P9, a similar significant trend towards a decrease in mRNA expression and protein levels of SHANK3 was found in males. Testosterone treatment induced a significant decrease of Neuroligin 1-3 mRNA expression in both SH-SY5Y and U-87MG cells. SHANK1 and SHANK3 mRNA levels significantly decreased in U-87MG cells response to testosterone presence. The presented results demonstrate that the association of selected postsynaptic cell-adhesion molecules and scaffolding proteins is sex-related. Testosterone appears to be particularly involved in the developmental mechanisms related to neuroplasticity.
Collapse
Affiliation(s)
- Annamaria Srancikova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Denisa Mihalj
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
10
|
Cattaneo MG, Banfi C, Brioschi M, Lattuada D, Vicentini LM. Sex-dependent differences in the secretome of human endothelial cells. Biol Sex Differ 2021; 12:7. [PMID: 33413676 PMCID: PMC7791663 DOI: 10.1186/s13293-020-00350-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cellular sex has rarely been considered as a biological variable in preclinical research, even when the pathogenesis of diseases with predictable sex differences is studied. In this perspective, proteomics, and “omics” approaches in general, can provide powerful tools to obtain comprehensive cellular maps, thus favoring the discovery of still unknown sex-biased physio-pathological mechanisms. Methods We performed proteomic and Gene Ontology (GO) analyses of the secretome from human serum-deprived male and female endothelial cells (ECs) followed by ELISA validation. Apoptosis was detected by FACS and Western blot techniques and efferocytosis through the ability of the macrophage cell line RAW 264.7 to engulf apoptotic ECs. PTX3 mRNA levels were measured by RT-qPCR. Results Proteomic and GO analyses of the secretome from starved human male and female ECs demonstrated a significant enrichment in proteins related to cellular responses to stress and to the regulation of apoptosis in the secretome of male ECs. Accordingly, a higher percentage of male ECs underwent apoptosis in response to serum deprivation in comparison with female ECs. Among the secreted proteins, we reliably found higher levels of PTX3 in the male EC secretome. The silencing of PTX3 suggested that male ECs were dependent on its expression to properly carry out the efferocytotic process. At variance, female EC efferocytosis seemed to be independent on PTX3 expression. Conclusions Our results demonstrated that serum-starved male and female ECs possess different secretory phenotypes that might take part in the sex-biased response to cellular stress. We identified PTX3 as a crucial player in the male-specific endothelial response to an apoptotic trigger. This novel and sex-related role for secreted proteins, and mainly for PTX3, may open the way to the discovery of still unknown sex-specific mechanisms and pharmacological targets for the prevention and treatment of endothelial dysfunction at the onset of atherosclerosis and cardiovascular disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-020-00350-3.
Collapse
Affiliation(s)
- Maria Grazia Cattaneo
- Dept of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, Milan, Italy.
| | | | | | - Donatella Lattuada
- Dept of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, Milan, Italy
| | - Lucia M Vicentini
- Dept of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Vanvitelli 32, Milan, Italy
| |
Collapse
|
11
|
Rosenfield RL, Cooke DW, Radovick S. Puberty in the Female and Its Disorders. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:528-626. [DOI: 10.1016/b978-0-323-62520-3.00016-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Kong S, Peng Y, Chen W, Ma X, Wei Y, Zhao Y, Li R, Qiao J, Yan L. Epigenetic consequences of hormonal interactions between opposite-sex twin fetuses. Clin Transl Med 2020; 10:e234. [PMID: 33377650 PMCID: PMC7717068 DOI: 10.1002/ctm2.234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 11/11/2022] Open
Abstract
Previous studies reported inconsistent evidence about some phenotypic traits of females in human opposite-sex twins (opposite-sex females [OSF]) being distinct from females in same-sex twins (SSF). Comparatively, less evidence showed significant differences between males in OS twins (opposite-sex males [OSM]) and males in same-sex twins (SSM). The twin testosterone transfer hypothesis suggests that prenatal exposure of testosterone in utero may be a possible explanation for the differential traits in OSF; however, the underlying mechanism is unknown. Here, we investigated the potential epigenetic effects of hormone interactions and their correlation to the observed phenotypic traits. In the study, DNA methylomic data from 54 newborn twins and histone modification data (H3K4me3, H3K4me1, H3K27me3, and H3K27ac) from 14 newborn twins, including same-sex females (SSF), OS twins, and same-sex males (SSM) were generated. We found that OSF were clearly distinguishable from SSF by DNA methylome, while OSM were distinguishable from SSM by H3K4me1 and H3K4me3. To be more specific, compared to SSF, OSF showed a stronger correlation to males (OSM and SSM) in genome-wide DNA methylation. Further, the DNA methylomic differences between OSF and SSF were linked to the process involving cognitive functions and nervous system regulation. The differential H3K4me3 between OSM and SSM was linked to immune responses. These findings provide epigenetic evidence for the twin testosterone transfer hypothesis and offer novel insights on how prenatal hormone exposure in utero may be linked to the reported differential traits of OS twins.
Collapse
|
13
|
La Rosa P, Bartoli G, Farioli Vecchioli S, Cesari E, Pagliarini V, Sette C. Androgen Receptor signaling promotes the neural progenitor cell pool in the developing cortex. J Neurochem 2020; 157:1153-1166. [PMID: 32959393 DOI: 10.1111/jnc.15192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 01/16/2023]
Abstract
Neural Progenitor Cells (NPCs) are multipotent cells that are able to self-renew and differentiate into neurons. The size of the initial pool of NPCs during the brain development strongly affects the number of neurons that compose cortical multi-layer during development. Gonadal hormones can influence the balance between self-renewal and differentiation processes. Herein, we investigated the role of dihydrotestosterone (DHT), the active metabolite of testosterone, in the regulation of NPC stemness and differentiation. First, we evaluated the expression of the androgen receptor (AR), the transcription factor activated by DHT that mediates the physiological effects of androgens, in NPCs. Western blot analysis showed that DHT-mediated activation of AR induces mitogenic signaling pathways (PI3K/AKT and MAPK/ERK) in NPCs, whereas luciferase activity assays demonstrated the induction of AR transcriptional activity. AR activation mediated by DHT treatment strongly increased the proliferation of NPCs and reduced their propensity to differentiate into neurons. Furthermore, the effects of AR activation were mediated, at least in part, by increased expression of Aldehyde Dehydrogenase 1 Family Member A3 enzyme (ALDH1A3). Pharmacological inhibition of ALDH activity with N,N-diethylaminobenzaldehyde (DEAB) reduced the effect of DHT on NPC proliferation in vitro. Furthermore, inhibition of AR activity by Enzalutamide reduced the NPC pool in the developing cortex of male C57/BL6 mouse embryos. These findings indicate that androgens engage an AR-dependent signaling pathway that impact on neurogenesis by increasing the NPC pool in the developing mouse cortex.
Collapse
Affiliation(s)
- Piergiorgio La Rosa
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Bartoli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Claudio Sette
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This review provides a model for understanding polycystic ovary syndrome (PCOS) pathophysiology and updates the evidence on which it is based. Then, it highlights complimentary molecular genetic and epigenetic advances in understanding PCOS cause. RECENT FINDINGS Important studies into PCOS cause built on the 2014 discovery of a novel regulatory protein variant that underlies the typical PCOS steroidogenic abnormalities: DENND1A.V2 (differentially expressed in normal and neoplastic development, isoform 1A, variant 2). Over 30 DENND1A gene variants have been found, the vast majority upstream of the coding sequence and potentially regulatory. These variants are individually uncommon but collectively plausibly cause 50% of PCOS. Anti-Müllerian hormone (AMH)/AMH receptor variants with decreased function possibly cause 6.7% of PCOS. DENNND1A was recently reported to belong to a signaling network that upregulates luteinizing hormone receptor expression and insulin mitogenic signaling. Prenatal androgen administration has proven to be a potent epigenetic regulator that causes transgenerational epigenomic changes in a mouse PCOS model with similarities to those in human PCOS and PCOS daughters. SUMMARY In addition to finding how gene variants contribute to PCOS pathogenesis, better understanding of androgen epigenetic mechanisms of action in diverse tissues can be expected to expand our understanding of PCOS pathogenesis.
Collapse
|
15
|
Byne W, Karasic DH, Coleman E, Eyler AE, Kidd JD, Meyer-Bahlburg HFL, Pleak RR, Pula J. Gender Dysphoria in Adults: An Overview and Primer for Psychiatrists. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2020; 18:336-350. [PMID: 33343244 DOI: 10.1176/appi.focus.18304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(Copyright © William Byne et al. 2018; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.).
Collapse
|
16
|
Abstract
The hippocampus is central to spatial learning and stress responsiveness, both of which differ in form and function in males versus females, yet precisely how the hippocampus contributes to these sex differences is largely unknown. In reproductively mature individuals, sex differences in the steroid hormone milieu undergirds many sex differences in hippocampal-related endpoints. However, there is also evidence for developmental programming of adult hippocampal function, with a central role for androgens as well as their aromatized byproduct, estrogens. These include sex differences in cell genesis, synapse formation, dendritic arborization, and excitatory/inhibitory balance. Enduring effects of steroid hormone modulation occur during two developmental epochs, the first being the classic perinatal critical period of sexual differentiation of the brain and the other being adolescence and the associated hormonal changes of puberty. The cellular mechanisms by which steroid hormones enduringly modify hippocampal form and function are poorly understood, but we here review what is known and highlight where attention should be focused.
Collapse
|
17
|
Grogan KE, Perry GH. Studying human and nonhuman primate evolutionary biology with powerful in vitro and in vivo functional genomics tools. Evol Anthropol 2020; 29:143-158. [PMID: 32142200 PMCID: PMC10574139 DOI: 10.1002/evan.21825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/18/2019] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
In recent years, tools for functional genomic studies have become increasingly feasible for use by evolutionary anthropologists. In this review, we provide brief overviews of several exciting in vitro techniques that can be paired with "-omics" approaches (e.g., genomics, epigenomics, transcriptomics, proteomics, and metabolomics) for potentially powerful evolutionary insights. These in vitro techniques include ancestral protein resurrection, cell line experiments using primary, immortalized, and induced pluripotent stem cells, and CRISPR-Cas9 genetic manipulation. We also discuss how several of these methods can be used in vivo, for transgenic organism studies of human and nonhuman primate evolution. Throughout this review, we highlight example studies in which these approaches have already been used to inform our understanding of the evolutionary biology of modern and archaic humans and other primates while simultaneously identifying future opportunities for anthropologists to use this toolkit to help answer additional outstanding questions in evolutionary anthropology.
Collapse
Affiliation(s)
- Kathleen E. Grogan
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - George H. Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
18
|
Rubin JB, Lagas JS, Broestl L, Sponagel J, Rockwell N, Rhee G, Rosen SF, Chen S, Klein RS, Imoukhuede P, Luo J. Sex differences in cancer mechanisms. Biol Sex Differ 2020; 11:17. [PMID: 32295632 PMCID: PMC7161126 DOI: 10.1186/s13293-020-00291-x] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
We now know that cancer is many different diseases, with great variation even within a single histological subtype. With the current emphasis on developing personalized approaches to cancer treatment, it is astonishing that we have not yet systematically incorporated the biology of sex differences into our paradigms for laboratory and clinical cancer research. While some sex differences in cancer arise through the actions of circulating sex hormones, other sex differences are independent of estrogen, testosterone, or progesterone levels. Instead, these differences are the result of sexual differentiation, a process that involves genetic and epigenetic mechanisms, in addition to acute sex hormone actions. Sexual differentiation begins with fertilization and continues beyond menopause. It affects virtually every body system, resulting in marked sex differences in such areas as growth, lifespan, metabolism, and immunity, all of which can impact on cancer progression, treatment response, and survival. These organismal level differences have correlates at the cellular level, and thus, males and females can fundamentally differ in their protections and vulnerabilities to cancer, from cellular transformation through all stages of progression, spread, and response to treatment. Our goal in this review is to cover some of the robust sex differences that exist in core cancer pathways and to make the case for inclusion of sex as a biological variable in all laboratory and clinical cancer research. We finish with a discussion of lab- and clinic-based experimental design that should be used when testing whether sex matters and the appropriate statistical models to apply in data analysis for rigorous evaluations of potential sex effects. It is our goal to facilitate the evaluation of sex differences in cancer in order to improve outcomes for all patients.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
| | - Joseph S Lagas
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Lauren Broestl
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jasmin Sponagel
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Nathan Rockwell
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Gina Rhee
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Sarah F Rosen
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Si Chen
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Robyn S Klein
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Princess Imoukhuede
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| |
Collapse
|
19
|
Arnold AP. Sexual differentiation of brain and other tissues: Five questions for the next 50 years. Horm Behav 2020; 120:104691. [PMID: 31991182 PMCID: PMC7440839 DOI: 10.1016/j.yhbeh.2020.104691] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
This paper is part of the celebration of the 50th anniversary of founding of the journal Hormones and Behavior, the official journal of the Society for Behavioral Neuroendocrinology. All sex differences in phenotypic development stem from the sexual imbalance in X and Y chromosomes, which are the only known differences in XX and XY zygotes. The sex chromosome genes act within cells to cause differences in phenotypes of XX and XY cells throughout the body. In the gonad, they determine the type of gonad, leading to differences in secretion of testicular vs. ovarian hormones, which cause further sex differences in tissue function. These current ideas of sexual differentiation are briefly contrasted with a hormones-only view of sexual differentiation of the last century. The multiple, independent action of diverse sex-biasing agents means that sex-biased factors can be synergistic, increasing sex differences, or compensatory, making the two sexes more equal. Several animal models have been fruitful in demonstrating sex chromosome effects, and interactions with gonadal hormones. MRI studies of human brains demonstrate variation in brain structure associated with both differences in gonadal hormones, and in the number of X and Y chromosomes. Five unanswered questions are posed as a challenge to future investigators to improve understanding of sexual differentiation throughout the body.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department Integrative Biology and Physiology, University of California, Los Angeles, United States of America.
| |
Collapse
|
20
|
Cox RM. Sex steroids as mediators of phenotypic integration, genetic correlations, and evolutionary transitions. Mol Cell Endocrinol 2020; 502:110668. [PMID: 31821857 DOI: 10.1016/j.mce.2019.110668] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
In recent decades, endocrinologists have increasingly adopted evolutionary methods and perspectives to characterize the evolution of the vertebrate endocrine system and leverage it as a model for developing and testing evolutionary theories. This review summarizes recent research on sex steroids (androgens and estrogens) to illustrate three ways in which a detailed understanding of the molecular and cellular architecture of hormonally mediated gene expression can enhance our understanding of general evolutionary principles. By virtue of their massively pleiotropic effects on the expression of genes and phenotypes, sex steroids and their receptors can (1) structure the patterns of phenotypic variance and covariance that are available to natural selection, (2) alter the underlying genetic correlations that determine a population's evolutionary response to selection, and (3) facilitate evolutionary transitions in fitness-related phenotypes via subtle regulatory shifts in underlying tissues and genes. These principles are illustrated by the author's research on testosterone and sexual dimorphism in lizards, and by recent examples drawn from other vertebrate systems. Mechanistically, these examples call attention to the importance of evolutionary changes in (1) androgen- and estrogen-mediated gene expression, (2) androgen and estrogen receptor expression, and (3) the distribution of androgen and estrogen response elements in target genes throughout the genome. A central theme to emerge from this review is that the rapidly increasing availability of genomic and transcriptomic data from non-model organisms places evolutionary endocrinologist in an excellent position to address the hormonal regulation of the key evolutionary interface between genes and phenotypes.
Collapse
Affiliation(s)
- Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
21
|
Greiner JFW, Merten M, Kaltschmidt C, Kaltschmidt B. Sexual dimorphisms in adult human neural, mesoderm-derived, and neural crest-derived stem cells. FEBS Lett 2019; 593:3338-3352. [PMID: 31529465 DOI: 10.1002/1873-3468.13606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Abstract
Sexual dimorphisms contribute, at least in part, to the severity and occurrence of a broad range of neurodegenerative, cardiovascular, and bone disorders. In addition to hormonal factors, increasing evidence suggests that stem cell-intrinsic mechanisms account for sex-specific differences in human physiology and pathology. Here, we discuss sex-related intrinsic mechanisms in adult stem cell populations, namely mesoderm-derived stem cells, neural stem cells (NSCs), and neural crest-derived stem cells (NCSCs), and their implications for stem cell differentiation and regeneration. We particularly focus on sex-specific differences in stem cell-mediated bone regeneration, in neuronal development, and in NSC-mediated neuroprotection. Moreover, we review our own recently published observations regarding the sex-dependent role of NF-κB-p65 in neuroprotection of human NCSC-derived neurons and sex differences in NCSC-related disorders, so-called neurocristopathies. These observations are in accordance with the increasing evidence pointing toward sex-specific differences in neurocristopathies and degenerative diseases like Parkinson's disease or osteoporosis. All findings discussed here indicate that sex-specific variability in stem cell biology may become a crucial parameter for the design of future treatment strategies.
Collapse
Affiliation(s)
| | - Madlen Merten
- Molecular Neurobiology, Bielefeld University, Germany
| | | | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, Germany.,Molecular Neurobiology, Bielefeld University, Germany
| |
Collapse
|
22
|
Cisternas CD, Cortes LR, Bruggeman EC, Yao B, Forger NG. Developmental changes and sex differences in DNA methylation and demethylation in hypothalamic regions of the mouse brain. Epigenetics 2019; 15:72-84. [PMID: 31378140 DOI: 10.1080/15592294.2019.1649528] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is dynamically modulated during postnatal brain development, and plays a key role in neuronal lineage commitment. This epigenetic mark has also recently been implicated in the development of neural sex differences, many of which are found in the hypothalamus. The level of DNA methylation depends on a balance between the placement of methyl marks by DNA methyltransferases (Dnmts) and their removal, which is catalyzed by ten-eleven translocation (Tet) methylcytosine dioxygenases. Here, we examined developmental changes and sex differences in the expression of Tet and Dnmt enzymes from birth to adulthood in two hypothalamic regions (the preoptic area and ventromedial nucleus) and the hippocampus of mice. We found highest expression of all Tet enzymes (Tet1, Tet2, Tet3) and Dnmts (Dnmt1, Dnmt3a, Dnmt3b) in newborns, despite the fact that global methylation and hydroxymethylation were at their lowest levels at birth. Expression of the Dnmt co-activator, Dnmt3l, followed a pattern opposite to that of the canonical Dnmts (i.e., was very low in newborns and increased with age). Tet enzyme activity was much higher at birth than at weaning in both the hypothalamus and hippocampus, mirroring developmental changes in gene expression. Sex differences in Tet enzyme expression were seen in all brain regions examined during the first week of life, whereas Dnmt expression was more balanced between the sexes. Neonatal testosterone treatment of females only partially masculinized enzyme expression. Thus, Tet expression and activity are elevated during neonatal brain development, and may play important roles in sexual differentiation of the brain.
Collapse
Affiliation(s)
- Carla D Cisternas
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Laura R Cortes
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Emily C Bruggeman
- Department of Human Genetics, Emory School of Medicine, Atlanta, GA, USA
| | - Bing Yao
- Department of Human Genetics, Emory School of Medicine, Atlanta, GA, USA
| | - Nancy G Forger
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
23
|
Sex steroid hormone modulation of neural stem cells: a critical review. Biol Sex Differ 2019; 10:28. [PMID: 31146782 PMCID: PMC6543604 DOI: 10.1186/s13293-019-0242-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
While numerous in vivo experiments have sought to explore the effects of sex chromosome composition and sex steroid hormones on cellular proliferation and differentiation within the mammalian brain, far fewer studies as reviewed here, have explored these factors using a direct in vitro approach. Generally speaking, in vivo studies provide the gold standard to demonstrate applicable findings in regards to the role hormones play in development. However, in the case of neural stem cell (NSC) biology, there remain many unknown factors that likely contribute to observations made within the developed brain, specifically in regions where there are abundant sex steroid hormone receptors. For these reasons, using a NSC in vitro model may provide a more controlled and refined system to explore the direct effects of sex and hormone response, limiting the vast array of other influences on NSCs occurring during development and within adult cellular niches. These specific cellular models may have the ability to greatly improve the mechanistic understanding of changes occurring within the developing brain during the hormonal organization process, in addition to other modifications that may contribute to neuro-psychiatric sex-biased diseases.
Collapse
|
24
|
Cortes LR, Cisternas CD, Forger NG. Does Gender Leave an Epigenetic Imprint on the Brain? Front Neurosci 2019; 13:173. [PMID: 30872999 PMCID: PMC6400866 DOI: 10.3389/fnins.2019.00173] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
The words “sex” and “gender” are often used interchangeably in common usage. In fact, the Merriam-Webster dictionary offers “sex” as the definition of gender. The authors of this review are neuroscientists, and the words “sex” and “gender” mean very different things to us: sex is based on biological factors such as sex chromosomes and gonads, whereas gender has a social component and involves differential expectations or treatment by conspecifics, based on an individual’s perceived sex. While we are accustomed to thinking about “sex” and differences between males and females in epigenetic marks in the brain, we are much less used to thinking about the biological implications of gender. Nonetheless, careful consideration of the field of epigenetics leads us to conclude that gender must also leave an epigenetic imprint on the brain. Indeed, it would be strange if this were not the case, because all environmental influences of any import can epigenetically change the brain. In the following pages, we explain why there is now sufficient evidence to suggest that an epigenetic imprint for gender is a logical conclusion. We define our terms for sex, gender, and epigenetics, and describe research demonstrating sex differences in epigenetic mechanisms in the brain which, to date, is mainly based on work in non-human animals. We then give several examples of how gender, rather than sex, may cause the brain epigenome to differ in males and females, and finally consider the myriad of ways that sex and gender interact to shape gene expression in the brain.
Collapse
Affiliation(s)
- Laura R Cortes
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Carla D Cisternas
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
25
|
Abstract
Evolution of genetic mechanisms of sex determination led to two processes causing sex differences in somatic phenotypes: gonadal differentiation and sex chromosome dosage inequality. In species with heteromorphic sex chromosomes, the sex of the individual is established at the time of formation of the zygote, leading to inherent sex differences in expression of sex chromosome genes beginning as soon as the embryonic transcriptome is activated. The inequality of sex chromosome gene expression causes sexual differentiation of the gonads and of non-gonadal tissues. The difference in gonad type in turn causes lifelong differences in gonadal hormones, which interact with unequal effects of X and Y genes acting within cells. Separating the effects of gonadal hormones and sex chromosomes has been possible using mouse models in which gonadal determination is separated from the sex chromosomes, allowing comparison of XX and XY mice with the same type of gonad. Sex differences caused by gonadal hormones and sex chromosomes affect basic physiology and disease mechanisms in most or all tissues.
Collapse
|
26
|
Fang X, Chen C, Cai J, Xiang E, Li J, Chen P. Genome-wide methylation study of whole blood cells DNA in men with congenital hypopituitarism disease. Int J Mol Med 2018; 43:155-166. [PMID: 30365064 PMCID: PMC6257856 DOI: 10.3892/ijmm.2018.3945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022] Open
Abstract
Congenital hypopituitarism (CH) is a relatively rare disease that is characterized by the deficiency of one or more hormones secreted by the pituitary gland, which leads to metabolic disorders, amenorrhea and infertility. However, the underlying molecular mechanisms of CH have not yet been fully elucidated. The present study evaluated the genome-wide methylation level of whole blood DNA in 12 patients with CH and 12 age-matched controls using Illumina Human Methylation 450 array, in order to determine the roles of epigenetic regulation in the pathogenesis of CH. The results demonstrated that the methylation levels of 51 CpG sites were significantly different between the patients with CH and the controls. Functional enrichment analysis identified that the aberrant methylated genes were enriched in gene sets associated with metabolic or cellular process, immune system process and reproduction. In addition, two CpG sites on genes LIM domain kinase 2 (LIMK2) and piwi-like RNA-mediated gene silencing 2 (PIWIL2), which are involved in spermatogenesis and/or testicular development, were identified to be hypermethylated in male patients with CH. The hypermethylation of these sites was further validated in another 40 patients with CH and 40 matched controls with a quantitative bisulfite pyrosequencing method, and the methylation levels of these two loci demonstrated promising diagnostic capacities for CH. The present results suggested that aberrant methylation of genes may be involved in the pathogenesis of CH, and hypermethylation of LIMK2 and PIWIL2 may contribute to the infertility of male patients with CH. Further studies are required to elucidate the underlying mechanisms of the epigenetic regulation of these genes.
Collapse
Affiliation(s)
- Xuqian Fang
- Department of Pathology, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 201821, P.R. China
| | - Changqiang Chen
- Department of Clinical Medicine, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 201821, P.R. China
| | - Jialin Cai
- Clinical Research Center, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 201821, P.R. China
| | - Enfei Xiang
- Clinical Research Center, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 201821, P.R. China
| | - Jingquan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai 201821, P.R. China
| |
Collapse
|
27
|
Byne W, Karasic DH, Coleman E, Eyler AE, Kidd JD, Meyer-Bahlburg HF, Pleak RR, Pula J. Gender Dysphoria in Adults: An Overview and Primer for Psychiatrists. Transgend Health 2018; 3:57-70. [PMID: 29756044 PMCID: PMC5944396 DOI: 10.1089/trgh.2017.0053] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Regardless of their area of specialization, adult psychiatrists are likely to encounter gender-variant patients; however, medical school curricula and psychiatric residency training programs devote little attention to their care. This article aims to assist adult psychiatrists who are not gender specialists in the delivery of respectful, clinically competent, and culturally attuned care to gender-variant patients, including those who identify as transgender or transsexual or meet criteria for the diagnosis of Gender Dysphoria (GD) as defined by The Diagnostic and Statistical Manual of Mental Disorders (5th edition). The article will also be helpful for other mental health professionals. The following areas are addressed: evolution of diagnostic nosology, epidemiology, gender development, and mental health assessment, differential diagnosis, treatment, and referral for gender-affirming somatic treatments of adults with GD.
Collapse
Affiliation(s)
- William Byne
- Mental Illness Research Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai and Center for Transgender Medicine and Surgery at Mount Sinai, New York, New York
| | - Dan H. Karasic
- Department of Psychiatry, University of California, San Francisco, San Francisco, California
| | - Eli Coleman
- Program in Human Sexuality, Department of Family Medicine and Community Health, University of Minnesota Medical School, Minneapolis, Minnesota
| | - A. Evan Eyler
- Departments of Psychiatry and Family Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Jeremy D. Kidd
- Department of Psychiatry, Division on Substance Use Disorders, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Heino F.L. Meyer-Bahlburg
- Division of Gender, Sexuality, and Health, New York State Psychiatric Institute/Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Richard R. Pleak
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, Hofstra North Shore-LIJ School of Medicine, Albert Einstein College of Medicine, Zucker Hillside Hospital, Ambulatory Care Pavilion, Glen Oaks, New York
| | - Jack Pula
- Department of Psychiatry, Division of Gender, Sexuality and Health, College of Physicians and Surgeons of Columbia University, New York, New York
| |
Collapse
|
28
|
Gonzalez TL, Sun T, Koeppel AF, Lee B, Wang ET, Farber CR, Rich SS, Sundheimer LW, Buttle RA, Chen YDI, Rotter JI, Turner SD, Williams J, Goodarzi MO, Pisarska MD. Sex differences in the late first trimester human placenta transcriptome. Biol Sex Differ 2018; 9:4. [PMID: 29335024 PMCID: PMC5769539 DOI: 10.1186/s13293-018-0165-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/03/2018] [Indexed: 12/31/2022] Open
Abstract
Background Development of the placenta during the late first trimester is critical to ensure normal growth and development of the fetus. Developmental differences in this window such as sex-specific variation are implicated in later placental disease states, yet gene expression at this time is poorly understood. Methods RNA-sequencing was performed to characterize the transcriptome of 39 first trimester human placentas using chorionic villi following genetic testing (17 females, 22 males). Gene enrichment analysis was performed to find enriched canonical pathways and gene ontologies in the first trimester. DESeq2 was used to find sexually dimorphic gene expression. Patient demographics were analyzed for sex differences in fetal weight at time of chorionic villus sampling and birth. Results RNA-sequencing analyses detected 14,250 expressed genes, with chromosome 19 contributing the greatest proportion (973/2852, 34.1% of chromosome 19 genes) and Y chromosome contributing the least (16/568, 2.8%). Several placenta-enriched genes as well as histone-coding genes were identified to be unique to the first trimester and common to both sexes. Further, we identified 58 genes with significantly different expression between males and females: 25 X-linked, 15 Y-linked, and 18 autosomal genes. Genes that escape X inactivation were highly represented (59.1%) among X-linked genes upregulated in females. Many genes differentially expressed by sex consisted of X/Y gene pairs, suggesting that dosage compensation plays a role in sex differences. These X/Y pairs had roles in parallel, ancient canonical pathways important for eukaryotic cell growth and survival: chromatin modification, transcription, splicing, and translation. Conclusions This study is the first characterization of the late first trimester placenta transcriptome, highlighting similarities and differences among the sexes in ongoing human pregnancies resulting in live births. Sexual dimorphism may contribute to pregnancy outcomes, including fetal growth and birth weight, which was seen in our cohort, with males significantly heavier than females at birth. This transcriptome provides a basis for development of early diagnostic tests of placental function that can indicate overall pregnancy heath, fetal-maternal health, and long-term adult health. Electronic supplementary material The online version of this article (10.1186/s13293-018-0165-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tania L Gonzalez
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tianyanxin Sun
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander F Koeppel
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Bora Lee
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erica T Wang
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Reproductive Endocrinology and Infertility, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Lauren W Sundheimer
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Reproductive Endocrinology and Infertility, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Rae A Buttle
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Stephen D Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - John Williams
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark O Goodarzi
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Margareta D Pisarska
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA. .,Division of Reproductive Endocrinology and Infertility, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Turano A, Osborne BF, Schwarz JM. Sexual Differentiation and Sex Differences in Neural Development. Curr Top Behav Neurosci 2018; 43:69-110. [PMID: 29967999 DOI: 10.1007/7854_2018_56] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sex determination occurs at the moment of conception, as a result of XX or XY chromosome pairing. From that point, the body undergoes the process of sexual differentiation, inducing the development of physical characteristics that are easily distinguishable between the sexes and are often reflected in one's physical appearance and gender identity. Although less apparent, the brain also undergoes sexual differentiation. Sex differences in the brain are organized during a critical period of neural development and have an instrumental role in determining the physiology and behavior of an individual throughout the lifespan. Understanding the extent of sex differences in neurodevelopment also influences our understanding of the potential risk for a number of neurodevelopmental, neurological, and mental health disorders that exhibit strong sex biases. Advances made in our understanding of sexually dimorphic brain nuclei, sex differences in neural cell communication, and sex differences in the communication between the brain and peripheral organs are all research fields that have provided valuable information related to the physiological and behavioral outcomes of sex differences in brain development. More recently, investigations into the impact of epigenetic mechanisms on sexual differentiation of the brain have indicated that changes in gene expression, via epigenetic modifications, also contribute to sexual differentiation of the developing brain. Still, there are a number of important questions and ideas that have arisen from our current understanding of sex differences in neurodevelopmental processes that necessitate more time and attention in this field.
Collapse
Affiliation(s)
- Alexandra Turano
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Brittany F Osborne
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Jaclyn M Schwarz
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
30
|
Rosenfeld CS. Brain Sexual Differentiation and Requirement of SRY: Why or Why Not? Front Neurosci 2017; 11:632. [PMID: 29200993 PMCID: PMC5696354 DOI: 10.3389/fnins.2017.00632] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022] Open
Abstract
Brain sexual differentiation is orchestrated by precise coordination of sex steroid hormones. In some species, programming of select male brain regions is dependent upon aromatization of testosterone to estrogen. In mammals, these hormones surge during the organizational and activational periods that occur during perinatal development and adulthood, respectively. In various fish and reptiles, incubation temperature during a critical embryonic period results in male or female sexual differentiation, but this can be overridden in males by early exposure to estrogenic chemicals. Testes development in mammals requires a Y chromosome and testis determining gene SRY (in humans)/Sry (all other therian mammals), although there are notable exceptions. Two species of spiny rats: Amami spiny rat (Tokudaia osimensis) and Tokunoshima spiny rat (Tokudaia tokunoshimensis) and two species of mole voles (Ellobius lutescens and Ellobius tancrei), lack a Y chromosome/Sry and possess an XO chromosome system in both sexes. Such rodent species, prototherians (monotremes, who also lack Sry), and fish and reptile species that demonstrate temperature sex determination (TSD) seemingly call into question the requirement of Sry for brain sexual differentiation. This review will consider brain regions expressing SRY/Sry in humans and rodents, respectively, and potential roles of SRY/Sry in the brain will be discussed. The evidence from various taxa disputing the requirement of Sry for brain sexual differentiation in mammals (therians and prototherians) and certain fish and reptilian species will be examined. A comparative approach to address this question may elucidate other genes, pathways, and epigenetic modifications stimulating brain sexual differentiation in vertebrate species, including humans.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Biomedical Sciences, University of Missouri, Columbia, MO, United States.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States.,Genetics Area Program, University of Missouri, Columbia, MO, United States
| |
Collapse
|
31
|
Sex chromosomes drive gene expression and regulatory dimorphisms in mouse embryonic stem cells. Biol Sex Differ 2017; 8:28. [PMID: 28818098 PMCID: PMC5561606 DOI: 10.1186/s13293-017-0150-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/10/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Pre-implantation embryos exhibit sexual dimorphisms in both primates and rodents. To determine whether these differences reflected sex-biased expression patterns, we generated transcriptome profiles for six 40,XX, six 40,XY, and two 39,X mouse embryonic stem (ES) cells by RNA sequencing. RESULTS We found hundreds of coding and non-coding RNAs that were differentially expressed between male and female cells. Surprisingly, the majority of these were autosomal and included RNA encoding transcription and epigenetic and chromatin remodeling factors. We showed differential Prdm14-responsive enhancer activity in male and female cells, correlating with the sex-specific levels of Prdm14 expression. This is the first time sex-specific enhancer activity in ES cells has been reported. Evaluation of X-linked gene expression patterns between our XX and XY lines revealed four distinct categories: (1) genes showing 2-fold greater expression in the female cells; (2) a set of genes with expression levels well above 2-fold in female cells; (3) genes with equivalent RNA levels in male and female cells; and strikingly, (4) a small number of genes with higher expression in the XY lines. Further evaluation of autosomal gene expression revealed differential expression of imprinted loci, despite appropriate parent-of-origin patterns. The 39,X lines aligned closely with the XY cells and provided insights into potential regulation of genes associated with Turner syndrome in humans. Moreover, inclusion of the 39,X lines permitted three-way comparisons, delineating X and Y chromosome-dependent patterns. CONCLUSIONS Overall, our results support the role of the sex chromosomes in establishing sex-specific networks early in embryonic development and provide insights into effects of sex chromosome aneuploidies originating at those stages.
Collapse
|
32
|
Neuroimmunology and neuroepigenetics in the establishment of sex differences in the brain. Nat Rev Neurosci 2017. [PMID: 28638119 DOI: 10.1038/nrn.2017.61] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The study of sex differences in the brain is a topic of neuroscientific study that has broad reaching implications for culture, society and biomedical science. Recent research in rodent models has led to dramatic shifts in our views of the mechanisms underlying the sexual differentiation of the brain. These include the surprising discoveries of a role for immune cells and inflammatory mediators in brain masculinization and a role for epigenetic suppression in brain feminization. How and to what degree these findings will translate to human brain development will be questions of central importance in future research in this field.
Collapse
|
33
|
Puttabyatappa M, Padmanabhan V. Prenatal Testosterone Programming of Insulin Resistance in the Female Sheep. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:575-596. [PMID: 29224111 DOI: 10.1007/978-3-319-70178-3_25] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Insulin resistance, a common feature of metabolic disorders such as obesity, nonalcoholic fatty liver disease, metabolic syndrome, and polycystic ovary syndrome, is a risk factor for development of diabetes. Because sex hormones orchestrate the establishment of sex-specific behavioral, reproductive, and metabolic differences, a role for them in the developmental origin of insulin resistance is also to be expected. Female sheep exposed to male levels of testosterone during fetal life serve as an excellent translational model for delineating programming of insulin resistance. This chapter summarizes the ontogeny of insulin resistance, the tissue-specific changes in insulin sensitivity, and the various factors that are involved in the programming and maintenance of the insulin resistance in adult female sheep that were developmentally exposed to fetal male levels of testosterone during the sexual-differentiation window.
Collapse
|