1
|
Saharia J, Bandara YMNDY, Karawdeniya BI, Dwyer JR, Kim MJ. Over One Million DNA and Protein Events Through Ultra-Stable Chemically-Tuned Solid-State Nanopores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300198. [PMID: 37026669 PMCID: PMC10524034 DOI: 10.1002/smll.202300198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Stability, long lifetime, resilience against clogging, low noise, and low cost are five critical cornerstones of solid-state nanopore technology. Here, a fabrication protocol is described wherein >1 million events are obtained from a single solid-state nanopore with both DNA and protein at the highest available lowpass filter (LPF, 100 kHz) of the Axopatch 200B-the highest event count mentioned in literature. Moreover, a total of ≈8.1 million events are reported in this work encompassing the two analyte classes. With the 100 kHz LPF, the temporally attenuated population is negligible while with the more ubiquitous 10 kHz, ≈91% of the events are attenuated. With DNA experiments, the pores are operational for hours (typically >7 h) while the average pore growth is merely ≈0.16 ± 0.1 nm h-1 . The current noise is exceptionally stable with traces typically showing <10 pA h-1 increase in noise. Furthermore, a real-time method to clean and revive pores clogged with analyte with the added benefit of minimal pore growth during cleaning (< 5% of the original diameter) is showcased. The enormity of the data collected herein presents a significant advancement to solid-state pore performance and will be useful for future ventures such as machine learning where large amounts of pristine data are a prerequisite.
Collapse
Affiliation(s)
- Jugal Saharia
- Department of Mechanical Engineering, Southern Methodist University, TX 75275, USA
- Department of Mechanical Engineering, The University of Texas Permian Basin, Odessa, TX 79762, USA
| | | | - Buddini I. Karawdeniya
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601 Australia
| | - Jason R. Dwyer
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, RI 02881, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, TX 75275, USA
| |
Collapse
|
2
|
Hassanyar AK, Nie H, Li Z, Lin Y, Huang J, Woldegiorgis ST, Hussain M, Feng W, Zhang Z, Yu K, Su S. Discovery of SNP Molecular Markers and Candidate Genes Associated with Sacbrood Virus Resistance in Apis cerana cerana Larvae by Whole-Genome Resequencing. Int J Mol Sci 2023; 24:ijms24076238. [PMID: 37047210 PMCID: PMC10094193 DOI: 10.3390/ijms24076238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Sacbrood virus (SBV) is a significant problem that impedes brood development in both eastern and western honeybees. Whole-genome sequencing has become an important tool in researching population genetic variations. Numerous studies have been conducted using multiple techniques to suppress SBV infection in honeybees, but the genetic markers and molecular mechanisms underlying SBV resistance have not been identified. To explore single nucleotide polymorphisms (SNPs), insertions, deletions (Indels), and genes at the DNA level related to SBV resistance, we conducted whole-genome resequencing on 90 Apis cerana cerana larvae raised in vitro and challenged with SBV. After filtering, a total of 337.47 gigabytes of clean data and 31,000,613 high-quality SNP loci were detected in three populations. We used ten databases to annotate 9359 predicted genes. By combining population differentiation index (FST) and nucleotide polymorphisms (π), we examined genome variants between resistant (R) and susceptible (S) larvae, focusing on site integrity (INT < 0.5) and minor allele frequency (MAF < 0.05). A selective sweep analysis with the top 1% and top 5% was used to identify significant regions. Two SNPs on the 15th chromosome with GenBank KZ288474.1_322717 (Guanine > Cytosine) and KZ288479.1_95621 (Cytosine > Thiamine) were found to be significantly associated with SBV resistance based on their associated allele frequencies after SNP validation. Each SNP was authenticated in 926 and 1022 samples, respectively. The enrichment and functional annotation pathways from significantly predicted genes to SBV resistance revealed immune response processes, signal transduction mechanisms, endocytosis, peroxisomes, phagosomes, and regulation of autophagy, which may be significant in SBV resistance. This study presents novel and useful SNP molecular markers that can be utilized as assisted molecular markers to select honeybees resistant to SBV for breeding and that can be used as a biocontrol technique to protect honeybees from SBV.
Collapse
|
3
|
Feng S, Li A, Wang B, Hu L, Li S, Li Y, Yu Y, Zhang H, Yuan J. Enhancement of antiviral activity of egg yolk antibodies against Chinese sacbrood virus. Virus Res 2022; 319:198878. [PMID: 35882266 DOI: 10.1016/j.virusres.2022.198878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
Chinese sacbrood virus (CSBV) poses a serious threat to the apiculture of China. Although several approaches have been attempted to control CSBV infection, their applications have been greatly limited in practical breeding of honeybees due to poor effectiveness. Egg yolk antibodies (EYA) have shown a promising protection for bees against CSBV infection. This study was conducted to produce high titer EYA and then further improve their antiviral effect. Among three vaccination groups, the EYA titer in graphene oxide-chitosan group was highest (1.591 ± 0.145), in Freund's group was modest (1.195 ± 0.040), and in white oil group was lowest (1.058 ± 0.056). After three injections of each vaccine in hens, EYA were produced at the highest level with a 14-day period. After application of EYA for more than two years in actual bee breeding, prevention and treatment assays showed that EYA confered 98.9 to 100% protection from CSBV infection. The mortality of the control group reached to a range of 91.2 to 100%. This study demonstrated that the high titer EYA have been successfully prepared with significant anti-CSBV activity and that these antibodies may feasibly be used for CSBV treatment to meet the practical needs of apiculture.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Luoyang Fengzaokang Biotechnological Co. Ltd., Luoyang, Henan 471000, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Lina Hu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Yangfan Yu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Haizhou Zhang
- Luoyang Fengzaokang Biotechnological Co. Ltd., Luoyang, Henan 471000, China
| | - Juan Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China.
| |
Collapse
|
4
|
Reyt M, Deantoni M, Baillet M, Lesoinne A, Laloux S, Lambot E, Demeuse J, Calaprice C, LeGoff C, Collette F, Vandewalle G, Maquet P, Muto V, Hammad G, Schmidt C. Daytime rest: Association with 24-h rest-activity cycles, circadian timing and cognition in older adults. J Pineal Res 2022; 73:e12820. [PMID: 35906192 DOI: 10.1111/jpi.12820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Growing epidemiological evidence points toward an association between fragmented 24-h rest-activity cycles and cognition in the aged. Alterations in the circadian timing system might at least partially account for these observations. Here, we tested whether daytime rest (DTR) is associated with changes in concomitant 24-h rest probability profiles, circadian timing and neurobehavioural outcomes in healthy older adults. Sixty-three individuals (59-82 years) underwent field actigraphy monitoring, in-lab dim light melatonin onset assessment and an extensive cognitive test battery. Actimetry recordings were used to measure DTR frequency, duration and timing and to extract 24-h rest probability profiles. As expected, increasing DTR frequency was associated not only with higher rest probabilities during the day, but also with lower rest probabilities during the night, suggesting more fragmented night-time rest. Higher DTR frequency was also associated with lower episodic memory performance. Moreover, later DTR timing went along with an advanced circadian phase as well as with an altered phase angle of entrainment between the rest-activity cycle and circadian phase. Our results suggest that different DTR characteristics, as reflective indices of wake fragmentation, are not only underlined by functional consequences on cognition, but also by circadian alteration in the aged.
Collapse
Affiliation(s)
- Mathilde Reyt
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology, Speech and Language, University of Liège, Liège, Belgium
| | - Michele Deantoni
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Marion Baillet
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Alexia Lesoinne
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Sophie Laloux
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Eric Lambot
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Justine Demeuse
- Department of Clinical Chemistry, University Hospital of Liège, University of Liège, Liège, Belgium
| | - Chiara Calaprice
- Department of Clinical Chemistry, University Hospital of Liège, University of Liège, Liège, Belgium
| | - Caroline LeGoff
- Department of Clinical Chemistry, University Hospital of Liège, University of Liège, Liège, Belgium
| | - Fabienne Collette
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology, Speech and Language, University of Liège, Liège, Belgium
| | - Gilles Vandewalle
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Pierre Maquet
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
- Department of Neurology, University Hospital of Liège, University of Liège, Liège, Belgium
| | - Vincenzo Muto
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Grégory Hammad
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
| | - Christina Schmidt
- Sleep & Chronobiology Group, GIGA-CRC-In Vivo Imaging Research Unit, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology, Speech and Language, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Azaryan E, Karbasi S, Zarban A, Naseri M. Cell-free therapy based on stem cell-derived exosomes: A promising approach for wound healing. Wound Repair Regen 2022; 30:585-594. [PMID: 35927607 DOI: 10.1111/wrr.13043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
There are several successive and overlapping phases in wound healing as a complex process. By the disruption of each of these phases, chronic non-healing wounds are resultant. Despite the present soothing surgeries, standard wound dressings and topical gels, the wound is often not completely closed. Today, stem cells have attracted a huge deal of attention therapeutically and pharmaceutically considering their unique features. However, they have some restrictions. Moreover, it is hoped to eliminate the limitations of cellular therapies based on their derivatives known as exosomes. Exosomes are extracellular vesicles secreted from cells. They have a diameter of almost 30-150 nm and miRNAs, mRNAs, and proteins that are possibly different from the source cell are included in exosomal contents. Such nanovesicles have a key role in the intercellular communication of pathological and physiological procedures. Exosome-based therapy is a new significant method for wound healing. By exosomes effects, wound management may be improved and a new therapeutic model may be highlighted for cell-free therapies with reduced side effects for the wound repair.
Collapse
Affiliation(s)
- Ehsaneh Azaryan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Samira Karbasi
- Department of Molecular Medicine, School of Medicine, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Asghar Zarban
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Clinical Biochemistry Department, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
6
|
Candreva A, Parisi F, Bartucci R, Guzzi R, Di Maio G, Scarpelli F, Aiello I, Godbert N, La Deda M. Synthesis and Characterization of Hyper‐Branched Nanoparticles with Magnetic and Plasmonic Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202201375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Angela Candreva
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
- CNR-NANOTEC Istituto di Nanotecnologia U.O.S Cosenza (CS) 87036 Rende Italy
| | - Francesco Parisi
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
| | - Rosa Bartucci
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
- Department of Physics Molecular Biophysics Laboratory University of Calabria 87036 Rende CS Italy
| | - Rita Guzzi
- CNR-NANOTEC Istituto di Nanotecnologia U.O.S Cosenza (CS) 87036 Rende Italy
- Department of Physics Molecular Biophysics Laboratory University of Calabria 87036 Rende CS Italy
| | - Giuseppe Di Maio
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
| | - Francesca Scarpelli
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
| | - Iolinda Aiello
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
- CNR-NANOTEC Istituto di Nanotecnologia U.O.S Cosenza (CS) 87036 Rende Italy
| | - Nicolas Godbert
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies University of Calabria 87036 Rende CS Italy
- CNR-NANOTEC Istituto di Nanotecnologia U.O.S Cosenza (CS) 87036 Rende Italy
| |
Collapse
|
7
|
Yun BR, Truong AT, Choi YS, Lee MY, Kim BY, Seo M, Yoon SS, Yoo MS, Van Quyen D, Cho YS. Comparison of the gut microbiome of sacbrood virus-resistant and -susceptible Apis cerana from South Korea. Sci Rep 2022; 12:10010. [PMID: 35705585 PMCID: PMC9200864 DOI: 10.1038/s41598-022-13535-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
Honey bees are important pollinators for the conservation of the ecosystem and agricultural products and provide a variety of products important for human use, such as honey, pollen, and royal jelly. Sacbrood disease (SD) is a devastating viral disease in Apis cerana; an effective preventive measure for SD is urgently needed. In this study, the relationship between the gut microbiome of honey bees and SD was investigated by pyrosequencing. Results revealed that sacbrood virus (SBV)-resistant A. cerana strains harbour a unique acetic acid bacterium, Bombella intestini, and the lactic acid bacteria (LAB) Lactobacillus (unclassified)_uc, Bifidobacterium longum, B. catenulatum, Lactococcus lactis, and Leuconostoc mesenteroides in larvae and Hafnia alvei, B. indicum, and the LAB L. mellifer and Lactobacillus HM215046_s in adult bees. Changes in the gut microbiome due to SBV infection resulted in loss of bacteria that could affect host nutrients and inhibit honey bee pathogens, such as Gilliamella JFON_s, Gilliamella_uc, Pseudomonas putida, and L. kunkeei in A. cerana larvae and Frischella_uc, Pantoea agglomerans, Snodgrassella_uc, and B. asteroides in adult bees. These findings provide important information for the selection of probiotics for A. cerana larvae and adults to prevent pathogenic infections and keep honey bees healthy.
Collapse
Affiliation(s)
- Bo-Ram Yun
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.,Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Heungdeok-gu, Cheongju, Chungbuk, 28159, Republic of Korea.,Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Buk-gu, Daegu, 41566, Republic of Korea
| | - A-Tai Truong
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.,Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, 250000, Vietnam
| | - Yong Soo Choi
- Department of Agricultural Biology, National Institute of Agricultural Science, Wanju, 55365, Republic of Korea
| | - Man Young Lee
- Department of Agricultural Biology, National Institute of Agricultural Science, Wanju, 55365, Republic of Korea
| | | | - Minjung Seo
- ChunLab Inc., Seoul, 06194, Republic of Korea
| | - Soon-Seek Yoon
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Mi-Sun Yoo
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| | - Dong Van Quyen
- University of Science and Technology of Ha Noi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Yun Sang Cho
- Parasitic and Insect Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| |
Collapse
|
8
|
Psaraki A, Ntari L, Karakostas C, Korrou-Karava D, Roubelakis MG. Extracellular vesicles derived from mesenchymal stem/stromal cells: The regenerative impact in liver diseases. Hepatology 2022; 75:1590-1603. [PMID: 34449901 DOI: 10.1002/hep.32129] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Liver dysfunctions are classified into acute and chronic diseases, which comprise a heterogeneous group of pathological features and a high mortality rate. Liver transplantation remains the gold-standard therapy for most liver diseases, with concomitant limitations related to donor organ shortage and lifelong immunosuppressive therapy. A concept in liver therapy intends to overcome these limitations based on the secreted extracellular vesicles (EVs; microvesicles and exosomes) by mesenchymal stem/stromal cells (MSCs). A significant number of studies have shown that factors released by MSCs could induce liver repair and ameliorate systemic inflammation through paracrine effects. It is well known that this paracrine action is based not only on the secretion of cytokines and growth factors but also on EVs, which regulate pathways associated with inflammation, hepatic fibrosis, integrin-linked protein kinase signaling, and apoptosis. Herein, we extensively discuss the differential effects of MSC-EVs on different liver diseases and on cellular and animal models and address the complex molecular mechanisms involved in the therapeutic potential of EVs. In addition, we cover the crucial information regarding the type of molecules contained in MSC-EVs that can be effective in the context of liver diseases. In conclusion, outcomes on MSC-EV-mediated therapy are expected to lead to an innovative, cell-free, noninvasive, less immunogenic, and nontoxic alternative strategy for liver treatment and to provide important mechanistic information on the reparative function of liver cells.
Collapse
Affiliation(s)
- Adriana Psaraki
- Laboratory of BiologyMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Lydia Ntari
- Laboratory of BiologyMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Christos Karakostas
- Laboratory of BiologyMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Despoina Korrou-Karava
- Laboratory of BiologyMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Maria G Roubelakis
- Laboratory of BiologyMedical SchoolNational and Kapodistrian University of AthensAthensGreece
- Centre of Basic ResearchBiomedical Research Foundation of the Academy of AthensAthensGreece
| |
Collapse
|
9
|
Shape memory elastomers: A review of synthesis, design, advanced manufacturing, and emerging applications. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Valim FCF, Oliveira GP, Vasconcelos G, Paiva LB, Santillo C, Lavorgna M, Andrade RJE. Unraveling the impact of phase separation induced by thermal annealing on shape memory effect of polyester‐based thermoplastic polyurethane. J Appl Polym Sci 2022. [DOI: 10.1002/app.51723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fernanda Cabrera Flores Valim
- Mackgraphe ‐ Mackenzie Institute for Research in Graphene and Nanotechnologies Mackenzie Presbyterian Institute São Paulo Brazil
- Laboratory of Chemical Processes and Particle Technology, Group for Bionanomanufacturing (BIONANO) Institute for Technological Research (IPT) São Paulo Brazil
| | - Gustavo Peixoto Oliveira
- Mackgraphe ‐ Mackenzie Institute for Research in Graphene and Nanotechnologies Mackenzie Presbyterian Institute São Paulo Brazil
| | - Gibran Vasconcelos
- Lightweight Structures Laboratory (LEL) Institute for Technological Research (IPT) São Paulo Brazil
| | - Lucilene Betega Paiva
- Laboratory of Chemical Processes and Particle Technology, Group for Bionanomanufacturing (BIONANO) Institute for Technological Research (IPT) São Paulo Brazil
| | - Chiara Santillo
- Institute for Polymers, Composites and Biomaterials National Research Council of Italy Portici Italy
| | - Marino Lavorgna
- Institute for Polymers, Composites and Biomaterials National Research Council of Italy Portici Italy
| | - Ricardo Jorge Espanhol Andrade
- Mackgraphe ‐ Mackenzie Institute for Research in Graphene and Nanotechnologies Mackenzie Presbyterian Institute São Paulo Brazil
| |
Collapse
|
11
|
Sacbrood viruses cross-infection between Apis cerana and Apis mellifera: Rapid detection, viral dynamics, evolution and spillover risk assessment. J Invertebr Pathol 2021; 186:107687. [PMID: 34728219 DOI: 10.1016/j.jip.2021.107687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022]
Abstract
Recent outbreaks of sacbrood virus (SBV) have caused serious epizootic disease in Apis cerana populations across Asia including Taiwan. Earlier phylogenetic analyses showed that cross-infection of AcSBV and AmSBV in both A. cerana and A. mellifera seems common, raising a concern of cross-infection intensifying the risk of disease resurgence in A. cerana. In this study, we analyzed the dynamics of cross-infection in three different types of apiaries (A. mellifera-only, A. cerana-only and two species co-cultured apiaries) over one year in Taiwan. Using novel, genotype-specific primer sets, we showed that SBV infection status varies across apiaries: AmSBV-AM and AcSBV-AC were the major genotype in the A. mellifera-only and the A. cerana-only apiaries, respectively, while AmSBV-AC and AcSBV-AC were the dominant genotypes in the co-cultured apiaries. Interestingly, co-cultured apiaries were among the only apiary type that harbored all variants and dual infections (i.e., AC and AM genotype co-infection in a single sample), indicating the interactions between hosts may form a conduit for cross-infection. The cross-infection between the two honey bee species appears to occur in a regular cycle with temporal fluctuation of AmSBV-AC and AcSBV-AC prevalence synchronized to each other in the co-cultured apiaries. Artificial infection of AcSBV in A. mellifera workers showed the suppression of viral replication, suggesting the potential of A. mellifera serving as a AcSBV reservoir that may contribute to virus spillover. Furthermore, the survival rate of A. cerana larvae was significantly reduced after artificial infections of both SBVs, indicating fitness costs of cross-infection on A. cerana and thus a high risk of disease resurgence in co-cultured apiaries. Our field and laboratory data provide baseline information that facilitates understanding of the risk of SBV cross-infection, and highlights the urgent need of SBV monitoring in co-cultured apiaries.
Collapse
|
12
|
Phokasem P, Liuhao W, Panjad P, Yujie T, Li J, Chantawannakul P. Differential Viral Distribution Patterns in Reproductive Tissues of Apis mellifera and Apis cerana Drones. Front Vet Sci 2021; 8:608700. [PMID: 33842568 PMCID: PMC8024463 DOI: 10.3389/fvets.2021.608700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/10/2021] [Indexed: 11/16/2022] Open
Abstract
Honeybee drones are male bees that mate with virgin queens during the mating flight, consequently transferring their genes to offspring. Therefore, the health of drones affects the overall fitness of the offspring and ultimately the survivability of the colony. Honeybee viruses are considered to be a major threat to the health of honeybees. In the present study, we demonstrated the pattern of common honeybee viruses in various tissues of drones in the western honeybee, Apis mellifera, and the eastern honeybee, Apis cerana. Drones were collected during the mating flight and analyzed using quantitative real-time (qRT-PCR) to detect the presence of seven honeybee viruses. The qRT-PCR result revealed that three honeybee viruses, namely Black Queen Cell Virus (BQCV), Deformed Wing Virus (DWV), and Chinese Sacbrood Virus (CSBV), were detected in the reproductive tissues of A. mellifera and A. cerana drones. The results from qRT-PCR showed that the Israeli Acute Paralysis Virus (IAPV) was only detected in A. mellifera drone body tissues. Moreover, the prevalence of DWV and BQCV in the drones collected from A. mellifera colonies was significantly higher than that of A. cerana. In addition, virus multiple infections were higher in A. mellifera drones compared to those in A. cerana. CSBV was found predominantly in the reproductive tissues of A. cerana drones. This study is the first report describing the presence of the CSBV in reproductive tissues of A. mellifera drones. Our results may reflect the preference of honeybee viruses in honeybee species and may provide a piece of interesting evidence for understanding the virus transmission in A. cerana.
Collapse
Affiliation(s)
- Patcharin Phokasem
- Graduate School, Chiang Mai University, Chiang Mai, Thailand.,Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Wang Liuhao
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, China
| | - Poonnawat Panjad
- Graduate School, Chiang Mai University, Chiang Mai, Thailand.,Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Tang Yujie
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, China
| | - Jilian Li
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, China
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
13
|
Wang Y, Zhao Y, Wang S, Liu J, Wang X, Han Y, Liu F. Up-regulated 2-alkenal reductase expression improves low-nitrogen tolerance in maize by alleviating oxidative stress. PLANT, CELL & ENVIRONMENT 2021; 43:2957-2968. [PMID: 33215716 DOI: 10.1111/pce.13907] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 05/13/2023]
Abstract
In plants, cellular lipid peroxidation is enhanced under low nitrogen (LN) stress; this increases the lipid-derived reactive carbonyl species (RCS) levels. The cellular toxicity of RCS can be reduced by various RCS-scavenging enzymes. However, the roles of these enzymes in alleviating oxidative stress and improving nutrient use efficiency (NUE) under nutrient stress remain unknown. Here, we overexpressed maize endogenous NADPH-dependent 2-alkenal reductase (ZmAER) in maize; it significantly increased the tolerance of transgenic plants (OX-AER) to LN stress. Under LN condition, the biomass, nitrogen accumulation, NUE, and leaf photosynthesis of the OX-AER plants were significantly higher than those of the wild-type (WT) plants. The leaf and root malondialdehyde and H2 O2 levels in the transgenic plants were significantly lower than those in WT. The expression of antioxidant enzyme-related genes ZmCAT3, ZmPOD5 and ZmPOD13 was significantly higher in the transgenic lines than in WT. Under LN stress, the nitrate reductase activity in the OX-AER leaves was significantly increased compared with that in the WT leaves. Furthermore, under LN stress, ZmNRT1.1 and ZmNRT2.5 expression was upregulated in the OX-AER plants compared with that in WT. Overall, up-regulated ZmAER expression could enhance maize's tolerance to LN stress by alleviating oxidative stress and improve NUE.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yanxiang Zhao
- College of Plant Protection, China Agricultural University, Beijing, China
- Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shanshan Wang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Junfeng Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiqing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Yanlai Han
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fang Liu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Chang JC, Chang ZT, Ko CY, Chen YW, Nai YS. Genomic Sequencing and Comparison of Sacbrood Viruses from Apis cerana and Apis mellifera in Taiwan. Pathogens 2020; 10:pathogens10010014. [PMID: 33379158 PMCID: PMC7824188 DOI: 10.3390/pathogens10010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Sacbrood virus (SBV) was the first identified bee virus and shown to cause serious epizootic infections in the population of Apis cerana in Taiwan in 2015. Herein, the whole genome sequences of SBVs in A. cerana and A. mellifera were decoded and designated AcSBV-TW and AmSBV-TW, respectively. The whole genomes of AcSBV-TW and AmSBV-TW were 8776 and 8885 bp, respectively, and shared 90% identity. Each viral genome encoded a polyprotein, which consisted of 2841 aa in AcSBV-TW and 2859 aa in AmSBV-TW, and these sequences shared 95% identity. Compared to 54 other SBVs, the structural protein and protease regions showed high variation, while the helicase was the most highly conserved region among SBVs. Moreover, a 17-amino-acid deletion was found in viral protein 1 (VP1) region of AcSBV-TW compared to AmSBV-TW. The phylogenetic analysis based on the polyprotein sequences and partial VP1 region indicated that AcSBV-TW was grouped into the SBV clade with the AC-genotype (17-aa deletion) and was closely related to AmSBV-SDLY and CSBV-FZ, while AmSBV-TW was grouped into the AM-genotype clade but branched independently from other AmSBVs, indicating that the divergent genomic characteristics of AmSBV-TW might be a consequence of geographic distance driving evolution, and AcSBV-TW was closely related to CSBV-FZ, which originated from China. This 17-amino-acid deletion could be found in either AcSBV or AmSBV in Taiwan, indicating cross-infection between the two viruses. Our data revealed geographic and host specificities between SBVs. The amino acid difference in the VP1 region might serve as a molecular marker for describing SBV cross-infection.
Collapse
Affiliation(s)
- Ju-Chun Chang
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 260, Taiwan; (J.-C.C.); (Z.-T.C.); (C.-Y.K.)
- Department of Entomology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Zih-Ting Chang
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 260, Taiwan; (J.-C.C.); (Z.-T.C.); (C.-Y.K.)
| | - Chong-Yu Ko
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 260, Taiwan; (J.-C.C.); (Z.-T.C.); (C.-Y.K.)
| | - Yue-Wen Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 260, Taiwan; (J.-C.C.); (Z.-T.C.); (C.-Y.K.)
- Correspondence: (Y.-W.C.); (Y.-S.N.)
| | - Yu-Shin Nai
- Department of Entomology, National Chung-Hsing University, Taichung 402, Taiwan
- Correspondence: (Y.-W.C.); (Y.-S.N.)
| |
Collapse
|
15
|
Deng Y, Zhao H, Shen S, Yang S, Yang D, Deng S, Hou C. Identification of Immune Response to Sacbrood Virus Infection in Apis cerana Under Natural Condition. Front Genet 2020; 11:587509. [PMID: 33193724 PMCID: PMC7649357 DOI: 10.3389/fgene.2020.587509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/05/2020] [Indexed: 12/03/2022] Open
Abstract
Chinese sacbrood virus (CSBV) is a serious threat to eastern honeybees (Apis cerana), especially larvae. However, the pathological mechanism of this deadly disease remains unclear. Here, we employed mRNA and small RNA (sRNA) transcriptome approach to investigate the microRNAs (miRNAs) and small interfering RNAs (siRNAs) expression changes of A. cerana larvae infected with CSBV under natural condition. We found that serine proteases involved in immune response were down-regulated, while the expression of siRNAs targeted to serine proteases were up-regulated. In addition, CSBV infection also affected the expression of larvae cuticle proteins such as larval cuticle proteins A1A and A3A, resulting in increased susceptibility to CSBV infection. Together, our results provide insights into sRNAs that they are likely to be involved in regulating honeybee immune response.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China
| | - Shuo Shen
- Qinghai Academy of Agriculture and Forestry Sciences (Academy of Agriculture and Forestry Sciences), Qinghai University, Xining, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Dahe Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| |
Collapse
|
16
|
Visualizing Sacbrood Virus of Honey Bees via Transformation and Coupling with Enhanced Green Fluorescent Protein. Viruses 2020; 12:v12020224. [PMID: 32085386 PMCID: PMC7077286 DOI: 10.3390/v12020224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 01/24/2023] Open
Abstract
Sacbrood virus (SBV) of honey bees is a picornavirus in the genus Iflavirus. Given its relatively small and simple genome structure, single positive-strand RNA with only one ORF, cloning the full genomic sequence is not difficult. However, adding nonsynonymous mutations to the bee iflavirus clone is difficult because of the lack of information about the viral protein processes. Furthermore, the addition of a reporter gene to the clones has never been accomplished. In preliminary trials, we found that the site between 3′ untranslated region (UTR) and poly(A) can retain added sequences. We added enhanced green fluorescent protein (EGFP) expression at this site, creating a SBV clone with an expression tag that does not affect virus genes. An intergenic region internal ribosome entry site (IRES) from Black queen cell virus (BQCV) was inserted to initiate EGFP expression. The SBV-IRES-EGFP clone successfully infected Apis cerana and Apis mellifera, and in A. cerana larvae, it was isolated and passaged using oral inoculation. The inoculated larvae had higher mortality and the dead larvae showed sacbrood symptoms. The added IRES-EGFP remained in the clone through multiple passages and expressed the expected EGFP in all infected bees. We demonstrated the ability to add gene sequences in the site between 3′-UTR and poly(A) in SBV and the potential to do so in other bee iflaviruses; however, further investigations of the mechanisms are needed. A clone with a desired protein expression reporter will be a valuable tool in bee virus studies.
Collapse
|
17
|
Li H, Jiang X, Lv X, Ahammed GJ, Guo Z, Qi Z, Yu J, Zhou Y. Tomato GLR3.3 and GLR3.5 mediate cold acclimation-induced chilling tolerance by regulating apoplastic H 2 O 2 production and redox homeostasis. PLANT, CELL & ENVIRONMENT 2019; 42:3326-3339. [PMID: 31329293 DOI: 10.1111/pce.13623] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/23/2019] [Accepted: 07/18/2019] [Indexed: 05/26/2023]
Abstract
Plant glutamate receptor-like (GLR) genes play important roles in plant development and immune response. However, the functions of GLRs in abiotic stress response remain unclear. Here we show that cold acclimation at 12°C induced the transcripts of GLR3.3 and GLR3.5 with increased tolerance against a subsequent chilling at 4 °C. Silencing of GLR3.3 or/and GLR3.5 or application of the antagonist of ionotropic glutamate receptor 6,7-dinitroquinoxaline-2,3-dione (DNQX), all compromised the acclimation-induced increases in the transcripts of respiratory burst oxidase homolog1 (RBOH1), activity of NADPH oxidase, the accumulation of apoplastic H2 O2 and the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG), resulting in an attenuated chilling tolerance; the effect, however, was rescued by foliar application of H2 O2 or GSH. Both RBOH1-silenced and glutathione biosynthesis genes, γ- glutamylcysteine synthetase (GSH1)- and glutathione synthetase (GSH2)-cosilenced plants had decreased chilling tolerance with reduced GSH/GSSG ratio. Moreover, application of DNQX had little effects on the GSH/GSSG ratio and the tolerance in RBOH1-silenced plants and GSH1- and GSH2-cosilenced plants. These findings unmasked the functional hierarchy of GLR-H2 O2 -glutathione cascade and shed new light on cold response pathway in tomato plants.
Collapse
Affiliation(s)
- Huizi Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Xiaochun Jiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Xiangzhang Lv
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, 471000, P.R. China
| | - Zhixin Guo
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Zhenyu Qi
- Zhejiang Univ, Agr Expt Stn, Hangzhou, 310058, P.R. China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, P.R. China
| |
Collapse
|
18
|
Li M, Fei D, Sun L, Ma M. Genetic and phylogenetic analysis of Chinese sacbrood virus isolates from Apis mellifera. PeerJ 2019; 7:e8003. [PMID: 31741790 PMCID: PMC6858986 DOI: 10.7717/peerj.8003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/07/2019] [Indexed: 01/25/2023] Open
Abstract
Background Sacbrood virus (SBV) is one of the most pathogenic honeybee viruses that exhibits host specificity and regional variations. The SBV strains that infect the Chinese honeybee Apis cerana are called Chinese SBVs (CSBVs). Methods In this study, a CSBV strain named AmCSBV-SDLY-2016 (GenBank accession No. MG733283) infecting A. mellifera was identified by electron microscopy, its protein composition was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and agar gel immunodiffusion assay, and its nucleotide sequence was identified using a series of reverse-transcription polymerase chain reaction fragments of AmCSBV-SDLY-2016 generated using SBV/CSBV-specific primers. To investigate phylogenetic relationships of the CSBV isolates, a phylogenetic tree of the complete open reading frames (ORF) of the CSBV sequences was constructed using MEGA 6.0; then, the similarity and recombination events among the isolated CSBV strains were analyzed using SimPlot and RDP4 software, respectively. Results Sequencing results revealed the complete 8,794-nucleotide long complete genomic RNA of the strain, with a single large ORF (189–8,717) encoding 2,843 amino acids. Comparison of the deduced amino acid sequence with the SBV/CSBV reference sequences deposited in the GenBank database identified helicase, protease, and RNA-dependent RNA polymerase domains; the structural genes were located at the 5′ end, whereas the non-structural genes were found at the 3′ end. Multiple sequence alignment showed that AmCSBV-SDLY-2016 had a 17-amino acid (aa) and a single aa deletion at positions 711–729 and 2,128, respectively, as compared with CSBV-GD-2002, and a 16-aa deletion (positions 711–713 and 715–728) as compared with AmSBV-UK-2000. However, AmCSBV-SDLY-2016 was similar to the CSBV-JLCBS-2014 strain, which infects A. cerana. AmCSBV-SDLY-2016 ORF shared 92.4–97.1% identity with the genomes of other CSBV strains (94.5–97.7% identity for deduced amino acids). AmCSBV-SDLY-2016 was least similar (89.5–90.4% identity) to other SBVs but showed maximum similarity with the previously reported CSBV-FZ-2014 strain. The phylogenetic tree constructed from AmCSBV-SDLY-2016 and 43 previously reported SBV/CSBV sequences indicated that SBV/CSBV strains clustered according to the host species and country of origin; AmCSBV-SDLY-2016 clustered with other previously reported Chinese and Asian strains (AC genotype SBV, as these strains originated from A. cerana) but was separate from the SBV genomes originating from Europe (AM genotype SBV, originating from A. mellifera). A SimPlot graph of SBV genomes confirmed the high variability, especially between the AC genotype SBV and AM genotype SBV. This genomic diversity may reflect the adaptation of SBV to specific hosts, ability of CSBV to cross the species barrier, and the spatial distances that separate CSBVs from other SBVs.
Collapse
Affiliation(s)
- Ming Li
- College Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Dongliang Fei
- College Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Li Sun
- College Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Mingxiao Ma
- College Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
19
|
Baker JR, Sakoff JA, McCluskey A. The aryl hydrocarbon receptor (AhR) as a breast cancer drug target. Med Res Rev 2019; 40:972-1001. [PMID: 31721255 DOI: 10.1002/med.21645] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/04/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022]
Abstract
Breast cancer is the most common cancer in women, with more than 1.7 million diagnoses worldwide per annum. Metastatic breast cancer remains incurable, and the presence of triple-negative phenotypes makes targeted treatment impossible. The aryl hydrocarbon receptor (AhR), most commonly associated with the metabolism of xenobiotic ligands, has emerged as a promising biological target for the treatment of this deadly disease. Ligands for the AhR can be classed as exogenous or endogenous and may have agonistic or antagonistic activity. It has been well reported that agonistic ligands may have potent and selective growth inhibition activity in a number of oncogenic cell lines, and one (aminoflavone) has progressed to phase I clinical trials for breast cancer sufferers. In this study, we examine the current state of the literature in this area and elucidate the promising advances that are being made in hijacking the cytosolic-to-nuclear pathway of the AhR for the possible future treatment of breast cancer.
Collapse
Affiliation(s)
- Jennifer R Baker
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, Australia
| | - Jennette A Sakoff
- Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
20
|
Zhang X, Fei D, Sun L, Li M, Ma Y, Wang C, Huang S, Ma M. Identification of the Novel Host Protein Interacting With the Structural Protein VP1 of Chinese Sacbrood Virus by Yeast Two-Hybrid Screening. Front Microbiol 2019; 10:2192. [PMID: 31611854 PMCID: PMC6775477 DOI: 10.3389/fmicb.2019.02192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
Chinese sacbrood virus (CSBV) is the major cause and lead to the collapse of Apis cerana colonies. VP1, the structural protein of CSBV, shows the highest variation in the amino acid sequences among proteins from different CSBV strains as well as exhibits excellent immunogenicity. However, its function with host protein still remains unclear. To clarify its function with host protein, we screened out host cellular proteins that interact with VP1 using the membrane protein yeast two-hybrid system. In addition, we verified interactions between heat shock protein 70 cognate 5 (Hsp70-c5) and VP1 using glutathione S-transferase (GST) pull-down and co-immunoprecipitation assays. VP1 and Hsp70-c5 were colocalized in the cytoplasm and nucleus. Using western blot and real-time polymerase chain reaction (PCR), Hsp70-c5 expression in CSBV-infected larvae was upregulated compared with that in healthy larvae. We observed that when we silenced Hsp70-c5, VP1 expression was significantly downregulated. These results demonstrate that Hsp70-c5 is involved in at least one stage(s) of the viral life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingxiao Ma
- Institute of Animal Husbandry Veterinary, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
21
|
Hassanyar AK, Huang S, Li Z, Rizwan M, Mehmood S, Raza MF, Qasim M, Hussain M, Su S. Prevalence of bee viruses in Apis cerana cerana populations from different locations in the Fujian Province of China. Microbiologyopen 2019; 8:e00830. [PMID: 30884179 PMCID: PMC6741300 DOI: 10.1002/mbo3.830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/24/2023] Open
Abstract
Prevalence of honeybee viral diseases has recently been causing major problems in the beekeeping industry, causing economic losses worldwide. Honeybees are susceptible to a variety of diseases and various pathogens. Among these pathogens, prevalence viruses, along with other factors, are seriously threatening the health of bee species. In the present study, samples were collected from 80 Apis cerana cerana (A. c. cerana) colonies from three different locations, Cangshan, Fuan, and Yongtai, in the Fujian Province of China. All samples were screened using the reverse transcription polymerase chain reaction (RT-PCR) method for detection of seven honeybee viruses, namely, Chinese sacbrood virus (CSBV), deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), acute bee paralysis virus (ABPV), and Kashmir bee virus (KBV). Our results showed that CSBV was the most prevalent as it was detected in (90%), of the samples, DWV was detected in (81.25%), and IAPV was detected in (26.25%). In contrast, insignificant prevalence results were obtained from all apiaries for BQCV, CBPV, APBV, and KBV, which were not detected in any sample. Here, we are providing the first report on the molecular detection of honeybee viruses, especially the prevalence of IAPV, from different regions in the Fujian Province of China with a high prevalence of bee viruses, on A. c. cerana, and there is great concern for the presence of honeybee viruses in the population of the native honeybee (A. c. cerana) in China.
Collapse
Affiliation(s)
| | - Shaokang Huang
- College of Bee ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhiguo Li
- College of Bee ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Muhammad Rizwan
- College of Bee ScienceFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shahid Mehmood
- Key Laboratory of Tropical Forest EcologyChemical Ecology Group Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesKunmingChina
| | - Muhammad Fahad Raza
- College of Bee ScienceFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Muhammad Qasim
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Mubasher Hussain
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Songkun Su
- College of Bee ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
22
|
Fei D, Guo Y, Fan Q, Wang H, Wu J, Li M, Ma M. Phylogenetic and recombination analyses of two deformed wing virus strains from different honeybee species in China. PeerJ 2019; 7:e7214. [PMID: 31293837 PMCID: PMC6601602 DOI: 10.7717/peerj.7214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background Deformed wing virus (DWV) is one of many viruses that infect honeybees and has been extensively studied because of its close association with honeybee colony collapse that is induced by Varroa destructor. However, virus genotypes, sequence characteristics, and genetic variations of DWV remain unknown in China. Methods Two DWV strains were isolated from Jinzhou and Qinhuangdao cities in China, and were named China1-2017 (accession number: MF770715) and China2-2018 (accession number: MH165180), respectively, and their complete genome sequences were analyzed. To investigate the phylogenetic relationships of the DWV isolates, a phylogenetic tree of the complete open reading frame (ORF), structural protein VP1, and non-structural protein 3C+RdRp of the DWV sequences was constructed using the MEGA 5.0 software program. Then, the similarity and recombinant events of the DWV isolated strains were analyzed using recombination detection program (RDP4) software and genetic algorithm for recombination detection (GARD). Results The complete genomic analysis showed that the genomes of the China1-2017 and China2-2018 DWV strains consisted of 10,141 base pairs (bp) and 10,105 bp, respectively, and contained a single, large ORF (China1-2017: 1,146–9,827 bp; China2-2018: 1,351–9,816 bp) that encoded 2,894 amino acids. The sequences were compared with 20 previously reported DWV sequences from different countries and with sequences of two closely related viruses, Kakugo virus (KV) and V. destructor virus-1. Multiple sequence comparisons revealed a nucleotide identity of 84.3–96.7%, and identity of 94.7–98.6% in amino acids between the two isolate strains and 20 reference strains. The two novel isolates showed 96.7% nucleotide identity and 98.1% amino acid identity. The phylogenetic analyses showed that the two isolates belonged to DWV Type A and were closely related to the KV-2001 strain from Japan. Based on the RDP4 and GARD analyses, the recombination of the China2-2018 strain was located at the 4,266–7,507 nt region, with Korea I-2012 as an infer unknown parent and China-2017 as a minor parent, which spanned the entire helicase ORF. To the best of our knowledge, this is the first study to the complete sequence of DWV isolated from Apis cerana and the possible DWV recombination events in China. Our findings are important for further research of the phylogenetic relationship of DWVs in China with DWV strains from other countries and also contribute to the understanding of virological properties of these complex DWV recombinants.
Collapse
Affiliation(s)
- Dongliang Fei
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China.,College of Veterinary Medicine, Northeast Agricultural University, Haerbin, Heilongjiang, China
| | - Yaxi Guo
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qiong Fan
- Jinzhou Animal Disease Prevention and Control Center, Jinzhou, Liaoning, China
| | - Haoqi Wang
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jiadi Wu
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ming Li
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Mingxiao Ma
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
23
|
Wu P, Yu H, Xu J, Wu J, Getachew A, Tu Y, Guo Z, Jin H, Xu S. Purification of Chinese Sacbrood Virus (CSBV), Gene Cloning and Prokaryotic Expression of its Structural Protein VP1. Mol Biotechnol 2018; 60:901-911. [DOI: 10.1007/s12033-018-0121-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Sun L, Li M, Fei D, Diao Q, Wang J, Li L, Ma M. Preparation and Application of Egg Yolk Antibodies Against Chinese Sacbrood Virus Infection. Front Microbiol 2018; 9:1814. [PMID: 30123212 PMCID: PMC6085425 DOI: 10.3389/fmicb.2018.01814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/19/2018] [Indexed: 01/18/2023] Open
Abstract
Chinese sacbrood virus (CSBV) infects Apis cerana larvae, resulting in the inability of the larvae to pupate and their consequent death, which may pose a serious threat to entire colonies. As there is no effective medical treatment for CSBV infections, further studies are necessary. In this study, an effective treatment for CSBV is described, based on a specific immunoglobulin Y (IgY) from egg yolk against CSBV. The inactivated vaccine was produced by ultracentrifugation and formalin treatment, using CSBV purified from a natural outbreak. The specific IgY was produced by immunization of white leghorn hens with the vaccine. An enzyme-linked immunosorbent assay using purified CSBV as the coating antigen revealed that the anti-CSBV IgY titer began increasing in the egg yolk on the 14th day post-immunization, reaching a peak on day 42, and anti-CSBV IgY remained at a high level until day 91. IgY isolated from the combinations of egg yolk collected between days 42-91 was purified by PEG and ammonium sulfate precipitation. In three repeated protection experiments using A. cerana larvae inoculated with CSBV, the survival rate of larvae was more than 80%, and the titer of anti-CSBV IgY was more than 25 and 24 when the larvae were fed IgY 24 h after and before inoculation with CSBV, respectively. Therefore, 400 colonies infected with CSBV were treated by feeding sugar containing IgY solutions with an antibody titer of 25, and the cure rate was 95-100%. Three hundred susceptible colonies were protected by feeding the larvae with sugar containing IgY solutions with an antibody titer of 24, and the protection rate was 97%. The results clearly suggest that a specific IgY was obtained from hens immunized with an inactivated-CSBV vaccine; this may be a novel method for controlling CSBV infection.
Collapse
Affiliation(s)
- Li Sun
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Ming Li
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Dongliang Fei
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Qingyun Diao
- Honeybee Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Wang
- Tianjin Speerise Challenge Biotechnology Co., Ltd., Tianjin, China
| | - Liqin Li
- Tianjin Speerise Challenge Biotechnology Co., Ltd., Tianjin, China
| | - Mingxiao Ma
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
25
|
Sanna L, Marchesi I, Melone MAB, Bagella L. The role of enhancer of zeste homolog 2: From viral epigenetics to the carcinogenesis of hepatocellular carcinoma. J Cell Physiol 2018; 233:6508-6517. [PMID: 29574790 DOI: 10.1002/jcp.26545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
Nowadays, epigenetics covers a crucial role in different fields of science. The enhancer of zeste homolog 2 (EZH2), the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2), is a big proponent of how epigenetic changes can affect the initiation and progression of several diseases. Through its catalytic activity, responsible for the tri-methylation of lysine 27 of the histone H3 (H3K27me3), EZH2 is a good target for both diagnosis and therapy of different pathologies. A large number of studies have demonstrated its crucial role in cancer initiation and progression. Nevertheless, only recently its function in virus diseases has been uncovered; therefore, EZH2 can be an important promoter of viral carcinogenesis. This review explores the role of EZH2 in viral epigenetics based on recent progress that demonstrated the role of this protein in virus environment. In particular, the review focuses on EZH2 behavior in Hepatitis B Virus, analyzing its role in the rise of Hepatocellular Carcinoma.
Collapse
Affiliation(s)
- Luca Sanna
- Department of Biomedical Science, and National Institute of Biostructures and Biosystems, University of Sassari, Sassari, Italy
| | - Irene Marchesi
- Department of Biomedical Science, and National Institute of Biostructures and Biosystems, University of Sassari, Sassari, Italy
| | - Mariarosa A B Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences and Aging, Second Division of Neurology, Center for Rare Neurological e Neuromuscular Diseases and Interuniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Luigi Bagella
- Department of Biomedical Science, and National Institute of Biostructures and Biosystems, University of Sassari, Sassari, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Fei D, Wei D, Yu X, Yue J, Li M, Sun L, Jiang L, Li Y, Diao Q, Ma M. Screening of binding proteins that interact with Chinese sacbrood virus VP3 capsid protein in Apis cerana larvae cDNA library by the yeast two-hybrid method. Virus Res 2018; 248:24-30. [PMID: 29452163 DOI: 10.1016/j.virusres.2018.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 10/18/2022]
Abstract
Chinese sacbrood virus (CSBV) causes larval death and apiary collapse of Apis cerana. VP3 is a capsid protein of CSBV but its function is poorly understood. To determine the function of VP3 and screen for novel binding proteins that interact with VP3, we conducted yeast two-hybrid screening, glutathione S-transferase pull-down, and co-immunoprecipitation assays. Galectin (GAL) is a protein involved in immune regulation and host-pathogen interactions. The yeast two-hybrid screen implicated GAL as a major VP3-binding candidate. The assays showed that the VP3 interacted with GAL. Identification of these cellular targets and clarifying their contributions to the host-pathogen interaction may be useful for the development of novel therapeutic and prevention strategies against CSBV infection.
Collapse
Affiliation(s)
- Dongliang Fei
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China; College of Veterinary Medicine, Northeast Agricultural University, No. 59, Xiangfang the public Hamaji timber Street, Harbin, Heilongjiang Province, 150030, China
| | - Dong Wei
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Xiaolei Yu
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Jinjin Yue
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Ming Li
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Li Sun
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Lili Jiang
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, No. 59, Xiangfang the public Hamaji timber Street, Harbin, Heilongjiang Province, 150030, China
| | - Qingyun Diao
- Honeybee Research Institute, Chinese Academy of Agricultural Sciences, Xiangshan, Beijing 100093, China
| | - Mingxiao Ma
- Institute of Life Sciences, Jinzhou Medical University, No. 40, Section 3 Songpo Road, Jinzhou, Liaoning Province, 121001, China.
| |
Collapse
|
27
|
Sun L, Li M, Fei D, Hu Y, Ma M. Chinese sacbrood virus infection in Apis mellifera , Shandong, China, 2016. Virus Res 2017; 242:96-99. [DOI: 10.1016/j.virusres.2017.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 11/24/2022]
|