1
|
Hara T, Nakahara K, Broeckhoven K, Desmet G. Investigation and optimization of the extra-column band broadening in micro-flow capillary liquid chromatography. J Chromatogr A 2025; 1748:465805. [PMID: 40054400 DOI: 10.1016/j.chroma.2025.465805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/30/2025]
Abstract
We report on the examination of extra-column band broadening (ECBB) effects as they can be observed when using commercially available HPLC products for micro-LC, with the aim of proposing some general rules for a rational design of the instrument set-up. For this purpose, we systematically assessed the ECBB contribution of the different LC instrument parts under fixed isocratic measurement conditions, using coumarin compounds with a retention factor (k) of respectively ∼1.2 and ∼2.6 at a flow rate (F) of 2.0 μL/min and a commercial LC column with an inner diameter (i.d.) of 0.2 mm. To avoid that the measurement itself would affect the ECBB, detection was carried out using an on-capillary LED induced fluorescence detector. With this approach, the ECBB effect of (1) the flow-channel tubing i.d., (2) the tubing union, (3) the connection fitting, and (4) the injection valve was quantified in terms of its volumetric peak variance. Results show that the ECBB of a standard instrument set-up can be reduced with hundreds of nL2 per optimised extra-column instrument part. For instance, the use of the commercially available tubing with unified ferrule-nut structure, which has become very popular because of its user- friendliness, causes an additional peak variance (Δσv2) of ∼300 nL2 compared to that of carefully manually-prepared tubing connections (with the same 20-25 μm i.d.) using conventional ferrules, nuts, and sleeves. To emphasize the importance of a proper ECBB control in practical LC analysis, we also investigated the impact of the post-column tubing i.d. for the gradient separation of peptides (cytochrome c digest). The ECBB effect of the post-column tubing i.d. was found to be larger than in the isocratic, small molecule case, because the combination of the well-compressed peaks in the LC column and the stronger ECBB effects caused by the slower diffusivity (Dm) of peptides compared to that of small-sized molecules (σv2 ∝ 1/Dm) makes such separations very vulnerable to ECBB performance losses.
Collapse
Affiliation(s)
- Takeshi Hara
- LC Business Unit of Life Science Business Department, Analytical & Measuring Instruments Division, Shimadzu Corporation, 1, Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Ko Nakahara
- LC Business Unit of Life Science Business Department, Analytical & Measuring Instruments Division, Shimadzu Corporation, 1, Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Ken Broeckhoven
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Gert Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
2
|
Dolkar P, Sharma M, Modeel S, Yadav S, Siwach S, Bharti M, Yadav P, Lata P, Negi T, Negi RK. Challenges and effective tracking down strategies of antibiotic contamination in aquatic ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55935-55957. [PMID: 39254807 DOI: 10.1007/s11356-024-34806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
A growing environmental concern revolves around the widespread use of medicines, particularly antibiotics, which adversely impact water quality and various life forms. The unregulated production and utilization of antibiotics not only affect non-targeted organisms but also exert significant evolutionary pressures, leading to the rapid development of antimicrobial resistance (AMR) in bacterial communities. To address this issue, global studies have been conducted to assess the prevalence and quantities of antibiotics in various environmental components including freshwater, ocean, local sewage, and fish. These studies aim to establish effective analytical methods for identifying and measuring antibiotic residues in environmental matrices that might enable authorities to establish norms for the containment and disposal of antibiotics. This article offers a comprehensive overview of methods used to extract antibiotics from environmental matrices exploring purification techniques such as liquid-liquid extraction, solid-phase extraction, green extraction techniques, and concentration methods like lyophilization and rotary evaporation. It further highlights qualitative and quantitative analysis methods, high-performance liquid chromatography, ultra-high-performance liquid chromatography, and liquid chromatography-tandem along with analytical methods such as UV-Vis and tandem mass spectrometry for detecting and measuring antibiotics. Urgency is underscored for proactive strategies to curb antibiotic contamination, safeguarding the integrity of aquatic ecosystems and public health on a global scale.
Collapse
Affiliation(s)
- Padma Dolkar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
- Present Address: Gargi College, University of Delhi, Delhi, 110049, India
| | - Sonakshi Modeel
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sneha Siwach
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Meghali Bharti
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pushp Lata
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana, 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
3
|
Greguš M, Ivanov AR, Wilson SR. Ultralow flow liquid chromatography and related approaches: A focus on recent bioanalytical applications. J Sep Sci 2023; 46:e2300440. [PMID: 37528733 PMCID: PMC11087205 DOI: 10.1002/jssc.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Ultralow flow LC employs ultra-narrow bore columns and mid-range pL/min to low nL/min flow rates (i.e., ≤20 nL/min). The separation columns that are used under these conditions are typically 2-30 μm in inner diameter. Ultralow flow LC systems allow for exceptionally high sensitivity and frequently high resolution. There has been an increasing interest in the analysis of scarce biological samples, for example, circulating tumor cells, extracellular vesicles, organelles, and single cells, and ultralow flow LC was efficiently applied to such samples. Hence, advances towards dedicated ultralow flow LC instrumentation, technical approaches, and higher throughput (e.g., tens-to-hundreds of single cells analyzed per day) were recently made. Here, we review the types of ultralow flow LC technology, followed by a discussion of selected representative ultralow flow LC applications, focusing on the progress made in bioanalysis of amount-limited samples during the last 10 years. We also discuss several recently reported high-sensitivity applications utilizing flow rates up to 100 nL/min, which are below commonly used nanoLC flow rates. Finally, we discuss the path forward for future developments of ultralow flow LC.
Collapse
Affiliation(s)
- Michal Greguš
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts, USA
| | - Alexander R. Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts, USA
| | - Steven Ray Wilson
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Hadavi D, Tosheva I, Siegel TP, Cuypers E, Honing M. Technological advances for analyzing the content of organ-on-a-chip by mass spectrometry. Front Bioeng Biotechnol 2023; 11:1197760. [PMID: 37284240 PMCID: PMC10239923 DOI: 10.3389/fbioe.2023.1197760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Three-dimensional (3D) cell cultures, including organ-on-a-chip (OOC) devices, offer the possibility to mimic human physiology conditions better than 2D models. The organ-on-a-chip devices have a wide range of applications, including mechanical studies, functional validation, and toxicology investigations. Despite many advances in this field, the major challenge with the use of organ-on-a-chips relies on the lack of online analysis methods preventing the real-time observation of cultured cells. Mass spectrometry is a promising analytical technique for real-time analysis of cell excretes from organ-on-a-chip models. This is due to its high sensitivity, selectivity, and ability to tentatively identify a large variety of unknown compounds, ranging from metabolites, lipids, and peptides to proteins. However, the hyphenation of organ-on-a-chip with MS is largely hampered by the nature of the media used, and the presence of nonvolatile buffers. This in turn stalls the straightforward and online connection of organ-on-a-chip outlet to MS. To overcome this challenge, multiple advances have been made to pre-treat samples right after organ-on-a-chip and just before MS. In this review, we summarised these technological advances and exhaustively evaluated their benefits and shortcomings for successful hyphenation of organ-on-a-chip with MS.
Collapse
|
5
|
Gregus M, Zimmerman A, Marie AL, Johnson KR, Ivanov AR. Development of Highly Sensitive LC–MS and CE–MS Methods for In-Depth Proteomic and Glycomic Profiling of Limited Biological Samples. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.ag4186o5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
nformative and deep proteomic and glycomic characterization of limited availability biological and medical samples has been a significant challenge. Here, we describe our current and recent efforts in advancing sample preparation as well as miniaturized electric field- and pressure-driven separation approaches interfaced with high-end mass spectrometry (MS) to enhance the sensitivity and depth of proteomic and glycomic profiling of several types of limited biological and clinically relevant samples.
Collapse
|
6
|
Peak broadening caused by using different micro-liquid chromatography detectors. Anal Bioanal Chem 2022; 414:6107-6114. [PMID: 35705858 DOI: 10.1007/s00216-022-04170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/01/2022]
Abstract
Advancements in column technology resulted in smaller particles and more efficient phases. In parallel, the use of columns with reduced dimensions is becoming more common. This means the effective column volume is also decreased, thereby making the systems more susceptible to effects of band broadening due to extra-column volume. Despite these trends and the fact that a growing number of miniaturized liquid chromatography systems are being offered commercially, manufacturers often stick to the modular concept with dedicated units for pumps, column oven, and detectors. This modular design results in long connection capillaries, which leads to extra-column band broadening and consequently prevents the exploitation of the intrinsic efficiency of state-of-the-art columns. In particular, band broadening post column has a considerable negative effect on efficiency. In this study, mass flow and concentration-dependent detectors were examined for their influence on band broadening using a micro-LC system. A mass spectrometric detector, an evaporative light scattering detector, two UV detectors, and a previously undescribed fluorescence detector were compared. The influence on efficiency is compared using plate height vs linear velocity data and peak variance. It is shown that an increase in the inner diameter after the post-column transfer capillary leads to significant loss in plate height. Comparing the UV detectors, it could be shown that the dispersion was reduced by 38% by the reduction of the post-column volume. The largest variance was found for the evaporative light scattering detector, which was 368% higher compared to the variance of the detector with the least effect on band broadening.
Collapse
|
7
|
Parkitny L, Carter CS, Peckins MK, Hon DA, Saturn S, Nazarloo H, Hurlbut W, Knutson B, Crane S, Harris X, Younger J. Longitudinal tracking of human plasma oxytocin suggests complex responses to moral elevation. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 9:100105. [PMID: 35755919 PMCID: PMC9216598 DOI: 10.1016/j.cpnec.2021.100105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/04/2022] Open
Abstract
Positive social experiences may induce oxytocin release. However, previous studies of moral elevation have generally utilized cross-sectional and simple modeling approaches to establish the relationship between oxytocin and emotional stimuli. Utilizing a cohort of 30 non-lactating women (aged 23.6 ± 5.7 years), we tested whether exposure to a video identified as capable of eliciting moral elevation could change plasma oxytocin levels. Uniquely, we utilized a high-frequency longitudinal sampling approach and multilevel growth curve modeling with landmark registration to test physiological responses. The moral elevation stimulus, versus a control video, elicited significantly greater reports of being “touched/inspired” and “happy/joyful”. However, the measured plasma oxytocin response was found to be markedly heterogeneous. While the moral elevation stimulus elicited increased plasma oxytocin as expected, this increase was only modestly larger than that seen following the control video. This increase was also only present in some individuals. We found no relationship between plasma oxytocin and self-report responses to the stimulus. From these data, we argue that future studies of the relationship between oxytocin and emotion need to anticipate heterogeneous responses and thus incorporate comprehensive individual psychological data; these should include evidence-based variables known to be associated with oxytocin such as a history of trauma, and the individual’s psychological and emotional state at the time of testing. Given the complexity of physiological oxytocin release, such studies also need to incorporate frequent biological sampling to properly examine the dynamics of hormonal release and response. A moral elevation stimulus elicits positive emotional responses The human oxytocin responses to a morel elevation stimulus are more heterogenous than previously reported Future studies need to utilize longitudinal hormone measurements and comprehensive psychological assessments
Collapse
|
8
|
Røberg-Larsen H, Lundanes E, Nyman TA, Berven FS, Wilson SR. Liquid chromatography, a key tool for the advancement of single-cell omics analysis. Anal Chim Acta 2021; 1178:338551. [PMID: 34482862 DOI: 10.1016/j.aca.2021.338551] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/28/2022]
Abstract
Single-cell analysis can allow for an in-depth understanding of diseases, diagnostics, and aid the development of therapeutics. However, single-cell analysis is challenging, as samples are both extremely limited in size and complex. But the concept is gaining promise, much due to novel sample preparation approaches and the ever-improving field of mass spectrometry. The mass spectrometer's output is often linked to the preceding compound separation step, typically being liquid chromatography (LC). In this review, we focus on LC's role in single-cell omics. Particle-packed nano LC columns (typically 50-100 μm inner diameter) have traditionally been the tool of choice for limited samples, and are also used for single cells. Several commercial products and systems are emerging with single cells in mind, featuring particle-packed columns or miniaturized pillar array systems. In addition, columns with inner diameters as narrow as 2 μm are being explored to maximize sensitivity. Hence, LC column down-scaling is a key focus in single-cell analysis. But narrow columns are associated with considerable technical challenges, while single cell analysis may be expected to become a "routine" service, requiring higher degrees of robustness and throughput. These challenges and expectations will increase the need and attention for the development (and even the reinvention) of alternative nano LC column formats. Therefore, monolith columns and even open tubular columns may finally find their "killer-application" in single cell analysis.
Collapse
Affiliation(s)
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Norway
| | - Frode S Berven
- Department of Biomedicine, Proteomics Unit, University of Bergen, Bergen, Norway
| | - Steven Ray Wilson
- Department of Chemistry, University of Oslo, Oslo, Norway; Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
9
|
Thakur A, Tan Z, Kameyama T, El-Khateeb E, Nagpal S, Malone S, Jamwal R, Nwabufo CK. Bioanalytical strategies in drug discovery and development. Drug Metab Rev 2021; 53:434-458. [PMID: 34310243 DOI: 10.1080/03602532.2021.1959606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A reliable, rapid, and effective bioanalytical method is essential for the determination of the pharmacokinetic, pharmacodynamic, and toxicokinetic parameters that inform the safety and efficacy profile of investigational drugs. The overall goal of bioanalytical method development is to elucidate the procedure and operating conditions under which a method can sufficiently extract, qualify, and/or quantify the analyte(s) of interest and/or their metabolites for the intended purpose. Given the difference in the physicochemical properties of small and large molecule drugs, different strategies need to be adopted for the development of an effective and efficient bioanalytical method. Herein, we provide an overview of different sample preparation strategies, analytical platforms, as well as procedures for achieving high throughput for bioanalysis of small and large molecule drugs.
Collapse
Affiliation(s)
- Aarzoo Thakur
- Innovations in Food and Chemical Safety, Agency for Science, Technology, and Research, Singapore, Singapore.,Skin Research Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Zhiyuan Tan
- Department of Early Clinical Development, dMed-Clinipace, Shanghai, China
| | - Tsubasa Kameyama
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Eman El-Khateeb
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.,Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Shakti Nagpal
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | | | - Rohitash Jamwal
- College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | | |
Collapse
|
10
|
Fedorenko D, Bartkevics V. Recent Applications of Nano-Liquid Chromatography in Food Safety and Environmental Monitoring: A Review. Crit Rev Anal Chem 2021; 53:98-122. [PMID: 34392753 DOI: 10.1080/10408347.2021.1938968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, a trend toward instrument miniaturization has led to the development of new and sophisticated analytical systems, such as nano-liquid chromatography (nano-LC), which has enabled improvements of sensitivity, as well as chromatographic resolution. The growing interest in nano-LC methodology has resulted in a variety of innovative and promising applications. In this article, we review the applications of nano-LC separation methods coupled with mass spectrometry in the analysis of food and environmental samples. An assessment of sample preparation methods and analytical performance are provided, along with comparison to other, more established analytical techniques. Three main groups of compounds that are crucial for food safety assessment are considered in this review: pharmaceuticals (including antibiotics), pesticides, and mycotoxins. Recent practical applications of the nano-LC method in the determination of these compounds are discussed. Furthermore, we also focus on methods for the determination of various environmental contaminants using nano-LC methods. Future perspectives for the development of nano-LC methods are discussed.
Collapse
Affiliation(s)
- Deniss Fedorenko
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia.,University of Latvia, Faculty of Chemistry, Riga, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia.,University of Latvia, Faculty of Chemistry, Riga, Latvia
| |
Collapse
|
11
|
Roberg-Larsen H, Wilson SR, Lundanes E. Recent advances in on-line upfront devices for sensitive bioanalytical nano LC methods. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Vargas Medina DA, Pereira Dos Santos NG, da Silva Burato JS, Borsatto JVB, Lanças FM. An overview of open tubular liquid chromatography with a focus on the coupling with mass spectrometry for the analysis of small molecules. J Chromatogr A 2021; 1641:461989. [PMID: 33611115 DOI: 10.1016/j.chroma.2021.461989] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023]
Abstract
Open tubular liquid chromatography (OT-LC) can provide superior chromatographic performance and more favorable mass spectrometry (MS) detection conditions. These features could provide enhanced sensitivity when coupled with electrospray ionization sources (ESI-) and lead to unprecedented detection capabilities if interfaced with a highly structural informative electron ionization (EI) source. In the past, the exploitation of OT columns in liquid chromatography evolved slowly. However, the recent instrumental developments in capillary/nanoLC-MS created new opportunities in developing and applying OT-LC-MS. Currently, the analytical advantages of OT-LC-MS are mainly exploited in the fields of proteomics and biosciences analysis. Nevertheless, under the right conditions, OT-LC-MS can also offer superior chromatographic performance and enhanced sensitivity in analyzing small molecules. This review will provide an overview of the latest developments in OT-LC-MS, focusing on the wide variety of employed separation mechanisms, innovative stationary phases, emerging column fabrication technologies, and new OT formats. In the same way, the OT-LC's opportunities and shortcomings coupled to both ESI and EI will be discussed, highlighting the complementary character of those two ionization modes to expand the LC's detection boundaries in the performance of targeted and untargeted studies.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Mauro Lanças
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil.
| |
Collapse
|
13
|
Greguš M, Kostas JC, Ray S, Abbatiello SE, Ivanov AR. Improved Sensitivity of Ultralow Flow LC-MS-Based Proteomic Profiling of Limited Samples Using Monolithic Capillary Columns and FAIMS Technology. Anal Chem 2020; 92:14702-14712. [PMID: 33054160 DOI: 10.1021/acs.analchem.0c03262] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this work, we pioneered a combination of ultralow flow (ULF) high-efficiency ultranarrow bore monolithic LC columns coupled to MS via a high-field asymmetric waveform ion mobility spectrometry (FAIMS) interface to evaluate the potential applicability for high sensitivity, robust, and reproducible proteomic profiling of low nanogram-level complex biological samples. As a result, ULF LC-FAIMS-MS brought unprecedented sensitivity levels and high reproducibility in bottom-up proteomic profiling. In addition, FAIMS improved the dynamic range, signal-to-noise ratios, and detection limits in ULF LC-MS-based measurements by significantly reducing chemical noise in comparison to the conventional nanoESI interface used with the same ULF LC-MS setup. Two, three, or four compensation voltages separated by at least 15 V were tested within a single LC-MS run using the FAIMS interface. The optimized ULF LC-ESI-FAIMS-MS/MS conditions resulted in identification of 2,348 ± 42 protein groups, 10,062 ± 285 peptide groups, and 15,734 ± 350 peptide-spectrum matches for 1 ng of a HeLa digest, using a 1 h gradient at the flow rate of 12 nL/min, which represents an increase by 38%, 91%, and 131% in respective identifications, as compared to the control experiment (without FAIMS). To evaluate the practical utility of the ULF LC-ESI-FAIMS-MS platform in proteomic profiling of limited samples, approximately 100, 1,000, and 10,000 U937 myeloid leukemia cells were processed, and a one-tenth of each sample was analyzed. Using the optimized conditions, we were able to reliably identify 251 ± 54, 1,135 ± 80, and 2,234 ± 25 protein groups from injected aliquots corresponding to ∼10, 100, and 1,000 processed cells.
Collapse
Affiliation(s)
- Michal Greguš
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - James C Kostas
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - Somak Ray
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - Susan E Abbatiello
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| |
Collapse
|
14
|
Wang W, Zhu N, Yan T, Shi YN, Chen J, Zhang CJ, Xie XJ, Liao DF, Qin L. The crosstalk: exosomes and lipid metabolism. Cell Commun Signal 2020; 18:119. [PMID: 32746850 PMCID: PMC7398059 DOI: 10.1186/s12964-020-00581-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
Exosomes have been considered as novel and potent vehicles of intercellular communication, instead of "cell dust". Exosomes are consistent with anucleate cells, and organelles with lipid bilayer consisting of the proteins and abundant lipid, enhancing their "rigidity" and "flexibility". Neighboring cells or distant cells are capable of exchanging genetic or metabolic information via exosomes binding to recipient cell and releasing bioactive molecules, such as lipids, proteins, and nucleic acids. Of note, exosomes exert the remarkable effects on lipid metabolism, including the synthesis, transportation and degradation of the lipid. The disorder of lipid metabolism mediated by exosomes leads to the occurrence and progression of diseases, such as atherosclerosis, cancer, non-alcoholic fatty liver disease (NAFLD), obesity and Alzheimer's diseases and so on. More importantly, lipid metabolism can also affect the production and secretion of exosomes, as well as interactions with the recipient cells. Therefore, exosomes may be applied as effective targets for diagnosis and treatment of diseases. Video abstract.
Collapse
Affiliation(s)
- Wei Wang
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Neng Zhu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tao Yan
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya-Ning Shi
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Chen
- Department of Neurosurgery in Changsha, 921 hospital, joint service support force of People's Liberation Army, Changsha, China
| | - Chan-Juan Zhang
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xue-Jiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duan-Fang Liao
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China. .,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Li Qin
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China. .,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
15
|
Miniaturized liquid chromatography focusing on analytical columns and mass spectrometry: A review. Anal Chim Acta 2020; 1103:11-31. [DOI: 10.1016/j.aca.2019.12.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
|
16
|
Mejía-Carmona K, Soares da Silva Burato J, Borsatto JVB, de Toffoli AL, Lanças FM. Miniaturization of liquid chromatography coupled to mass spectrometry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115735] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Lin A, Sved Skottvoll F, Rayner S, Pedersen-Bjergaard S, Sullivan G, Krauss S, Ray Wilson S, Harrison S. 3D cell culture models and organ-on-a-chip: Meet separation science and mass spectrometry. Electrophoresis 2019; 41:56-64. [PMID: 31544246 DOI: 10.1002/elps.201900170] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022]
Abstract
In vitro derived simplified 3D representations of human organs or organ functionalities are predicted to play a major role in disease modeling, drug development, and personalized medicine, as they complement traditional cell line approaches and animal models. The cells for 3D organ representations may be derived from primary tissues, embryonic stem cells or induced pluripotent stem cells and come in a variety of formats from aggregates of individual or mixed cell types, self-organizing in vitro developed "organoids" and tissue mimicking chips. Microfluidic devices that allow long-term maintenance and combination with other tissues, cells or organoids are commonly referred to as "microphysiological" or "organ-on-a-chip" systems. Organ-on-a-chip technology allows a broad range of "on-chip" and "off-chip" analytical techniques, whereby "on-chip" techniques offer the possibility of real time tracking and analysis. In the rapidly expanding tool kit for real time analytical assays, mass spectrometry, combined with "on-chip" electrophoresis, and other separation approaches offer attractive emerging tools. In this review, we provide an overview of current 3D cell culture models, a compendium of current analytical strategies, and we make a case for new approaches for integrating separation science and mass spectrometry in this rapidly expanding research field.
Collapse
Affiliation(s)
- Ann Lin
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Genetics, Stanford University, CA, USA
| | - Frøydis Sved Skottvoll
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Chemistry, University of Oslo, Oslo, Norway
| | - Simon Rayner
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Gareth Sullivan
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.,Norwegian Center for Stem Cell Research, University of Oslo, Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Institute of Immunology, Oslo University Hospital, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Stefan Krauss
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.,Unit for Cell Signaling, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Steven Ray Wilson
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Chemistry, University of Oslo, Oslo, Norway
| | - Sean Harrison
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Solheim S, Hutchinson SA, Lundanes E, Wilson SR, Thorne JL, Roberg-Larsen H. Fast liquid chromatography-mass spectrometry reveals side chain oxysterol heterogeneity in breast cancer tumour samples. J Steroid Biochem Mol Biol 2019; 192:105309. [PMID: 30779932 DOI: 10.1016/j.jsbmb.2019.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/26/2019] [Accepted: 02/12/2019] [Indexed: 01/07/2023]
Abstract
Oxysterols can contribute to proliferation of breast cancer through activation of the Estrogen Receptors, and to metastasis through activation of the Liver X Receptors. Endogenous levels of both esterified and free sidechain-hydroxylated oxysterols were examined in breast cancer tumours from Estrogen Receptor positive and negative breast tumours, using a novel fast liquid chromatography tandem mass spectrometry method. Multiple aliquots of five milligram samples of 22 tumours were analysed for oxysterol content to assess intra- and inter-tumour variation. Derivatization was performed with Girard T reagent (with and without alkaline hydrolysis) and sample clean-up was performed using a robust automatic on-line column switching system ("AFFL"). Oxysterols were separated isocratically on a 2.1 mm inner diameter column packed with ACE SuperPhenylHexyl core shell particles using a mobile phase consisting of 0.1% formic acid in H2O/methanol/acetonitrile (57/10/33, v/v/v) followed by a wash out step (0.1% formic acid in methanol/acetonitrile, 50/50, v/v). The total analysis time, including sample clean-up and column reconditioning, was 8 min (80% time reduction compared to other on-line systems). Analysis revealed large intra-tumour variations of sidechain oxysterols, resulting in no significant differences in endogenous oxysterols levels between Estrogen Receptor positive and Estrogen Receptor negative breast cancers. However, a correlation between esterified and free 27-hydroxycholesterol was observed. The same correlation was not observed for 24S-hydroxycholesterol or 25-hydroxycholesterol. The oxysterol heterogeneity of tumour tissue is a critical factor when assessing the role of these lipids in cancer.
Collapse
Affiliation(s)
| | | | | | | | - James L Thorne
- School of Food Science and Nutrition, University of Leeds, United Kingdom.
| | | |
Collapse
|
19
|
Ahmed MA, Felisilda BMB, Quirino JP. Recent advancements in open-tubular liquid chromatography and capillary electrochromatography during 2014-2018. Anal Chim Acta 2019; 1088:20-34. [PMID: 31623713 DOI: 10.1016/j.aca.2019.08.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
Abstract
This review critically discusses the developments on open-tubular liquid chromatography (OT-LC) and open-tubular capillary electrochromatography (OT-CEC) during 2014-2018. An appropriate Scopus search revealed 5 reviews, 4 theoretical papers on open-tubular format chromatography, 29 OT-LC articles, 68 OT-CEC articles and 4 OT-LC/OT-CEC articles, indicating a sustained interest in these areas. The open-tubular format typically uses a capillary column with inner walls that are coated with an ample layer or coating of solid stationary phase material. The ratio between the capillary internal diameter and coating thickness (CID/CT) is ideally ≤ 100 for appropriate chromatographic retention. We, therefore, approximated the CID/CT ratios and found that 22 OT-LC papers have CID/CT ratios ≤100. The other 7 OT-LC papers have CID/CT ratio >100 but have clearly demonstrated chromatographic retention. These 29 papers utilised reversed phase or ion exchange mechanisms using known or innovative solid stationary phase materials (e.g. metal organic frameworks), stationary pseudophases from ionic surfactants or porous supports. On the other hand, we found that 68 OT-CEC papers, 7 OT-LC papers and 4 OT-LC & OT-CEC papers have CID/CT ratios >100. Notably, 44 papers (42 OT-CEC and 2 OT-LC & OT-CEC) did not report the retention factor and/or effective electrophoretic mobility of analytes. Considering all covered papers, the most popular activity was on the development of new chromatographic materials as coatings. However, we encourage OT-CEC researchers to not only characterise changes in the electroosmotic flow but also verify the interaction of the analytes with the coating. In addition, the articles reported were largely driven by stationary phase or support development and not by practical applications.
Collapse
Affiliation(s)
- Mohamed Adel Ahmed
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia
| | - Bren Mark B Felisilda
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia.
| |
Collapse
|
20
|
Tarongoy F, Haddad PR, Quirino JP. Admicelles in open-tube capillaries for chromatography and electrochromatography. Anal Chim Acta 2019; 1067:147-154. [PMID: 31047146 DOI: 10.1016/j.aca.2019.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 12/15/2022]
Abstract
Surfactant bilayers or admicelles at the solid surface-liquid interface inside 50-200 μm inner diameter (i.d.) open-tube fused-silica capillaries were developed as 'soft' stationary pseudophases for the liquid chromatographic (LC) separations of neutral and charged analytes. Admicelles were formed in-situ from buffered aqueous mobile phases with cetytrimethylammonium bromide at concentrations between the critical surface aggregation concentration and critical micelle concentration, which were determined by electroosmotic flow measurements using capillary electrophoresis. There were no micelles in the mobile phase solution. Also, there was no solid phase that is classically required in LC. Pressure and voltage driven modes or open-tubular admicellar liquid chromatography (OT-AMLC) and electrochromatography, respectively were proposed based on the separation of neutral analytes. The parameters (i.e., pH, concentration of surfactant, salt, and methanol in the mobile phase and capillary i.d.) that affected the surprising chromatographic effect of admicelles at the interface were investigated. The analytical performance of OT-AMLC for small molecules were found acceptable. Applications to environmental water and biological (HepG cell line metabolism media) samples analysis with appropriate sample preparation procedures were also conducted. The use of pseudophases at the solid surface-liquid interface could be a viable solution to problems associated with the use of solid stationary or support materials in nano- and micro-liquid chromatography and electrochromatography.
Collapse
Affiliation(s)
- Faustino Tarongoy
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Paul Raymond Haddad
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia.
| |
Collapse
|
21
|
Abstract
Nano liquid chromatography (nanoLC), with columns having an inner diameter (ID) of ≤100 μm, can provide enhanced sensitivity and enable analysis of limited samples.
Collapse
Affiliation(s)
- Steven Ray Wilson
- Department of Chemistry
- University of Oslo
- Oslo
- Norway
- Hybrid Technology Hub-Centre of Excellence
| | | | | |
Collapse
|
22
|
Hara T, Izumi Y, Nakao M, Hata K, Baron GV, Bamba T, Desmet G. Silica-based hybrid porous layers to enhance the retention and efficiency of open tubular capillary columns with a 5 μm inner diameter. J Chromatogr A 2018; 1580:63-71. [DOI: 10.1016/j.chroma.2018.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 12/16/2022]
|
23
|
Yuan H, Jiang B, Zhao B, Zhang L, Zhang Y. Recent Advances in Multidimensional Separation for Proteome Analysis. Anal Chem 2018; 91:264-276. [DOI: 10.1021/acs.analchem.8b04894] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huiming Yuan
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Bo Jiang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Baofeng Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yukui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| |
Collapse
|
24
|
Levernæs MCS, Brandtzaeg OK, Amundsen SF, Reubsaet L, Lundanes E, Halvorsen TG, Wilson SR. Selective Fishing for Peptides with Antibody-Immobilized Acrylate Monoliths, Coupled Online with NanoLC-MS. Anal Chem 2018; 90:13860-13866. [DOI: 10.1021/acs.analchem.8b00935] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maren C. S. Levernæs
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo NO-0316, Norway
| | | | - Sunniva Furre Amundsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo NO-0316, Norway
| | - Léon Reubsaet
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo NO-0316, Norway
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Trine G. Halvorsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo NO-0316, Norway
| | - Steven R. Wilson
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| |
Collapse
|
25
|
Rodriguez ES, Lam SC, Haddad PR, Paull B. Reversed-Phase Functionalised Multi-lumen Capillary as Combined Concentrator, Separation Column, and ESI Emitter in Capillary-LC–MS. Chromatographia 2018. [DOI: 10.1007/s10337-018-3629-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Dias IH, Wilson SR, Roberg-Larsen H. Chromatography of oxysterols. Biochimie 2018; 153:3-12. [DOI: 10.1016/j.biochi.2018.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
|
27
|
Exploring the biophysical properties of phytosterols in the plasma membrane for novel cancer prevention strategies. Biochimie 2018; 153:150-161. [PMID: 29730298 DOI: 10.1016/j.biochi.2018.04.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023]
Abstract
Cancer is a global problem with no sign that incidences are reducing. The great costs associated with curing cancer, through developing novel treatments and applying patented therapies, is an increasing burden to developed and developing nations alike. These financial and societal problems will be alleviated by research efforts into prevention, or treatments that utilise off-patent or repurposed agents. Phytosterols are natural components of the diet found in an array of seeds, nuts and vegetables and have been added to several consumer food products for the management of cardio-vascular disease through their ability to lower LDL-cholesterol levels. In this review, we provide a connected view between the fields of structural biophysics and cellular and molecular biology to evaluate the growing evidence that phytosterols impair oncogenic pathways in a range of cancer types. The current state of understanding of how phytosterols alter the biophysical properties of plasma membrane is described, and the potential for phytosterols to be repurposed from cardio-vascular to oncology therapeutics. Through an overview of the types of biophysical and molecular biology experiments that have been performed to date, this review informs the reader of the molecular and biophysical mechanisms through which phytosterols could have anti-cancer properties via their interactions with the plasma cell membrane. We also outline emerging and under-explored areas such as computational modelling, improved biomimetic membranes and ex vivo tissue evaluation. Focus of future research in these areas should improve understanding, not just of phytosterols in cancer cell biology but also to give insights into the interaction between the plasma membrane and the genome. These fields are increasingly providing meaningful biological and clinical data but iterative experiments between molecular biology assays, biosynthetic membrane studies and computational membrane modelling improve and refine our understanding of the role of different sterol components of the plasma membrane.
Collapse
|
28
|
Skjærvø Ø, Brandtzaeg OK, Lausund KB, Pabst O, Martinsen ØG, Lundanes E, Wilson SR. Exploring bioimpendance instrumentation for the characterization of open tubular liquid chromatography columns. J Chromatogr A 2018; 1534:195-200. [DOI: 10.1016/j.chroma.2017.12.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 11/26/2022]
|
29
|
An automated and self-cleaning nano liquid chromatography mass spectrometry platform featuring an open tubular multi-hole crystal fiber solid phase extraction column and an open tubular separation column. J Chromatogr A 2017; 1518:104-110. [DOI: 10.1016/j.chroma.2017.08.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 11/24/2022]
|
30
|
Vehus T. Performing Quantitative Determination of Low-Abundant Proteins by Targeted Mass Spectrometry Liquid Chromatography. Mass Spectrom (Tokyo) 2017. [DOI: 10.5772/intechopen.68713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|