1
|
Kumari M, Sharma D, Kumari A, Eslavath MR, Rai C, Reddy MPK, Ganju L, Varshney R, Meena RC. Urine metabolite profiling in Indian males exposed to high-altitude: a longitudinal pilot study. Sci Rep 2025; 15:16981. [PMID: 40374771 DOI: 10.1038/s41598-025-00312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 04/28/2025] [Indexed: 05/18/2025] Open
Abstract
People who visit high-altitude for research and development work, pilgrimage, recreational purposes and deployments are exposed to different environmental conditions such as low temperature and atmospheric pressure, leading to hypoxia, high radiation, dry air, and non-availability of fresh food and vegetables. These environmental stressors have significant physiological effects on the human body. Among these challenges, hypobaric hypoxia at high-altitude affects aerobic metabolism and thereby reduces the supply of metabolic energy. Metabolic alterations may further lead to extreme environment related maladaptation as evidenced by alterations in the levels of metabolites and metabolic pathways. To investigate the variation in the metabolite profile, urine samples were collected from 16 individuals at baseline (BL, 210 m) and high-altitude (HA, 4200 m). Untargeted urinary metabolic profiling was performed by liquid chromatography-mass spectrometry (LC-MS) in conjunction with statistical analysis. Univariate and multivariate statistical analyses revealed 33 differentially abundant metabolites based on fold change, VIP score and p value. These distinct metabolites were primarily associated with pathways related to phenylalanine, tyrosine and tryptophan biosynthesis; metabolism of phenylalanine, biotin, tyrosine, cysteine and methionine along with alanine, aspartate and glutamate metabolism. Thes pathways are also linked with pentose and glucuronate interconversions, citrate cycle, vitamin B6 and porphyrin metabolism. Furthermore, receiver operating characteristic curve analysis detected five metabolites namely, 2-Tetrahydrothiopheneacetic acid, 1-Benzyl-7,8-dimethoxy-3-phenyl-3H-pyrazolo [3,4-c] isoquinoline, Abietin, 4,4'-Thiobis-2-butanone, and Hydroxyisovaleroyl carnitine with high range of sensitivity and specificity. In summary, this longitudinal study demonstrated novel metabolic variations in humans exposed to high-altitude, utilising the potential of LC-MS based metabolomics. Thus, the present findings shed light on the impact of hypoxic exposure on metabolic adaptation and provide a better understanding about the pathophysiological mechanisms underlying high-altitude illnesses correlated to tissue hypoxia.
Collapse
Affiliation(s)
- Manisha Kumari
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Dolly Sharma
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Anu Kumari
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Mallesh Rao Eslavath
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Chhavi Rai
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Maramreddy Prasanna Kumar Reddy
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Lilly Ganju
- Research and Development, Malwanchal University, Indore, Madhya Pradesh, India
| | - Rajeev Varshney
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ramesh Chand Meena
- Department of Disruptive and Deterrence Technologies, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
2
|
Zhou H, Wan F, Lai X, Yan F, Zhang M, Ni Y, Guo Y, Zhang P, Guo F, Klakong M, Peng G, Guo W, Zeng X, Zhang Z, Pan X, Liu Y, Yang L, Li S, Ding W. Synergistic action and mechanism of scoparone, a key bioactive component of Artemisia capillaris, and spirodiclofen against spider mites. PEST MANAGEMENT SCIENCE 2024; 80:5035-5049. [PMID: 38847112 DOI: 10.1002/ps.8228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Plants have numerous defensive secondary metabolites to withstand insect attacks. Scoparone, which is extracted from the medicinal plant Artemisia capillaris, has potent acaricidal effects on Tetranychus cinnabarinus. Spirodiclofen, derived from a tetronic acid derivative, is a potent commercial acaricide that is extensively used globally. However, whether scoparone has synergistic effects when used in conjunction with spirodiclofen and the underlying synergistic mechanism remains unclear. RESULTS Scoparone exhibited a potent synergistic effect when it was combined with spirodiclofen at a 1:9 ratio. Subsequently, cytochrome P450 monooxygenase (P450) activity, RNA-Seq and qPCR assays indicated that the enzyme activity of P450 and the expression of one P450 gene from T. cinnabarinus, TcCYP388A1, were significantly inhibited by scoparone and spirodiclofen + scoparone; conversely, P450 was activated in spirodiclofen-exposed mites. Importantly, RNAi-mediated silencing of the TcCYP388A1 gene markedly increased the susceptibility of spider mites to spirodiclofen, scoparone and spirodiclofen + scoparone, and in vitro, the recombinant TcCYP388A1 protein could metabolize spirodiclofen. Molecular docking and functional analyses further indicated that R117, which is highly conserved in Arachnoidea species, may be a vital specific binding site for scoparone in the mite TcCYP388A1 protein. This binding site was subsequently confirmed using mutagenesis data, which revealed that this binding site was the sole site selected by scoparone in spider mites over mammalian or fly CYP388A1. CONCLUSIONS These results indicate that the synergistic effects of scoparone and spirodiclofen on mites occurs through the inhibition of P450 activity, thus reducing spirodiclofen metabolism. The synergistic effect of this potent natural product on the detoxification enzyme-targeted activity of commercial acaricides may offer a sustainable strategy for pest mite resistance management. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Fenglin Wan
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Xiangning Lai
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Fangfang Yan
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, China
| | - Miao Zhang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Yi Ni
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Yutong Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Pan Zhang
- Key Laboratory of Molecular Genetics, Guizhou Institute of Tobacco Science, China National Tobacco Corporation, Guiyang, China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Matthana Klakong
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Gen Peng
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Wenhan Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Xinru Zeng
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Zongjin Zhang
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, China
| | - Xingbing Pan
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, China
| | - Yu Liu
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, China
| | - Liang Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Shili Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Wang M, Yin F, Kong L, Yang L, Sun H, Sun Y, Yan G, Han Y, Wang X. Chinmedomics: a potent tool for the evaluation of traditional Chinese medicine efficacy and identification of its active components. Chin Med 2024; 19:47. [PMID: 38481256 PMCID: PMC10935806 DOI: 10.1186/s13020-024-00917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/03/2024] [Indexed: 03/18/2024] Open
Abstract
As an important part of medical science, Traditional Chinese Medicine (TCM) attracts much public attention due to its multi-target and multi-pathway characteristics in treating diseases. However, the limitations of traditional research methods pose a dilemma for the evaluation of clinical efficacy, the discovery of active ingredients and the elucidation of the mechanism of action. Therefore, innovative approaches that are in line with the characteristics of TCM theory and clinical practice are urgently needed. Chinmendomics, a newly emerging strategy for evaluating the efficacy of TCM, is proposed. This strategy combines systems biology, serum pharmacochemistry of TCM and bioinformatics to evaluate the efficacy of TCM with a holistic view by accurately identifying syndrome biomarkers and monitoring their complex metabolic processes intervened by TCM, and finding the agents associated with the metabolic course of pharmacodynamic biomarkers by constructing a bioinformatics-based correlation network model to further reveal the interaction between agents and pharmacodynamic targets. In this article, we review the recent progress of Chinmedomics to promote its application in the modernisation and internationalisation of TCM.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
4
|
Ye M, Liu C, Liu J, Lu F, Xue J, Li F, Tang Y. Scoparone inhibits the development of hepatocellular carcinoma by modulating the p38 MAPK/Akt/NF-κB signaling in nonalcoholic fatty liver disease mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:551-561. [PMID: 37436232 DOI: 10.1002/tox.23851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND AND STUDY AIM The mechanisms underlying the progression of non-alcoholic fatty liver disease (NAFLD) into hepatocellular carcinoma (HCC) remains confusing and the therapeutics approaches are also challenging. Here, we aimed to investigate the effects of scoparone on the treatment of HCC stemmed from NAFLD and the underlying mechanisms. MATERIALS AND METHODS A model of NAFLD-HCC was created in mice, and these mice were treated with scoparone. Biochemical assays were conducted to assess the levels of biochemical markers. Tumors were evaluated through morphological examination. Histopathological analyses were performed using oil red O, Hematoxylin and Eosin, and Masson coloration assays. Immunohistochemistry (IHC) and RT-PCR were performed to analyze protein expression and measure mRNA expression levels, respectively. RESULTS Scoparone could ameliorate the pathological alterations observed in NAFLD-HCC mouse model. IHC analysis indicated an upregulation of NF-κB p65 expression in both NAFLD and NAFLD-HCC models, which was subsequently reverted by scoparone administration. Furthermore, scoparone treatment resulted in a reversal of the increased mRNA expression levels of NF-κB target genes, including TNF-α, MCP-1, iNOS, COX-2, NF-κB, and MMP-9, which were originally elevated in the NAFLD-HCC condition. Additionally, scoparone exhibited a capacity to counteract the activation of the MAPK/Akt signaling in the NAFLD-HCC model. CONCLUSION These findings suggest that scoparone holds promise as a potential therapeutic agent for NAFLD-associated HCC, and its model of action may involve the regulation of inflammatory pathways governed by the MAPK/Akt/NF-κB signaling cascade.
Collapse
Affiliation(s)
- Miaoqing Ye
- Department of Liver Disease, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Chunyan Liu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xian yang, China
| | - Jiaojiao Liu
- Department of Liver Disease, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Fenping Lu
- Literature research institute, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | | | - Fenping Li
- Department of Liver Disease, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| | - Yinghui Tang
- Department of Liver Disease, Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, China
| |
Collapse
|
5
|
He Y, Wu F, Tan Z, Zhang M, Li T, Zhang A, Miao J, Ou M, Long L, Sun H, Wang X. Quality Markers’ Discovery and Quality Evaluation of Jigucao Capsule Using UPLC-MS/MS Method. Molecules 2023; 28:molecules28062494. [PMID: 36985466 PMCID: PMC10058756 DOI: 10.3390/molecules28062494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Jigucao capsules (JGCC) have the effects of soothing the liver and gallbladder and clearing heat and detoxification. It is a good medicine for treating acute and chronic hepatitis cholecystitis with damp heat of the liver and gallbladder. However, the existing quality standard of JGCC does not have content determination items, which is not conducive to quality control. In this study, serum pharmacochemistry technology and UNIFI data processing software were used to identify the blood prototype components and metabolites under the condition of the obvious drug effects of JGCC, and the referenced literature reports and the results from in vitro analysis of JGCC in the early stage revealed a total of 43 prototype blood components and 33 metabolites in JGCC. Quality markers (Q-markers) were discovered, such as abrine, trigonelline, hypaphorine and isoschaftoside. In addition, ultra-high-performance liquid chromatography–triple quadrupole mass spectrometry (UPLC-QQQ-MS) was used to determine the active ingredients in JGCC. The components of quantitative analysis have good correlation in the linear range with R2 ≥ 0.9993. The recovery rate is 93.15%~108.92% and the relative standard deviation (RSD) is less than 9.48%. The established UPLC-MS/MS quantitative analysis method has high sensitivity and accuracy, and can be used for the quality evaluation of JGCC.
Collapse
Affiliation(s)
- Yanmei He
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150036, China
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Zhien Tan
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Mengli Zhang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Taiping Li
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Jianhua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Min Ou
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Lihuo Long
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150036, China
- Correspondence: (H.S.); (X.W.); Tel./Fax: +86-451-8211-0818 (X.W.)
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150036, China
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning 500023, China
- Correspondence: (H.S.); (X.W.); Tel./Fax: +86-451-8211-0818 (X.W.)
| |
Collapse
|
6
|
Wan C, Wang X, Liu H, Zhang Q, Yan G, Li Z, Fang H, Sun H. Characterization of effective constituents in Acanthopanax senticosus fruit for blood deficiency syndrome based on the chinmedomics strategy. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Abstract
The fruit of Acanthopanax senticosus (Rupr. and Maxim.) has been newly developed for the treatment of blood deficiency syndrome clinically, but the effective constituents are still unclear, restricting its quality control and the new medicinal development based on it. This study elucidated the efficacy of A. senticosus fruit (ASF) for treating blood deficiency syndrome and accurately characterize the constituents. Chinmedomics strategy was used to identify the metabolic biomarkers of the model and the overall effect of ASF was evaluated based on the biomarker when it showed intervention effects for blood deficiency syndrome. ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to analyze the components in the blood absorbed from A. senticosus fruit, and the components highly relevant to the biomarker are regarded as potential effective constituents for blood deficiency syndrome. Twenty-two of the 28 urine metabolites of blood deficiency syndrome were significantly regulated by A. senticosus fruit, 97 compounds included 20 prototype components, and 77 metabolites were found in vivo under the acting condition. The highly relevant constituents were isofraxidin, eleutheroside B, eleutheroside B1, eleutheroside E, and caffeic acid, which might be the effective constituents of A. senticosus fruit. It is a promising new medicinal resource that can be used for treating blood deficiency syndrome.
Collapse
Affiliation(s)
- Chunlei Wan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Avenida Wai Long , Taipa , Macau
| | - Hongda Liu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Qingyu Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Zhineng Li
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Heng Fang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine , Heping Road 24 , Harbin 150040 , China
| |
Collapse
|
7
|
Nutritional and Phytochemical Composition of Mahewu (a Southern African Fermented Food Product) Derived from White and Yellow Maize (Zea mays) with Different Inocula. FERMENTATION 2023. [DOI: 10.3390/fermentation9010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mahweu is an important indigenous beverage for many low-income and undernourished consumers in southern Africa. As a result, the nutritional and phytochemical profile of mahewu samples (obtained using optimized fermentation and boiling conditions from a previous study) as well as their related raw materials (white and yellow maize) were investigated. At these conditions, white and yellow maize mahewu (WM and YM) were prepared utilizing various inocula including sorghum malt, wheat, millet malt, or maize malt, and the pH, titratable acidity (TTA), total soluble solid (TSS), and proximate analysis were determined. The mineral content, amino acid composition, and phenolic compound profile were also investigated using inductive coupled plasma optical emission spectrometry (ICP-OES), high-performance liquid chromatography (HPLC), and ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS), respectively. Fermentation was observed to have influenced the proximate composition of obtained mahewu samples compared to the raw flour with significant (p ≤ 0.05) improvement in protein from 8.59 to 9.7% (YM) and 8.78 to 9% (WM) as well as carbohydrate from 72.27 to 74.47% (YM) and 71.15 to 72.65% (WM). Sodium, magnesium, phosphorous, potassium, calcium, manganese, iron, copper, and zinc were the minerals detected in the mahewu samples, while potassium was the most abundant mineral, having values ranging from 3051.61 to 3283.38 mg/kg (YM) and 2882.11 to 3129.97 mg/kg (WM). Heavy metals detected in this study were all below the recommended tolerable levels by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Arginine and leucine with values ranging from 0.47 to 0.52 g/100 g (YM) and 0.48 to 0.53 g/100 g (WM) as well as 0.91 to 1.04 g/100 g (YM) and 0.95 to 1.01 g/100 g (WM), respectively, were the most abundant essential amino acids, whereas for non-essential amino acids, glutamic acid, aspartic acid, alanine, and proline were observed to be abundant. Based on the different inocula, the derived mahewu samples prepared using either white or yellow maize have varying nutritional and health beneficial components and the choice of inocula might still be determined by consumer preference.
Collapse
|
8
|
Jiang Y, Xu J, Huang P, Yang L, Liu Y, Li Y, Wang J, Song H, Zheng P. Scoparone Improves Nonalcoholic Steatohepatitis Through Alleviating JNK/Sab Signaling Pathway-Mediated Mitochondrial Dysfunction. Front Pharmacol 2022; 13:863756. [PMID: 35592421 PMCID: PMC9110978 DOI: 10.3389/fphar.2022.863756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/18/2022] [Indexed: 01/12/2023] Open
Abstract
The activated c-Jun N-terminal kinase (JNK) specifically combined with SH3 domain-binding protein 5 (Sab) may mediate damage to the mitochondrial respiratory chain. Whether mitochondrial dysfunction induced by the JNK/Sab signaling pathway plays a pivotal role in the lipotoxic injury of nonalcoholic steatohepatitis (NASH) remains a lack of evidence. Scoparone, a natural compound from Traditional Chinese Medicine herbs, has the potential for liver protection and lipid metabolism regulation. However, the effect of scoparone on NASH induced by a high-fat diet (HFD) as well as its underlying mechanism remains to be elucidated. The HepG2 and Huh7 cells with/without Sab-knockdown induced by palmitic acid (PA) were used to determine the role of JNK/Sab signaling in mitochondrial dysfunction and cellular lipotoxic injury. To observe the effect of scoparone on the lipotoxic injured hepatocytes, different dose of scoparone together with PA was mixed into the culture medium of HepG2 and AML12 cells to incubate for 24 h. In addition, male C57BL/6J mice were fed with an HFD for 22 weeks to induce the NASH model and were treated with scoparone for another 8 weeks to investigate its effect on NASH. Molecules related to JNK/Sab signaling, mitochondrial function, and lipotoxic injury were detected in in vitro and/or in vivo experiments. The results showed that PA-induced activation of JNK/Sab signaling was blocked by Sab knockdown in hepatocytes, which improved mitochondrial damage, oxidative stress, hepatosteatosis, cell viability, and apoptosis. Scoparone demonstrated a similar effect on the PA-induced hepatocytes as Sab knockdown. For the NASH mice, treatment with scoparone also downregulated the activation of JNK/Sab signaling, improved histopathological changes of liver tissues including mitochondrial number and morphology, lipid peroxide content, hepatosteatosis and inflammation obviously, as well as decreased the serum level of lipid and transaminases. Taken together, this study confirms that activation of the JNK/Sab signaling pathway-induced mitochondrial dysfunction plays a crucial role in the development of NASH. Scoparone can improve the lipotoxic liver injury partially by suppressing this signaling pathway, making it a potential therapeutic compound for NASH.
Collapse
Affiliation(s)
- Yuwei Jiang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaoya Xu
- Department of Gout, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Huang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiping Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Wang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Zhang Q, Zhang A, Wu F, Wang X. UPLC-G2Si-HDMS Untargeted Metabolomics for Identification of Yunnan Baiyao's Metabolic Target in Promoting Blood Circulation and Removing Blood Stasis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103208. [PMID: 35630682 PMCID: PMC9143197 DOI: 10.3390/molecules27103208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022]
Abstract
Yunnan Baiyao is a famous Chinese patent medicine in Yunnan Province. However, its mechanism for promoting blood circulation and removing blood stasis is not fully explained. Our study used metabonomics technology to reveal the regulatory effect of Yunnan Baiyao on small molecular metabolites in promoting blood circulation and removing blood stasis, and exploring the related urine biomarkers. The coagulation function, blood rheology, and pathological results demonstrated that after Yunnan Baiyao treatment, the pathological indexes in rats with epinephrine hydrochloride-induced blood stasis syndrome improved and returned to normal levels. This is the basis for the effectiveness of Yunnan Baiyao. UPLC-G2Si-HDMS was used in combination with multivariate statistical analysis to conduct metabonomic analysis of urine samples. Finally, using mass spectrometry technology, 28 urine biomarkers were identified, clarifying the relevant metabolic pathways that play a vital role in the Yunnan Baiyao treatment. These were used as the target for Yunnan Baiyao to promote blood circulation and remove blood stasis. This study showed that metabolomics strategies provide opportunities and conditions for a deep and systematic understanding of the mechanism of action of prescriptions.
Collapse
Affiliation(s)
- Qingyu Zhang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning 530000, China; (Q.Z.); (F.W.)
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China;
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China;
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning 530000, China; (Q.Z.); (F.W.)
| | - Xijun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning 530000, China; (Q.Z.); (F.W.)
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China;
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau
- Correspondence: ; Tel.: +86-0451-82110818
| |
Collapse
|
10
|
Untargeted Metabolomics Reveals the Effect of Selective Breeding on the Quality of Chicken Meat. Metabolites 2022; 12:metabo12050367. [PMID: 35629871 PMCID: PMC9144515 DOI: 10.3390/metabo12050367] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 12/25/2022] Open
Abstract
The selection for improved body weight is an effective approach in animal breeding. Guangxi Partridge chickens have differentiated into two lines under selective breeding, which include line S and line D that have shown statistically significant differences in body weight. However, the meat quality analysis in our study indicated that the quality of breast and thigh muscles in line S chickens changed, which included increased values of L*, b*, and drip loss and decreased a* value, pH, and shear force in skeletal muscles. To illuminate the effect of selection on skeletal muscles, LC-MS/MS metabolomics was performed to explore differentiated metabolites in divergent tissues from the two chicken lines. The results of principal component analysis and orthogonal projection to latent structures discriminant analysis suggested that metabolites of different groups were separated, which suggested that selective breeding certainly affected metabolism of skeletal muscles. KEGG analysis identified that valine, leucine, and isoleucine biosynthesis, glycerophospholipid metabolism, and glutathione metabolism noteworthily changed in breast muscle. Amino sugars and nucleotide sugar metabolism, ascorbate and aldarate metabolism, the pentose phosphate pathway, pentose and glucuronate interconversions, fructose and mannose metabolism, and glycerophospholipid metabolism were remarkedly identified in thigh muscle. These screened pathways suggested oxidative stress in breast and thigh muscles, which corresponded with our previous results. Therefore, this study determined that glycerophospholipid metabolism conservatively functioned in muscle flavor and development but exhibited different anti-oxidative patterns in different skeletal muscles. Overall, the present study identified several differentiated metabolites and pathways for exploring differences in meat quality between different broiler populations.
Collapse
|
11
|
High throughput metabolomics explores the mechanism of Jigucao capsules in treating Yanghuang syndrome rats using ultra-performance liquid chromatography quadrupole time of flight coupled with mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1194:123185. [DOI: 10.1016/j.jchromb.2022.123185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 02/15/2022] [Indexed: 12/23/2022]
|
12
|
Li J, Zhang AH, Wu FF, Wang XJ. Alterations in the Gut Microbiota and Their Metabolites in Colorectal Cancer: Recent Progress and Future Prospects. Front Oncol 2022; 12:841552. [PMID: 35223525 PMCID: PMC8875205 DOI: 10.3389/fonc.2022.841552] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer morbidity and mortality worldwide. The etiology and pathogenesis of CRC remain unclear. A growing body of evidence suggests dysbiosis of gut bacteria can contribute to the occurrence and development of CRC by generating harmful metabolites and changing host physiological processes. Metabolomics, a systems biology method, will systematically study the changes in metabolites in the physiological processes of the body, eventually playing a significant role in the detection of metabolic biomarkers and improving disease diagnosis and treatment. Metabolomics, in particular, has been highly beneficial in tracking microbially derived metabolites, which has substantially advanced our comprehension of host-microbiota metabolic interactions in CRC. This paper has briefly compiled recent research progress of the alterations of intestinal flora and its metabolites associated with CRC and the application of association analysis of metabolomics and gut microbiome in the diagnosis, prevention, and treatment of CRC; furthermore, we discuss the prospects for the problems and development direction of this association analysis in the study of CRC. Gut microbiota and their metabolites influence the progression and causation of CRC, and the association analysis of metabolomics and gut microbiome will provide novel strategies for the prevention, diagnosis, and therapy of CRC.
Collapse
Affiliation(s)
- Jing Li
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
- National Chinmedomics Research Center, National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-hua Zhang
- National Chinmedomics Research Center, National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang-fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Xi-jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
- National Chinmedomics Research Center, National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
13
|
He Y, Zhang M, Li T, Tan Z, Zhang A, Ou M, Huang D, Wu F, Wang X. Metabolomics Analysis Coupled With UPLC/MS on Therapeutic Effect of Jigucao Capsule Against Dampness-Heat Jaundice Syndrome. Front Pharmacol 2022; 13:822193. [PMID: 35153793 PMCID: PMC8831696 DOI: 10.3389/fphar.2022.822193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Dampness-heat Jaundice Syndrome (DHJS) is a complex Chinese medicine syndrome, while Jigucao capsule (JGCC) is an effective compound preparation of Chinese medicine for the treatment of DHJS about liver and gallbladder, but its mechanism is not clear yet. The purpose of this study is to clarify the pathogenesis of DHJS and the treatment mechanism of JGCC. We used ultra-high performance liquid chromatography/mass spectrometry (UPLC/MS) combined with pattern recognition, accompanied the advanced software and online database for the urine metabolomics of rats. The potential biomarkers disturbing metabolism were identified and the metabolic pathway was analyzed. We investigated the callback of biomarkers after treatment with JGCC. Finally, A total of 25 potential urine biomarkers were identified, including Arachidonic acid, Phenylpyruvic acid, L-Urobilin and so on, and 14 related metabolic pathways were disturbed. After treatment with JGCC, the clinical biochemical indexes and histopathological were significantly improved, and the disturbed biomarkers were also obviously adjusted. It is proved that JGCC has remarkable effect on the treatment of DHJS.
Collapse
Affiliation(s)
- Yanmei He
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mengli Zhang
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Taiping Li
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhien Tan
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Min Ou
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Danna Huang
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xijun Wang
- National Engineering Laboratory for the Development of Southwestern EndangeredMedicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Abstract
Scoparone (6,7-dimethoxycoumarin) is a simple coumarin from botanical drugs of Artemisia species used in Traditional Chinese Medicine and Génépi liquor. However, its bioavailability to the brain and potential central effects remain unexplored. We profiled the neuropharmacological effects of scoparone upon acute and subchronic intraperitoneal administration (2.5-25 mg/kg) in Swiss mice and determined its brain concentrations and its effects on the endocannabinoid system (ECS) and related lipids using LC-ESI-MS/MS. Scoparone showed no effect in the forced swimming test (FST) but, administered acutely, led to a bell-shaped anxiogenic-like behavior in the elevated plus-maze test and bell-shaped procognitive effects in the passive avoidance test when given subchronically and acutely. Scoparone rapidly but moderately accumulated in the brain (Cmax < 15 min) with an apparent first-order elimination (95% eliminated at 1 h). Acute scoparone administration (5 mg/kg) significantly increased brain arachidonic acid, prostaglandins, and N-acylethanolamines (NAEs) in the FST. Conversely, subchronic scoparone treatment (2.5 mg/kg) decreased NAEs and increased 2-arachidonoylglycerol. Scoparone differentially impacted ECS lipid remodeling in the brain independent of serine hydrolase modulation. Overall, the unexpectedly potent central effects of scoparone observed in mice could have toxicopharmacological implications for humans.
Collapse
|
15
|
Zhou H, Wan F, Guo F, Liu J, Ding W. High value-added application of a renewable bioresource as acaricide: Investigation the mechanism of action of scoparone against Tetranychus cinnabarinus. J Adv Res 2021; 38:29-39. [PMID: 35572395 PMCID: PMC9091730 DOI: 10.1016/j.jare.2021.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022] Open
|
16
|
Zhou H, Liu J, Wan F, Guo F, Ning Y, Liu S, Ding W. Insight into the mechanism of action of scoparone inhibiting egg development of Tetranychus cinnabarinus Boisduval. Comp Biochem Physiol C Toxicol Pharmacol 2021; 246:109055. [PMID: 33894369 DOI: 10.1016/j.cbpc.2021.109055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023]
Abstract
Investigating the mechanisms of action of natural bioactive products against pests is a vital strategy to develop novel promising biopesticides. Scoparone, isolated from Artemisia capillaris, exhibited potent oviposition inhibition activity against Tetranychus cinnabarinus (a crop-threatening mite pests with strong fecundity). To explore the underlying mechanism, the vitellogenin (Vg) protein content, and Vg gene expression of mites from three consecutive generations of G0 individuals exposed to scoparone were determined, revealing marked inhibition. This study is the first to explore the egg development defect behaviour of mite pests induced by scoparone. The egg-laying inhibition of mites by scoparone was significantly increased by 47.43% compared with that of the control when TcVg was silenced by RNA interference (RNAi), suggesting that egg-development inhibition of female T. cinnabarinus by scoparone was mediated by low Vg gene expression. Furthermore, scoparone bound to the Vg protein in vitro, and its Kd value was 218.9 μM, implying its potential function in inhibiting the egg development of mites by directly targeting the Vg protein. This study will lay the foundation for the future applications of scoparone as an agrochemical for controlling the strong egg-laying capacity mite pests in agriculture.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Jinlin Liu
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Fenglin Wan
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Yeshuang Ning
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Sisi Liu
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
17
|
Wang Y, Wang D, Wang J, Li K, Heng C, Jiang L, Cai C, Zhan X. Effects of different stocking densities on tracheal barrier function and its metabolic changes in finishing broilers. Poult Sci 2020; 99:6307-6316. [PMID: 33248546 PMCID: PMC7704944 DOI: 10.1016/j.psj.2020.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022] Open
Abstract
In the present study, we evaluated the effects of various stocking densities on the tracheal barrier and plasma metabolic profiles of finishing broilers. We randomly assigned 1,440 Lingnan Yellow feathered broilers (age 22 d) to 5 different stocking density groups (8 m-2, 10 m-2, 12 m-2, 14 m-2, and 16 m-2). Each of these consisted of 3 replicates. The interleukin (IL)-1β and IL-10 concentrations were substantially higher in the 16 m-2 treatment group than they were in the 8 m-2 and 10 m-2 treatment groups (P < 0.05). Nevertheless, IL-4 did not significantly differ among the 5 treatments (P > 0.05). The tracheal mucosae of the birds in the 16 m-2 group (high stocking density, HSD) were considerably thicker than those for the birds in the 10 m-2 group (control, CSD). Relative to CSD, the claudin1 expression level was lower, and the muc2 and caspase3 expression levels were higher for HSD. Compared with CSD, 10 metabolites were significantly upregulated (P < 0.05), and 7 were significantly downregulated (P < 0.05) in HSD. Most of these putative diagnostic biomarkers were implicated in matter biosynthesis and energy metabolism. A metabolic pathway analysis revealed that the most relevant and critical biomarkers were pentose and glucuronate interconversions and the pentose phosphate pathway. Activation of the aforementioned pathways may partially counteract the adverse effects of the stress induced by high stocking density. This work helped improve our understanding of the harmful effects of high stocking density on the tracheal barrier and identified 2 metabolic pathways that might be associated with high stocking density-induced metabolic disorders in broilers.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Dianchun Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiangshui Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Kaixuan Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chianning Heng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lei Jiang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chenhao Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiuan Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Han Y, Sun H, Zhang A, Yan G, Wang XJ. Chinmedomics, a new strategy for evaluating the therapeutic efficacy of herbal medicines. Pharmacol Ther 2020; 216:107680. [PMID: 32956722 PMCID: PMC7500400 DOI: 10.1016/j.pharmthera.2020.107680] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Herbal medicines have accumulated valuable clinical experience in thousands of years of applications in traditional Chinese medicine (TCM) or ethnomedicine. The unique multi-target efficacy on complex diseases made herbal medicines gained a global popularity in recent years. However, the characteristic of multi-component acting on multi-target poses a dilemma for the evaluation of therapeutic efficacy of herbal medicines. Advances in metabolomics enable efficient identification of the various changes in biological systems exposed to different treatments or conditions. The use of serum pharmacochemistry of TCM has significant implications for tackling the major issue in herbal medicines development-pharmacodynamic material basis. Chinmedomics integrates metabolomics and serum pharmacochemistry of TCM to investigate the pharmacodynamic material basis and effective mechanisms of herbal medicines on the basis of TCM syndromes and holds the promise of explaining therapeutic efficacy of herbal medicines in scientific language. In this review, the historical development of chinmedomics from concept formation to successful applications was discussed. We also took the systematic research of Yin Chen Hao Tang (YCHT) as an example to show the research strategy of chinmedomics.
Collapse
|
19
|
Ren JL, Zhang AH, Kong L, Han Y, Yan GL, Sun H, Wang XJ. Analytical strategies for the discovery and validation of quality-markers of traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153165. [PMID: 31954259 DOI: 10.1016/j.phymed.2019.153165] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/23/2019] [Accepted: 12/28/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Quality control of traditional Chinese medicine (TCM) is the basis of clinical efficacy. Due to the complexity of TCM, it is difficult to unify the quality control, and hinders the further implementation of the quality standardization of TCM. As a new concept, quality-marker (Q-marker) plays a powerful role in promoting the standardization of quality control system of TCM. HYPOTHESIS/PURPOSE The present review aims to provide reference and scientific basis for further development of Q-marker and assist standardization of quality control of TCM. METHODS Extensive search of various documents and electronic databases such as Pubmed, Royal Society of Chemistry, Science Direct, Springer, Web of Science, and Wiley, etc., were used to search scientific contributions. Other online academic libraries, e.g. Google Scholars, Scopus and national pharmacology literature were also been employed to learn more relevant information about Q-marker. RESULTS Q-markers play vital role in promoting the standardization of quality control of TCM. The factors that affect the quality of TCM, the advantages and disadvantages of the analytical techniques commonly used in Q-marker research were reviewed, as well as the systematic research strategies, which were verified by practices. CONCLUSION The proposal of Q-marker not only provided a new perspective to break through the bottleneck of current quality control, but also can be used in the evaluation of pharmacological efficiency, therapeutic discovery, toxicology, etc. In addition, the Q-marker analysis strategies summarized in this paper is helpful to standardize the quality control of TCM and promote the internationalization of TCM.
Collapse
Affiliation(s)
- Jun-Ling Ren
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Ling Kong
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Ying Han
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, Guangxi, China.
| |
Collapse
|
20
|
High-throughput metabolomics reveals the perturbed metabolic pathways and biomarkers of Yang Huang syndrome as potential targets for evaluating the therapeutic effects and mechanism of geniposide. Front Med 2020; 14:651-663. [PMID: 31901116 DOI: 10.1007/s11684-019-0709-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022]
Abstract
High-throughput metabolomics can clarify the underlying molecular mechanism of diseases via the qualitative and quantitative analysis of metabolites. This study used the established Yang Huang syndrome (YHS) mouse model to evaluate the efficacy of geniposide (GEN). Urine metabolic data were quantified by ultraperformance liquid chromatography-tandem mass spectrometry. The non-target screening of the massive biological information dataset was performed, and a total of 33 metabolites, including tyramine glucuronide, aurine, and L-cysteine, were identified relating to YHS. These differential metabolites directly participated in the disturbance of phase I reaction and hydrophilic transformation of bilirubin. Interestingly, they were completely reversed by GEN. While, as the auxiliary technical means, we also focused on the molecular prediction and docking results in network pharmacological and integrated analysis part. We used integrated analysis to communicate the multiple results of metabolomics and network pharmacology. This study is the first to report that GEN indirectly regulates the metabolite "tyramine glucuronide" through its direct effect on the target heme oxygenase 1 in vivo. Meanwhile, heme oxygenase-1, a prediction of network pharmacology, was the confirmed metabolic enzyme of phase I reaction in hepatocytes. Our study indicated that the combination of high-throughput metabolomics and network pharmacology is a robust combination for deciphering the pathogenesis of the traditional Chinese medicine (TCM) syndrome.
Collapse
|
21
|
Jiang YC, Li YF, Zhou L, Zhang DP. Comparative metabolomics unveils molecular changes and metabolic networks of syringin against hepatitis B mice by untargeted mass spectrometry. RSC Adv 2020; 10:461-473. [PMID: 35492557 PMCID: PMC9048208 DOI: 10.1039/c9ra06332c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Untargeted metabolomics technology was used to discover the metabolic pathways and biomarkers for revealing the potential biological mechanism of syringin on hepatitis B virus. Serum samples were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based comparative metabolomics coupled with pattern recognition methods and network pathway. In addition, the histopathology, HBV DNA detection of liver tissue, and biochemical indicators of liver function change were also explored for investigating the antiviral effect of syringin. In comparison to the model group, the metabolic profiles of the turbulence in transgenic mice tended to recover to the same as the control group after syringin therapy. A total of 33 potential biomarkers were determined to explore the metabolic disorders in the hepatitis B animal model, of which 25 were regulated by syringin, and 8 metabolic pathways, such as phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arachidonic acid metabolism, glyoxylate and dicarboxylate metabolism, were involved. Syringin markedly reduced the liver pathology change, inhibited HBV DNA replication, and improved liver function. Amino acid metabolism is a potential target for the treatment of hepatitis B. The hepatoprotective effect of syringin may contribute to ameliorating oxidative stress and preventing protein and DNA replication. Comparative metabolomics is a promising tool for discovering metabolic pathways and biomarkers of the hepatitis B animal model as targets to reveal the effects and mechanism of syringin, which benefits the development of natural products and advances the treatment of diseases. Untargeted metabolomics technology was used to discover the metabolic pathways and biomarkers for revealing the potential biological mechanism of syringin on hepatitis B virus.![]()
Collapse
Affiliation(s)
- Yi-chang Jiang
- Third Department of Orthopedics
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Yuan-feng Li
- Third Department of Orthopedics
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Ling Zhou
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Da-peng Zhang
- Third Department of Orthopedics
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| |
Collapse
|
22
|
Sun YC, Han SC, Yao MZ, Liu HB, Wang YM. Exploring the metabolic biomarkers and pathway changes in crucian under carbonate alkalinity exposure using high-throughput metabolomics analysis based on UPLC-ESI-QTOF-MS. RSC Adv 2020; 10:1552-1571. [PMID: 35494719 PMCID: PMC9047290 DOI: 10.1039/c9ra08090b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
The aims of this study is to explore the metabolomic biomarker and pathway changes in crucian under carbonate alkalinity exposures using high-throughput metabolomics analysis based on ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-tandem mass spectrometry (UPLC-ESI-QTOF-MS) for carrying out adaptive evolution of fish in environmental exposures and understanding molecular physiological mechanisms of saline–alkali tolerance in fishes. Under 60 day exposure management, the UPLC-ESI-QTOF-MS technology, coupled with a pattern recognition approach and metabolic pathway analysis, was utilized to give insight into the metabolic biomarker and pathway changes. In addition, biochemical parameters in response to carbonate alkalinity in fish were detected for chronic impairment evaluation. A total of twenty-seven endogenous metabolites were identified to distinguish the biochemical changes in fish in clean water under exposure to different concentrations of carbonate alkalinity (CA); these mainly involved amino acid synthesis and metabolism, arachidonic acid metabolism, glyoxylate and dicarboxylate metabolism, pyruvate metabolism and the citrate cycle (TCA cycle). Compared with the control group, CA exposure increased the level of blood ammonia; TP; ALB; Gln in the liver and gills; GS; urea in blood, the liver and gills; CREA; CPS; Glu and LDH; and decreased the level of weight gain rate, oxygen consumption, discharge rate of ammonia, SOD, CAT, ALT, AST and Na+/K+-ATPase. At low concentrations, CA can change the normal metabolism of fish in terms of changing the osmotic pressure regulation capacity, antioxidant capacity, ammonia metabolism and liver and kidney function to adapt to the CA exposure environment. As the concentration of CA increases, various metabolic processes in crucian are inhibited, causing chronic damage to the body. The results show that the metabolomic strategy is a potentially powerful tool for identifying the mechanisms in response to different environmental exposomes and offers precious information about the chronic response of fish to CA. We explore the metabolic biomarker and pathway changes accompanying the adaptive evolution of crucian subjected to carbonate alkalinity exposure, using UPLC-ESI-QTOF-MS, in order to understand the molecular physiological mechanisms of saline–alkali tolerance.![]()
Collapse
Affiliation(s)
- Yan-chun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Shi-cheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Ming-zhu Yao
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Hong-bai Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Yu-mei Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| |
Collapse
|
23
|
Xu J, Jiang ZH, Liu XB, Ma Y, Ma W, Ma L. Ultra-performance liquid chromatography-mass spectrometry-based metabolomics reveals Huangqiliuyi decoction attenuates abnormal metabolism as a novel therapeutic opportunity for type 2 diabetes. RSC Adv 2019; 9:39858-39870. [PMID: 35541427 PMCID: PMC9076227 DOI: 10.1039/c9ra09386a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022] Open
Abstract
Background: As a typical chronic metabolic disease, type 2 diabetes mellitus causes a heavy health-care burden to society. In this study, we applied the metabolomics strategy to explore the potential molecular mechanism of the Huangqiliuyi decoction (HQLYD) for type-2 diabetes (T2D). Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) combined with pattern recognition methods was utilized to select specific metabolites closely associated with HQLYD. Biomarker pathway analysis and biological network were utilized to uncover the therapeutic effect and action mechanism related to HQLYD. A total of twenty-five biomarkers were identified in the animal model, in which sixteen biomarkers are associated with HQLYD treatment for T2D. They attenuated the abnormalities of metabolic pathways such as phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and the citrate cycle. HQLYD also significantly elevated the serum FINS and SOD, GSP-x level in the liver and kidney, and reduced the serum TC, TG, HDL, LDL, urea, Scr, AST, ALT, FBG, IRS, MDA, and CAT level. We found that the therapeutic mechanism of HQLYD against T2D affected amino acid metabolism, glucose metabolism and lipid metabolism. Metabolomics revealed that the Huangqiliuyi decoction attenuates abnormal metabolism as a novel therapeutic opportunity for type 2 diabetes.
Collapse
Affiliation(s)
- Jiao Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin 150040 China
- College of Pharmacy, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Zhe-Hui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin 150040 China
| | - Xiu-Bo Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Yan Ma
- School of Business Administration, Harbin University of Commerce Harbin 150040 China
| | - Wei Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin 150040 China
- College of Pharmacy, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Ling Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University Harbin 150040 China
| |
Collapse
|
24
|
Zhao FJ, Zhang ZB, Ma N, Teng X, Cai ZC, Liu MX. Untargeted metabolomics using liquid chromatography coupled with mass spectrometry for rapid discovery of metabolite biomarkers to reveal therapeutic effects of Psoralea corylifolia seeds against osteoporosis. RSC Adv 2019; 9:35429-35442. [PMID: 35528068 PMCID: PMC9074708 DOI: 10.1039/c9ra07382e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022] Open
Abstract
Liquid chromatography coupled with mass spectrometry has been used as metabolomics profiling tool to discover and identify the metabolites in metabolic diseases. Osteoporosis (OP) syndrome is a chronic metabolic disease characterized by bone mass reduction and changes in bone microstructure. Psoralea corylifolia Linn. seeds (PCS) have a therapeutic effect on osteoporosis, but their action mechanism and therapeutic target are still unclear. This study aims to explore the metabolic changes of the urine profile in glucocorticoid-induced OP model rats and the therapeutic effect of PCS. High-throughput metabolomics based on the liquid chromatography coupled with mass spectrometry quadrupole time-of-flight mass spectrometry and multivariate data analysis were used to analyze the urine metabolites. The results showed that has an obvious separation between model and control groups. OPLS-DA was used to further analyze and discover substances that contributed to the separation. 42 potential biomarkers and 12 related metabolic pathways were identified in combination with network databases. After the intervention of PCS, 24 biomarkers were significantly regulated, mainly with glycone, serine and threonine metabolism, glutathione metabolism and purine metabolism and other metabolic pathways are related and discovered. This study has proved that PCS has therapeutic effect against OP by regulating that metabolic pathways disturbed in the OP. It provided a basis for the research and future development of new drugs for OP treatment. Liquid chromatography coupled with mass spectrometry has been used as metabolomics profiling tool to discover and identify the metabolites in metabolic diseases.![]()
Collapse
Affiliation(s)
- Fu-Jiang Zhao
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Zhao-Bo Zhang
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Ning Ma
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Xiao Teng
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Zhen-Cheng Cai
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| | - Ming-Xi Liu
- Department of Orthopaedics, Taizhou Central Hospital, Taizhou University Hospital Taizhou 318000 China +86-18767620975 +86-18767620975
| |
Collapse
|
25
|
Wang XJ, Ren JL, Zhang AH, Sun H, Yan GL, Han Y, Liu L. Novel applications of mass spectrometry-based metabolomics in herbal medicines and its active ingredients: Current evidence. MASS SPECTROMETRY REVIEWS 2019; 38:380-402. [PMID: 30817039 DOI: 10.1002/mas.21589] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Current evidence shows that herbal medicines could be beneficial for the treatment of various diseases. However, the complexities present in chemical compositions of herbal medicines are currently an obstacle for the progression of herbal medicines, which involve unclear bioactive compounds, mechanisms of action, undetermined targets for therapy, non-specific features for drug metabolism, etc. To overcome those issues, metabolomics can be a great to improve and understand herbal medicines from the small-molecule metabolism level. Metabolomics could solve scientific difficulties with herbal medicines from a metabolic perspective, and promote drug discovery and development. In recent years, mass spectrometry-based metabolomics was widely applied for the analysis of herbal constituents in vivo and in vitro. In this review, we highlight the value of mass spectrometry-based metabolomics and metabolism to address the complexity of herbal medicines in systems pharmacology, and to enhance their biomedical value in biomedicine, to shed light on the aid that mass spectrometry-based metabolomics can offer to the investigation of its active ingredients, especially, to link phytochemical analysis with the assessment of pharmacological effect and therapeutic potential. © 2019 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning Guangxi, China
| | - Jun-Ling Ren
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| |
Collapse
|
26
|
Sun H, Zhang AH, Yang L, Li MX, Fang H, Xie J, Wang XJ. High-throughput chinmedomics strategy for discovering the quality-markers and potential targets for Yinchenhao decoction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:328-338. [PMID: 30340940 DOI: 10.1016/j.phymed.2018.04.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/25/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Yinchenhao decoction (YCHD) has been widely applied in the clinic for various kinds of liver disease, especially for the therapy of dampness-heat jaundice syndrome (DHJS). Some studies have investigated the pharmacological activity and compositions of YCHD. However, its Q-markers and the action targets are still unrevealed. PURPOSE This work aims to clarify the therapeutic effect of YCHD against DHJS and discover the quality-markers (Q-markers) of YCHD based on the high-throughput chinmedomics strategy and then predict the potential targets and action mechanism of YCHD against DHJS. METHODS Ultra-high performance liquid chromatography/mass spectrometry (UPLC-MS) combined with pattern recognition method was utilized to analyze serum samples and urine samples. Multivariate data analysis and network pharmacology technology were used to identify the effective components and biomarkers associated with therapeutic effects. RESULTS With the high sensitivity UPLC-MS technology, a total of 69 compounds from YCHD were identified and 41 of them were absorbed in blood. Besides, 34 urine biomarkers from DHJS were identified. Of note, we utilized chinmedomics technology on the correlation analysis of urine biomarkers and absorbed components to determine 9 core-compounds as the Q-markers responsible for the efficacy of YCHD. Finally, a total of 12 potential targets were discovered. CONCLUSION This work provides a powerful method for clarifying the efficacy of TCM and discovering the effective ingredients as Q-markers.
Collapse
Affiliation(s)
- Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ai-Hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Meng-Xi Li
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Heng Fang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Jing Xie
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xi-Jun Wang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| |
Collapse
|
27
|
Yang Q, Zhang AH, Miao JH, Sun H, Han Y, Yan GL, Wu FF, Wang XJ. Metabolomics biotechnology, applications, and future trends: a systematic review. RSC Adv 2019; 9:37245-37257. [PMID: 35542267 PMCID: PMC9075731 DOI: 10.1039/c9ra06697g] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022] Open
Abstract
Given the highly increased incidence of human diseases, a better understanding of the related mechanisms regarding endogenous metabolism is urgently needed. Mass spectrometry-based metabolomics has been used in a variety of disease research areas. However, the deep research of metabolites remains a difficult and lengthy process. Fortunately, mass spectrometry is considered to be a universal tool with high specificity and sensitivity and is widely used around the world. Mass spectrometry technology has been applied to various basic disciplines, providing technical support for the discovery and identification of endogenous substances in living organisms. The combination of metabolomics and mass spectrometry is of great significance for the discovery and identification of metabolite biomarkers. The mass spectrometry tool could further improve and develop the exploratory research of the life sciences. This mini review discusses metabolomics biotechnology with a focus on recent applications of metabolomics as a powerful tool to elucidate metabolic disturbances and the related mechanisms of diseases. Given the highly increased incidence of human diseases, a better understanding of the related mechanisms regarding endogenous metabolism is urgently needed.![]()
Collapse
Affiliation(s)
- Qiang Yang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Ai-hua Zhang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Jian-hua Miao
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Hui Sun
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Ying Han
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Guang-li Yan
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Fang-fang Wu
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| | - Xi-jun Wang
- Department of Pharmaceutical Analysis
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
| |
Collapse
|
28
|
Lu F, Zhang N, Yu D, Zhao H, Pang M, Fan Y, Liu S. An integrated metabolomics and 16S rRNA gene sequencing approach exploring the molecular pathways and potential targets behind the effects of Radix Scrophulariae. RSC Adv 2019; 9:33354-33367. [PMID: 35529111 PMCID: PMC9073378 DOI: 10.1039/c9ra03912k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
To assess the impact of the caecal microbiota on faecal metabolic phenotypes in the presence of Radix Scrophulariae (Chinese name: Xuanshen), an integrated approach involving 16S rRNA gene sequencing combined with ultrahigh-performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOF-MS)-based faecal metabolomics was applied to Radix Scrophulariae-treated rats. Interestingly, Radix Scrophulariae led to significant gut microbiota changes at the phylum and genus levels in treated rats compared to control rats. Additionally, distinct changes in faecal metabolites, including linoleic acid (LA), guanosine, inosine, hypoxanthine, xanthine, 4-hydroxycinnamic acid, cholic acid, N-acetyl-d-glucosamine, l-urobilinogen and uridine, were observed in Radix Scrophulariae-treated rats. Of these, seven metabolites were up-regulated, and the remaining three metabolites were down-regulated. Moreover, there were substantial associations between altered levels of gut microbiota genera and discrepant levels of faecal metabolites, particularly for compounds involved in LA and purine metabolism. These results demonstrated that the gut microbiota is altered in association with faecal metabolism following treatment with Radix Scrophulariae. Our findings suggest that further application of this 16S rRNA gene sequencing and UHPLC/TOF-MS-based metabolomics approach will facilitate the assessment of the pharmacological action of Radix Scrophulariae and thus expand the scope of this herb. An integrated approach to assess impact of caecal microbiota on faecal metabolic phenotypes in the presence of Radix Scrophulariae involving 16S rRNA gene sequencing combined with UHPLC/TOF-MS-based faecal metabolomics was applied to Radix Scrophulariae-treated rats.![]()
Collapse
Affiliation(s)
- Fang Lu
- Institute of Traditional Chinese Medicine
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- PR China
| | - Ning Zhang
- Fist Affiliated Hospital of Guizhou University of Traditional Chinese Medicine
- Guiyang 550001
- PR China
| | - Donghua Yu
- Institute of Traditional Chinese Medicine
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- PR China
| | - Hongwei Zhao
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- PR China
| | - Mu Pang
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- PR China
| | - Yue Fan
- Research Department of Academic Theory
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- PR China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- PR China
| |
Collapse
|
29
|
Luo W, Zhang JW, Zhang LJ, Zhang W. High-throughput untargeted metabolomics and chemometrics reveals pharmacological action and molecular mechanism of chuanxiong by ultra performance liquid chromatography combined with quadrupole-time-of-flight-mass spectrometry. RSC Adv 2019; 9:39025-39036. [PMID: 35540684 PMCID: PMC9075942 DOI: 10.1039/c9ra06267j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/17/2019] [Indexed: 01/05/2023] Open
Abstract
Metabolomics methods can be used to explore the effect mechanisms underlying treatments with traditional medicine. Lung cancer (LC) causes the highest morbidity and mortality among tumors disease, and has become a serious public health problem. Chuanxiong (CX) is a dried rhizome of Ligusticum Chuanxiong Hort., often used in traditional Chinese medicine and has been widely used in the treatment for tumors. However, the pharmacological effect of CX on the metabolism process of LC mice is still unclear. This study used high-throughput untargeted metabolomics aims to discover biomarkers and metabolic pathways of LC as a potential target to provide insight into the pharmacological action and effective mechanism of CX against LC. The precise structural identification of the LC biomarker has been established using ultra performance liquid chromatography (UPLC) combined with quadrupole-time-of-flight-mass spectrometry (Q-TOF-MS) technology. UPLC-Q-TOF-MS and chemometrics methods were used to analyze the blood metabolism of LC model mice, and revealed the intervention effect of CX on LC model mice and potential therapeutic targets. The results showed that the metabolic profile clustering among the groups was obvious, and 31 potential biomarkers were finally locked, involving 7 related metabolic pathways. After treatment with CX, we found that 22 kinds of biomarkers were recalled to the main metabolic pathway which are associated with lipid metabolism. This study provides an effective biomarker reference for early clinical diagnosis of LC, and also provides a foundation for the expansion of new drugs for CX treatment of LC. Metabolomics methods can be used to explore the effect mechanisms underlying treatments with traditional medicine.![]()
Collapse
Affiliation(s)
- Wen Luo
- Department of Respiratory and Critical Care
- First Affiliated Hospital
- Harbin Medical University
- Harbin 150081
- China
| | - Jia-Wen Zhang
- Department of Respiratory and Critical Care
- First Affiliated Hospital
- Harbin Medical University
- Harbin 150081
- China
| | - Li-Juan Zhang
- Department of Respiratory and Critical Care
- First Affiliated Hospital
- Harbin Medical University
- Harbin 150081
- China
| | - Wei Zhang
- Department of Respiratory and Critical Care
- First Affiliated Hospital
- Harbin Medical University
- Harbin 150081
- China
| |
Collapse
|
30
|
Li TP, Zhang AH, Miao JH, Sun H, Yan GL, Wu FF, Wang XJ. Applications and potential mechanisms of herbal medicines for rheumatoid arthritis treatment: a systematic review. RSC Adv 2019; 9:26381-26392. [PMID: 35685403 PMCID: PMC9127666 DOI: 10.1039/c9ra04737a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022] Open
Abstract
In this review, we systematically discuss the role of traditional Chinese medicine (TCM) in rheumatoid arthritis (RA) disease treatment. TCM classifies the subtypes of RA through its own theoretical method, which is beneficial for more accurate diagnosis and treatment with Chinese herbal medicines (CHMs) that are more suitable for different syndromes. TCM mainly uses a flexible combination of CHMs to play an important role in RA treatment. The main components of these extracts can be subdivided into alkaloids, flavonoids, triterpenes, saponins and other compounds. Using a platform of transgenic and induced arthritis models, we explore the potential mechanisms of TCM against RA with the help of omics analysis techniques and methods. These mechanisms are mainly CHM and its extracts can inhibit RA patients and experimental animal models, including synovitis, vascular proliferation and bone injury; this involves many biological signal exchange targets and pathways. In conclusion, the role of TCM in RA treatment mainly involves reducing the expression and secretion of pro-inflammatory factors, thus decreasing the degree of abnormal immune response. In this review, we systematically discuss the role of traditional Chinese medicine (TCM) in rheumatoid arthritis (RA) disease treatment.![]()
Collapse
Affiliation(s)
- Tai-ping Li
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
- National Chinmedomics Research Center
| | - Ai-hua Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Jian-hua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
| | - Hui Sun
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Guang-li Yan
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Fang-fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
- National Chinmedomics Research Center
| | - Xi-jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
- National Chinmedomics Research Center
| |
Collapse
|
31
|
Sun H, Yang L, Li MX, Fang H, Zhang AH, Song Q, Liu XY, Su J, Yu MD, Makino T, Wang XJ. UPLC-G2Si-HDMS untargeted metabolomics for identification of metabolic targets of Yin-Chen-Hao-Tang used as a therapeutic agent of dampness-heat jaundice syndrome. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1081-1082:41-50. [PMID: 29502028 DOI: 10.1016/j.jchromb.2018.02.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/17/2018] [Accepted: 02/24/2018] [Indexed: 12/25/2022]
Abstract
Yin-Chen-Hao-Tang (YCHT), the classic formulae of traditional Chinese medicine (TCM), is widely used to treat dampness-heat jaundice syndrome (DHJS) and various liver diseases. However, the therapeutic mechanism of YCHT is yet to have an integrated biological interpretation. In this work, we used metabolomics technology to reveal the adjustment of small molecule metabolites in body during the treatment of YCHT. Aim to discover the serum biomarkers which are associated with the treatment of DHJS against YCHT. Pathological results and biochemical indicators showed that the hepatic injury and liver index abnormalities caused by DHJS was effectively improve after treatment with YCHT. On the basis of effective treatment, ultra-high performance liquid chromatography (UPLC-G2Si-HDMS) combined with the multivariate statistical analysis method was utilized to analyze the serum samples. Finally, 22 biomarkers were identified by using mass spectrometry and illuminated the correlative metabolic pathways which play a significant role and as therapeutic targets in the treatment of DHJS. This work demonstrated that mass spectrometry metabolomics provides a new insight to elucidate the action mechanism of formulae.
Collapse
Affiliation(s)
- Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Le Yang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Meng-Xi Li
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Heng Fang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Ai-Hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Qi Song
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Xing-Yuan Liu
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Jing Su
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Meng-Die Yu
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya 4678603, Japan
| | - Xi-Jun Wang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China.
| |
Collapse
|
32
|
Sun H, Zhang AH, Song Q, Fang H, Liu XY, Su J, Yang L, Yu MD, Wang XJ. Functional metabolomics discover pentose and glucuronate interconversion pathways as promising targets for Yang Huang syndrome treatment with Yinchenhao Tang. RSC Adv 2018; 8:36831-36839. [PMID: 35558940 PMCID: PMC9089300 DOI: 10.1039/c8ra06553e] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022] Open
Abstract
Yinchenhao Tang (YCHT), a classic traditional Chinese medicine (TCM) formulae, plays an important role in the treatment of Yang Huang syndrome (YHS). With the emergence of new biomarkers of YHS uncovered via metabonomics, the underlying functional mechanisms are still not clear. Functional metabolomics aims at converting biomarkers derived from metabonomics into disease mechanisms. Here, an integrated non-target metabolomics and IPA strategy were used to investigate the YCHT intervention on YHS. Our metabolomics study has shown that the potential protective effect of YCHT on YHS mice leads to significant changes in the metabolic profile by modulating the biomarkers and regulating the metabolic disorders. Twenty two differential metabolite biomarkers and fifteen involved metabolic pathways were correlated with the regulation of YCHT treatment on YHS. Functional metabolomics identified a core biomarker, d-glucuronic acid in pentose and glucuronate interconversion pathways, which was directly related to the target prediction of UDP-glucuronosyltransferase 1A1 and eventually leaded to a series of disturbances. In conclusion, this study shows that functional metabolomics can discover metabolic pathways as promising targets. Yinchenhao Tang (YCHT), a classic traditional Chinese medicine (TCM) formulae, plays an important role in the treatment of Yang Huang syndrome (YHS).![]()
Collapse
Affiliation(s)
- Hui Sun
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| | - Ai-hua Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| | - Qi Song
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| | - Heng Fang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| | - Xing-yuan Liu
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| | - Jing Su
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| | - Le Yang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| | - Meng-die Yu
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| | - Xi-jun Wang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Chinmedomics Research Center of TCM State Administration
| |
Collapse
|
33
|
Liu XY, Zhang AH, Fang H, Li MX, Song Q, Su J, Yu MD, Yang L, Wang XJ. Serum metabolomics strategy for understanding the therapeutic effects of Yin-Chen-Hao-Tang against Yanghuang syndrome. RSC Adv 2018; 8:7403-7413. [PMID: 35539139 PMCID: PMC9078382 DOI: 10.1039/c7ra11048k] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/28/2018] [Indexed: 01/10/2023] Open
Abstract
Yin-Chen-Hao-Tang (YCHT), a classic Chinese herbal formula, is characterized by its strong therapeutic effects of liver regulation and relief of jaundice, especially Yanghuang syndrome (YHS). YHS is a type of jaundice with damp-heat pathogenesis, and it is considered a complicated Chinese medicine syndrome (CMS). The accurate mechanism for healing YHS has not yet been completely reported. The purpose of the current research is to investigate the expression of endogenous biomarkers in YHS mice and evaluate the clinical therapeutic effect of YCHT. Serum samples were analyzed using UPLC-Q/TOF-MS techniques in order to determine differential metabolites to elucidate the functional mechanism of YCHT on YHS through metabolite profiling combined with multivariate analysis. Simultaneously, the exact diversification of YHS mice was elucidated using blood biochemistry indexes and histopathological examination, and the results indicated that YHS is markedly improved by YCHT. Unsupervised principal component analysis (PCA) patterns were constructed to dissect the variances of metabolic profiling. Overall, 22 potential biomarkers were identified using a metabolomics approach based on an accurate MS/MS approach, clustering and distinguishing analysis. The present work demonstrates that the effectiveness of YCHT against YHS prompts distinct discrepancies in metabolic profiles by adjusting biomarkers and regulating metabolic disorders. A total of 15 metabolic pathways were involved in biological disturbance. This demonstrates that metabolomic techniques are powerful means to explore the pathogenesis of CMS and the therapeutic effects of traditional Chinese formulae. The purpose of the current research is to investigate the expression of endogenous biomarkers in Yanghuang syndrome mice and evaluate the clinical therapeutic effect of Yin-Chen-Hao-Tang.![]()
Collapse
Affiliation(s)
- Xing-yuan Liu
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Ai-hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Heng Fang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Meng-xi Li
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Qi Song
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Jing Su
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Meng-die Yu
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Le Yang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Xi-jun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| |
Collapse
|
34
|
Bai S, Zhang X, Chen Z, Wang W, Hu Q, Liang Z, Shen P, Gui S, Zeng L, Liu Z, Chen J, Xie X, Huang H, Han Y, Wang H, Xie P. Insight into the metabolic mechanism of Diterpene Ginkgolides on antidepressant effects for attenuating behavioural deficits compared with venlafaxine. Sci Rep 2017; 7:9591. [PMID: 28852120 PMCID: PMC5575021 DOI: 10.1038/s41598-017-10391-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/09/2017] [Indexed: 02/05/2023] Open
Abstract
Depression is a severe and chronic mental disorder, affecting about 322 million individuals worldwide. A recent study showed that diterpene ginkgolides (DG) have antidepressant-like effects on baseline behaviours in mice. Here, we examined the effects of DG and venlafaxine (VLX) in a chronic social defeat stress model of depression. Both DG and VLX attenuated stress-induced social deficits, despair behaviour and exploratory behaviour. To elucidate the metabolic changes underlying the antidepressive effects of DG and VLX, we investigated candidate functional pathways in the prefrontal cortex using a GC-MS-based metabolomics approach. Metabolic functions and pathways analysis revealed that DG and VLX affect protein biosynthesis and nucleotide metabolism to enhance cell proliferation, with DG having a weaker impact than VLX. Glutamate and aspartate metabolism played important roles in the antidepressant effects of DG and VLX. Tyrosine degradation and cell-to-cell signaling and interaction helped discriminate the two antidepressants. L-glutamic acid was negatively correlated, while hypoxanthine was positively correlated, with the social interaction ratio. Understanding the metabolic changes produced by DG and VLX should provide insight into the mechanisms of action of these drugs and aid in the development of novel therapies for depression.
Collapse
Affiliation(s)
- Shunjie Bai
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi Chen
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wei Wang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Qingchuan Hu
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zihong Liang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Department of Neurology, The Inner Mongolia Autonomous Region people's Hospital, Hohhot, Inner Mongolia, China
| | - Peng Shen
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siwen Gui
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Li Zeng
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhao Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Xiongfei Xie
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Huang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Han
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Neurobiology, Chongqing, China.
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
35
|
Zhang A, Fang H, Wang Y, Yan G, Sun H, Zhou X, Wang Y, Liu L, Wang X. Discovery and verification of the potential targets from bioactive molecules by network pharmacology-based target prediction combined with high-throughput metabolomics. RSC Adv 2017. [DOI: 10.1039/c7ra09522h] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Natural products are an invaluable source for drug candidates. Currently, plasma metabolome has suggested that compounds present in herbs may exert bioactivity.
Collapse
Affiliation(s)
- Aihua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Heng Fang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Yangyang Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Guangli Yan
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Xiaohang Zhou
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Yuying Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine
- Macau University of Science and Technology
- China
| | - Xijun Wang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| |
Collapse
|