1
|
Gallo AL, Marfetán JA, Vélez ML. Antioxidant Activities of Exopolysaccharides Extracts from Two Endemic Fungi from Patagonia. Curr Microbiol 2024; 81:361. [PMID: 39287836 DOI: 10.1007/s00284-024-03883-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
A great number of free radicals have a negative impact on the human body, and an increased interest in the identification of new natural molecules with antioxidant properties has emerged due to concerns about synthetic antioxidants. Here, the antioxidant effect of four exo-polysaccharides (EPS) extracts obtained from submerged cultivation of Nothophellinus andinopatagonicus and Pseudoinonotus crustosus (N and P, respectively) in two culture media (M1 and M2) at 2 concentrations (100 and 250 µg/ml) was studied; then, its relation with the chemical composition of the EPS was evaluated. To assess the antioxidant activities of the extracts, several in vitro assays were performed: DPPH and ABTS radical scavenging, ferric-reducing antioxidant power, chelating ability on ferrous ions, and inhibition of the lipid peroxidation. The concentrations tested here were much lower than those reported in previous works. Despite variations in chemical composition and monosaccharide profiles among the extracts, all demonstrated antioxidant activity, although the type of activity differed; only P-M1 exhibited a good antioxidant activity across all assays. This extract contained the highest proportion of phenolic compounds, and also displayed the highest radical scavenging activity. Although the utilization of polysaccharides as functional food ingredients remains limited, we propose P-M1 as a promising candidate for a nutraceutical product. Additionally, a formulation could be made with a combination of extracts to create an antioxidant-rich supplement. Additional research is needed to confirm our findings in a cellular environment and to elucidate the mechanisms that drive their antioxidant activities, ultimately facilitating their development and utilization as nutraceutical products.
Collapse
Affiliation(s)
- Ana L Gallo
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), ruta 259 km 16, CP 9200, Esquel, Chubut, Argentina
- Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (Agencia I+D+I), Buenos Aires, Argentina
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), ruta 259, CP 9200, Esquel, Chubut, Argentina
| | - Jorge A Marfetán
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), ruta 259 km 16, CP 9200, Esquel, Chubut, Argentina
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María L Vélez
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), ruta 259 km 16, CP 9200, Esquel, Chubut, Argentina.
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), ruta 259, CP 9200, Esquel, Chubut, Argentina.
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Yang Y, Pian Y, Li J, Xu L, Lu Z, Dai Y, Li Q. Integrative analysis of genome and transcriptome reveal the genetic basis of high temperature tolerance in pleurotus giganteus (Berk. Karun & Hyde). BMC Genomics 2023; 24:552. [PMID: 37723428 PMCID: PMC10506213 DOI: 10.1186/s12864-023-09669-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Pleurotus giganteus is a commonly cultivated mushroom with notable high temperature resistance, making it significant for the growth of the edible fungi industry in the tropics. Despite its practical importance,, the genetic mechanisms underlying its ability to withstand high temperature tolerance remain elusive. RESULTS In this study, we performed high-quality genome sequencing of a monokaryon isolated from a thermotolerant strain of P. giganteus. The genome size was found to be 40.11 Mb, comprising 17 contigs and 13,054 protein-coding genes. Notably, some genes related to abiotic stress were identified in genome, such as genes regulating heat shock protein, protein kinase activity and signal transduction. These findings provide valuable insights into the genetic basis of P. giganteus' high temperature resistance. Furthermore, the phylogenetic tree showed that P. giganteus was more closely related to P. citrinopileatus than other Pleurotus species. The divergence time between Pleurotus and Lentinus was estimated as 153.9 Mya, and they have a divergence time with Panus at 168.3 Mya, which proved the taxonomic status of P. giganteus at the genome level. Additionally, a comparative transcriptome analysis was conducted between mycelia treated with 40 °C heat shock for 18 h (HS) and an untreated control group (CK). Among the 2,614 differentially expressed genes (DEGs), 1,303 genes were up-regulated and 1,311 were down-regulated in the HS group. The enrichment analysis showed that several genes related to abiotic stress, including heat shock protein, DnaJ protein homologue, ubiquitin protease, transcription factors, DNA mismatch repair proteins, and zinc finger proteins, were significantly up-regulated in the HS group. These genes may play important roles in the high temperature adaptation of P. giganteus. Six DEGs were selected according to fourfold expression changes and were validated by qRT-PCR, laying a good foundation for further gene function analysis. CONCLUSION Our study successfully reported a high-quality genome of P. giganteus and identified genes associated with high-temperature tolerance through an integrative analysis of the genome and transcriptome. This study lays a crucial foundation for understanding the high-temperature tolerance mechanism of P. giganteus, providing valuable insights for genetic modification of P. giganteus strains and the development of high-temperature strains for the edible fungus industry, particularly in tropical regions.
Collapse
Affiliation(s)
- Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China
| | - Yongru Pian
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China
- National Agricultural Experimental Station for Agricultural Environment, Danzhou, China
| | - Jingyi Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China
- National Agricultural Experimental Station for Agricultural Environment, Danzhou, China
| | - Lin Xu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China
- National Agricultural Experimental Station for Agricultural Environment, Danzhou, China
| | - Zhu Lu
- Jilin Academy of Vegetables and Flowers Sciences, Changchun, China
| | - Yueting Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China.
- National Agricultural Experimental Station for Agricultural Environment, Danzhou, China.
| |
Collapse
|
3
|
Yuan W, Yuan W, Zhou R, Lv G, Sun M, Zhao Y, Zheng W. Production of hispidin polyphenols from medicinal mushroom Sanghuangporus vaninii in submerged cultures. CHINESE HERBAL MEDICINES 2023. [DOI: 10.1016/j.chmed.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
4
|
Wang S, Song C, Zhao L, Xu W, Li Z, Liu X, Zhang X. GTP Binding Protein Gtr1 Cooperating with ASF1 Regulates Asexual Development in Stemphylium eturmiunum. Int J Mol Sci 2022; 23:ijms23158355. [PMID: 35955500 PMCID: PMC9369126 DOI: 10.3390/ijms23158355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 01/25/2023] Open
Abstract
The Gtr1 protein was a member of the RagA subfamily of the Ras-like small GTPase superfamily and involved in phosphate acquisition, ribosome biogenesis and epigenetic control of gene expression in yeast. However, Gtr1 regulation sexual or asexual development in filamentous fungi is barely accepted. In the study, SeGtr1, identified from Stemphylium eturmiunum, could manipulate mycelial growth, nuclear distribution of mycelium and the morphology of conidia in Segtr1 silenced strains compared with its overexpression transformants, while the sexual activity of Segtr1 silenced strains were unchanged. SeASF1, a H3/H4 chaperone, participated in nucleosome assembly/disassembly, DNA replication and transcriptional regulation. Our experiments showed that deletion Seasf1 mutants produced the hyphal fusion and abnormal conidia. Notably, we characterized that Segtr1 was down-regulated in Se∆asf1 mutants and Seasf1 was also down-regulated in SiSegtr1 strains. We further confirmed that SeGtr1 interacted with SeASF1 or SeH4 in vivo and vitro, respectively. Thus, SeGtr1 can cooperate with SeASF1 to modulate asexual development in Stemphylium eturmiunum.
Collapse
Affiliation(s)
- Shi Wang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (S.W.); (C.S.); (L.Z.); (W.X.); (Z.L.)
| | - Chunyan Song
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (S.W.); (C.S.); (L.Z.); (W.X.); (Z.L.)
| | - Lili Zhao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (S.W.); (C.S.); (L.Z.); (W.X.); (Z.L.)
| | - Wenmeng Xu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (S.W.); (C.S.); (L.Z.); (W.X.); (Z.L.)
| | - Zhuang Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (S.W.); (C.S.); (L.Z.); (W.X.); (Z.L.)
| | - Xiaoyong Liu
- College of Life Sciences, Shandong Normal University, Jinan 250014, China;
| | - Xiuguo Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (S.W.); (C.S.); (L.Z.); (W.X.); (Z.L.)
- College of Life Sciences, Shandong Normal University, Jinan 250014, China;
- Correspondence:
| |
Collapse
|
5
|
|
6
|
Nakamura T, Oh CK, Zhang X, Tannenbaum SR, Lipton SA. Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders. Antioxid Redox Signal 2021; 35:531-550. [PMID: 33957758 PMCID: PMC8388249 DOI: 10.1089/ars.2021.0081] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: Physiological concentrations of nitric oxide (NO•) and related reactive nitrogen species (RNS) mediate multiple signaling pathways in the nervous system. During inflammaging (chronic low-grade inflammation associated with aging) and in neurodegenerative diseases, excessive RNS contribute to synaptic and neuronal loss. "NO signaling" in both health and disease is largely mediated through protein S-nitrosylation (SNO), a redox-based posttranslational modification with "NO" (possibly in the form of nitrosonium cation [NO+]) reacting with cysteine thiol (or, more properly, thiolate anion [R-S-]). Recent Advances: Emerging evidence suggests that S-nitrosylation occurs predominantly via transnitros(yl)ation. Mechanistically, the reaction involves thiolate anion, as a nucleophile, performing a reversible nucleophilic attack on a nitroso nitrogen to form an SNO-protein adduct. Prior studies identified transnitrosylation reactions between glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-nuclear proteins, thioredoxin-caspase-3, and X-linked inhibitor of apoptosis (XIAP)-caspase-3. Recently, we discovered that enzymes previously thought to act in completely disparate biochemical pathways can transnitrosylate one another during inflammaging in an unexpected manner to mediate neurodegeneration. Accordingly, we reported a concerted tricomponent transnitrosylation network from Uch-L1-to-Cdk5-to-Drp1 that mediates synaptic damage in Alzheimer's disease. Critical Issues: Transnitrosylation represents a critical chemical mechanism for transduction of redox-mediated events to distinct subsets of proteins. Although thousands of thiol-containing proteins undergo S-nitrosylation, how transnitrosylation regulates a myriad of neuronal attributes is just now being uncovered. In this review, we highlight recent progress in the study of the chemical biology of transnitrosylation between proteins as a mechanism of disease. Future Directions: We discuss future areas of study of protein transnitrosylation that link our understanding of aging, inflammation, and neurodegenerative diseases. Antioxid. Redox Signal. 35, 531-550.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Chang-Ki Oh
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Xu Zhang
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stuart A Lipton
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA.,Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
7
|
Zhao Y, Zheng W. Deciphering the antitumoral potential of the bioactive metabolites from medicinal mushroom Inonotus obliquus. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113321. [PMID: 32877719 DOI: 10.1016/j.jep.2020.113321] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/09/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The crude extracts of the medicinal mushroom Inonotus obliquus have been used as an effective traditional medicine to treat malicious tumors, gastritis, gastric ulcers, and other inflammatory conditions in Russia and most Baltic countries. AIM OF THIS REVIEW Deciphering the antitumoral potential of the bioactive metabolites from I. obliquus and addressing its possibility to be used as effective agents for tumor treatment, restoration of compromised immunity and protection of gastrointestinal damage caused by chemotherapy. MATERIALS AND METHODS We analysed the current achievements and dilemma in tumor chemo- or immunotherapy. In this context, we searched the published literatures on I. obliquus covering from 1990 to 2020, and summarized the activities of antitumor, antioxidation, and immunomodulation by the polysaccharides, triterpenoids, small phenolic compounds, and hispidin polyphenols. By comparing the merits and shortcomings of current and traditional methodology for tumor treatment, we further addressed feasibility for the use of I. obliquus as an effective natural drug for tumor treatment and prevention. RESULTS The diverse bioactive metabolites confer I. obliquus great potential to inhibit tumor growth and metastasis. Its antitumor activities are achieved either through suppressing multiple oncogenic signals including but not limited to the activation of NF-κB and FAK, and the expression of RhoA/MMP-9 via ERK1/2 and PI3K/Akt signaling pathway. The antitumor activities can also be achieved by inhibiting tyrosinase activity via PAK1-dependent signaling pathway or altering lysosomal membrane permeabilization through blocking tubulin polymerization and/or disturbing energy metabolism through LKB1/AMPK pathway. In addition, the metabolites from I. obliquus also harbour the potentials to reverse MDR either through selective inhibition on P-gp/ABCB1 or MRP1/ABCC1 proteins or the induction of G2/M checkpoint arrest in tumor cells of chemoresistant phenotypes mediated by Nox/ROS/NF-kB/STAT3 signaling pathway. In addition to the eminent effects in tumor inhibition, the metabolites in I. obliquus also exhibit immunomodulatory potential to restore the compromised immunity and protect against ulcerative damage of GI tract caused by chemotherapy. CONCLUSIONS I. obliquus possesses the potential to reduce incidence of tumorigenesis in healthy people. For those whose complete remission has been achieved by chemotherapy, administration of the fungus will inhibit the activation of upstream oncogenic signals and thereby prevent metastasis; for those who are in the process of chemotherapy administration of the fungus will not only chemosensitize the tumor cells and thereby increasing the chemotherapeutic effects, but also help to restore the compromised immunity and protect against ulcerative GI tract damage and other side-effects induced by chemotherapy.
Collapse
Affiliation(s)
- Yanxia Zhao
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Weifa Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
8
|
Jedelská T, Luhová L, Petřivalský M. Thioredoxins: Emerging Players in the Regulation of Protein S-Nitrosation in Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1426. [PMID: 33114295 PMCID: PMC7690881 DOI: 10.3390/plants9111426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/01/2023]
Abstract
S-nitrosation has been recognized as an important mechanism of ubiquitous posttranslational modification of proteins on the basis of the attachment of the nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-based modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. This review summarizes the current knowledge on the emerging role of the thioredoxin-thioredoxin reductase (TRXR-TRX) system in protein denitrosation. Important advances have been recently achieved on plant thioredoxins (TRXs) and their properties, regulation, and functions in the control of protein S-nitrosation in plant root development, translation of photosynthetic light harvesting proteins, and immune responses. Future studies of plants with down- and upregulated TRXs together with the application of genomics and proteomics approaches will contribute to obtain new insights into plant S-nitrosothiol metabolism and its regulation.
Collapse
Affiliation(s)
| | | | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (T.J.); (L.L.)
| |
Collapse
|
9
|
Zhao Y, Lim J, Xu J, Yu J, Zheng W. Nitric oxide as a developmental and metabolic signal in filamentous fungi. Mol Microbiol 2020; 113:872-882. [DOI: 10.1111/mmi.14465] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Yanxia Zhao
- Key Laboratory for Biotechnology of Medicinal Plants Jiangsu Normal University Xuzhou China
| | - Jieyin Lim
- Departments of Bacteriology and Genetics Food Research Institute University of Wisconsin‐Madison Madison Wisconsin USA
| | - Jianyang Xu
- Department of Traditional Chinese Medicine General Hospital of Shenzhen University Shenzhen China
| | - Jae‐Hyuk Yu
- Departments of Bacteriology and Genetics Food Research Institute University of Wisconsin‐Madison Madison Wisconsin USA
- Department of Systems Biotechnology Konkuk University Seoul Republic of Korea
| | - Weifa Zheng
- Key Laboratory for Biotechnology of Medicinal Plants Jiangsu Normal University Xuzhou China
| |
Collapse
|
10
|
Fradj N, Gonçalves Dos Santos KC, de Montigny N, Awwad F, Boumghar Y, Germain H, Desgagné-Penix I. RNA-Seq de Novo Assembly and Differential Transcriptome Analysis of Chaga ( Inonotus obliquus) Cultured with Different Betulin Sources and the Regulation of Genes Involved in Terpenoid Biosynthesis. Int J Mol Sci 2019; 20:E4334. [PMID: 31487924 PMCID: PMC6770048 DOI: 10.3390/ijms20184334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/31/2019] [Accepted: 09/01/2019] [Indexed: 12/15/2022] Open
Abstract
Chaga (Inonotus obliquus) is a medicinal fungus used in traditional medicine of Native American and North Eurasian cultures. Several studies have demonstrated the medicinal properties of chaga's bioactive molecules. For example, several terpenoids (e.g., betulin, betulinic acid and inotodiol) isolated from I. obliquus cells have proven effectiveness in treating different types of tumor cells. However, the molecular mechanisms and regulation underlying the biosynthesis of chaga terpenoids remain unknown. In this study, we report on the optimization of growing conditions for cultured I. obliquus in presence of different betulin sources (e.g., betulin or white birch bark). It was found that better results were obtained for a liquid culture pH 6.2 at 28 °C. In addition, a de novo assembly and characterization of I. obliquus transcriptome in these growth conditions using Illumina technology was performed. A total of 219,288,500 clean reads were generated, allowing for the identification of 20,072 transcripts of I. obliquus including transcripts involved in terpenoid biosynthesis. The differential expression of these genes was confirmed by quantitative-PCR. This study provides new insights on the molecular mechanisms and regulation of I. obliquus terpenoid production. It also contributes useful molecular resources for gene prediction or the development of biotechnologies for the alternative production of terpenoids.
Collapse
Affiliation(s)
- Narimene Fradj
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, QC G9A 5H7, Canada.
- Centre d'étude des Procédés Chimiques du Québec, 6220 rue Sherbrooke Est, Montréal, Québec, QC H1N 1C1, Canada.
| | - Karen Cristine Gonçalves Dos Santos
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, QC G9A 5H7, Canada.
| | - Nicolas de Montigny
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, QC G9A 5H7, Canada.
| | - Fatima Awwad
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, QC G9A 5H7, Canada.
| | - Yacine Boumghar
- Centre d'étude des Procédés Chimiques du Québec, 6220 rue Sherbrooke Est, Montréal, Québec, QC H1N 1C1, Canada.
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, QC G9A 5H7, Canada.
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, QC G9A 5H7, Canada.
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, QC G9A 5H7, Canada.
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, QC G9A 5H7, Canada.
| |
Collapse
|
11
|
Jahnová J, Luhová L, Petřivalský M. S-Nitrosoglutathione Reductase-The Master Regulator of Protein S-Nitrosation in Plant NO Signaling. PLANTS (BASEL, SWITZERLAND) 2019. [PMID: 30795534 DOI: 10.3390/plants80200482019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
S-nitrosation has been recognized as an important mechanism of protein posttranslational regulations, based on the attachment of a nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-base modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. In plant, S-nitrosation is involved in a wide array of cellular processes during normal development and stress responses. This review summarizes current knowledge on S-nitrosoglutathione reductase (GSNOR), a key enzyme which regulates intracellular levels of S-nitrosoglutathione (GSNO) and indirectly also of protein S-nitrosothiols. GSNOR functions are mediated by its enzymatic activity, which catalyzes irreversible GSNO conversion to oxidized glutathione within the cellular catabolism of nitric oxide. GSNOR is involved in the maintenance of balanced levels of reactive nitrogen species and in the control of cellular redox state. Multiple functions of GSNOR in plant development via NO-dependent and -independent signaling mechanisms and in plant defense responses to abiotic and biotic stress conditions have been uncovered. Extensive studies of plants with down- and upregulated GSNOR, together with application of transcriptomics and proteomics approaches, seem promising for new insights into plant S-nitrosothiol metabolism and its regulation.
Collapse
Affiliation(s)
- Jana Jahnová
- Department of Biochemistry, Faculty of Science, Palacky University, Šlechtitelů 11, 78371 Olomouc, Czech Republic.
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacky University, Šlechtitelů 11, 78371 Olomouc, Czech Republic.
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacky University, Šlechtitelů 11, 78371 Olomouc, Czech Republic.
| |
Collapse
|
12
|
S-Nitrosoglutathione Reductase-The Master Regulator of Protein S-Nitrosation in Plant NO Signaling. PLANTS 2019; 8:plants8020048. [PMID: 30795534 PMCID: PMC6409631 DOI: 10.3390/plants8020048] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/16/2022]
Abstract
S-nitrosation has been recognized as an important mechanism of protein posttranslational regulations, based on the attachment of a nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-base modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. In plant, S-nitrosation is involved in a wide array of cellular processes during normal development and stress responses. This review summarizes current knowledge on S-nitrosoglutathione reductase (GSNOR), a key enzyme which regulates intracellular levels of S-nitrosoglutathione (GSNO) and indirectly also of protein S-nitrosothiols. GSNOR functions are mediated by its enzymatic activity, which catalyzes irreversible GSNO conversion to oxidized glutathione within the cellular catabolism of nitric oxide. GSNOR is involved in the maintenance of balanced levels of reactive nitrogen species and in the control of cellular redox state. Multiple functions of GSNOR in plant development via NO-dependent and -independent signaling mechanisms and in plant defense responses to abiotic and biotic stress conditions have been uncovered. Extensive studies of plants with down- and upregulated GSNOR, together with application of transcriptomics and proteomics approaches, seem promising for new insights into plant S-nitrosothiol metabolism and its regulation.
Collapse
|
13
|
Disturbance in biosynthesis of arachidonic acid impairs the sexual development of the onion blight pathogen Stemphylium eturmiunum. Curr Genet 2019; 65:759-771. [PMID: 30649584 DOI: 10.1007/s00294-019-00930-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/25/2018] [Accepted: 01/03/2019] [Indexed: 01/27/2023]
Abstract
The formation of sexual fruiting bodies for plant pathogenic fungi is a key strategy to propagate their progenies upon environmental stresses. Stemphylium eturmiunum is an opportunistic plant pathogen fungus causing blight in onion. This self-fertilizing filamentous ascomycete persists in the soil by forming pseudothecia, the sexual fruiting body which helps the fungus survive in harsh environments. However, the regulatory mechanism of pseudothecial formation remains unknown. To uncover the mechanism for pseudothecial formation so as to find a practical measure to control the propagation of this onion pathogen, we tentatively used DNA methyltransferase inhibitor 5-azacytidine (5-AC) to treat S. eturmiunum. 5-AC treatment silenced the gene-encoding monoacylglycerol lipase (magl) concomitant with the presence of the inheritable fluffy phenotype and defectiveness in pseudothecial development. Moreover, the silence of magl also resulted in a reduction of arachidonic acid (AA) formation from 27 ± 3.1 µg/g to 9.5 ± 1.5 µg/g. To correlate the biosynthesis of AA and pseudothecial formation, we created magl knockdown and overexpression strains. Knockdown of magl reduced AA to 11 ± 2.4 µg/g, which subsequently disabled pseudothecial formation. In parallel, overexpression of magl increased AA to 37 ± 3.4 µg/g, which also impaired pseudothecial formation. Furthermore, exogenous addition of AA to the culture of magl-silenced or magl knockdown strains rescued the pseudothecial formation but failed in the gpr1 knockdown strain of S. eturmiunum, which implicates the involvement of AA in signal transduction via a putative G protein-coupled receptor 1. Thus, AA at a cellular level of 27 ± 3.1 µg/g is essential for sexual development of S. eturmiunum. Disturbance in the biosynthesis of AA by up- and down-regulating the expression of magl disables the pseudothecial development. The specific requirement for AA in pseudothecial development by S. eturmiunum provides a hint to curb this onion pathogen: to impede pseudothecial formation by application of AA.
Collapse
|