1
|
Scheiblich H, Eikens F, Wischhof L, Opitz S, Jüngling K, Cserép C, Schmidt SV, Lambertz J, Bellande T, Pósfai B, Geck C, Spitzer J, Odainic A, Castro-Gomez S, Schwartz S, Boussaad I, Krüger R, Glaab E, Di Monte DA, Bano D, Dénes Á, Latz E, Melki R, Pape HC, Heneka MT. Microglia rescue neurons from aggregate-induced neuronal dysfunction and death through tunneling nanotubes. Neuron 2024; 112:3106-3125.e8. [PMID: 39059388 DOI: 10.1016/j.neuron.2024.06.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/12/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Microglia are crucial for maintaining brain health and neuron function. Here, we report that microglia establish connections with neurons using tunneling nanotubes (TNTs) in both physiological and pathological conditions. These TNTs facilitate the rapid exchange of organelles, vesicles, and proteins. In neurodegenerative diseases like Parkinson's and Alzheimer's disease, toxic aggregates of alpha-synuclein (α-syn) and tau accumulate within neurons. Our research demonstrates that microglia use TNTs to extract neurons from these aggregates, restoring neuronal health. Additionally, microglia share their healthy mitochondria with burdened neurons, reducing oxidative stress and normalizing gene expression. Disrupting mitochondrial function with antimycin A before TNT formation eliminates this neuroprotection. Moreover, co-culturing neurons with microglia and promoting TNT formation rescues suppressed neuronal activity caused by α-syn or tau aggregates. Notably, TNT-mediated aggregate transfer is compromised in microglia carrying Lrrk22(Gly2019Ser) or Trem2(T66M) and (R47H) mutations, suggesting a role in the pathology of these gene variants in neurodegenerative diseases.
Collapse
Affiliation(s)
- Hannah Scheiblich
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Frederik Eikens
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Sabine Opitz
- Institute of Neuropathology, University of Bonn, Bonn, Germany
| | - Kay Jüngling
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Csaba Cserép
- Institute of Experimental Medicine, Budapest, Hungary
| | - Susanne V Schmidt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Tracy Bellande
- Institut François Jacob, CEA and Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Balázs Pósfai
- Institute of Experimental Medicine, Budapest, Hungary
| | - Charlotte Geck
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Jasper Spitzer
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Alexandru Odainic
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Ibrahim Boussaad
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | | | - Daniele Bano
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Ádám Dénes
- Institute of Experimental Medicine, Budapest, Hungary
| | - Eike Latz
- German Center for Neurodegenerative Diseases, Bonn, Germany; Institute of innate immunity, University Hospital Bonn, Bonn, Germany
| | - Ronald Melki
- Institut François Jacob, CEA and Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases, Bonn, Germany; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg; Institute of innate immunity, University Hospital Bonn, Bonn, Germany; Department of Infectious Diseases and Immunology, University of Massachusetts, Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Nishida S, Matovelo SA, Kajimoto T, Nakamura SI, Okada T. Extracellular α-synuclein impairs sphingosine 1-phosphate receptor type 3 (S1PR3)-regulated lysosomal delivery of cathepsin D in HeLa cells. Genes Cells 2024; 29:207-216. [PMID: 38163647 DOI: 10.1111/gtc.13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
α-Synuclein (α-Syn)-positive intracellular fibrillar protein deposits, known as Lewy bodies, are thought to be involved in the pathogenesis of Parkinson's disease (PD). Although recent lines of evidence suggested that extracellular α-Syn secreted from pathogenic neurons contributes to the propagation of PD pathology, the precise mechanism of action remains unclear. We have reported that extracellular α-Syn caused sphingosine 1-phosphate (S1P) receptor type 1 (S1PR1) uncoupled from Gi and inhibited downstream G-protein signaling in SH-SY5Y cells, although its patho/physiological role remains to be clarified. Here we show that extracellular α-Syn caused S1P receptor type 3 (S1PR3) uncoupled from G protein in HeLa cells. Further studies indicated that α-Syn treatment reduced cathepsin D activity while enhancing the secretion of immature pro-cathepsin D into cell culture medium, suggesting that lysosomal delivery of cathepsin D was disturbed. Actually, extracellular α-Syn attenuated the retrograde trafficking of insulin-like growth factor-II/mannose 6-phosphate (IGF-II/M6P) receptor, which is under the regulation of S1PR3. These findings shed light on the understanding of dissemination of the PD pathology, that is, the mechanism underlying how extracellular α-Syn secreted from pathogenic cells causes lysosomal dysfunction of the neighboring healthy cells, leading to propagation of the disease.
Collapse
Affiliation(s)
- Susumu Nishida
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shubi Ambwene Matovelo
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Biochemistry and Physiology, School of Medicine and Dentistry, The University of Dodoma, Dodoma, Tanzania
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taro Okada
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
3
|
Fernández-Santos B, Caro-Vega JM, Sola-Idígora N, Lazarini-Suárez C, Mañas-García L, Duarte P, Fuerte-Hortigón A, Ybot-González P. Molecular similarity between the mechanisms of epithelial fusion and fetal wound healing during the closure of the caudal neural tube in mouse embryos. Dev Dyn 2021; 250:955-973. [PMID: 33501723 DOI: 10.1002/dvdy.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Neural tube (NT) closure is a complex developmental process that takes place in the early stages of embryogenesis and that is a key step in neurulation. In mammals, the process by which the neural plate generates the NT requires organized cell movements and tissue folding, and it terminates with the fusion of the apposed ends of the neural folds. RESULTS Here we describe how almost identical cellular and molecular machinery is used to fuse the spinal neural folds as that involved in the repair of epithelial injury in the same area of the embryo. For both natural and wound activated closure of caudal neural tissue, hyaluronic acid and platelet-derived growth factor signaling appear to be crucial for the final fusion step. CONCLUSIONS There seems to be no general wound healing machinery for all tissues but rather, a tissue-specific epithelial fusion machinery that embryos activate when necessary after abnormal epithelial opening.
Collapse
Affiliation(s)
- Beatriz Fernández-Santos
- Neurodevelopment Research Group, Institute of Biomedicine of Seville (IBiS)/Hospital Virgen del Rocio/US/CSIC, Sevilla, Spain
| | - José Manuel Caro-Vega
- Neurodevelopment Research Group, Institute of Biomedicine of Seville (IBiS)/Hospital Virgen del Rocio/US/CSIC, Sevilla, Spain
| | - Noelia Sola-Idígora
- Neurodevelopment Research Group, Institute of Biomedicine of Seville (IBiS)/Hospital Virgen del Rocio/US/CSIC, Sevilla, Spain
| | - Cecilia Lazarini-Suárez
- Neurodevelopment Research Group, Institute of Biomedicine of Seville (IBiS)/Hospital Virgen del Rocio/US/CSIC, Sevilla, Spain
| | - Laura Mañas-García
- Neurodevelopment Research Group, Institute of Biomedicine of Seville (IBiS)/Hospital Virgen del Rocio/US/CSIC, Sevilla, Spain
| | - Patrícia Duarte
- Neurodevelopment Research Group, Institute of Biomedicine of Seville (IBiS)/Hospital Virgen del Rocio/US/CSIC, Sevilla, Spain
| | | | - Patricia Ybot-González
- Neurodevelopment Research Group, Institute of Biomedicine of Seville (IBiS)/Hospital Virgen del Rocio/US/CSIC, Sevilla, Spain.,Department of Neurology and Neurophysiology, Hospital Virgen de Macarena, Sevilla, Spain
| |
Collapse
|
4
|
Matovelo SA, Zhang L, Mohamed NNI, Kajimoto T, Ijuin T, Okada T, Nakamura SI. Involvement of Receptor-Mediated S1P Signaling in EGF-Induced Macropinocytosis in COS7 Cells. THE KOBE JOURNAL OF MEDICAL SCIENCES 2020; 66:E94-E101. [PMID: 33431782 PMCID: PMC7837661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 06/12/2023]
Abstract
Macropinocytosis is a highly conserved cellular process of endocytosis by which extracellular fluid and nutrients are taken up into cells through large, heterogeneous vesicles known as macropinosomes. Growth factors such as epidermal growth factor (EGF) can induce macropinocytosis in many types of cells, although precise mechanism underlying EGF-induced macropinocytosis remains unclear. In the present studies we have shown the involvement of S1P signaling in EGF-induced macropinocytosis in COS7 cells. First, EGF-induced macropinocytosis was strongly impaired in sphingosine kinase isozymes, SphK1 or SphK2-depleted cells, which was completely rescued by the expression of the corresponding wild-type isozyme but not the catalytically inactive one, suggesting the involvement of sphingosine 1-phosphate (S1P) in this phenomenon. Next, we observed that EGF-induced macropinocytosis was strongly inhibited in S1P type 1 receptor (S1P1R)-knockdown cells, implying involvement of S1P1R in this event. Furthermore, we could successfully demonstrate EGF-induced trans-activation of S1P1R using one-molecular fluorescence resonance energy transfer (FRET) technique. Moreover, for EGF-induced Rac1 activation, a step essential to F-actin formation and subsequent macropinocytosis, S1P signaling is required for its full activation, as judged by FRET analysis. These findings indicate that growth factors such as EGF utilize receptor-mediated S1P signaling for the regulation of macropinocytosis to fulfil vital cell activity.
Collapse
Affiliation(s)
- Shubi Ambwene Matovelo
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Lifang Zhang
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Nesma Nabil Ibrahim Mohamed
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Department of Agricultural Biochemistry, Faculty of Agriculture, Ain shams University, Cairo, Egypt
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takeshi Ijuin
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Taro Okada
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
5
|
Kim H, Calatayud C, Guha S, Fernández-Carasa I, Berkowitz L, Carballo-Carbajal I, Ezquerra M, Fernández-Santiago R, Kapahi P, Raya Á, Miranda-Vizuete A, Lizcano JM, Vila M, Caldwell KA, Caldwell GA, Consiglio A, Dalfo E. The Small GTPase RAC1/CED-10 Is Essential in Maintaining Dopaminergic Neuron Function and Survival Against α-Synuclein-Induced Toxicity. Mol Neurobiol 2018; 55:7533-7552. [PMID: 29429047 PMCID: PMC6096980 DOI: 10.1007/s12035-018-0881-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/07/2018] [Indexed: 12/22/2022]
Abstract
Parkinson's disease is associated with intracellular α-synuclein accumulation and ventral midbrain dopaminergic neuronal death in the Substantia Nigra of brain patients. The Rho GTPase pathway, mainly linking surface receptors to the organization of the actin and microtubule cytoskeletons, has been suggested to participate to Parkinson's disease pathogenesis. Nevertheless, its exact contribution remains obscure. To unveil the participation of the Rho GTPase family to the molecular pathogenesis of Parkinson's disease, we first used C elegans to demonstrate the role of the small GTPase RAC1 (ced-10 in the worm) in maintaining dopaminergic function and survival in the presence of alpha-synuclein. In addition, ced-10 mutant worms determined an increase of alpha-synuclein inclusions in comparison to control worms as well as an increase in autophagic vesicles. We then used a human neuroblastoma cells (M17) stably over-expressing alpha-synuclein and found that RAC1 function decreased the amount of amyloidogenic alpha-synuclein. Further, by using dopaminergic neurons derived from patients of familial LRRK2-Parkinson's disease we report that human RAC1 activity is essential in the regulation of dopaminergic cell death, alpha-synuclein accumulation, participates in neurite arborization and modulates autophagy. Thus, we determined for the first time that RAC1/ced-10 participates in Parkinson's disease associated pathogenesis and established RAC1/ced-10 as a new candidate for further investigation of Parkinson's disease associated mechanisms, mainly focused on dopaminergic function and survival against α-synuclein-induced toxicity.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Carles Calatayud
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08028, L'Hospitalet de Llobregat, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08908, Spain
- Center of Regenerative Medicine in Barcelona (CMRB), Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospital Duran i Reynals, 08908, L'Hospitalet de Llobregat, Spain
| | - Sanjib Guha
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Irene Fernández-Carasa
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08028, L'Hospitalet de Llobregat, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08908, Spain
| | - Laura Berkowitz
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Mario Ezquerra
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Department of Neurology: Clinical and Experimental Research, IDIBAPS - Hospital Clínic de Barcelona, 08036, Barcelona, Spain
| | - Rubén Fernández-Santiago
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Department of Neurology: Clinical and Experimental Research, IDIBAPS - Hospital Clínic de Barcelona, 08036, Barcelona, Spain
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Ángel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospital Duran i Reynals, 08908, L'Hospitalet de Llobregat, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla, 41013, Sevilla, Spain
| | - Jose Miguel Lizcano
- Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08028, L'Hospitalet de Llobregat, Spain.
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08908, Spain.
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Spain.
| | - Esther Dalfo
- Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain.
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Can Baumann, 08500, Vic, Spain.
| |
Collapse
|
6
|
Badawy SMM, Okada T, Kajimoto T, Hirase M, Matovelo SA, Nakamura S, Yoshida D, Ijuin T, Nakamura SI. Extracellular α-synuclein drives sphingosine 1-phosphate receptor subtype 1 out of lipid rafts, leading to impaired inhibitory G-protein signaling. J Biol Chem 2018; 293:8208-8216. [PMID: 29632069 DOI: 10.1074/jbc.ra118.001986] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/04/2018] [Indexed: 11/06/2022] Open
Abstract
α-Synuclein (α-Syn)-positive intracytoplasmic inclusions, known as Lewy bodies, are thought to be involved in the pathogenesis of Lewy body diseases, such as Parkinson's disease (PD). Although growing evidence suggests that cell-to-cell transmission of α-Syn is associated with the progression of PD and that extracellular α-Syn promotes formation of inclusion bodies, its precise mechanism of action in the extracellular space remains unclear. Here, as indicated by both conventional fractionation techniques and FRET-based protein-protein interaction analysis, we demonstrate that extracellular α-Syn causes expulsion of sphingosine 1-phosphate receptor subtype 1 (S1P1R) from the lipid raft fractions. S1P1R regulates vesicular trafficking, and its expulsion involved α-Syn binding to membrane-surface gangliosides. Consequently, the S1P1R became refractory to S1P stimulation required for activating inhibitory G-protein (Gi) in the plasma membranes. Moreover, the extracellular α-Syn also induced uncoupling of the S1P1R on internal vesicles, resulting in the reduced amount of CD63 molecule (CD63) in the lumen of multivesicular endosomes, together with a decrease in CD63 in the released exosomes from α-Syn-treated cells. Furthermore, cholesterol-depleting agent-induced S1P1R expulsion from the rafts also resulted in S1P1R uncoupling. Taken together, these results suggest that extracellular α-Syn-induced expulsion of S1P1R from lipid rafts promotes the uncoupling of S1P1R from Gi, thereby blocking subsequent Gi signals, such as inhibition of cargo sorting into exosomal vesicles in multivesicular endosomes. These findings help shed additional light on PD pathogenesis.
Collapse
Affiliation(s)
- Shaymaa Mohamed Mohamed Badawy
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Taro Okada
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Mitsuhiro Hirase
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shubi Ambwene Matovelo
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shunsuke Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Daisuke Yoshida
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Takeshi Ijuin
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan.
| |
Collapse
|
7
|
Conde MA, Alza NP, Iglesias González PA, Scodelaro Bilbao PG, Sánchez Campos S, Uranga RM, Salvador GA. Phospholipase D1 downregulation by α-synuclein: Implications for neurodegeneration in Parkinson's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:639-650. [PMID: 29571767 DOI: 10.1016/j.bbalip.2018.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 11/17/2022]
Abstract
We have previously shown that phospholipase D (PLD) pathways have a role in neuronal degeneration; in particular, we found that PLD activation is associated with synaptic injury induced by oxidative stress. In the present study, we investigated the effect of α-synuclein (α-syn) overexpression on PLD signaling. Wild Type (WT) α-syn was found to trigger the inhibition of PLD1 expression as well as a decrease in ERK1/2 phosphorylation and expression levels. Moreover, ERK1/2 subcellular localization was shown to be modulated by WT α-syn in a PLD1-dependent manner. Indeed, PLD1 inhibition was found to alter the neurofilament network and F-actin distribution regardless of the presence of WT α-syn. In line with this, neuroblastoma cells expressing WT α-syn exhibited a degenerative-like phenotype characterized by a marked reduction in neurofilament light subunit (NFL) expression and the rearrangement of the F-actin organization, compared with either the untransfected or the empty vector-transfected cells. The gain of function of PLD1 through the overexpression of its active form had the effect of restoring NFL expression in WT α-syn neurons. Taken together, our findings reveal an unforeseen role for α-syn in PLD regulation: PLD1 downregulation may constitute an early mechanism in the initial stages of WT α-syn-triggered neurodegeneration.
Collapse
Affiliation(s)
- Melisa A Conde
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Argentina; Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Natalia P Alza
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Argentina; Departamento de Química-UNS, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Pablo A Iglesias González
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Paola G Scodelaro Bilbao
- Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Sofía Sánchez Campos
- Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina
| | - Romina M Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Argentina; Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Argentina; Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
8
|
HIRAI CHIHOKO, BADAWY SHAYMAAMOHAMEDMOHAMED, ZHANG LIFANG, OKADA TARO, KAJIMOTO TAKETOSHI, NAKAMURA SHUNICHI. Phospholipase D is Dispensable for Epidermal Growth Factor-Induced Chemotaxis. THE KOBE JOURNAL OF MEDICAL SCIENCES 2017; 62:E162-E167. [PMID: 28490713 PMCID: PMC5436530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/26/2016] [Indexed: 06/07/2023]
Abstract
α-Synuclein (α-Syn) is implicated in several neurodegenerative disorders, including Parkinson's disease, known collectively as the synucleinopathies. α-Syn is known to be secreted from the cells and may contribute to the progression of the disease. Although extracellular α-Syn is shown to impair platelet-derived growth factor-induced chemotaxis, molecular mechanism of α-Syn-induced motility failure remains elusive. Here we have aimed at phospholipase D (PLD) as a potential target for α-Syn and examined the involvement of this enzyme in α-Syn action. Indeed, extracellular α-Syn caused inhibition of agonist-induced PLD activation. However, inhibition of hydrolytic activity of PLD by 1-butanol treatment showed little or no effect on agonist-induced chemotaxis. These results suggest that some signaling pathways other than PLD may be involved in α-Syn-induced inhibition of chemotaxis.
Collapse
|
9
|
Extracellular α-synuclein induces sphingosine 1-phosphate receptor subtype 1 uncoupled from inhibitory G-protein leaving β-arrestin signal intact. Sci Rep 2017; 7:44248. [PMID: 28300069 PMCID: PMC5353548 DOI: 10.1038/srep44248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/06/2017] [Indexed: 01/26/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder. The presence of α-synuclein (α-Syn)-positive intracytoplasmic inclusions, known as Lewy bodies, is the cytopathological hallmark of PD. Increasing bodies of evidence suggest that cell-to-cell transmission of α-Syn plays a role in the progression of PD. Although extracellular α-Syn is known to cause abnormal cell motility, the precise mechanism remains elusive. Here we show that impairment of platelet-derived growth factor-induced cell motility caused by extracellular α-Syn is mainly attributed to selective inhibition of sphingosine 1-phosphate (S1P) signalling. Treatment of human neuroblastoma cells with recombinant α-Syn caused S1P type 1 (S1P1) receptor-selective uncoupling from inhibitory G-protein (Gi) as determined by both functional and fluorescence resonance energy transfer (FRET)-based structural analyses. By contrast, α-Syn caused little or no effect on S1P2 receptor-mediated signalling. Both wild-type and α-Syn(A53T), a mutant found in familiar PD, caused uncoupling of S1P1 receptor, although α-Syn(A53T) showed stronger potency in uncoupling. Moreover, S1P1 receptor-mediated β-arrestin signal was unaltered by α-Syn(A53T). These results suggest that exogenous α-Syn modulates S1P1 receptor-mediated signalling from both Gi and β-arrestin signals into β-arrestin-biased signal. These findings uncovered a novel function of exogenous α-Syn in the cells.
Collapse
|