1
|
Yin Y, Li X, Wang M, Ling G, Zhang P. Glucose detection: In-situ colorimetric analysis with double-layer hydrogel microneedle patch based on polyvinyl alcohol and carboxymethyl chitosan. Int J Biol Macromol 2024; 277:134408. [PMID: 39097056 DOI: 10.1016/j.ijbiomac.2024.134408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Skin interstitial fluid (ISF) has emerged as a significant reservoir of biomarkers for disease diagnosis and prevention. Microneedle (MN) patches are regarded as an optimal platform for ISF extraction from the skin due to their non-invasive nature. However, challenges such as prolonged sampling durations and complex detection procedures impede timely metabolic analysis. In this investigation, we amalgamated MN technology with immobilized enzyme technology to fabricate a dual-layer MN patch integrating sampling and detection functionalities, thereby enabling in-situ colorimetric detection of hyperglycemia. The tip layer of the patch, comprising polyvinyl alcohol/carboxymethyl chitosan (PVA/CMCS) MN, was synthesized utilizing a chemical crosslinking approach for the first time, with glucose oxidase (GOx) being incorporated. The hydrophilicity of CMCS expedited the extraction process, facilitating the retrieval of approximately 10 mg of ISF within 10 min. The backing layer consisted of an immobilized polyvinyl alcohol-chitosan-horseradish peroxidase (PVA-CS-HRP) hydrogel film loaded with 3,3', 5,5'-tetramethylbenzidine (TMB). Incorporating macromolecular polymer PVA and CS for HRP immobilization addressed the issue of poor stability associated with traditional natural enzymes, thereby enhancing the sensitivity of the reaction system. The in-situ colorimetric sensor facilitated minimally invasive ISF extraction and swift conversion of glucose levels into detectable color changes.
Collapse
Affiliation(s)
- Yannan Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaodan Li
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Meng Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
2
|
Wang L, Wang Y, Wu X, Wang P, Luo X, Lv S. Advances in microneedles for transdermal diagnostics and sensing applications. Mikrochim Acta 2024; 191:406. [PMID: 38898359 DOI: 10.1007/s00604-024-06458-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Microneedles, the miniaturized needles, which can pierce the skin with minimal invasiveness open up new possibilities for constructing personalized Point-of-Care (POC) diagnostic platforms. Recent advances in microneedle-based POC diagnostic systems, especially their successful implementation with wearable technologies, enable biochemical detection and physiological recordings in a user-friendly manner. This review presents an overview of the current advances in microneedle-based sensor devices, with emphasis on the biological basis of transdermal sensing, fabrication, and application of different types of microneedles, and a summary of microneedle devices based on various sensing strategies. It concludes with the challenges and future prospects of this swiftly growing field. The aim is to present a critical and thorough analysis of the state-of-the-art development of transdermal diagnostics and sensing devices based on microneedles, and to bridge the gap between microneedle technology and pragmatic applications.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yingli Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Peipei Wang
- Department of Rehabilitation Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266000, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Shaoping Lv
- Department of Rehabilitation Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266000, China.
| |
Collapse
|
3
|
Khan MRR. Development of a Battery-Free, Chipless, and Highly Sensitive Radio Frequency Glucose Biosensor. MICROMACHINES 2024; 15:272. [PMID: 38399000 PMCID: PMC10891716 DOI: 10.3390/mi15020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
In our study, we designed and developed a glucose biosensor that operates without a battery or chip. This biosensor utilizes the principles of radio frequency (RF) to operate. For the construction of a glucose-sensitive interdigitated capacitor (IDC), a famous glucose-sensitive substance called phenylboronic acid (PBA) is combined with a polyvinyl chloride (PVC) and n,n-dimethylacetamide (DMAC) solution. According to the theory of radio frequency sensing, the resonance frequency shifts whenever there is a change in the capacitance of the glucose-sensitive IDC. This change is caused by the fluctuations in glucose concentrations. As far as we are aware, this is the first glucose sensor that employs the RF principle to detect changes in glucose solution concentrations using PBA as the principal glucose-sensitive material. The sensor can detect glucose levels with remarkable sensitivity, around 40.89 kHz/decade, and a broad dynamic range covering 10 μM to 1 M. Additionally, the designed biosensor has excellent linearity performance, with a value of around 0.988. The proposed glucose biosensor has several benefits: lightweight, inexpensive, easy to build, and an acceptable selectivity response. Our study concludes by comparing the proposed RF sensor's effectiveness to that of existing glucose sensors, which it outperforms.
Collapse
Affiliation(s)
- Md Rajibur Rahaman Khan
- Research Institute of Engineering and Technology, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
4
|
Huang Z, Krishnakumar H, Denomme R, Liu J. TMB +-mediated etching of urchin-like gold nanostructures for colorimetric sensing. NANOTECHNOLOGY 2023; 35:045501. [PMID: 37852225 DOI: 10.1088/1361-6528/ad0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
The morphology-dependent localized surface plasmon resonance of gold nanostructures has been widely utilized for designing sensors. One method relies on the color change of gold nanoparticles upon etching. In previous work, TMB2+oxidized from 3,3',5,5'-tetramethylbenzidine (TMB) was found to etch gold nanorods (AuNRs), leading to a spectrum of different colors. However, the preparation of TMB2+needs the addition of a strong acid and other harsh conditions. Herein, a new colorimetric biosensing platform was developed using urchin-like gold nanoparticles (AuNUs). Compared with AuNRs, the etching of AuNUs can happen under mild conditions by TMB+at pH 6, protecting enzymes and proteins from denaturation. The role of CTAB surfactant was dissected, and its bromide ions were found to be involved in the etching process. Based on these observations, a one-step colorimetric detection of H2O2was realized by using horseradish peroxidase and H2O2to oxidize TMB. Within 30 min, this system achieved a detection limit of 80 nM H2O2. This work offered fundamental insights into the etching of anisotropic gold nanostructures and optimized the etching conditions. These advancements hold promise for broader applications in biosensing and analytical chemistry.
Collapse
Affiliation(s)
- Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Harish Krishnakumar
- Nicoya Lifesciences Inc. 283 Duke St W Suite 226, Kitchener, N2H 3X7, Canada
| | - Ryan Denomme
- Nicoya Lifesciences Inc. 283 Duke St W Suite 226, Kitchener, N2H 3X7, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
5
|
Li J, Liu XP, Ye WQ, Xu ZR. Photothermal visual sensing of alkaline phosphatase based on the etching of Au@MnO 2 core-shell nanoparticles. J Colloid Interface Sci 2023; 641:568-576. [PMID: 36963250 DOI: 10.1016/j.jcis.2023.03.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Alkaline phosphatase (ALP), as a crucial enzyme involved in many physiological activities, is always used as one of the significant biomarkers in clinical diagnosis. Herein, a novel, simple, and effective photothermal quantitative method based on the etching of MnO2-coated gold nanoparticles (Au@MnO2 NPs) was established for ALP activity assay with a household thermometer-based visual readout. The photothermal effect of Au@MnO2 NPs is much higher than that of MnO2 NPs or Au NPs. The MnO2 shell of Au@MnO2 NPs can be etched by ascorbic acid, a product of ALP-catalyzed hydrolysis of 2-phospho-l-ascorbic acid. With the etching of Au@MnO2 NPs, the photothermal conversion efficiency decreased gradually, causing the decrease of the temperature increment of the solutions by degrees. A household thermometer, instead of large-scale and professional instruments, was used as a signal reader to realize the visual quantitative detection. The photothermal platform was used successfully for the determination of ALP with a wide linear range from 2.0 to 50 U/L and a detection limit as low as 0.75 U/L. Moreover, the inhibition efficiency of sodium vanadate for ALP activity was investigated, proving the photothermal quantitative method will be a potential platform for screening enzyme inhibitors. Such a sensitive, facile, and low-cost sensing assay provides a new prospect to develop platforms for point-of-care testing.
Collapse
Affiliation(s)
- Jin Li
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China; School of Pharmacy, Shenyang Medical College, Shenyang 110034, PR China
| | - Xiao-Peng Liu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Wen-Qi Ye
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
6
|
Zhou HY, Peng LJ, Tian T, Zhang WY, Chen GY, Zhang H, Yang FQ. Multicolor colorimetric assay for copper ion detection based on the etching of gold nanorods. Mikrochim Acta 2022; 189:420. [PMID: 36251083 DOI: 10.1007/s00604-022-05515-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/28/2022] [Indexed: 10/24/2022]
Abstract
An effective, selective, and multicolor colorimetric assay for Cu2+ detection based on the regulation of peroxidase-like nanozyme-mediated etching of gold nanorods (Au NRs) is proposed. Cu2+-creatinine complex is selected as the nanozyme that exhibits excellent peroxidase-like activity even in the case of low concentration of Cu2+, which can catalyze 3,3,5,5-tetramethylbenzidine (TMB) to produce oxidized TMB (TMB+) in the presence of hydrogen peroxide, and TMB+ is oxidized to generate TMB2+ after adding H+, and the TMB2+ can etch Au NRs. The determination of Cu2+ is achieved based on the blue shift of the longitudinal localized surface plasmon resonance peak of Au NRs. Under the optimal conditions, the developed colorimetric assay exhibits high sensitivity for the detection of Cu2+ (limit of detection is 0.034 μM) with a wide linear range of 0.05-4.0 μM (R2 = 0.987). The solution shows a rainbow-like color in response to the increase of Cu2+ concentration, which can realize the semi-quantitative detection of Cu2+ by naked eyes. In addition, the developed method exhibits excellent selectivity for Cu2+-detection. The established method was used for the determination of Cu2+ in lake water, soil, and normal human serum with satisfactory recovery of spiked samples.
Collapse
Affiliation(s)
- Hang-Yu Zhou
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Li-Jing Peng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Tao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Wei-Yi Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Hao Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
7
|
Jeon HJ, Kim HS, Chung E, Lee DY. Nanozyme-based colorimetric biosensor with a systemic quantification algorithm for noninvasive glucose monitoring. Theranostics 2022; 12:6308-6338. [PMID: 36168630 PMCID: PMC9475463 DOI: 10.7150/thno.72152] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/20/2022] [Indexed: 11/10/2022] Open
Abstract
Diabetes mellitus accompanies an abnormally high glucose level in the bloodstream. Early diagnosis and proper glycemic management of blood glucose are essential to prevent further progression and complications. Biosensor-based colorimetric detection has progressed and shown potential in portable and inexpensive daily assessment of glucose levels because of its simplicity, low-cost, and convenient operation without sophisticated instrumentation. Colorimetric glucose biosensors commonly use natural enzymes that recognize glucose and chromophores that detect enzymatic reaction products. However, many natural enzymes have inherent defects, limiting their extensive application. Recently, nanozyme-based colorimetric detection has drawn attention due to its merits including high sensitivity, stability under strict reaction conditions, flexible structural design with low-cost materials, and adjustable catalytic activities. This review discusses various nanozyme materials, colorimetric analytic methods and mechanisms, recent machine learning based analytic methods, quantification systems, applications and future directions for monitoring and managing diabetes.
Collapse
Affiliation(s)
- Hee-Jae Jeon
- Weldon School of Biomedical Engineering, Purdue University, Indiana 47906, USA
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- AI Graduate School, GIST, Gwangju 61005, Republic of Korea
- Research Center for Photon Science Technology, GIST, Gwangju 61005, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul 04763, Republic of Korea
- Elixir Pharmatech Inc., Seoul 07463, Republic of Korea
| |
Collapse
|
8
|
Miyagi K, Takano T, Teramoto Y. Glucose‐sensitive structural color change of cholesteric liquid crystal formed by hydroxypropyl cellulose with phenylboronic acid moieties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kazuma Miyagi
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute Forest Research and Management Organization Ibaraki Japan
| | - Toshiyuki Takano
- Division of Forest and Biomaterials Science, Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Yoshikuni Teramoto
- Division of Forest and Biomaterials Science, Graduate School of Agriculture Kyoto University Kyoto Japan
| |
Collapse
|
9
|
Maji S, Yu S, Choi E, Lim JW, Jang D, Kim GY, Kim S, Lee H, Kim DH. Anisotropic Plasmonic Gold Nanorod-Indocyanine Green@Reduced Graphene Oxide-Doxorubicin Nanohybrids for Image-Guided Enhanced Tumor Theranostics. ACS OMEGA 2022; 7:15186-15199. [PMID: 35572761 PMCID: PMC9089692 DOI: 10.1021/acsomega.2c01306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
The unique physicochemical and localized surface plasmon resonance assets of gold nanorods (GNRs) have offered combined cancer treatments with real-time diagnosis by integrating diverse theragnostic modalities into a single nanoplatform. In this work, a unique multifunctional nanohybrid material based on GNRs was designed for in vitro and in vivo tumor imaging along with synergistic and combinatorial therapy of tumor. The hybrid material with size less than 100 nm was achieved by embedding indocyanine green (ICG) on mesoporous silica-coated GNRs with further wrapping of reduced graphene oxide (rGO) and then attached with doxorubicin (DOX) and polyethylene glycol. The nanohybrid unveiled noteworthy stability and competently protected the embedded ICG from further aggregation, photobleaching, and nucleophilic attack by encapsulation of GNRs-ICG with rGO. Such combination of GNRs-ICG with rGO and DOX served as a real-time near-infrared (NIR) contrast imaging agent for cancer diagnosis. The hybrid material exhibits high NIR absorption property along with three destined capabilities, such as, nanozymatic activity, photothermal activity, and an excellent drug carrier for drug delivery. The integrated properties of the nanohybrid were then utilized for the triple mode of combined therapeutics of tumor cells, through synergistic catalytic therapy and chemotherapy with combinatorial photothermal therapy to achieve the maximum cancer killing efficiency. It is assumed that the assimilated multimodal imaging and therapeutic capability in single nanoparticle platform is advantageous for future practical applications in cancer diagnosis, therapy, and molecular imaging.
Collapse
Affiliation(s)
- Swarup
Kumar Maji
- Department
of Chemistry, Khatra Adibasi Mahavidyalaya, Khatra 722140, West Bengal, India
- Department
of Chemistry and Nano Science, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Subin Yu
- Department
of Chemistry and Nano Science, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Eunshil Choi
- Chemical
and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-Gil, Seongbuk-gu, Seoul 02792, Republic
of Korea
| | - Ju Won Lim
- Department
of Chemistry and Nano Science, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Dohyub Jang
- Chemical
and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-Gil, Seongbuk-gu, Seoul 02792, Republic
of Korea
- Department
of Biomicrosystem Technology, 145 Anam-ro, Seongbuk-gu, Korea University, Seoul 02841, Republic
of Korea
| | - Ga-young Kim
- Chemical
and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-Gil, Seongbuk-gu, Seoul 02792, Republic
of Korea
| | - Sehoon Kim
- Chemical
and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-Gil, Seongbuk-gu, Seoul 02792, Republic
of Korea
- KU-KIST Graduate
School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hyukjin Lee
- College
of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic
of Korea
| | - Dong Ha Kim
- Department
of Chemistry and Nano Science, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
10
|
Tang S, Liu Q, Hu J, Chen W, An F, Xu H, Song H, Wang YW. A Simple Colorimetric Assay for Sensitive Cu 2+ Detection Based on the Glutathione-Mediated Etching of MnO 2 Nanosheets. Front Chem 2022; 9:812503. [PMID: 35004628 PMCID: PMC8739952 DOI: 10.3389/fchem.2021.812503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
In this paper, we developed a quick, economical and sensitive colorimetric strategy for copper ions (Cu2+) quantification via the redox response of MnO2 nanosheets with glutathione (GSH). This reaction consumed MnO2 nanosheets, which acted as a catalyst for the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to a blue product (oxTMB). In the presence of Cu2+, the GSH was catalyzed to GSSG (oxidized glutathione), and the solution changed from colorless to deep blue. Under the optimum conditions, the absorption signal of the oxidized product (oxTMB) became proportional to Cu2+ concentration in the range from 10 to 300 nM with a detection limit of 6.9 nM. This detection system showed high specificity for Cu2+. Moreover, the system has been efficaciously implemented for Cu2+ detection in actual tap water samples. The layered-nanostructures of MnO2 nanosheets make it possess high chemical and thermal stability. TMB can be quickly oxidized within 10 min by the catalyzing of MnO2 nanosheets with high oxidase-like activity. There is no need of expensive reagents, additional H2O2 and complicated modification processes during the colorimetric assay. Therefore, the strategy primarily based on MnO2 nanosheets is promising for real-time, rapid and highly sensitive detection of Cu2+ under practical conditions.
Collapse
Affiliation(s)
- Shurong Tang
- Faculty of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Qiao Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Wuyi University, Wuyishan, China
| | - Jie Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Chen
- Faculty of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongbo Song
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi-Wei Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Coşkuner Filiz B, Basaran Elalmis Y, Bektaş İS, Kantürk Figen A. Fabrication of stable electrospun blended chitosan-poly(vinyl alcohol) nanofibers for designing naked-eye colorimetric glucose biosensor based on GOx/HRP. Int J Biol Macromol 2021; 192:999-1012. [PMID: 34655587 DOI: 10.1016/j.ijbiomac.2021.10.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023]
Abstract
In this study, designing of a stable electrospun blended chitosan (CS)-poly(vinyl alcohol) (PVA) nanofibers for colorimetric glucose biosensing in an aqueous medium was investigated. CS and PVA solutions were blended to acquire an optimum content (CS/PVA:1/4) and electrospunned to obtain uniform and bead-free CS/PVA nanofiber structures following the optimization of the electrospinning parameters (33 kV, 20 cm, and 1.2 ml.h-1). Crosslinking process applied subsequently provided mechanically and chemically stable nanofibers with an average diameter of 378 nm. The morphological homogeneity, high fluid absorption ability (>%50), thermal (<230 °C) and morphological stability, surface hydrophilicity and degrability properties of cross-linked CS/PVA nanofiber demonstrated their great potential to be developed as an eye-readable strip for biosensing applications. The glucose oxidase (GOx) and horseradish peroxidase (HRP) was immobilized by physical adsorption on the cross-linked CS/PVA nanofiber. The glucose assay analysis by ultraviolet-visible (UV-Vis) spectrophotometry using the same enzymatic system of the proposed glucose strips in form of absorbance versus concentration plot was found to be linear over a glucose concentration range of 2.7 to 13.8 mM. The prepared naked eye colorimetric glucose detection strips, with lower detection limit of 2.7 mM, demonstrated dramatic color change from white (0 mM) to brownish-orange (13.8 mM). The developed cross-linked CS/PVA nanofiber strips, prepared by electrospinnig procedure, could be easily adapted to a color map, as an alternative material for glucose sensing. Design of a practical, low-cost, and environmental-friendly bio-based CS/PVA testing strips for eye readable detection were presented and suggested as an applicable medium for a wide range of glucose concentrations.
Collapse
Affiliation(s)
- Bilge Coşkuner Filiz
- Yıldız Technical University, Metallurgy and Materials Engineering Department, İstanbul 34210, Turkey.
| | | | - İrem Serra Bektaş
- Yıldız Technical University, Chemical Engineering Department, İstanbul 34210, Turkey
| | - Aysel Kantürk Figen
- Yıldız Technical University, Chemical Engineering Department, İstanbul 34210, Turkey
| |
Collapse
|
12
|
Wang H, Sheng T, Zhao S, Zheng Y, Yu J, Zhang Y, Gu Z. Recent advances in transdermal sensors for glucose monitoring. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Chen Y, Jiang X, Wang J, Wu Z, Wu Y, Ni Z, Yi H, Lu R. Sensitive Oxidation of Sorbitol-Mediated Fe 2+ by H 2O 2: A Reliable TD-NMR Method for Clinical Blood Glucose Detection. Anal Chem 2021; 93:14153-14160. [PMID: 34637275 DOI: 10.1021/acs.analchem.1c02616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The clinical challenge of high-accuracy blood glucose detection schemes is to overcome the detection error caused by the background interferences in different individuals. H2O2 as the specific product of glucose oxidation can be involved in the Fe2+/Fe3+ conversion and detected by the time-domain nuclear magnetic resonance (TD-NMR) method sensitively. But, in clinical applications, the oxidation of Fe2+ is susceptible to the complex sample substrates. In this work, we sorted out two kinds of possible interference mechanisms of Fe2+ oxidation in the NMR blood glucose detection method and proposed a feasible scheme that uses sorbitol to weaken the adverse effects of interference. We found that sorbitol-mediated Fe2+ can greatly enhance the sensitivity of the T2 value to H2O2. The chain reaction caused by sorbitol can significantly amplify the efficiency of Fe2+ oxidation at the same concentration of H2O2. Thereby, we can achieve the higher dilution multiple of serum samples to reduce the amount of interfering substances involved in the Fe2+/Fe3+ conversion. We justified the accuracy and availability of our method by successfully detecting and confirming the correlation between the T2 decrease and glucose concentration of the serum samples collected from 16 subjects. The sorbitol-Fe2+ glucose detection method with high sensitivity can be further combined with miniature NMR analyzers to satisfy the calibration requirements of glucose monitoring in diabetic patients instead of frequent medical visits.
Collapse
Affiliation(s)
- Yi Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiaowen Jiang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Junnan Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Zhengxiu Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Yuchen Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Zhonghua Ni
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Hong Yi
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Rongsheng Lu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China.,School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China.,National Key Laboratory of Bioelectronics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
14
|
Liu H, Wang Y, Fu R, Zhou J, Liu Y, Zhao Q, Yao J, Cui Y, Wang C, Jiao B, He Y. A multicolor enzyme-linked immunoassay method for visual readout of carbendazim. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4256-4265. [PMID: 34591948 DOI: 10.1039/d1ay01028j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enzyme-linked immunosorbent assay (ELISA) with high specificity and sensitivity is one of the most popular techniques for detecting carbendazim (CBD), a commonly used benzimidazole fungicide in agriculture. However, the traditional ELISA based on the horseradish peroxidase (HRP)-3,3',5,5'-tetramethylbenzidine (TMB) system for CBD only displays the yellow color of TMB2+ from deep to light, making it difficult for the naked eye to judge whether CBD in fruits and vegetables exceeds the maximum residue limit. In this article, we intend to improve the traditional ELISA method to establish a multicolor signal output ELISA to achieve visual semiquantitative detection of CBD. This method is based on the optical properties of gold nanorods (AuNRs). After introducing AuNRs into TMB2+ solution, which was produced by the HRP-TMB system of traditional ELISA, AuNRs were quickly etched by TMB2+. Consequently, the longitudinal localized surface plasmon resonance peak of AuNRs shows a clear blue shift and a vivid color change. Different concentrations of CBD generate different amounts of TMB2+, which in turn leads to different etching degrees of AuNRs, and ultimately results in a rainbow-like color change. As a result, CBD from 0.08 to 100 ng mL-1 can be easily distinguished by the naked eye, which does not require any large instruments. Moreover, the colors displayed by 0.49 ng mL-1 (purple) and 0 ng mL-1 (pink) are significantly different from each other. It should be noted that 0.49 ng mL-1 is far below the most stringent maximum residue limit of CBD in the world. Additionally, the quantitative determination of CBD spiked in canned citrus, citrus fruits, chives, and cabbage samples showed satisfactory recoveries. The good performance of the AuNR-based ELISA makes it have a wide range of application prospects in food safety and international trade.
Collapse
Affiliation(s)
- Haoran Liu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Yiwen Wang
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Ruijie Fu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Jing Zhou
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Yanlin Liu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Qiyang Zhao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Jingjing Yao
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, Hubei, P. R. China.
| | - Yongliang Cui
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Chengqiu Wang
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Bining Jiao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| | - Yue He
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, P. R. China.
- National Citrus Engineering Research Center, Chongqing, 400712, P. R. China
| |
Collapse
|
15
|
Quantitative gold nanorods based photothermal biosensor for glucose using a thermometer as readout. Talanta 2021; 230:122364. [PMID: 33934801 DOI: 10.1016/j.talanta.2021.122364] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/27/2022]
Abstract
To meet the increasing need for point-of-care testing (POCT), simple and portable readout strategies would be highly desirable. Thermometer with high accuracy and straightforward readout is an ideal tool for the development of new POCT methods. The exploration of new thermometer-based detection methods is of great significance. In this study, a simple biosensor for glucose based on the photothermal effect of gold nanorods using a simple thermometer as readout has been developed. In the presence of glucose oxidase, glucose can react with the dissolved oxygen to produce H2O2. With the help of Fe2+, H2O2 can etch gold nanorods (AuNRs) to different aspect ratios. The decrease of the aspect ratio of AuNRs leads to the blue-shift of the localized surface plasmon resonance peak, resulting in a decrease of photothermal effect in the near-infrared regions and the temperature of the system decreased. The change of the temperature has a linear relationship with the logarithm of glucose concentration in the range of 1.0-10.0 mM with a detection limit of 0.8 mM. The proposed method possesses a bias offset of -0.03 mM for glucose detection compared to the hospital method. Since many enzymatic reactions can produce H2O2, the principle can be modified to detect different targets by simply change of the enzyme used.
Collapse
|
16
|
Izadyar A, Van MN, Rodriguez KA, Seok I, Hood EE. A bienzymatic amperometric glucose biosensor based on using a novel recombinant Mn peroxidase from corn and glucose oxidase with a Nafion membrane. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Ma L, Abugalyon Y, Li X. Multicolorimetric ELISA biosensors on a paper/polymer hybrid analytical device for visual point-of-care detection of infection diseases. Anal Bioanal Chem 2021; 413:4655-4663. [PMID: 33903943 PMCID: PMC8075012 DOI: 10.1007/s00216-021-03359-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Enzyme-linked immunosorbent assay (ELISA) is widely used for the detection of disease biomarkers. However, it utilizes time-consuming procedures and expensive instruments, making it infeasible for point-of-care (POC) analysis especially in resource-limited settings. In this work, a multicolorimetric ELISA biosensor integrated on a paper/polymer hybrid microfluidic device was developed for rapid visual detection of disease biomarkers at point of care, without using costly equipment. This multicolormetric ELISA platform was built on multiple distinct color variants resulted from the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) and the etching of gold nanorods (AuNRs). The vivid color changes could be easily distinguished by the naked eye, and their red mean values allowed quantitative biomarker detection, without using any sophisticated instruments. When this multicolorimetric ELISA was integrated on a paper/polymer hybrid analytical device, it not only provided integrated processing and high portability but also enabled fast assays in about 50 min due to the unique advantages of paper/polymer hybrid devices. The limit of detection of 9.1 ng/μL of the hepatitis C virus core antigen, a biomarker for hepatitis C, was achieved using this multicolorimetric ELISA platform. This multicolor ELISA analytical device provides a new versatile, user-friendly, affordable, and portable immunosensing platform with high potential for on-site detections of various viruses, proteins, and biomarkers for low-resource settings such as at home, public venues, rural areas, and developing nations.
Collapse
Affiliation(s)
- Lei Ma
- Deparment of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave, El Paso, TX, 79968, USA
| | - Yousef Abugalyon
- Deparment of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave, El Paso, TX, 79968, USA
| | - XiuJun Li
- Deparment of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave, El Paso, TX, 79968, USA. .,Department of Chemistry and Biochemistry, Border Biomedical Research Center, Environmental Science and Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, TX, 79968, USA.
| |
Collapse
|
18
|
Reda A, El-Safty SA, Selim MM, Shenashen MA. Optical glucose biosensor built-in disposable strips and wearable electronic devices. Biosens Bioelectron 2021; 185:113237. [PMID: 33932881 DOI: 10.1016/j.bios.2021.113237] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/25/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023]
Abstract
On-demand screening, real-time monitoring and rapid diagnosis of ubiquitous diseases, such as diabetes, at early stages are indispensable in personalised treatment. Emerging impacts of nano/microscale materials on optical and portable biosensor strips and devices have become increasingly important in the remarkable development of sensitive visualisation (i.e. visible inspection by the human eye) assays, low-cost analyses and personalised home testing of patients with diabetes. With the increasing public attention regarding the self-monitoring of diabetes, the development of visual readout, easy-to-use and wearable biosensors has gained considerable interest. Our comprehensive review bridges the practical assessment gap between optical bio-visualisation assays, disposable test strips, sensor array designs and full integration into flexible skin-based or contact lens devices with the on-site wireless signal transmission of glucose detection in physiological fluids. To date, the fully modulated integration of nano/microscale optical biosensors into wearable electronic devices, such as smartphones, is critical to prolong periods of indoor and outdoor clinical diagnostics. Focus should be given to the improvements of invasive, wireless and portable sensing technologies to improve the applicability and reliability of screen display, continuous monitoring, dynamic data visualisation, online acquisition and self and in-home healthcare management of patients with diabetes.
Collapse
Affiliation(s)
- Abdullah Reda
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| | - Sherif A El-Safty
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan.
| | - Mahmoud M Selim
- Prince Sattam Bin Abdulaziz University, P. O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohamed A Shenashen
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| |
Collapse
|
19
|
Boselli L, Pomili T, Donati P, Pompa PP. Nanosensors for Visual Detection of Glucose in Biofluids: Are We Ready for Instrument-Free Home-Testing? MATERIALS 2021; 14:ma14081978. [PMID: 33920934 PMCID: PMC8071272 DOI: 10.3390/ma14081978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
Making frequent large-scale screenings for several diseases economically affordable would represent a real breakthrough in healthcare. One of the most promising routes to pursue such an objective is developing rapid, non-invasive, and cost-effective home-testing devices. As a first step toward a diagnostic revolution, glycemia self-monitoring represents a solid base to start exploring new diagnostic strategies. Glucose self-monitoring is improving people's life quality in recent years; however, current approaches still present vast room for improvement. In most cases, they still involve invasive sampling processes (i.e., finger-prick), quite discomforting for frequent measurements, or implantable devices which are costly and commonly dedicated to selected chronic patients, thus precluding large-scale monitoring. Thanks to their unique physicochemical properties, nanoparticles hold great promises for the development of rapid colorimetric devices. Here, we overview and analyze the main instrument-free nanosensing strategies reported so far for glucose detection, highlighting their advantages/disadvantages in view of their implementation as cost-effective rapid home-testing devices, including the potential use of alternative non-invasive biofluids as samples sources.
Collapse
Affiliation(s)
- Luca Boselli
- Nanobiointeractions and Nanodiagnostics, Italian Institute of Technology (IIT), Via Morego 30, 16163 Genova, Italy; (T.P.); (P.D.)
- Correspondence: (L.B.); (P.P.P.); Tel.: +39-010-2896-837 (P.P.P.)
| | - Tania Pomili
- Nanobiointeractions and Nanodiagnostics, Italian Institute of Technology (IIT), Via Morego 30, 16163 Genova, Italy; (T.P.); (P.D.)
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Paolo Donati
- Nanobiointeractions and Nanodiagnostics, Italian Institute of Technology (IIT), Via Morego 30, 16163 Genova, Italy; (T.P.); (P.D.)
| | - Pier P. Pompa
- Nanobiointeractions and Nanodiagnostics, Italian Institute of Technology (IIT), Via Morego 30, 16163 Genova, Italy; (T.P.); (P.D.)
- Correspondence: (L.B.); (P.P.P.); Tel.: +39-010-2896-837 (P.P.P.)
| |
Collapse
|
20
|
de Barros HR, López-Gallego F, Liz-Marzán LM. Light-Driven Catalytic Regulation of Enzymes at the Interface with Plasmonic Nanomaterials. Biochemistry 2021; 60:991-998. [PMID: 32643921 DOI: 10.1021/acs.biochem.0c00447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regulation of enzymes is highly relevant toward orchestrating cell-free and stepwise biotransformations, thereby maximizing their overall performance. Plasmonic nanomaterials offer a great opportunity to tune the functionality of enzymes through their remarkable optical properties. Localized surface plasmon resonances (LSPR) can be used to modify chemical transformations at the nanomaterial's surface, upon light irradiation. Incident light can promote energetic processes, which may be related to an increase of local temperature (photothermal effects) but also to effects triggered by generated hotspots or hot electrons (photoelectronic effects). As a consequence, light irradiation of the protein-nanomaterial interface affects enzyme functionality. To harness these effects to finely and remotely regulate enzyme activity, the physicochemical features of the nanomaterial, properties of the incident light, and parameters governing molecular interactions must be optimized. In this Perspective, we discuss relevant examples that illustrate the use of plasmonic nanoparticles to control enzyme function through LSPR excitation. Finally, we also highlight the importance of expanding the use of plasmonic nanomaterials to the immobilization of multienzyme systems for light-driven regulation of cell-free biosynthetic pathways. Although this concept is living its infancy, we encourage the scientific community to advance in the development of novel light-controlled biocatalytic plasmonic nanoconjugates and explore their application in biosensing, applied biocatalysis, and biomedicine.
Collapse
Affiliation(s)
- Heloise Ribeiro de Barros
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
- Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Vila Universitária, 05508-000 São Paulo, São Paulo Brazil
| | - Fernando López-Gallego
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica en Red, Bioingenierı́a, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia, San Sebastián, Spain
| |
Collapse
|
21
|
Zhu H, Liu C, Liu X, Quan Z, Liu W, Liu Y. A multi-colorimetric immunosensor for visual detection of ochratoxin A by mimetic enzyme etching of gold nanobipyramids. Mikrochim Acta 2021; 188:62. [PMID: 33534035 DOI: 10.1007/s00604-020-04699-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/31/2020] [Indexed: 01/15/2023]
Abstract
A multi-colorimetric immunosensor basing on the mimetic enzyme etching of gold nanobipyramids (Au NBPs) was established to detect ochratoxin A (OTA). Octahedral Cu2O nanoparticles were successfully synthesized through a selective surface stabilization strategy, which can exhibit a peroxidase-like ability to oxidize 3,3',5,5'-tetramethylbenzidine (TMB). Au NBPs can be etched by the product, TMB2+, to form a significant longitudinal peak blue shift of local surface plasmon resonance. During the construction of the immunosensor, the microplate was coated with dopamine to immobilized OTA antigens, followed by the immunoreaction of OTA antibody and the Cu2O-labled secondary antibody. A linear relationship can be found between the local surface plasmon resonance (LSPR) peak changes with the logarithm of OTA concentration in a wide range from 1 ng/L to 5 μg/L, while the detection limit was 0.47 ng/L. Meanwhile, the approximate OTA concentration can be conveniently and intuitively observed by the vivid color changes. Benefiting from the high specificity, the proposed multi-colorimetric immunoassay detection of OTA in millet samples was achieved, indicating the available potential of the immunoassay for the determination of OTA in real samples.
Collapse
Affiliation(s)
- Hongshuai Zhu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.,The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Chuanhe Liu
- Instrumental Analysis & Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Xinxin Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhu Quan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Weipeng Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China. .,State Key Laboratory of Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
22
|
Zhang X, Sucre-Rosales E, Byram A, Hernandez FE, Chen G. Ultrasensitive Visual Detection of Glucose in Urine Based on the Iodide-Promoted Etching of Gold Bipyramids. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49502-49509. [PMID: 33089983 DOI: 10.1021/acsami.0c16369] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Blood glucose monitoring is an essential but painful component of diabetes management, so it is urgent to develop simple, convenient, and noninvasive glucose monitoring methods as alternatives. Because the glucose level in urine is directly related to the blood glucose, urine can be an alternative for blood glucose monitoring. Herein, we report the development of a new and highly sensitive noninvasive colorimetric assay to detect the glucose content in urine samples using gold bipyramids (GBPs). The principle of this method is to utilize hydrogen peroxide (H2O2), the oxidation product of glucose, to etch GBPs, where the urine glucose will be quantified based on the displacement of the absorption peak of GBPs. The unique morphology (sharp tips) and etching mechanism (from tips) of GBPs determine the high sensitivity of this assay. Under optimal conditions, this colorimetric assay shows a dynamic range of 0.5-250 μM and a detection limit of 0.34 μM for artificial urine samples. This detection capability is ideal when sample dilution is necessary. Another advantage is that the color change of the GBP solution in this assay is convenient for the visual readout of the urine glucose semiquantitatively by the naked eye. Furthermore, it has been demonstrated here that the iodide ion has the horseradish peroxidase (HRP) activity and can be used alone to promote the reduction reaction of H2O2, which eliminates the use of HRP enzymes, simplifies the reaction, and reduces costs. The role of iodide ions has been studied and mainly attributed as a catalyst with I2 as the reaction intermediate, which reduced the activation energy for the reduction of H2O2.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Estefanía Sucre-Rosales
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Alexander Byram
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Florencio E Hernandez
- Department of Chemistry and CREOL/The School of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Gang Chen
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
23
|
Fang B, Xu S, Huang Y, Su F, Huang Z, Fang H, Peng J, Xiong Y, Lai W. Gold nanorods etching-based plasmonic immunoassay for qualitative and quantitative detection of aflatoxin M1 in milk. Food Chem 2020; 329:127160. [DOI: 10.1016/j.foodchem.2020.127160] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
|
24
|
Clinical Applications of Visual Plasmonic Colorimetric Sensing. SENSORS 2020; 20:s20216214. [PMID: 33143365 PMCID: PMC7663786 DOI: 10.3390/s20216214] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Colorimetric analysis has become of great importance in recent years to improve the operationalization of plasmonic-based biosensors. The unique properties of nanomaterials have enabled the development of a variety of plasmonics applications on the basis of the colorimetric sensing provided by metal nanoparticles. In particular, the extinction of localized surface plasmon resonance (LSPR) in the visible range has permitted the exploitation of LSPR colorimetric-based biosensors as powerful tools for clinical diagnostics and drug monitoring. This review summarizes recent progress in the biochemical monitoring of clinical biomarkers by ultrasensitive plasmonic colorimetric strategies according to the distance- or the morphology/size-dependent sensing modes. The potential of colorimetric nanosensors as point of care devices from the perspective of naked-eye detection is comprehensively discussed for a broad range of analytes including pharmaceuticals, proteins, carbohydrates, nucleic acids, bacteria, and viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The practical suitability of plasmonic-based colorimetric assays for the rapid visual readout in biological samples, considering current challenges and future perspectives, is also reviewed.
Collapse
|
25
|
Smartphone colorimetric assay of acid phosphatase based on a controlled iodine-mediated etching of gold nanorods. Anal Bioanal Chem 2020; 412:8051-8059. [PMID: 33001243 DOI: 10.1007/s00216-020-02954-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/20/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
A simple but efficient colorimetric assay was developed for the detection and quantification of acid phosphatase (ACP) using a smartphone. This strategy is based on target-controlled iodine-mediated etching of gold nanorods (AuNRs). Due to effective hydrolysis of the substrate pyrophosphate (PPi) by ACP, chelated Cu2+ with PPi was released, which promoted the redox reaction with an iodide ion (I-), leading to the formation of I3-. As the etching agent of AuNRs, I3- caused a blueshift of the localized surface plasmon resonance peak and, more importantly, an observable color change. The vivid colors were recorded with a smartphone camera and directly analyzed using an image-processing app. On the basis of the direct correlation between ACP concentration and the etching degree of AuNRs as well as color change, this smartphone nanocolorimetry technique showed a good linear response toward ACP over the range of 0-15.0 U/L, with a detection limit of 0.97 U/L. Using the standard addition method, the practical applicability of the proposed smartphone-based assay was successfully demonstrated by determining ACP in human serum samples, with results consistent with those obtained by UV-Vis spectrophotometry.
Collapse
|
26
|
He Z, Zhu J, Weng GJ, Li JJ, Zhao JW. Detection of ferrous ion by etching-based multi-colorimetric sensing of gold nanobipyramids. NANOTECHNOLOGY 2020; 31:335505. [PMID: 32353840 DOI: 10.1088/1361-6528/ab8ee0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colorimetric sensing methods based on non-spherically symmetric gold (Au) nanoparticles have become a powerful tool in the field of biomedical detection due to their intriguing plasmonic properties. In this study, Au nanobipyramids (Au NBPs) were used as colorimetric sensing probes to detect ferrous ions (Fe2+) through tip etching. The quick etching of Au NBPs along the longitudinal direction by superoxide radicals generated by the reaction of Fe2+ and H2O2 led local surface plasmon resonance (LSPR) to blue shift and produced vivid color change that could be used for visual inspection. Under the optimal reaction conditions, the peak shift of the Au NBPs and the logarithm of the concentrations of Fe2+ had a linear relationship in the range of 10 nM to 10 μM, with a very low detection limit of 1.29 nM. During the etching process, a different end shape of the Au nanoparticles results in a different process for the morphology transition, which makes the degree of spectral change and detection sensitivity significantly different. In the presence of trace amounts of Fe2+ (<1000 nM), the detection sensitivity of Au NBPs with sharp ends which rely on aspect ratio and truncation is nine times higher than that of gold nanorods with round ends which only rely on aspect ratio. Although the color change of larger-sized Au NBPs was not clear during detection, the LSPR peak shift was more severe. Therefore, the system provides different modes for detecting Fe2+ according to Au NBPs with different sizes and characteristics.
Collapse
Affiliation(s)
- Zhao He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Masson JF. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst 2020; 145:3776-3800. [PMID: 32374303 DOI: 10.1039/d0an00316f] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plasmonic sensors are ideally suited for the design of small, integrated, and portable devices that can be employed in situ for the detection of analytes relevant to environmental sciences, clinical diagnostics, infectious diseases, food, and industrial applications. To successfully deploy plasmonic sensors, scaled-down analytical devices based on surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) must integrate optics, plasmonic materials, surface chemistry, fluidics, detectors and data processing in a functional instrument with a small footprint. The field has significantly progressed from the implementation of the various components in specifically designed prism-based instruments to the use of nanomaterials, optical fibers and smartphones to yield increasingly portable devices, which have been shown for a number of applications in the laboratory and deployed on site for environmental, biomedical/clinical, and food applications. A roadmap to deploy plasmonic sensors is provided by reviewing the current successes and by laying out the directions the field is currently taking to increase the use of field-deployed plasmonic sensors at the point-of-care, in the environment and in industries.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Departement de chimie, Centre Québécois sur les Matériaux Fonctionnels (CQMF) and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, QC, CanadaH3C 3J7.
| |
Collapse
|
28
|
Wang Z, Li H, Wang J, Chen Z, Chen G, Wen D, Chan A, Gu Z. Transdermal colorimetric patch for hyperglycemia sensing in diabetic mice. Biomaterials 2020; 237:119782. [DOI: 10.1016/j.biomaterials.2020.119782] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/27/2019] [Accepted: 01/12/2020] [Indexed: 11/30/2022]
|
29
|
Wang H, Rao H, Xue X, An P, Gao M, Luo M, Liu X, Xue Z. Target-mediated surface chemistry of gold nanorods for breaking the low color resolution limitation of monocolorimetric sensor. Anal Chim Acta 2020; 1097:222-229. [DOI: 10.1016/j.aca.2019.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022]
|
30
|
Ma X, He S, Qiu B, Luo F, Guo L, Lin Z. Noble Metal Nanoparticle-Based Multicolor Immunoassays: An Approach toward Visual Quantification of the Analytes with the Naked Eye. ACS Sens 2019; 4:782-791. [PMID: 30896159 DOI: 10.1021/acssensors.9b00438] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Noble metal nanoparticle-based colorimetric sensors have become powerful tools for the detection of different targets with convenient readout. Among the many types of nanomaterials, noble metal nanoparticles exhibit extraordinary optical responses mainly due to their excellent localized surface plasmon resonance (LSPR) properties. The absorption spectrum of the noble metal nanoparticles was mostly in the visible range. This property enables the visual detection of various analytes with the naked eye. Among numerous color change modes, the way that different concentrations of targets represent vivid color changes has been brought to the forefront because the color distinction capability of normal human eyes is usually better than the intensity change capability. We review the state of the art in noble metal nanoparticle-based multicolor colorimetric strategies adopted for visual quantification by the naked eye. These multicolor strategies based on different means of morphology transformation are classified into two categories, namely, the etching of nanoparticles and the growth of nanoparticles. We highlight recent progress on the different means by which biocatalytic reactions mediated LSPR modulation signal generation and their applications in the construction of multicolor immunoassays. We also discuss the current challenges associated with multicolor colorimetric sensors during actual sample detection and propose the future development of next-generation multicolor qualification strategies.
Collapse
Affiliation(s)
- Xiaoming Ma
- School of Chemistry and Chemical Engineering, Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China
| | - Shan He
- School of Chemistry and Chemical Engineering, Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China
| | | | | | | | | |
Collapse
|
31
|
Zhong Q, Chen Y, Qin X, Wang Y, Yuan C, Xu Y. Colorimetric enzymatic determination of glucose based on etching of gold nanorods by iodine and using carbon quantum dots as peroxidase mimics. Mikrochim Acta 2019; 186:161. [DOI: 10.1007/s00604-019-3291-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/30/2019] [Indexed: 02/04/2023]
|
32
|
Das A, Mohanty S, Kuanr BK. Label-free gold nanorod-based plasmonic sensing of arsenic(iii) in contaminated water. Analyst 2019; 144:4708-4718. [DOI: 10.1039/c9an00668k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient label-free strategy for arsenic(iii) sensing in water through the suppression of iron(iii)-catalyzed oxidative shortening of gold nanorods.
Collapse
Affiliation(s)
- Anindita Das
- Special Centre for Nanoscience
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - Sonali Mohanty
- Special Centre for Nanoscience
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - Bijoy Kumar Kuanr
- Special Centre for Nanoscience
- Jawaharlal Nehru University
- New Delhi-110067
- India
| |
Collapse
|
33
|
Yan Y, Li J, Li W, Wang Y, Song W, Bi S. DNA flower-encapsulated horseradish peroxidase with enhanced biocatalytic activity synthesized by an isothermal one-pot method based on rolling circle amplification. NANOSCALE 2018; 10:22456-22465. [PMID: 30478460 DOI: 10.1039/c8nr07294a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA nanotechnology has been developed to construct a variety of functional two- and three-dimensional structures for versatile applications. Rolling circle amplification (RCA) has become prominent in the assembly of DNA-inorganic composites with hierarchical structures and attractive properties. Here, we demonstrate a one-pot method to directly encapsulate horseradish peroxidase (HRP) in DNA flowers (DFs) during RCA. The growing DNA strands and Mg2PPi crystals lead to the construction of porous DFs, which provide sufficient interaction sites for spontaneously incorporating HRP molecules into DFs with high loading capacity and good stability. Furthermore, in comparison with free HRP, the DNA flower-encapsulated HRP (termed HRP-DFs) demonstrate enhanced enzymatic activity, which can efficiently biocatalyze the H2O2-mediated etching of gold nanorods (AuNRs) to generate distinct color changes since the longitudinal localized surface plasmon resonance (LSPR) frequency of AuNRs is highly sensitive to the changes in the AuNR aspect ratio. Through rationally incorporating the complementary thrombin aptamer sequence into the circular template, the synthesized HRP-DF composites are readily used as amplified labels for visual and colorimetric detection of thrombin with ultrahigh sensitivity and excellent selectivity. Therefore, our proposed strategy for direct encapsulation of enzyme molecules into DNA structures shows considerable potential applications in biosensing, biocatalysis, and point-of-care diagnostics.
Collapse
Affiliation(s)
- Yongcun Yan
- College of Chemistry and Chemical Engineering, Shandong Demonstration Center for Experimental Chemistry Education, Qingdao University, Qingdao 266071, P. R. China.
| | | | | | | | | | | |
Collapse
|
34
|
Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications. Biosens Bioelectron 2018; 114:52-65. [DOI: 10.1016/j.bios.2018.05.015] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/27/2018] [Accepted: 05/09/2018] [Indexed: 01/13/2023]
|
35
|
Chen Z, Chen C, Huang H, Luo F, Guo L, Zhang L, Lin Z, Chen G. Target-Induced Horseradish Peroxidase Deactivation for Multicolor Colorimetric Assay of Hydrogen Sulfide in Rat Brain Microdialysis. Anal Chem 2018; 90:6222-6228. [DOI: 10.1021/acs.analchem.8b00752] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhonghui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chaoqun Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huawei Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Longhua Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | | |
Collapse
|
36
|
Yu X, Lin Y, Wang X, Xu L, Wang Z, Fu F. Exonuclease-assisted multicolor aptasensor for visual detection of ochratoxin A based on G-quadruplex-hemin DNAzyme-mediated etching of gold nanorod. Mikrochim Acta 2018; 185:259. [PMID: 29680954 DOI: 10.1007/s00604-018-2811-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/14/2018] [Indexed: 11/25/2022]
Abstract
An exonuclease-assisted multicolor aptasensor was developed for the visual detection of ochratoxin A (OTA). It is based on the etching of gold nanorods (AuNRs) mediated by a G-quadruplex-hemin DNAzyme. A DNA sequence (AG4-OTA) was designed that comprises a hemin aptamer and an OTA aptamer. OTA binds to AG4-OTA to form an antiparallel G-quadruplex, which halts its digestion by exonuclease I (Exo I) from the 3'-end of AG4-OTA. Thus, the retained hemin aptamer can bind to hemin to form a G-quadruplex-hemin DNAzyme. This DNAzyme has peroxidase-like activity that catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce its diimine derivative (TMB2+) in acidic solution. TMB2+ can etch the AuNRs by oxidizing Au(0) into Au(I). This results in the generation of rainbow-like colors and provides a multicolor platform for the visual detection of OTA. The assay is based on the use of a single isolated aptamer and possesses obvious advantages such as multi-color visual inspection, relatively high sensitivity and accuracy. It can be used to detect as little as 30 nM concentrations of OTA by visual observation and even 10 nM concentrations by spectrophotometry. The method was successfully applied to the determination of OTA in spiked beer where it gave recoveries of 101-108%, with a relative standard deviation (RSD, n = 5) of <5%. Graphical abstract Schematic of an exonuclease-assisted multicolor bioassay based on the G-quadruplex-hemin DNAzyme-mediated etching of gold nanorods (AuNRs). It enables visual detection of ochratoxin A (OTA) with a detection limit of 30 nM.
Collapse
Affiliation(s)
- Xinhui Yu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Yaohui Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Xusheng Wang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Liangjun Xu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Zongwen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China.
| |
Collapse
|
37
|
Huang Y, Xu W, Liu G, Tian L. A pure DNA hydrogel with stable catalytic ability produced by one-step rolling circle amplification. Chem Commun (Camb) 2018; 53:3038-3041. [PMID: 28239729 DOI: 10.1039/c7cc00636e] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A rolling-circle-amplification method was developed to produce DNA hydrogels with horseradish-peroxidase-like catalytic capability. The catalytic hydrogel exhibits highly improved stability at elevated temperatures or during a long-term storage. Integrated with glucose oxidase, the complex hydrogel can be applied to the sensitive and reliable detection of glucose.
Collapse
Affiliation(s)
- Yishun Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Xili, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Wanlin Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Xili, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Guoyuan Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Xili, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Xili, Nanshan District, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
38
|
Díez-Buitrago B, Briz N, Liz-Marzán LM, Pavlov V. Biosensing strategies based on enzymatic reactions and nanoparticles. Analyst 2018; 143:1727-1734. [DOI: 10.1039/c7an02067h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Application of new nanomaterials to detection of enzymatic activities allows the development of new sensitive and selective bioanalytical assays based on enzymes for recognition and signal amplification.
Collapse
Affiliation(s)
| | - Nerea Briz
- Tecnalia
- 20009 Donostia-San Sebastián
- Spain
| | - Luis M. Liz-Marzán
- CIC BiomaGUNE
- 20014 Donostia-San Sebastián
- Spain
- Ikerbasque
- Basque Foundation for Science
| | | |
Collapse
|
39
|
Jafarinejad S, Ghazi-Khansari M, Ghasemi F, Sasanpour P, Hormozi-Nezhad MR. Colorimetric Fingerprints of Gold Nanorods for Discriminating Catecholamine Neurotransmitters in Urine Samples. Sci Rep 2017; 7:8266. [PMID: 28811657 PMCID: PMC5557886 DOI: 10.1038/s41598-017-08704-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/17/2017] [Indexed: 11/09/2022] Open
Abstract
Catecholamine neurotransmitters, generally including dopamine (DA), epinephrine (EP) and norepinephrine (NE) are known as substantial indicators of various neurological diseases. Simultaneous detection of these compounds and their metabolites is highly recommended in early clinical diagnosis. To this aim, in the present contribution, a high performance colorimetric sensor array has been proposed for the detection and discrimination of catecholamines based on their reducing ability to deposit silver on the surface of gold nanorods (AuNRs). The amassed silver nanoshell led to a blue shift in the longitudinal localized surface plasmon resonance (LSPR) peak of AuNRs, creating a unique pattern for each of the neurotransmitters. Hierarchical cluster analysis (HCA) and linear discriminate analysis (LDA) pattern recognition techniques were employed to identify DA, EP and NE. The proposed colorimetric array is able to differentiate among individual neurotransmitters as well as their mixtures, successfully. Finally, it was shown that the sensor array can identify these neurotransmitters in human urine samples.
Collapse
Affiliation(s)
- Somayeh Jafarinejad
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box, 13145-784, Tehran, Iran
| | - Forough Ghasemi
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
40
|
Guerrini L, Garcia-Rico E, Pazos-Perez N, Alvarez-Puebla RA. Smelling, Seeing, Tasting-Old Senses for New Sensing. ACS NANO 2017; 11:5217-5222. [PMID: 28616959 DOI: 10.1021/acsnano.7b03176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The senses are the physiological mechanisms of perception that enable an organism to interact with the surrounding media. For centuries, humans have utilized these senses in science; vision and olfaction have been used the most extensively in laboratories followed by gustation and somatosensation, whereas audition has only rarely been employed. Most of these applications of senses were developed spontaneously based on the natural behavior of the chemistry of the reactants producing changes in scent, taste, or color. In recent years, by exploiting the outstanding properties of nanoparticles, many groups have demonstrated alternative sensing scenarios where the detection limits are remarkably improved, enabling the recognition of hazardous substances by mere sight, smell, or taste. Such alternative sensing approaches can be divided into two main groups: (i) methods that identify a single analyte by engineering a reaction that promotes a change in color or the generation of a characteristic scent, and (ii) methods that emulate or even improve mammalian senses, especially those related to taste and smell. In this Perspective, we discuss the context of each technology, present prominent examples, and evaluate the complexities, potential pitfalls, and opportunities presented by different re-engineering strategies.
Collapse
Affiliation(s)
- Luca Guerrini
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili , Carrer de Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Eduardo Garcia-Rico
- Fundacion de Investigacion HM Hospitales , San Bernardo 101, 28015 Madrid, Spain
- School of Medicine, San Pablo CEU , Calle Julián Romea 18, 28003 Madrid, Spain
| | - Nicolas Pazos-Perez
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili , Carrer de Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Ramon A Alvarez-Puebla
- Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili , Carrer de Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- ICREA , Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|