1
|
Haj AK, Ryu J, Jurgens SJ, Chaudhry S, Koyama S, Wang X, Choi SH, Hou C, Sanna-Cherchi S, Anderson CD, Ellinor PT, Bendapudi PK. Loss of function in protein Z (PROZ) is associated with increased risk of ischemic stroke in the UK Biobank. J Thromb Haemost 2025; 23:171-180. [PMID: 39383998 PMCID: PMC11725435 DOI: 10.1016/j.jtha.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND The vitamin K-dependent coagulation factor protein Z (PZ), encoded by the PROZ gene, is canonically considered to have anticoagulant effects through negative regulation of factor Xa. Paradoxically, higher circulating PZ concentrations have repeatedly been associated with an elevated risk of acute ischemic stroke. OBJECTIVES We performed a large-scale genetic association study to examine the relationship between germline genetic variants in PROZ and the risk of ischemic stroke. METHODS Using whole-exome sequencing and clinical data for 416 711 participants in the UK Biobank (UKB), we identified individuals with rare (minor allele frequency ≤0.1%) putatively function-altering variants in PROZ. Using Firth's logistic regression and controlling for known stroke risk factors, we evaluated the association between variant carrier status and noncardioembolic ischemic stroke (NCEIS). Additionally, we evaluated differences in the plasma levels of 1472 proteins between PROZ variant carriers and noncarriers in a subset of 48 893 UKB participants. RESULTS After accounting for missing data, qualifying variants in PROZ were identified in 414 UKB participants (99.0% heterozygous). Variant carriers had a significantly increased risk of NCEIS (odds ratio, 2.34; 95% CI, 1.15-4.13; P = .02) but not of venous thromboembolism, myocardial infarction, or peripheral artery disease. Plasma proteomics analysis revealed that PROZ variant carriers had significantly elevated levels of 2 proteins related to the response to cerebral ischemia, peroxiredoxins 1 and 6 (PRDX1: fold change, 1.83; P = 1.3 × 10-5; PRDX6: fold change, 1.78; P = 9.6 × 10-10). CONCLUSION Lifelong exposure to decreased PZ levels confers a significantly increased risk of NCEIS, consistent with the role of PZ as an anticoagulant factor.
Collapse
Affiliation(s)
- Amelia K Haj
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Justine Ryu
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Section of Hematology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sean J Jurgens
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sharjeel Chaudhry
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Satoshi Koyama
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Xin Wang
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Cody Hou
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Simone Sanna-Cherchi
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Christopher D Anderson
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Pavan K Bendapudi
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
2
|
Ma XY, Qi CY, Xu XY, Li H, Liu CD, Wen XR, Fu YY, Liu Y, Liang J, Huang CY, Li DD, Li Y, Shen QC, Qi QZ, Zhu G, Wang N, Zhou XY, Song YJ. PRDX1 Interfering Peptide Disrupts Amino Acids 70-90 of PRDX1 to Inhibit the TLR4/NF-κB Signaling Pathway and Attenuate Neuroinflammation and Ischemic Brain Injury. Mol Neurobiol 2024; 61:10705-10721. [PMID: 38780721 DOI: 10.1007/s12035-024-04247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Ischemic stroke ranks among the leading causes of death and disability in humans and is accompanied by motor and cognitive impairment. However, the precise mechanisms underlying injury after stroke and effective treatment strategies require further investigation. Peroxiredoxin-1 (PRDX1) triggers an extensive inflammatory cascade that plays a pivotal role in the pathology of ischemic stroke, resulting in severe brain damage from activated microglia. In the present study, we used molecular dynamics simulation and nuclear magnetic resonance to detect the interaction between PRDX1 and a specific interfering peptide. We used behavioral, morphological, and molecular experimental methods to demonstrate the effect of PRDX1-peptide on cerebral ischemia-reperfusion (I/R) in mice and to investigate the related mechanism. We found that PRDX1-peptide bound specifically to PRDX1 and improved motor and cognitive functions in I/R mice. In addition, pretreatment with PRDX1-peptide reduced the infarct area and decreased the number of apoptotic cells in the penumbra. Furthermore, PRDX1-peptide inhibited microglial activation and downregulated proinflammatory cytokines including IL-1β, IL-6, and TNF-α through inhibition of the TLR4/NF-κB signaling pathway, thereby attenuating ischemic brain injury. Our findings clarify the precise mechanism underlying PRDX1-induced inflammation after ischemic stroke and suggest that the PRDX1-peptide can significantly alleviate the postischemic inflammatory response by interfering with PRDX1 amino acids 70-90 and thereby inhibiting the TLR4/NF-κB signaling pathway. Our study provides a theoretical basis for a new therapeutic strategy to treat ischemic stroke.
Collapse
Affiliation(s)
- Xiang-Yu Ma
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cheng-Yu Qi
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xing-Yi Xu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hui Li
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chang-Dong Liu
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 00000, Hong Kong SAR, China
| | - Xiang-Ru Wen
- Department of Chemistry, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan-Yan Fu
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan Liu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jia Liang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cheng-Yu Huang
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dan-Dan Li
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yan Li
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qian-Cheng Shen
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qian-Zhi Qi
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Guang Zhu
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 00000, Hong Kong SAR, China
| | - Nan Wang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Xiao-Yan Zhou
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Yuan-Jian Song
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China.
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
3
|
Liu S, Wu Q, Xu C, Wang L, Wang J, Liu C, Zhao H. Ischemic Postconditioning Regulates New Cell Death Mechanisms in Stroke: Disulfidptosis. Biomolecules 2024; 14:1390. [PMID: 39595569 PMCID: PMC11591815 DOI: 10.3390/biom14111390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Stroke poses a critical health issue without effective neuroprotection. We explore ischemic postconditioning's (IPostC) potential to mitigate stroke-induced brain injury, focusing on its interaction with disulfidptosis, a novel cell death pathway marked by protein disulfide accumulation. We aim to clarify IPostC's protective mechanisms against stroke through gene sequencing and experimental analysis in mice. METHODS Through our initial investigation, we identified 27 disulfidptosis-related genes (DRGs) and uncovered their interactions. Additionally, differential gene analysis revealed 11 potential candidate genes that are linked to disulfidptosis, stroke, and IPostC. Our comprehensive study employed various analytical approaches, including machine learning, functional enrichment analysis, immune analysis, drug sensitivity analysis, and qPCR experiments, to gain insights into the molecular mechanisms underlying these processes. RESULTS Our study identified and expanded the list of disulfidptosis-related genes (DRGs) critical to stroke, revealing key genes and their interactions. Through bioinformatics analyses, including PCA, UMAP, and differential gene expression, we were able to differentiate the effects of stroke from those of postconditioning, identifying Peroxiredoxin 1 (PRDX1) as a key gene of interest. GSEA highlighted PRDX1's involvement in protective pathways against ischemic damage, while its correlations with various proteins suggest a broad impact on stroke pathology. Constructing a ceRNA network and analyzing drug sensitivities, we explored PRDX1's regulatory mechanisms, proposing novel therapeutic avenues. Additionally, our immune infiltration analysis linked PRDX1 to key immune cells, underscoring its dual role in stroke progression and recovery. PRDX1 is identified as a key target in ischemic stroke based on colocalization analysis, which revealed that PRDX1 and ischemic stroke share the causal variant rs17522918. The causal relationship between PRDX1-related methylation sites (cg02631906 and cg08483560) and the risk of ischemic stroke further validates PRDX1 as a crucial target. CONCLUSIONS These results suggest that the DRGs are interconnected with various cell death pathways and immune processes, potentially contributing to IPostC regulating cell death mechanisms in stroke.
Collapse
Affiliation(s)
- Shanpeng Liu
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (S.L.); (Q.W.); (L.W.); (J.W.)
| | - Qike Wu
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (S.L.); (Q.W.); (L.W.); (J.W.)
| | - Can Xu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Liping Wang
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (S.L.); (Q.W.); (L.W.); (J.W.)
| | - Jialing Wang
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (S.L.); (Q.W.); (L.W.); (J.W.)
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing 100069, China;
| | - Heng Zhao
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (S.L.); (Q.W.); (L.W.); (J.W.)
| |
Collapse
|
4
|
Zhang L, Zhou X, Zhao J, Wang X. Research hotspots and frontiers of preconditioning in cerebral ischemia: A bibliometric analysis. Heliyon 2024; 10:e24757. [PMID: 38317957 PMCID: PMC10839892 DOI: 10.1016/j.heliyon.2024.e24757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Background Preconditioning is a promising strategy against ischemic brain injury, and numerous studies in vitro and in vivo have demonstrated its neuroprotective effects. However, at present there is no bibliometric analysis of preconditioning in cerebral ischemia. Therefore, a comprehensive overview of the current status, hot spots, and emerging trends in this research field is necessary. Materials and methods Studies on preconditioning in cerebral ischemia from January 1999-December 2022 were retrieved from the Web of Science Core Collection (WOSCC) database. CiteSpace was used for data mining and visual analysis. Results A total of 1738 papers on preconditioning in cerebral ischemia were included in the study. The annual publications showed an upwards and then downwards trend but currently remain high in terms of annual publications. The US was the leading country, followed by China, the most active country in recent years. Capital Medical University published the largest number of articles. Perez-Pinzon, Miguel A contributed the most publications, while KITAGAWA K was the most cited author. The focus of the study covered three areas: (1) relevant diseases and experimental models, (2) types of preconditioning and stimuli, and (3) mechanisms of ischemic tolerance. Remote ischemic preconditioning, preconditioning of mesenchymal stem cells (MSCs), and inflammation are the frontiers of research in this field. Conclusion Our study provides a visual and scientific overview of research on preconditioning in cerebral ischemia, providing valuable information and new directions for researchers.
Collapse
Affiliation(s)
- Long Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Traditional Chinese Medicine, Zibo TCM-Integrated Hospital, Zibo ,255026, China
| | - Xue Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xingchen Wang
- Division of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China
| |
Collapse
|
5
|
Neves D, Salazar IL, Almeida RD, Silva RM. Molecular mechanisms of ischemia and glutamate excitotoxicity. Life Sci 2023; 328:121814. [PMID: 37236602 DOI: 10.1016/j.lfs.2023.121814] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Excitotoxicity is classically defined as the neuronal damage caused by the excessive release of glutamate, and subsequent activation of excitatory plasma membrane receptors. In the mammalian brain, this phenomenon is mainly driven by excessive activation of glutamate receptors (GRs). Excitotoxicity is common to several chronic disorders of the Central Nervous System (CNS) and is considered the primary mechanism of neuronal loss of function and cell death in acute CNS diseases (e.g. ischemic stroke). Multiple mechanisms and pathways lead to excitotoxic cell damage including pro-death signaling cascade events downstream of glutamate receptors, calcium (Ca2+) overload, oxidative stress, mitochondrial impairment, excessive glutamate in the synaptic cleft as well as altered energy metabolism. Here, we review the current knowledge on the molecular mechanisms that underlie excitotoxicity, emphasizing the role of Nicotinamide Adenine Dinucleotide (NAD) metabolism. We also discuss novel and promising therapeutic strategies to treat excitotoxicity, highlighting recent clinical trials. Finally, we will shed light on the ongoing search for stroke biomarkers, an exciting and promising field of research, which may improve stroke diagnosis, prognosis and allow better treatment options.
Collapse
Affiliation(s)
- Diogo Neves
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Ivan L Salazar
- Multidisciplinary Institute of Ageing, MIA - Portugal, University of Coimbra, Coimbra, Portugal
| | - Ramiro D Almeida
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Raquel M Silva
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, Viseu, Portugal.
| |
Collapse
|
6
|
Differentially Expressed Genes Analysis in the Human Small Airway Epithelium of Healthy Smokers Shows Potential Risks of Disease Caused by Oxidative Stress and Inflammation and the Potentiality of Astaxanthin as an Anti-Inflammatory Agent. Int J Inflam 2023; 2023:4251299. [PMID: 36909892 PMCID: PMC10005861 DOI: 10.1155/2023/4251299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 03/06/2023] Open
Abstract
Cigarette smoke (CS) was known for its effect of increasing oxidative stress that could trigger tissue injury and endothelial dysfunction mediated by free radicals and reactive oxygen species (ROS). ROS itself is a key signaling molecule that plays a role in the development of inflammatory disorders. Nuclear factor erythroid2 related factor2 (Nrf2) is the main regulator of antioxidant cellular response to cell and tissue-destroying components caused by CS. Nrf2 protein that is significantly activated in the smokers' small airway epithelium is followed by a series of gene expression changes in the same cells. This study aims to observe differentially expressed genes (DEGs) in the human small airway epithelium of smokers compared to genes whose expression changes due to astaxanthin (AST) treatment, an antioxidant compound that can modulate Nrf2. Gene expression data that was stored in the GEO browser (GSE 11952) was analyzed using GEO2R to search for DEG among smokers and nonsmokers subject. DEG was further compared to those genes whose expression changes due to astaxanthin treatment (AST) that were obtained from the Comparative Toxicogenomics Database (CTD; https://ctdbase.org/). DEG (p < 0.05) analysis result shows that there are 23 genes whose expression regulation is reversed compared to gene expression due to AST treatment. The gene function annotations of the 23 DEGs showed the involvement of some of these genes in chemical and oxidative stress, reactive oxygen species (ROS), and apoptotic signaling pathways. All of the genes were involved/associated with chronic bronchitis, adenocarcinoma of the lung, non-small-cell lung carcinoma, carcinoma, small cell lung carcinoma, type 2 diabetes mellitus, emphysema, ischemic stroke, lung diseases, and inflammation. Thus, AST treatment for smokers could potentially decrease the development of ROS and oxidative stress that leads to inflammation and health risks associated with smoking.
Collapse
|
7
|
Role of alarmins in poststroke inflammation and neuronal repair. Semin Immunopathol 2022:10.1007/s00281-022-00961-5. [PMID: 36161515 DOI: 10.1007/s00281-022-00961-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Severe loss of cerebral blood flow causes hypoxia and glucose deprivation in the brain tissue, resulting in necrotic cell death in the ischemic brain. Several endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), are extracellularly released from the dead cells to activate pattern recognition receptors (PRRs) in immune cells that infiltrate into ischemic brain tissue following the disruption of the blood-brain barrier (BBB) after stroke onset. The activated immune cells produce various inflammatory cytokines and chemokines, triggering sterile cerebral inflammation in the ischemic brain that causes further neuronal cell death. Poststroke inflammation is resolved within several days after stroke onset, and neurological functions are restored to some extent as neural repair occurs around peri-infarct neurons. Clearance of DAMPs from the injured brain is necessary for the resolution of poststroke inflammation. Neurons and glial cells also express PRRs and receive DAMP signaling. Although the role of PRRs in neural cells in the ischemic brain has not yet been clarified, the signaling pathway is likely to be contribute to stroke pathology and neural repair after ischemic stroke. This review describes the molecular dynamics, signaling pathways, and functions of DAMPs in poststroke inflammation and its resolution.
Collapse
|
8
|
Simats A, Liesz A. Systemic inflammation after stroke: implications for post-stroke comorbidities. EMBO Mol Med 2022; 14:e16269. [PMID: 35971650 PMCID: PMC9449596 DOI: 10.15252/emmm.202216269] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 12/21/2022] Open
Abstract
Immunological mechanisms have come into the focus of current translational stroke research, and the modulation of neuroinflammatory pathways has been identified as a promising therapeutic approach to protect the ischemic brain. However, stroke not only induces a local neuroinflammatory response but also has a profound impact on systemic immunity. In this review, we will summarize the consequences of ischemic stroke on systemic immunity at all stages of the disease, from onset to long‐term outcome, and discuss underlying mechanisms of systemic brain‐immune communication. Furthermore, since stroke commonly occurs in patients with multiple comorbidities, we will also overview the current understanding of the potential role of systemic immunity in common stroke‐related comorbidities, such as cardiac dysfunction, atherosclerosis, diabetes, and infections. Finally, we will highlight how targeting systemic immunity after stroke could improve long‐term outcomes and alleviate comorbidities of stroke patients.
Collapse
Affiliation(s)
- Alba Simats
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
9
|
Changing Perspectives from Oxidative Stress to Redox Signaling-Extracellular Redox Control in Translational Medicine. Antioxidants (Basel) 2022; 11:antiox11061181. [PMID: 35740078 PMCID: PMC9228063 DOI: 10.3390/antiox11061181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/07/2022] Open
Abstract
Extensive research has changed the understanding of oxidative stress that has been linked to every major disease. Today we distinguish oxidative eu- and distress, acknowledging that redox modifications are crucial for signal transduction in the form of specific thiol switches. Long underestimated, reactive species and redox proteins of the Thioredoxin (Trx) family are indeed essential for physiological processes. Moreover, extracellular redox proteins, low molecular weight thiols and thiol switches affect signal transduction and cell–cell communication. Here, we highlight the impact of extracellular redox regulation for health, intermediate pathophenotypes and disease. Of note, recent advances allow the analysis of redox changes in body fluids without using invasive and expensive techniques. With this new knowledge in redox biochemistry, translational strategies can lead to innovative new preventive and diagnostic tools and treatments in life sciences and medicine.
Collapse
|
10
|
Zhao R, Wen X. High expression of serum GST-π/CypA aids the diagnosis of acute cerebral infarction and predicts short-term poor prognosis. Clin Neurol Neurosurg 2022; 220:107352. [DOI: 10.1016/j.clineuro.2022.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/03/2022]
|
11
|
Kim S, Lee W, Jo H, Sonn SK, Jeong SJ, Seo S, Suh J, Jin J, Kweon HY, Kim TK, Moon SH, Jeon S, Kim JW, Kim YR, Lee EW, Shin HK, Park SH, Oh GT. The antioxidant enzyme Peroxiredoxin-1 controls stroke-associated microglia against acute ischemic stroke. Redox Biol 2022; 54:102347. [PMID: 35688114 PMCID: PMC9184746 DOI: 10.1016/j.redox.2022.102347] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Sinai Kim
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Wonhyo Lee
- Department of Biological Sciences, Ulsan National Institute of Science & Technology (UNIST), Ulsan, South Korea
| | - Huiju Jo
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seong-Keun Sonn
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Seungwoon Seo
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Joowon Suh
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jing Jin
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyae Yon Kweon
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Tae Kyeong Kim
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Shin Hye Moon
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sejin Jeon
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering Andong National University, Andong, South Korea
| | - Jong Woo Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
| | - Yu Ri Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine 1672, Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Sung Ho Park
- Department of Biological Sciences, Ulsan National Institute of Science & Technology (UNIST), Ulsan, South Korea.
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
12
|
Stanzione R, Forte M, Cotugno M, Bianchi F, Marchitti S, Rubattu S. Role of DAMPs and of Leukocytes Infiltration in Ischemic Stroke: Insights from Animal Models and Translation to the Human Disease. Cell Mol Neurobiol 2022; 42:545-556. [PMID: 32996044 PMCID: PMC11441194 DOI: 10.1007/s10571-020-00966-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Stroke is a leading cause of death and disability worldwide. Several mechanisms are involved in the pathogenesis of ischemic stroke (IS). The contributory role of the inflammatory and immunity processes was demonstrated both in vitro and in animal models, and was confirmed in humans. IS evokes an immediate inflammatory response that involves complex cellular and molecular mechanisms. All components of the innate and adaptive immunity systems are involved in several steps of the ischemic cascade. In the early phase, inflammatory and immune mechanisms contribute to the brain tissue damage, whereas, in the late phase, they participate to the tissue repair processes. In particular, damage-associated molecular patterns (DAMPs) appear critical for the promotion of altered blood brain barrier permeability, leukocytes infiltration, tissue edema and brain injury. Conversely, the activation of regulatory T lymphocytes (Tregs) plays protective effects. The identification of specific cellular/molecular elements belonging to the inflammatory and immune responses, contributing to the brain ischemic injury and tissue remodeling, offers the advantage to design adequate therapeutic strategies. In this article, we will present an overview of the knowledge on inflammatory and immunity processes in IS, with a particular focus on the role of DAMPs and leukocytes infiltration. We will discuss evidence obtained in preclinical models of IS and in humans. The main molecular mechanisms useful for the development of novel therapeutic approaches will be highlighted. The translation of experimental findings to the human disease is still a difficult step to pursue. Further investigations are required to fill up the existing gaps.
Collapse
Affiliation(s)
| | | | | | | | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, IS, Italy.
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
13
|
Nouri-Vaskeh M, Khalili N, Sadighi A, Yazdani Y, Zand R. Biomarkers for Transient Ischemic Attack: A Brief Perspective of Current Reports and Future Horizons. J Clin Med 2022; 11:jcm11041046. [PMID: 35207321 PMCID: PMC8877275 DOI: 10.3390/jcm11041046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Cerebrovascular disease is the leading cause of long-term disability in the world and the third-leading cause of death in the United States. The early diagnosis of transient ischemic attack (TIA) is of great importance for reducing the mortality and morbidity of cerebrovascular diseases. Patients with TIA have a high risk of early subsequent ischemic stroke and the development of permanent nervous system lesions. The diagnosis of TIA remains a clinical diagnosis that highly relies on the patient's medical history assessment. There is a growing list of biomarkers associated with different components of the ischemic cascade in the brain. In this review, we take a closer look at the biomarkers of TIA and their validity with a focus on the more clinically important ones using recent evidence of their reliability for practical usage.
Collapse
Affiliation(s)
- Masoud Nouri-Vaskeh
- Tropical and Communicable Diseases Research Centre, Iranshahr University of Medical Sciences, Iranshahr 7618815676, Iran;
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran 1419733151, Iran
| | - Neda Khalili
- School of Medicine, Tehran University of Medical Sciences, Tehran 1449614535, Iran;
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Alireza Sadighi
- Neuroscience Institute, Geisinger Health System, Danville, PA 17822, USA;
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Ramin Zand
- Neuroscience Institute, Geisinger Health System, Danville, PA 17822, USA;
- Neuroscience Institute, Pennsylvania State University, State College, PA 16801, USA
- Correspondence: or ; Tel.: +1-570-808-7330; Fax: +1-570-808-3209
| |
Collapse
|
14
|
Brain Immune Interactions-Novel Emerging Options to Treat Acute Ischemic Brain Injury. Cells 2021; 10:cells10092429. [PMID: 34572077 PMCID: PMC8472028 DOI: 10.3390/cells10092429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is still among the leading causes of mortality and morbidity worldwide. Despite intensive advancements in medical sciences, the clinical options to treat ischemic stroke are limited to thrombectomy and thrombolysis using tissue plasminogen activator within a narrow time window after stroke. Current state of the art knowledge reveals the critical role of local and systemic inflammation after stroke that can be triggered by interactions taking place at the brain and immune system interface. Here, we discuss different cellular and molecular mechanisms through which brain–immune interactions can take place. Moreover, we discuss the evidence how the brain influence immune system through the release of brain derived antigens, damage-associated molecular patterns (DAMPs), cytokines, chemokines, upregulated adhesion molecules, through infiltration, activation and polarization of immune cells in the CNS. Furthermore, the emerging concept of stemness-induced cellular immunity in the context of neurodevelopment and brain disease, focusing on ischemic implications, is discussed. Finally, we discuss current evidence on brain–immune system interaction through the autonomic nervous system after ischemic stroke. All of these mechanisms represent potential pharmacological targets and promising future research directions for clinically relevant discoveries.
Collapse
|
15
|
Maehara N, Taniguchi K, Okuno A, Ando H, Hirota A, Li Z, Wang CT, Arai S, Miyazaki T. AIM/CD5L attenuates DAMPs in the injured brain and thereby ameliorates ischemic stroke. Cell Rep 2021; 36:109693. [PMID: 34525359 DOI: 10.1016/j.celrep.2021.109693] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/01/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023] Open
Abstract
The sterile inflammation caused by damage-associated molecular patterns (DAMPs) worsens the prognosis following primary injury such as ischemic stroke. However, there are no effective treatments to regulate DAMPs. Here, we report that AIM (or CD5L) protein reduces sterile inflammation by attenuating DAMPs and that AIM administration ameliorates the deleterious effects of ischemic stroke. AIM binds to DAMPs via charge-based interactions and disulfide bond formation. This AIM association promotes the phagocytic removal of DAMPs and neutralizes DAMPs by impeding their binding to inflammatory receptors. In experimental stroke, AIM-deficient mice exhibit severe neurological damage and higher mortality with greater levels of DAMPs and associated inflammation in the brain than wild-type mice, in which brain AIM levels increase following stroke onset. Recombinant AIM administration reduces sterile inflammation in the infarcted region, leading to a profound reduction of animal mortality. Our findings provide a basis for the therapies targeting DAMPs to improve ischemic stroke.
Collapse
Affiliation(s)
- Natsumi Maehara
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kaori Taniguchi
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ami Okuno
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideaki Ando
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Aika Hirota
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Zhiheng Li
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ching-Ting Wang
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; LEAP, Japan Agency for Medical Research and Development, Tokyo 113-0033, Japan; Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
16
|
Karakus A, Girerd N, Sanchez JC, Sabben C, Wietrich A, Lavandier K, Marchal S, Aubertin A, Humbertjean L, Mione G, Bouali S, Duarte K, Reymond S, Gory B, Richard S. Identifying patients with cerebral infarction within the time window compatible with reperfusion therapy, diagnostic performance of glutathione S-transferase-π (GST-π) and peroxiredoxin 1 (PRDX1): exploratory prospective multicentre study FLAG-1 protocol. BMJ Open 2021; 11:e046167. [PMID: 34417212 PMCID: PMC8381327 DOI: 10.1136/bmjopen-2020-046167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Plasma biomarkers may be useful in diagnosing acute cerebral infarction requiring urgent reperfusion, but their performance remains to be confirmed. If confirmed, these molecules could be used to develop rapid and reliable decentralised measurement methods, making it possible to initiate reperfusion therapy before hospital admission. The FLAG-1 large prospective study will constitute a plasma bank to assess the diagnostic performance of two biomarkers: glutathione S-transferase-π and peroxiredoxin 1. These molecules are involved in the oxidative stress response and could identify cerebral infarction within a therapeutic window of less than 4.5 hours following the onset of symptoms. Secondary objectives include assessing performance of these biomarkers within 3-hour and 6-hour windows; identifying additional biomarkers diagnosing cerebral infarction and significant criteria guiding therapeutic decisions: ischaemic features of stroke, presence of diffusion/fluid-attenuated inversion recovery mismatch, volume of cerebral infarction and penumbra on cerebral MRI. METHODS AND ANALYSIS The exploratory, prospective, multicentre FLAG-1 Study will include 945 patients with acute stroke symptoms (onset ≤12 hours, National Institute of Health Stroke Scale score ≥3). Each patient's 25 mL blood sample will be associated with cerebral MRI data. Two patient groups will be defined based on the time of blood collection (before and after 4.5 hours following onset). Receiver operating characteristic analysis will determine the diagnostic performance of each biomarker, alone or in combination, for the identification of cerebral infarction <4.5 hours. ETHICS AND DISSEMINATION The protocol has been approved by an independent ethics committee. Biological samples are retained in line with best practices and procedures, in accordance with French legislation. Anonymised data and cerebral imaging records are stored using electronic case report forms and a secure server, respectively, registered with the French Data Protection Authority (Commission Nationale de l'Informatique et des Libertés (CNIL)). Results will be disseminated through scientific meetings and publication in peer-reviewed medical journals. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT03364296).
Collapse
Affiliation(s)
- Arif Karakus
- Department of Neurology, Stroke Unit, University Hospital Centre Nancy, 54035 Nancy, France
- University of Lorraine, Nancy, France
| | - Nicolas Girerd
- University of Lorraine, Nancy, France
- Plurithematic Clinical Investigation Center, CIC-P 1433, INSERM U1116, University Hospital Centre Nancy, 54500 Vandoeuvre-lès-Nancy, France
| | - Jean-Charles Sanchez
- Department of Human Protein Sciences, University of Geneva Medical Centre, 1206 Geneva, Switzerland
| | | | - Anthony Wietrich
- Stroke Unit, Bar-le-Duc Hospital Centre, 55000 Bar-le-Duc, France
| | - Karine Lavandier
- Stroke Unit, Bar-le-Duc Hospital Centre, 55000 Bar-le-Duc, France
| | - Sophie Marchal
- Stroke Unit, Verdun Hospital Centre, 55100 Verdun, France
| | - Anne Aubertin
- Stroke Unit, Hospital Centre Troyes, CS 20718, 10003 Troyes, France
| | - Lisa Humbertjean
- Department of Neurology, Stroke Unit, University Hospital Centre Nancy, 54035 Nancy, France
| | - Gioia Mione
- Department of Neurology, Stroke Unit, University Hospital Centre Nancy, 54035 Nancy, France
| | - Sanae Bouali
- Plurithematic Clinical Investigation Center, CIC-P 1433, INSERM U1116, University Hospital Centre Nancy, 54500 Vandoeuvre-lès-Nancy, France
| | - Kevin Duarte
- Plurithematic Clinical Investigation Center, CIC-P 1433, INSERM U1116, University Hospital Centre Nancy, 54500 Vandoeuvre-lès-Nancy, France
| | - Sandrine Reymond
- Department of Human Protein Sciences, University of Geneva Medical Centre, 1206 Geneva, Switzerland
| | - Benjamin Gory
- University of Lorraine, Nancy, France
- Department of Diagnostic and Therapeutic Neuroradiology, INSERM U1254, IADI, University Hospital Centre Nancy, 54035 Nancy, France
| | - Sébastien Richard
- Department of Neurology, Stroke Unit, University Hospital Centre Nancy, 54035 Nancy, France
- University of Lorraine, Nancy, France
- Plurithematic Clinical Investigation Center, CIC-P 1433, INSERM U1116, University Hospital Centre Nancy, 54500 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
17
|
Mengozzi M, Kirkham FA, Girdwood EER, Bunting E, Drazich E, Timeyin J, Ghezzi P, Rajkumar C. C-Reactive Protein Predicts Further Ischemic Events in Patients With Transient Ischemic Attack or Lacunar Stroke. Front Immunol 2020; 11:1403. [PMID: 32733466 PMCID: PMC7358589 DOI: 10.3389/fimmu.2020.01403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
Patients who have experienced a first cerebral ischemic event are at increased risk of recurrent stroke. There is strong evidence that low-level inflammation as measured by high sensitivity C-reactive protein (hs-CRP) is a predictor of further ischemic events. Other mechanisms implicated in the pathogenesis of stroke may play a role in determining the risk of secondary events, including oxidative stress and the adaptive response to it and activation of neuroprotective pathways by hypoxia, for instance through induction of erythropoietin (EPO). This study investigated the association of the levels of CRP, peroxiredoxin 1 (PRDX1, an indicator of the physiological response to oxidative stress) and EPO (a neuroprotective factor produced in response to hypoxia) with the risk of a second ischemic event. Eighty patients with a diagnosis of lacunar stroke or transient ischemic attack (TIA) were included in the study and a blood sample was collected within 14 days from the initial event. Hs-CRP, PRDX1, and EPO were measured by ELISA. Further ischemic events were recorded with a mean follow-up of 42 months (min 24, max 64). Multivariate analysis showed that only CRP was an independent predictor of further events with an observed risk (OR) of 1.14 (P = 0.034, 95% CI 1.01–1.29). No association was observed with the levels of PRDX1 or EPO. A receiver operating curve (ROC) determined a cut-off CRP level of 3.25 μg/ml, with a 46% sensitivity and 81% specificity. Low-level inflammation as detected by hs-CRP is an independent predictor of recurrent cerebrovascular ischemic events.
Collapse
Affiliation(s)
- Manuela Mengozzi
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Frances A Kirkham
- Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| | - Esme E R Girdwood
- Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| | - Eva Bunting
- Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| | - Erin Drazich
- Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| | - Jean Timeyin
- Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| | - Pietro Ghezzi
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Chakravarthi Rajkumar
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom.,Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| |
Collapse
|
18
|
Chen J, Li X, Xu S, Zhang M, Wu Z, Zhang X, Xu Y, Chen Y. Delayed PARP-1 Inhibition Alleviates Post-stroke Inflammation in Male Versus Female Mice: Differences and Similarities. Front Cell Neurosci 2020; 14:77. [PMID: 32317937 PMCID: PMC7146057 DOI: 10.3389/fncel.2020.00077] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Post-stroke inflammation is almost involved in the whole process of stroke pathogenesis, which serves as a prime target for developing new stroke therapies. Despite known sex differences in the incidence and outcome of stroke, few preclinical or clinical studies take into account sex bias in treatment. Recent evidence suggests that poly (ADP-ribose) polymerase (PARP)-1 inhibitor exerts sex-specific neuroprotection in the ischemic stroke. This study was aimed to investigate the effects of delayed PARP-1 inhibition on post-stroke inflammation and possible sexual dimorphism, and explore the possible relevant mediators. In male and female C57BL/6 mice subjected to transit middle cerebral artery occlusion (MCAO), we found that delayed treatment of PARP-1 inhibitor at 48 h following reperfusion could comparably alleviate neuro-inflammation at 72 h after stroke. Whereas, more remarkable reduction of iNOS and MMP9 induced by PARP-1 inhibition were found in male MCAO mice, and the improvement of behavioral outcomes was more prominent in male MCAO mice. In addition, we further identified that PARP-1 inhibitor might equivalently suppress microglial activation in males and females in vivo and in vitro. With proteomic analysis and western blotting assay, it was found that stroke-induced peroxiredoxin-1 (Prx1) expression was significantly affected by PARP-1 inhibition. Interestingly, injection of recombinant Prx1 into the ischemic core could block the anti-inflammatory effects of PARP-1 inhibitor in the experimental stroke. These findings suggest that PARP-1 inhibitor has effects on regulating microglial activation and post-stroke inflammation in males and females, and holds promise as a novel therapeutic agent for stroke with extended therapeutic time window. Efforts need to be made to delineate the actions of PARP-1 inhibition in stroke, and here we propose that Prx1 might be a critical mediator.
Collapse
Affiliation(s)
- Jian Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Xiaoxi Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Siyi Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Meijuan Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Zhengzheng Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xi Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Yanting Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| |
Collapse
|
19
|
He Y, Li S, Tang D, Peng Y, Meng J, Peng S, Deng Z, Qiu S, Liao X, Chen H, Tu S, Tao L, Peng Z, Yang H. Circulating Peroxiredoxin-1 is a novel damage-associated molecular pattern and aggravates acute liver injury via promoting inflammation. Free Radic Biol Med 2019; 137:24-36. [PMID: 30991142 DOI: 10.1016/j.freeradbiomed.2019.04.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/14/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022]
Abstract
Sterile inflammation is initiated by damage-associated molecular patterns (DAMPs) and a key contributor to acute liver injury (ALI). However, the current knowledge on those DAMPs that activate hepatic inflammation under ALI remains incomplete. We report here that circulating peroxiredoxin-1 (Prdx1) is a novel DAMP for ALI. Intraperitoneal injection of acetaminophen (APAP) elicited a progressive course of ALI in mice, which was developed from 12 to 24 h post injection along with liver inflammation evident by macrophage infiltration and upregulations of cytokines (IL-1β, IL-6 and TNF-α); these alterations were concurrently occurred with a robust and progressive production of serum Prdx1. Similar observations were also obtained in carbon tetrachloride (CCl4)-induced ALI in mice. Removal of the source of serum Prdx1 protected mice deficient in Prdx1 from APAP and CCl4-induced liver injury, and decreased macrophage infiltration, IL-1β, IL-6 and TNF-α production. As a result, Prdx1-/- mice were strongly protected from APAP-induced death that was likely progressed from ALI. Additionally, intravenous re-introduction of recombinant Prdx1 (rPrdx1) in Prdx1-/- mice reversed or reduced all the above events, demonstrating an important contribution of circulating Prdx1 to ALI. rPrdx1 potently induced in primary macrophages the expression of pro-IL-1β, IL-6, TNF-α, and IL-1β through the NF-κB signaling as well as the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling, evident by caspase-1 activation. Furthermore, a significant elevation of serum Prdx1 was demonstrated in patients (n = 15) with ALI; the elevation is associated with ALI severity. Collectively, we provide the first demonstration for serum Prdx1 contributing to ALI.
Collapse
Affiliation(s)
- Ying He
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shenglan Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Damu Tang
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yu Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Meng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenghao Deng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sisi Qiu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haihua Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sha Tu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
20
|
Combining H-FABP and GFAP increases the capacity to differentiate between CT-positive and CT-negative patients with mild traumatic brain injury. PLoS One 2018; 13:e0200394. [PMID: 29985933 PMCID: PMC6037378 DOI: 10.1371/journal.pone.0200394] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
Mild traumatic brain injury (mTBI) patients may have trauma-induced brain lesions detectable using CT scans. However, most patients will be CT-negative. There is thus a need for an additional tool to detect patients at risk. Single blood biomarkers, such as S100B and GFAP, have been widely studied in mTBI patients, but to date, none seems to perform well enough. In many different diseases, combining several biomarkers into panels has become increasingly interesting for diagnoses and to enhance classification performance. The present study evaluated 13 proteins individually-H-FABP, MMP-1, MMP-3, MMP-9, VCAM, ICAM, SAA, CRP, GSTP, NKDA, PRDX1, DJ-1 and IL-10-for their capacity to differentiate between patients with and without a brain lesion according to CT results. The best performing proteins were then compared and combined with the S100B and GFAP proteins into a CT-scan triage panel. Patients diagnosed with mTBI, with a Glasgow Coma Scale score of 15 and one additional clinical symptom were enrolled at three different European sites. A blood sample was collected at hospital admission, and a CT scan was performed. Patients were divided into two two-centre cohorts and further dichotomised into CT-positive and CT-negative groups for statistical analysis. Single markers and panels were evaluated using Cohort 1. Four proteins-H-FABP, IL-10, S100B and GFAP-showed significantly higher levels in CT-positive patients. The best-performing biomarker was H-FABP, with a specificity of 32% (95% CI 23-40) and sensitivity reaching 100%. The best-performing two-marker panel for Cohort 1, subsequently validated in Cohort 2, was a combination of H-FABP and GFAP, enhancing specificity to 46% (95% CI 36-55). When adding IL-10 to this panel, specificity reached 52% (95% CI 43-61) with 100% sensitivity. These results showed that proteins combined into panels could be used to efficiently classify CT-positive and CT-negative mTBI patients.
Collapse
|
21
|
Gülke E, Gelderblom M, Magnus T. Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord 2018; 11:1756286418774254. [PMID: 29854002 PMCID: PMC5968660 DOI: 10.1177/1756286418774254] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Ischemic stroke is a major cause of death. Besides the direct damage resulting from oxygen and glucose deprivation, sterile inflammation plays a pivotal role in increasing cellular death. Damaged-associated molecular patterns (DAMPs) are passively released from dying cells and activate the innate immune system. Thus, they take part in the direct and rapid activation of the inflammatory response after stroke onset. In this review the role of the most important DAMPs, high mobility group box 1, heat and cold shock proteins, purines, and peroxiredoxins, are addressed. Moreover, intracellular pathways activated by DAMPs in microglia are illuminated.
Collapse
Affiliation(s)
- Eileen Gülke
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | | |
Collapse
|
22
|
Grochowski C, Litak J, Kamieniak P, Maciejewski R. Oxidative stress in cerebral small vessel disease. Role of reactive species. Free Radic Res 2017; 52:1-13. [PMID: 29166803 DOI: 10.1080/10715762.2017.1402304] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cerebral small vessel disease (CSVD) is a wide term describing the condition affecting perforating arterial branches as well as arterioles, venules, and capillaries. Cerebral vascular net is one of the main targets of localised oxidative stress processes causing damage to vasculature, changes in the blood flow and blood-brain barrier and, in consequence, promoting neurodegenerative alterations in the brain tissue. Numerous studies report the fact of oxidation to proteins, sugars, lipids and nucleic acids, occurring in most neurodegenerative diseases mainly in the earliest stages and correlations with the development of cognitive and motor disturbances. The dysfunction of endothelium can be caused by oxidative stress and inflammatory mechanisms as a result of reactions and processes generating extensive reactive oxygen species (ROS) production such as high blood pressure, oxidised low density lipoproteins (oxLDL), very low density lipoproteins (vLDL), diabetes, homocysteinaemia, smoking, and infections. Several animal studies show positive aspects of ROS, especially within cerebral vasculature.
Collapse
Affiliation(s)
- Cezary Grochowski
- a Department of Neurosurgery and Pediatric Neurosurgery , Medical University of Lublin , Lublin , Poland.,b Department of Human Anatomy , Medical University of Lublin , Lublin , Poland
| | - Jakub Litak
- a Department of Neurosurgery and Pediatric Neurosurgery , Medical University of Lublin , Lublin , Poland
| | - Piotr Kamieniak
- a Department of Neurosurgery and Pediatric Neurosurgery , Medical University of Lublin , Lublin , Poland
| | - Ryszard Maciejewski
- b Department of Human Anatomy , Medical University of Lublin , Lublin , Poland
| |
Collapse
|