1
|
Jang LW, Kim JH, Lee W, Lee JH, Oh GG, Jung H, Kim SW, Jeon DW, Ha TY, Chang KA, Kim J. Investigation of Structural, Optical, Electrical, and Biological Properties of a Porous Platinum Electrode for Neurostimulation Devices. ACS APPLIED BIO MATERIALS 2025; 8:3111-3118. [PMID: 40183603 DOI: 10.1021/acsabm.4c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The structural and optical properties, as well as the electrical and biological characteristics of a porous platinum (Pt) structure for neurostimulation applications, are investigated. Critical factors such as biocompatibility, electrical performance, and structural and optical differences, which can adversely affect the functionality of implantable devices, are systematically analyzed and compared with general electrodes. By employing an integration of three-dimensional simulations and implantation experiments, we demonstrate that the remarkably extensive surface area, low reflectance, and outstanding peak current values inherent in porous Pt facilitate effective stimulation while simultaneously ensuring a high degree of biological safety. Our findings suggest that these beneficial characteristics collectively position porous Pt as a notably promising candidate for implantable electrodes in biomedical devices.
Collapse
Affiliation(s)
- Lee-Woon Jang
- CELLICO, Seongnam-si, Gyeonggi-do 13558, Republic of Korea
| | - Jeong-Hun Kim
- Biomedical Engineering Research Center, Samsung Medical Center, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Wonseok Lee
- Department of Electrical Engineering, Korea National University of Transportation, Chungju-si, Chungcheonbuk-do 27469, Republic of Korea
- Chemical Industry Institute, Department of IT-Energy Convergence (BK21 Four), Korea National University of Transportation, Chungju-si, Chungcheonbuk-do 27469, Republic of Korea
| | - Jung-Hyun Lee
- CELLICO, Seongnam-si, Gyeonggi-do 13558, Republic of Korea
| | - Gwang-Geun Oh
- CELLICO, Seongnam-si, Gyeonggi-do 13558, Republic of Korea
| | - Hachul Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheonbuk-do 28160, Republic of Korea
| | - Seong-Woo Kim
- Horang-I eye center, Yangcheon-gu, Seoul 07999, Republic of Korea
| | - Dae-Woo Jeon
- Display Materials Center, Korea Institute of Ceramic Engineering and Technology, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea
| | - Tae-Young Ha
- Department of Pharmacology, College of Medicine, Gachon University, Yeonsu-gu, Incheon 21999, Republic of Korea
- Department of Basic Neuroscience, Neuroscience Research Institute, Gachon University, Namdong-gu, Incheon 21565, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Yeonsu-gu, Incheon 21999, Republic of Korea
- Department of Basic Neuroscience, Neuroscience Research Institute, Gachon University, Namdong-gu, Incheon 21565, Republic of Korea
| | - Jungsuk Kim
- CELLICO, Seongnam-si, Gyeonggi-do 13558, Republic of Korea
- Department of Biomedical Engineering, Gachon University, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
2
|
Zhu Y, Tang Z, Yuan L, Li B, Shao Z, Guo W. Beyond conventional structures: emerging complex metal oxides for efficient oxygen and hydrogen electrocatalysis. Chem Soc Rev 2025; 54:1027-1092. [PMID: 39661069 DOI: 10.1039/d3cs01020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The core of clean energy technologies such as fuel cells, water electrolyzers, and metal-air batteries depends on a series of oxygen and hydrogen-based electrocatalysis reactions, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), which necessitate cost-effective electrocatalysts to improve their energy efficiency. In the recent decade, complex metal oxides (beyond simple transition metal oxides, spinel oxides and ABO3 perovskite oxides) have emerged as promising candidate materials with unexpected electrocatalytic activities for oxygen and hydrogen electrocatalysis owing to their special crystal structures and unique physicochemical properties. In this review, the current progress in complex metal oxides for ORR, OER, and HER electrocatalysis is comprehensively presented. Initially, we present a brief description of some fundamental concepts of the ORR, OER, and HER and a detailed description of complex metal oxides, including their physicochemical characteristics, synthesis methods, and structural characterization. Subsequently, we present a thorough overview of various complex metal oxides reported for ORR, OER, and HER electrocatalysis thus far, such as double/triple/quadruple perovskites, perovskite hydroxides, brownmillerites, Ruddlesden-Popper oxides, Aurivillius oxides, lithium/sodium transition metal oxides, pyrochlores, metal phosphates, polyoxometalates and other specially structured oxides, with emphasis on the designed strategies for promoting their performance and structure-property-performance relationships. Moreover, the practical device applications of complex metal oxides in fuel cells, water electrolyzers, and metal-air batteries are discussed. Finally, some concluding remarks summarizing the challenges, perspectives, and research trends of this topic are presented. We hope that this review provides a clear overview of the current status of this emerging field and stimulate future efforts to design more advanced electrocatalysts.
Collapse
Affiliation(s)
- Yinlong Zhu
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zheng Tang
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Lingjie Yuan
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Bowen Li
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zongping Shao
- School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6845, Australia.
| | - Wanlin Guo
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
3
|
Li WW, Wu HF, Li QC, Wang XF, Duan F, Xie H, Zhang J, Shen Q, Yang XY, Luo GQ. Microbial-induced Synthesis of nano NiFe LDH for High-efficiency Oxygen Evolution. Chemistry 2025:e202404086. [PMID: 39792375 DOI: 10.1002/chem.202404086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
NiFe layered double hydroxide (LDH) currently are the most efficient catalysts for the oxygen evolution reaction (OER) in alkaline environments. However, the development of high-performance low cost OER electrocatalysts using straightforward strategies remains a significant challenge. In this study, we describe an innovative microbial mineralization-based method for in situ-induced preparation of NiFe LDH nanosheets loaded on nickel foam and demonstrate that this material serves as an efficient oxygen evolution electrocatalyst. In the microbial mineralization process, bacteria adhere to electrode materials and promote the surface nucleation of nanomaterials when metal ions are present. Specifically, our findings indicate that biomineralization accelerates the formation and regulation of NiFe LDH. The new electrocatalyst displays excellent OER performance, with a small overpotential of 220 mV at 10 mA cm-2 and a Tafel slope down to 38.6 mV dec-1 in alkaline solution. The remarkable OER performance of the microbial mineralization-derived electrocatalyst is attributed to the synergistic effect of NiFe LDH and a bacterial-specific surface area that contains multiple active sites. This study has uncovered a new approach for the assembly of NiFe LDH that relies on biomineralization to bring about morphological and structural modification of LDH nanosheets.
Collapse
Affiliation(s)
- Wei-Wei Li
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Hai-Fang Wu
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Qi-Chang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Xue-Fei Wang
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Wuhan University of Technology China, Chaozhou, 521000, China
| | - Feng Duan
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Hao Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Jian Zhang
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Wuhan University of Technology China, Chaozhou, 521000, China
| | - Qiang Shen
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Wuhan University of Technology China, Chaozhou, 521000, China
| | - Xiao-Yu Yang
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Guo-Qiang Luo
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Wuhan University of Technology China, Chaozhou, 521000, China
| |
Collapse
|
4
|
Zhang D, Wu Q, Wu L, Cheng L, Huang K, Chen J, Yao X. Optimal Electrocatalyst Design Strategies for Acidic Oxygen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401975. [PMID: 39120481 PMCID: PMC11481214 DOI: 10.1002/advs.202401975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/18/2024] [Indexed: 08/10/2024]
Abstract
Hydrogen, a clean resource with high energy density, is one of the most promising alternatives to fossil. Proton exchange membrane water electrolyzers are beneficial for hydrogen production because of their high current density, facile operation, and high gas purity. However, the large-scale application of electrochemical water splitting to acidic electrolytes is severely limited by the sluggish kinetics of the anodic reaction and the inadequate development of corrosion- and highly oxidation-resistant anode catalysts. Therefore, anode catalysts with excellent performance and long-term durability must be developed for anodic oxygen evolution reactions (OER) in acidic media. This review comprehensively outlines three commonly employed strategies, namely, defect, phase, and structure engineering, to address the challenges within the acidic OER, while also identifying their existing limitations. Accordingly, the correlation between material design strategies and catalytic performance is discussed in terms of their contribution to high activity and long-term stability. In addition, various nanostructures that can effectively enhance the catalyst performance at the mesoscale are summarized from the perspective of engineering technology, thus providing suitable strategies for catalyst design that satisfy industrial requirements. Finally, the challenges and future outlook in the area of acidic OER are presented.
Collapse
Affiliation(s)
- Dongdong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Qilong Wu
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAustralian Institute for Innovative MaterialsUniversity of WollongongWollongongNSW2500Australia
| | - Liyun Wu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Lina Cheng
- Institute for Green Chemistry and Molecular EngineeringSun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Jun Chen
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAustralian Institute for Innovative MaterialsUniversity of WollongongWollongongNSW2500Australia
| | - Xiangdong Yao
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
- School of Advanced Energy and IGCMEShenzhen CampusSun Yat‐Sen University (SYSU)ShenzhenGuangdong518100P. R. China
| |
Collapse
|
5
|
Li W, Bu Y, Ge X, Li F, Han GF, Baek JB. Recent Advances in Iridium-based Electrocatalysts for Acidic Electrolyte Oxidation. CHEMSUSCHEM 2024; 17:e202400295. [PMID: 38362788 DOI: 10.1002/cssc.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Ongoing research to develop advanced electrocatalysts for the oxygen evolution reaction (OER) is needed to address demand for efficient energy conversion and carbon-free energy sources. In the OER process, acidic electrolytes have higher proton concentration and faster response than alkaline ones, but their harsh strongly acidic environment requires catalysts with greater corrosion and oxidation resistance. At present, iridium oxide (IrO2) with its strong stability and excellent catalytic performance is the catalyst of choice for the anode side of commercial PEM electrolysis cells. However, the scarcity and high cost of iridium (Ir) and the unsatisfactory activity of IrO2 hinder industrial scale application and the sustainable development of acidic OER catalytic technology. This highlights the importance of further research on acidic Ir-based OER catalysts. In this review, recent advances in Ir-based acidic OER electrocatalysts are summarized, including fundamental understanding of the acidic OER mechanism, recent insights into the stability of acidic OER catalysts, highly efficient Ir-based electrocatalysts, and common strategies for optimizing Ir-based catalysts. The future challenges and prospects of developing highly effective Ir-based catalysts are also discussed.
Collapse
Affiliation(s)
- Wanqing Li
- UNIST-NUIST Environment and Energy Jointed Lab, UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yunfei Bu
- UNIST-NUIST Environment and Energy Jointed Lab, UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Xinlei Ge
- UNIST-NUIST Environment and Energy Jointed Lab, UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Feng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan, Shanghai, 200433, P. R. China
| | - Gao-Feng Han
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
6
|
Yang Y, Zhou T, Zeng Z, Hu Y, Yang F, Sun W, He L. Novel sulfate solid supported binary Ru-Ir oxides for superior electrocatalytic activity towards OER and CER. J Colloid Interface Sci 2024; 659:191-202. [PMID: 38176229 DOI: 10.1016/j.jcis.2023.12.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Electrolysis for producing hydrogen powered by renewable electricity can be dramatically expanded by adapting different electrolytes (brine, seawater or pure water), which means the anode materials must stand up to complex electrolyte conditions. Here, a novel catalyst/support hybrid of binary Ru3.5Ir1Ox supported by barium strontium sulfate (BaSrSO4) was synthesized (RuIrOx/BSS) by exchanging the anion ligands of support. The as-synthesized RuIrOx/BSS exhibits compelling oxygen evolution (OER) and chlorine evolution (CER) performances, which affords to 10 mA cm-2 with only overpotential of 244 mV and 38 mV, respectively. The performed X-ray adsorption spectra clearly indicate the presence of an interface charge transfer effect, which results in the assignment of more electrons to the d orbitals of the Ru and Ir sites. The theoretical calculations demonstrated that the electronic structures of the catalytic active sites were modulated to give a lower overpotential, confirming the intrinsically high OER and CER catalytic activity.
Collapse
Affiliation(s)
- Yifei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Tingxi Zhou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Zhen Zeng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Yuling Hu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Wei Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China.
| | - Leilei He
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, PR China.
| |
Collapse
|
7
|
Lee I, Surendran A, Fleury S, Gimino I, Curtiss A, Fell C, Shiwarski DJ, Refy O, Rothrock B, Jo S, Schwartzkopff T, Mehta AS, Wang Y, Sipe A, John S, Ji X, Nikiforidis G, Feinberg AW, Hester J, Weber DJ, Veiseh O, Rivnay J, Cohen-Karni T. Electrocatalytic on-site oxygenation for transplanted cell-based-therapies. Nat Commun 2023; 14:7019. [PMID: 37945597 PMCID: PMC10636048 DOI: 10.1038/s41467-023-42697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Implantable cell therapies and tissue transplants require sufficient oxygen supply to function and are limited by a delay or lack of vascularization from the transplant host. Previous exogenous oxygenation strategies have been bulky and had limited oxygen production or regulation. Here, we show an electrocatalytic approach that enables bioelectronic control of oxygen generation in complex cellular environments to sustain engineered cell viability and therapy under hypoxic stress and at high cell densities. We find that nanostructured sputtered iridium oxide serves as an ideal catalyst for oxygen evolution reaction at neutral pH. We demonstrate that this approach exhibits a lower oxygenation onset and selective oxygen production without evolution of toxic byproducts. We show that this electrocatalytic on site oxygenator can sustain high cell loadings (>60k cells/mm3) in hypoxic conditions in vitro and in vivo. Our results showcase that exogenous oxygen production devices can be readily integrated into bioelectronic platforms, enabling high cell loadings in smaller devices with broad applicability.
Collapse
Affiliation(s)
- Inkyu Lee
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Abhijith Surendran
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Samantha Fleury
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Ian Gimino
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alexander Curtiss
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Cody Fell
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Omar Refy
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Blaine Rothrock
- Department of Computer Science, Northwestern University, Evanston, IL, USA
| | - Seonghan Jo
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tim Schwartzkopff
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Abijeet Singh Mehta
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Yingqiao Wang
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adam Sipe
- Department of Material Science and Engineering, The Pennsylvania State University, State College, PA, USA
| | - Sharon John
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Georgios Nikiforidis
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Adam W Feinberg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Josiah Hester
- Interactive Computing and Computer Science, Georgia Institute of Technology, Atlanta, GA, USA
| | - Douglas J Weber
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Ritz AJ, Bertini IA, Nguyen ET, Strouse GF, Lazenby RA. Electrocatalytic activity and surface oxide reconstruction of bimetallic iron-cobalt nanocarbide electrocatalysts for the oxygen evolution reaction. RSC Adv 2023; 13:33413-33423. [PMID: 38025854 PMCID: PMC10644102 DOI: 10.1039/d3ra07003d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
For renewable energy technology to become ubiquitous, it is imperative to develop efficient oxygen evolution reaction (OER) electrocatalysts, which is challenging due to the kinetically and thermodynamically unfavorable OER mechanism. Transition metal carbides (TMCs) have recently been investigated as desirable OER pre-catalysts, but the ability to tune electrocatalytic performance of bimetallic catalysts and understand their transformation under electrochemical oxidation requires further study. In an effort to understand the tunable TMC material properties for enhancing electrocatalytic activity, we synthesized bimetallic FeCo nanocarbides with a complex mixture of FeCo carbide crystal phases. The synthesized FeCo nanocarbides were tuned by percent proportion Fe (i.e. % Fe), and analysis revealed a non-linear dependence of OER electrocatalytic activity on % Fe, with a minimum overpotential of 0.42 V (15-20% Fe) in alkaline conditions. In an effort to understand the effects of Fe composition on electrocatalytic performance of FeCo nanocarbides, we assessed the structural phase and electronic state of the carbides. Although we did not identify a single activity descriptor for tuning activity for FeCo nanocarbides, we found that surface reconstruction of the carbide surface to oxide during water oxidation plays a pivotal role in defining electrocatalytic activity over time. We observed that a rapid increase of the (FexCo1-x)2O4 phase on the carbide surface correlated with lower electrocatalytic activity (i.e. higher overpotential). We have demonstrated that the electrochemical performance of carbides under harsh alkaline conditions has the potential to be fine-tuned via Fe incorporation and with control, or suppression, of the growth of the oxide phase.
Collapse
Affiliation(s)
- Amanda J Ritz
- Department of Chemistry & Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Isabella A Bertini
- Department of Chemistry & Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Edward T Nguyen
- Department of Chemistry & Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Geoffrey F Strouse
- Department of Chemistry & Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Robert A Lazenby
- Department of Chemistry & Biochemistry, Florida State University Tallahassee Florida 32306 USA
| |
Collapse
|
9
|
Rong C, Dastafkan K, Wang Y, Zhao C. Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211884. [PMID: 37549889 DOI: 10.1002/adma.202211884] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/28/2023] [Indexed: 08/09/2023]
Abstract
Oxygen evolution reaction (OER) is a cornerstone reaction for a variety of electrochemical energy conversion and storage systems such as water splitting, CO2 /N2 reduction, reversible fuel cells, and metal-air batteries. However, OER catalysis in acids suffers from extra sluggish kinetics due to the additional step of water dissociation along with its multiple electron transfer processes. Furthermore, OER catalysts often suffer from poor stability in harsh acidic electrolytes due to the severe dissolution/corrosion processes. The development of active and stable OER catalysts in acids is highly demanded. Here, the recent advances in OER electrocatalysis in acids are reviewed and the key strategies are summarized to overcome the bottlenecks of activity and stability for both noble-metal-based and noble metal-free catalysts, including i) morphology engineering, ii) composition engineering, and iii) defect engineering. Recent achievements in operando characterization and theoretical calculations are summarized which provide an unprecedented understanding of the OER mechanisms regarding active site identification, surface reconstruction, and degradation/dissolution pathways. Finally, views are offered on the current challenges and opportunities to break the activity-stability relationships for acidic OER in mechanism understanding, catalyst design, as well as standardized stability and activity evaluation for industrial applications such as proton exchange membrane water electrolyzers and beyond.
Collapse
Affiliation(s)
- Chengli Rong
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yuan Wang
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
10
|
Galyamin D, Torrero J, Rodríguez I, Kolb MJ, Ferrer P, Pascual L, Salam MA, Gianolio D, Celorrio V, Mokhtar M, Garcia Sanchez D, Gago AS, Friedrich KA, Peña MA, Alonso JA, Calle-Vallejo F, Retuerto M, Rojas S. Active and durable R 2MnRuO 7 pyrochlores with low Ru content for acidic oxygen evolution. Nat Commun 2023; 14:2010. [PMID: 37037807 PMCID: PMC10086044 DOI: 10.1038/s41467-023-37665-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
The production of green hydrogen in water electrolyzers is limited by the oxygen evolution reaction (OER). State-of-the-art electrocatalysts are based on Ir. Ru electrocatalysts are a suitable alternative provided their performance is improved. Here we show that low-Ru-content pyrochlores (R2MnRuO7, R = Y, Tb and Dy) display high activity and durability for the OER in acidic media. Y2MnRuO7 is the most stable catalyst, displaying 1.5 V at 10 mA cm-2 for 40 h, or 5000 cycles up to 1.7 V. Computational and experimental results show that the high performance is owed to Ru sites embedded in RuMnOx surface layers. A water electrolyser with Y2MnRuO7 (with only 0.2 mgRu cm-2) reaches 1 A cm-2 at 1.75 V, remaining stable at 200 mA cm-2 for more than 24 h. These results encourage further investigation on Ru catalysts in which a partial replacement of Ru by inexpensive cations can enhance the OER performance.
Collapse
Affiliation(s)
- Dmitry Galyamin
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - Jorge Torrero
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Isabel Rodríguez
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - Manuel J Kolb
- Departament de Ciència de Materials i Química Fisica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franqués 1, 08028, Barcelona, Spain
| | - Pilar Ferrer
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Laura Pascual
- Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - Mohamed Abdel Salam
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Diego Gianolio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Verónica Celorrio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Mohamed Mokhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Daniel Garcia Sanchez
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Aldo Saul Gago
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Kaspar Andreas Friedrich
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Miguel A Peña
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - José Antonio Alonso
- Instituto de Ciencia de Materiales de Madrid, CSIC. C/Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Federico Calle-Vallejo
- Departament de Ciència de Materials i Química Fisica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franqués 1, 08028, Barcelona, Spain
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Department of Advanced Materials and Polymers: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza de Euskadi 5, 48009, Bilbao, Spain
| | - María Retuerto
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain.
| | - Sergio Rojas
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain.
| |
Collapse
|
11
|
Liu T, Guo H, Chen Y, Zhang Z, Wang F. Role of MoO x Surficial Modification in Enhancing the OER Performance of Ru-Pyrochlore. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206698. [PMID: 36642791 DOI: 10.1002/smll.202206698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Pyrochlore ruthenate (Y2 Ru2 O7-δ ) is highlighted as a promising oxygen evolution reaction (OER) catalyst for water splitting in polymer electrolyte membrane electrolyzers. However, an efficient electronic modulation strategy for Y2 Ru2 O7-δ is required to overcome its electrochemical inertness. Herein, a surface manipulation strategy involving implanting MoOx moieties on nano Y2 Ru2 O7-δ (Mo-YRO) using wet chemical peroxone method is demonstrated. In contrast to electronic structure regulation by intramolecular charge transfer (i.e., substitutional strategies), the heterogeneous Mo-O-Ru micro-interfaces facilitate efficient intermolecular electron transfer from [RuO6 ] to MoOx . This eliminates the bandgap by inducing Ru 4d delocalization and band alignment rearrangement. The MoOx modifiers also alleviate distortion of [RuO6 ] by shortening Ru-O bond and enlarging Ru-O-Ru bond angle. This electronic and geometric structure tailoring enhances the OER performance, showing a small overpotential of 240 mV at 10 mA cm-2 . Moreover, the electron-accepting MoOx moieties provide more electronegative surfaces, which serve as a protective "fence" to inhibit the dissolution of metal ions, thereby stabilizing the electrochemical activity. This study offers fresh insights into the design of new-based pyrochlore electrocatalysts, and also highlights the versatility of surface engineering as a way of optimizing electronic structure and catalytic performance of other related materials.
Collapse
Affiliation(s)
- Tongtong Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hengyu Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhengping Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
12
|
Electrocatalytic water oxidation with layered double hydroxides confining single atoms. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Moriau L, Smiljanić M, Lončar A, Hodnik N. Supported Iridium-based Oxygen Evolution Reaction Electrocatalysts - Recent Developments. ChemCatChem 2022; 14:e202200586. [PMID: 36605357 PMCID: PMC9804445 DOI: 10.1002/cctc.202200586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/28/2022] [Indexed: 01/09/2023]
Abstract
The commercialization of acidic proton exchange membrane water electrolyzers (PEMWE) is heavily hindered by the price and scarcity of oxygen evolution reaction (OER) catalyst, i. e. iridium and its oxides. One of the solutions to enhance the utilization of this precious metal is to use a support to distribute well dispersed Ir nanoparticles. In addition, adequately chosen support can also impact the activity and stability of the catalyst. However, not many materials can sustain the oxidative and acidic conditions of OER in PEMWE. Hereby, we critically and extensively review the different materials proposed as possible supports for OER in acidic media and the effect they have on iridium performances.
Collapse
Affiliation(s)
- Leonard Moriau
- Department of Materials ChemistryNational Institute of ChemistryHajdrihova 191001LjubljanaSlovenia
| | - Milutin Smiljanić
- Department of Materials ChemistryNational Institute of ChemistryHajdrihova 191001LjubljanaSlovenia
| | - Anja Lončar
- Department of Materials ChemistryNational Institute of ChemistryHajdrihova 191001LjubljanaSlovenia
- University of Nova GoricaVipavska 135000Nova GoricaSlovenia
| | - Nejc Hodnik
- Department of Materials ChemistryNational Institute of ChemistryHajdrihova 191001LjubljanaSlovenia
- University of Nova GoricaVipavska 135000Nova GoricaSlovenia
| |
Collapse
|
14
|
Telang P, Bandyopadhyay A, Mishra K, Rout D, Bag R, Gloskovskii A, Matveyev Y, Singh S. X-ray photoemission and absorption study of the pyrochlore iridates (Eu1-xBi x) 2Ir 2O 7, 0 ⩽ x ⩽ 1. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:395601. [PMID: 35817027 DOI: 10.1088/1361-648x/ac8038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The pyrochlore iridates (Eu1-xBix)2Ir2O7(0⩽x⩽1) undergo an anomalous negative lattice expansion for small Bi-doping (x⩽0.035) (region I) and a normal lattice expansion forx⩾0.1(region II); this is accompanied by a transition from an insulating (and magnetically ordered) to a metallic (and with no magnetic ordering) ground state. Here, we investigate (Eu1-xBix)2Ir2O7(0⩽x⩽1) using hard x-ray photoemission spectroscopy and x-ray absorption fine structure (XAFS) spectroscopy. By analyzing the Eu-L3, Ir-L3and Bi-L2&L3edges x-ray absorption near edge structure spectra and Eu-3dcore-level XPS spectra, we show that the metal cations retain their nominal valence, namely, Ir4+, Bi3+and Eu3+, respectively, throughout the series. The Ir-4fand Bi-4fcore-level XPS spectra consist of screened and unscreened doublets. The unscreened component is dominant In the insulating range (x⩽0.035), and in the metallic region (x⩾0.1), the screened component dominates the spectra. The Eu-3dcore-level spectra remain invariant under Bi doping. The extended XAFS data show that the coordination around the Ir remains well preserved throughout the series. The evolution of the valence band spectra near the Fermi energy with increasing Bi doping indicates the presence of strong Ir(5d)-Bi(6p) hybridization which drives the metal-to-insulator transition.
Collapse
Affiliation(s)
- Prachi Telang
- Department of Physics, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Abhisek Bandyopadhyay
- Department of Physics, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Kshiti Mishra
- Department of Physics, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Dibyata Rout
- Department of Physics, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Rabindranath Bag
- Department of Physics, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - A Gloskovskii
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Yu Matveyev
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Surjeet Singh
- Department of Physics, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| |
Collapse
|
15
|
Nagai T, Siroma Z, Akita T, Ioroi T. Observation of mercury underpotential deposition on an Ir surface using the electrochemical quartz crystal microbalance technique. ELECTROANAL 2022. [DOI: 10.1002/elan.202100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Li L, Wang P, Shao Q, Huang X. Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004243. [PMID: 33749035 DOI: 10.1002/adma.202004243] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/16/2020] [Indexed: 05/27/2023]
Abstract
Proton exchange membrane (PEM) water electrolyzers hold great significance for renewable energy storage and conversion. The acidic oxygen evolution reaction (OER) is one of the main roadblocks that hinder the practical application of PEM water electrolyzers. Highly active, cost-effective, and durable electrocatalysts are indispensable for lowering the high kinetic barrier of OER to achieve boosted reaction kinetics. To date, a wide spectrum of advanced electrocatalysts has been designed and synthesized for enhanced acidic OER performance, though Ir and Ru based nanostructures still represent the state-of-the-art catalysts. In this Progress Report, recent research progress in advanced electrocatalysts for improved acidic OER performance is summarized. First, fundamental understanding about acidic OER including reaction mechanisms and atomic understanding to acidic OER for rational design of efficient electrocatalysts are discussed. Thereafter, an overview of the progress in the design and synthesis of advanced acidic OER electrocatalysts is provided in terms of catalyst category, i.e., metallic nanostructures (Ir and Ru based), precious metal oxides, nonprecious metal oxides, and carbon based nanomaterials. Finally, perspectives to the future development of acidic OER are provided from the aspects of reaction mechanism investigation and more efficient electrocatalyst design.
Collapse
Affiliation(s)
- Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Pengtang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| |
Collapse
|
17
|
Wardini JL, Vahidi H, Guo H, Bowman WJ. Probing Multiscale Disorder in Pyrochlore and Related Complex Oxides in the Transmission Electron Microscope: A Review. Front Chem 2021; 9:743025. [PMID: 34917587 PMCID: PMC8668443 DOI: 10.3389/fchem.2021.743025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Transmission electron microscopy (TEM), and its counterpart, scanning TEM (STEM), are powerful materials characterization tools capable of probing crystal structure, composition, charge distribution, electronic structure, and bonding down to the atomic scale. Recent (S)TEM instrumentation developments such as electron beam aberration-correction as well as faster and more efficient signal detection systems have given rise to new and more powerful experimental methods, some of which (e.g., 4D-STEM, spectrum-imaging, in situ/operando (S)TEM)) facilitate the capture of high-dimensional datasets that contain spatially-resolved structural, spectroscopic, time- and/or stimulus-dependent information across the sub-angstrom to several micrometer length scale. Thus, through the variety of analysis methods available in the modern (S)TEM and its continual development towards high-dimensional data capture, it is well-suited to the challenge of characterizing isometric mixed-metal oxides such as pyrochlores, fluorites, and other complex oxides that reside on a continuum of chemical and spatial ordering. In this review, we present a suite of imaging and diffraction (S)TEM techniques that are uniquely suited to probe the many types, length-scales, and degrees of disorder in complex oxides, with a focus on disorder common to pyrochlores, fluorites and the expansive library of intermediate structures they may adopt. The application of these techniques to various complex oxides will be reviewed to demonstrate their capabilities and limitations in resolving the continuum of structural and chemical ordering in these systems.
Collapse
Affiliation(s)
- Jenna L. Wardini
- Materials Science and Engineering, University of California, Irvine, Irvine, CA, United States
| | - Hasti Vahidi
- Materials Science and Engineering, University of California, Irvine, Irvine, CA, United States
| | - Huiming Guo
- Materials Science and Engineering, University of California, Irvine, Irvine, CA, United States
| | - William J. Bowman
- Materials Science and Engineering, University of California, Irvine, Irvine, CA, United States
- Irvine Materials Research Institute, Irvine, CA, United States
| |
Collapse
|
18
|
Pu Z, Liu T, Zhang G, Ranganathan H, Chen Z, Sun S. Electrocatalytic Oxygen Evolution Reaction in Acidic Conditions: Recent Progress and Perspectives. CHEMSUSCHEM 2021; 14:4636-4657. [PMID: 34411443 DOI: 10.1002/cssc.202101461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The electrochemical oxygen evolution reaction (OER) is an important half-cell reaction in many renewable energy conversion and storage technologies, including electrolyzers, nitrogen fixation, CO2 reduction, metal-air batteries, and regenerative fuel cells. Among them, proton exchange membrane (PEM)-based devices exhibit a series of advantages, such as excellent proton conductivity, high durability, and good mechanical strength, and have attracted global interest as a green energy device for transport and stationary sectors. Nevertheless, with a view to rapid commercialization, it is urgent to develop highly active and acid-stable OER catalysts for PEM-based devices. In this Review, based on the recent advances in theoretical calculation and in situ/operando characterization, the OER mechanism in acidic conditions is first discussed in detail. Subsequently, recent advances in the development of several types of acid-stable OER catalysts, including noble metals, non-noble metals, and even metal-free OER materials, are systematically summarized. Finally, the current key issues and future challenges for materials used as acidic OER catalysis are identified and potential future directions are proposed.
Collapse
Affiliation(s)
- Zonghua Pu
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Tingting Liu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Hariprasad Ranganathan
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Zhangxing Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| |
Collapse
|
19
|
Ma CL, Wang ZQ, Sun W, Cao LM, Gong XQ, Yang J. Surface Reconstruction for Forming the [IrO 6]-[IrO 6] Framework: Key Structure for Stable and Activated OER Performance in Acidic Media. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29654-29663. [PMID: 34148341 DOI: 10.1021/acsami.1c06599] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The surface reconstruction of iridium-based derivatives (AxIryOz) was extensively demonstrated to have an excellent oxygen evolution reaction (OER) performance in an acidic medium. It is urgent to use various spectroscopy and computational methods to explore the electronic state changes in the surface reconstruction process. Herein, the underestimated Lu2Ir2O7 was synthesized and investigated. Four typical forms of electrochemistry impedance spectra involved in the reconstruction process revealed three dominating forms of reconstructed pyrochlore in the OER stage, including the inner intact pyrochlore, mid metastable [IrO6]-[IrO6] framework, and the outer collapse amorphous layer. The enhancing electron transport efficiency of the corner-shared [IrO6]-[IrO6] framework was revealed as a critical role in acidic systems. The density of state (DOS) for the constructed [IrO6]-[IrO6] framework corroborated the enhancement of Ir-O hybridization and the downshift of the d-band center. Additionally, we contrast the pristine and reconstruction properties of the Pr2Ir2O7, Eu2Ir2O7, and Lu2Ir2O7 in alkaline and acidic media. The DOS and the XANES results reveal the scale relationship between the O 2p band center and the intrinsic activity for bulk pyrochlore in alkaline media. The highest O 2p center and the highest Ir-O hybridization of Lu2Ir2O7 exhibited the best OER performance among the Ir-based pyrochlore, up to a ninefold improvement in Ir-mass activity compared to IrO2. Our findings emphasize the electrochemical behavior of the reconstruction process for activated water-splitting performance.
Collapse
Affiliation(s)
- Cheng-Long Ma
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Zhi-Qiang Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wei Sun
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Li-Mei Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ji Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
20
|
The origin of the high electrochemical activity of pseudo-amorphous iridium oxides. Nat Commun 2021; 12:3935. [PMID: 34168129 PMCID: PMC8225786 DOI: 10.1038/s41467-021-24181-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/02/2021] [Indexed: 12/02/2022] Open
Abstract
Combining high activity and stability, iridium oxide remains the gold standard material for the oxygen evolution reaction in acidic medium for green hydrogen production. The reasons for the higher electroactivity of amorphous iridium oxides compared to their crystalline counterpart is still the matter of an intense debate in the literature and, a comprehensive understanding is needed to optimize its use and allow for the development of water electrolysis. By producing iridium-based mixed oxides using aerosol, we are able to decouple the electronic processes from the structural transformation, i.e. Ir oxidation from IrO2 crystallization, occurring upon calcination. Full characterization using in situ and ex situ X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and transmission electron microscopy allows to unambiguously attribute their high electrochemical activity to structural features and rules out the iridium oxidation state as a critical parameter. This study indicates that short-range ordering, corresponding to sub-2nm crystal size for our samples, drives the activity independently of the initial oxidation state and composition of the calcined iridium oxides. The origins of the superior catalytic activity of poorly crystallized Ir-based oxide material for the OER in acid is still under debate. Here, authors synthesize porous IrMo oxides to deconvolute the effect of Ir oxidation state from short-range ordering and show the latter to be a key factor.
Collapse
|
21
|
An L, Wei C, Lu M, Liu H, Chen Y, Scherer GG, Fisher AC, Xi P, Xu ZJ, Yan CH. Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006328. [PMID: 33768614 DOI: 10.1002/adma.202006328] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Indexed: 05/28/2023]
Abstract
The proton exchange membrane (PEM) water electrolysis is one of the most promising hydrogen production techniques. The oxygen evolution reaction (OER) occurring at the anode dominates the overall efficiency. Developing active and robust electrocatalysts for OER in acid is a longstanding challenge for PEM water electrolyzers. Most catalysts show unsatisfied stability under strong acidic and oxidative conditions. Such a stability challenge also leads to difficulties for a better understanding of mechanisms. This review aims to provide the current progress on understanding of OER mechanisms in acid, analyze the promising strategies to enhance both activity and stability, and summarize the state-of-the-art catalysts for OER in acid. First, the prevailing OER mechanisms are reviewed to establish the physicochemical structure-activity relationships for guiding the design of highly efficient OER electrocatalysts in acid with stable performance. The reported approaches to improve the activity, from macroview to microview, are then discussed. To analyze the problem of instability, the key factors affecting catalyst stability are summarized and the surface reconstruction is discussed. Various noble-metal-based OER catalysts and the current progress of non-noble-metal-based catalysts are reviewed. Finally, the challenges and perspectives for the development of active and robust OER catalysts in acid are discussed.
Collapse
Affiliation(s)
- Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wei
- School of Materials Science and Engineering Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Min Lu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hanwen Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yubo Chen
- School of Materials Science and Engineering Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Energy Research Institute@NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 639798, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
| | - Günther G Scherer
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, 758307, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 758307, Vietnam
| | - Adrian C Fisher
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
- Department of Chemical Engineering, University of Cambridge, Cambridge, CB2 3RA, UK
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhichuan J Xu
- School of Materials Science and Engineering Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Energy Research Institute@NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 639798, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering Peking University, Beijing, 100871, China
| |
Collapse
|
22
|
Sachse R, Pflüger M, Velasco-Vélez JJ, Sahre M, Radnik J, Bernicke M, Bernsmeier D, Hodoroaba VD, Krumrey M, Strasser P, Kraehnert R, Hertwig A. Assessing Optical and Electrical Properties of Highly Active IrO x Catalysts for the Electrochemical Oxygen Evolution Reaction via Spectroscopic Ellipsometry. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- René Sachse
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
- Faculty II Mathematics and Natural Sciences, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Mika Pflüger
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Juan-Jesús Velasco-Vélez
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department of Heterogenous Reactions, Max Planck Institute for Chemical Energy Conversion, Mülheim and der Ruhr 45470, Germany
| | - Mario Sahre
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Jörg Radnik
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Michael Bernicke
- Faculty II Mathematics and Natural Sciences, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Denis Bernsmeier
- Faculty II Mathematics and Natural Sciences, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Vasile-Dan Hodoroaba
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Michael Krumrey
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Peter Strasser
- Faculty II Mathematics and Natural Sciences, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | - Ralph Kraehnert
- Faculty II Mathematics and Natural Sciences, Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Andreas Hertwig
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
| |
Collapse
|
23
|
Ilgaz Aysan I, Gorkan T, Ozdemir I, Kadioglu Y, Gökoğlu G, Aktürk E. Electronic structure, cohesive and magnetic properties of iridium oxide clusters adsorbed on graphene. J Mol Graph Model 2020; 101:107726. [PMID: 32920238 DOI: 10.1016/j.jmgm.2020.107726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/30/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
In this study, we investigated and revealed the electronic properties, geometric structures and binding behavior of small (IrO)n and [Formula: see text] (n = 1-5) clusters within first principles calculations based on the density functional theory. The electronic and magnetic properties of small nanoclusters displayed significant size dependency due to strong quantum confinement effect. Moreover we considered the binding and structural modification of the clusters on graphene surface as a substrate. The cohesive energy per atom of isolated clusters increased with size of the cluster n. This shows that the increase in coordination number results in a more stable nanocluster with increased number of saturated bonds. Pristine (IrO)n and [Formula: see text] clusters presented different structural motives at equilibrium. The ground states of (IrO)n and [Formula: see text] clusters considered in this study were all magnetic except for (IrO)4, [Formula: see text] , and [Formula: see text] . HOMO-LUMO gap EHLG values displayed large variations due to size of the cluster, hence bond saturation. The structural configurations of free standing nanoclusters are slightly modified, when adsorbed on graphene. The adsorption behavior of a cluster on graphene was improved by an applied electric field yielding larger binding energy and larger charger transfer. We observed that electronic and magnetic ground state of the clusters strongly depend on optimized structural configuration for both bare and adsorbed on graphene monolayer.
Collapse
Affiliation(s)
- Isil Ilgaz Aysan
- Department of Physics, Adnan Menderes University, 09100, Aydin, Turkey
| | - Taylan Gorkan
- Department of Physics, Adnan Menderes University, 09100, Aydin, Turkey
| | - Ilkay Ozdemir
- Department of Physics, Adnan Menderes University, 09100, Aydin, Turkey
| | - Yelda Kadioglu
- Department of Physics, Adnan Menderes University, 09100, Aydin, Turkey
| | - Gökhan Gökoğlu
- Department of Mechatronics Engineering, Faculty of Engineering, Karabuk University, 78050, Karabuk, Turkey
| | - Ethem Aktürk
- Department of Physics, Adnan Menderes University, 09100, Aydin, Turkey; Nanotechnology Application and Research Center, Adnan Menderes University, 09100, Aydin, Turkey.
| |
Collapse
|
24
|
Tsubonouchi Y, Eo T, Honta J, Sato T, Mohamed EA, Zahran ZN, Saito K, Yui T, Yagi M. Molecular aspects, electrochemical properties and water oxidation catalysis on a nanoporous TiO2 electrode anchoring a mononuclear ruthenium(II) aquo complex. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
Gu XK, Camayang JCA, Samira S, Nikolla E. Oxygen evolution electrocatalysis using mixed metal oxides under acidic conditions: Challenges and opportunities. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Shi Z, Wang X, Ge J, Liu C, Xing W. Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts. NANOSCALE 2020; 12:13249-13275. [PMID: 32568352 DOI: 10.1039/d0nr02410d] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oxygen evolution reaction (OER), as the anodic reaction of water electrolysis (WE), suffers greatly from low reaction kinetics and thereby hampers the large-scale application of WE. Seeking active, stable, and cost-effective OER catalysts in acidic media is therefore of great significance. In this perspective, studying the reaction mechanism and exploiting advanced anode catalysts are of equal importance, where the former provides guidance for material structural engineering towards a better catalytic activity. In this review, we first summarize the currently proposed OER catalytic mechanisms, i.e., the adsorbate evolution mechanism (AEM) and lattice oxygen evolution reaction (LOER). Subsequently, we critically review several acidic OER electrocatalysts reported recently, with focus on structure-performance correlation. Finally, a few suggestions on exploring future OER catalysts are proposed.
Collapse
Affiliation(s)
- Zhaoping Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | | | | | | | | |
Collapse
|
27
|
Sun W, Tian X, Liao J, Deng H, Ma C, Ge C, Yang J, Huang W. Assembly of a Highly Active Iridium-Based Oxide Oxygen Evolution Reaction Catalyst by Using Metal-Organic Framework Self-Dissolution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29414-29423. [PMID: 32496754 DOI: 10.1021/acsami.0c08358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The proton exchange membrane (PEM) electrolyzer for hydrogen production has multiple advantages but is greatly restricted by expensive iridium and sluggish oxygen evolution reaction (OER) kinetics. The most promising way to reduce the precious metal loading is to design and develop highly active Ir-based catalysts. In this study, a versatile approach is reported to prepare a hybrid in the form of a catalyst-support structure (Fe-IrOx@α-Fe2O3, abbreviated Ir@Fe-MF) by utilizing the self-dissolving properties of Fe-MIL-101 under aqueous conditions. The formation of this hybrid is mainly due to the Ir4+ and released Fe3+ ions coprecipitated to assemble into Fe-IrOx nanoparticles, and the Fe3+ released from the inward collapse of the metal-organic framework (MOF) spontaneously forms α-Fe2O3. The prepared Ir@Fe-MF-2 hybrid exhibits enhanced catalytic activity toward OER with a lower onset potential and Tafel slop, and only 260 mV overpotential is required to drive the current density to reach 10 mA cm-2. The performed characterizations clearly indicate that the IrO6 coordination structure is changed significantly by Fe incorporated into the IrO2 lattice. The performed X-ray adsorption spectra (XAS) provides evidence that Ir 5d orbital degeneracy is eliminated because of multiple orbitals being semi-occupied in the presence of Fe, which is mainly responsible for the enhancement of OER activity. These findings open an opportunity for the design and preparation of more efficient OER catalysts of transition metal oxides by utilization of the MOF materials. It should be highlighted that a long-term stability of this catalyst run at a high current density in acidic conditions still faces great challenges.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| | - Jianjun Liao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| | - Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| | - Chenglong Ma
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| | - Ji Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| |
Collapse
|
28
|
Gayen P, Saha S, Bhattacharyya K, Ramani VK. Oxidation State and Oxygen-Vacancy-Induced Work Function Controls Bifunctional Oxygen Electrocatalytic Activity. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01541] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Pralay Gayen
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Sulay Saha
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | | | - Vijay K. Ramani
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
29
|
Deng Q, Gao R, Li X, Wang J, Zeng Z, Zou JJ, Deng S. Hydrogenative Ring-Rearrangement of Biobased Furanic Aldehydes to Cyclopentanone Compounds over Pd/Pyrochlore by Introducing Oxygen Vacancies. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01666] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiang Deng
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China
| | - Rui Gao
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China
| | - Xiang Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China
| | - Jun Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China
| | - Zheling Zeng
- Key Laboratory of Poyang Lake Environment and Resource Utilization (Nanchang University) Ministry of Education, School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, P.R. China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of education, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), No.92 Weijin Road, Tianjin 300072, China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe, Arizona 85287, United States
| |
Collapse
|
30
|
Septiani NLW, Kaneti YV, Guo Y, Yuliarto B, Jiang X, Ide Y, Nugraha N, Dipojono HK, Yu A, Sugahara Y, Golberg D, Yamauchi Y. Holey Assembly of Two-Dimensional Iron-Doped Nickel-Cobalt Layered Double Hydroxide Nanosheets for Energy Conversion Application. CHEMSUSCHEM 2020; 13:1645-1655. [PMID: 31270940 DOI: 10.1002/cssc.201901364] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/03/2019] [Indexed: 05/13/2023]
Abstract
Layered double hydroxides (LDHs) containing first-row transition metals such as Fe, Co, and Ni have attracted significant interest for electrocatalysis owing to their abundance and excellent performance for the oxygen evolution reaction (OER) in alkaline media. Herein, the assembly of holey iron-doped nickel-cobalt layered double hydroxide (NiCo-LDH) nanosheets ('holey nanosheets') is demonstrated by employing uniform Ni-Co glycerate spheres as self-templates. Iron doping was found to increase the rate of hydrolysis of Ni-Co glycerate spheres and induce the formation of a holey interconnected sheet-like structure with small pores (1-10 nm) and a high specific surface area (279 m2 g-1 ). The optimum Fe-doped NiCo-LDH OER catalyst showed a low overpotential of 285 mV at a current density of 10 mA cm-2 and a low Tafel slope of 62 mV dec-1 . The enhanced OER activity was attributed to (i) the high specific surface area of the holey nanosheets, which increases the number of active sites, and (ii) the improved kinetics and enhanced ion transport arising from the iron doping and synergistic effects.
Collapse
Affiliation(s)
- Ni Luh Wulan Septiani
- Department of Engineering Physics and Research Center for Nanosciences and Nanotechnology (RCNN), Institute of Technology Bandung, Bandung, 40132, Indonesia
| | - Yusuf Valentino Kaneti
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yanna Guo
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Shinjuku, Tokyo, 169-0051, Japan
| | - Brian Yuliarto
- Department of Engineering Physics and Research Center for Nanosciences and Nanotechnology (RCNN), Institute of Technology Bandung, Bandung, 40132, Indonesia
| | - Xuchuan Jiang
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yusuke Ide
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
| | - Nugraha Nugraha
- Department of Engineering Physics and Research Center for Nanosciences and Nanotechnology (RCNN), Institute of Technology Bandung, Bandung, 40132, Indonesia
| | - Hermawan Kresno Dipojono
- Department of Engineering Physics and Research Center for Nanosciences and Nanotechnology (RCNN), Institute of Technology Bandung, Bandung, 40132, Indonesia
| | - Aibing Yu
- Faculty of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, 169-8555, Japan
| | - Yoshiyuki Sugahara
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Shinjuku, Tokyo, 169-0051, Japan
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Dmitri Golberg
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Yusuke Yamauchi
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, Gyeonggi-do, 446-701, South Korea
| |
Collapse
|
31
|
Buvat G, Eslamibidgoli MJ, Youssef AH, Garbarino S, Ruediger A, Eikerling M, Guay D. Effect of IrO6 Octahedron Distortion on the OER Activity at (100) IrO2 Thin Film. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04347] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gaëtan Buvat
- INRS-Énergie, Matériaux Télécommunications, 1650 Lionel-Boulet Boulevard, P.O. 1020, Varennes, QC, Canada J3X 1S2
| | - Mohammad J. Eslamibidgoli
- INRS-Énergie, Matériaux Télécommunications, 1650 Lionel-Boulet Boulevard, P.O. 1020, Varennes, QC, Canada J3X 1S2
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Azza Hadj Youssef
- INRS-Énergie, Matériaux Télécommunications, 1650 Lionel-Boulet Boulevard, P.O. 1020, Varennes, QC, Canada J3X 1S2
| | | | - Andreas Ruediger
- INRS-Énergie, Matériaux Télécommunications, 1650 Lionel-Boulet Boulevard, P.O. 1020, Varennes, QC, Canada J3X 1S2
| | - Michael Eikerling
- IEK-13, Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Daniel Guay
- INRS-Énergie, Matériaux Télécommunications, 1650 Lionel-Boulet Boulevard, P.O. 1020, Varennes, QC, Canada J3X 1S2
| |
Collapse
|
32
|
Song CW, Suh H, Bak J, Bae HB, Chung SY. Dissolution-Induced Surface Roughening and Oxygen Evolution Electrocatalysis of Alkaline-Earth Iridates in Acid. Chem 2019. [DOI: 10.1016/j.chempr.2019.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Abbott DF, Pittkowski RK, Macounová K, Nebel R, Marelli E, Fabbri E, Castelli IE, Krtil P, Schmidt TJ. Design and Synthesis of Ir/Ru Pyrochlore Catalysts for the Oxygen Evolution Reaction Based on Their Bulk Thermodynamic Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37748-37760. [PMID: 31535842 DOI: 10.1021/acsami.9b13220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Density functional theory (DFT) has proven to be an invaluable and effective tool for identifying highly active electrocatalysts for the oxygen evolution reaction (OER). Herein, we take a computational approach to first identify a series of rare-earth pyrochlore oxides based on Ir and Ru as potential OER catalysts. The DFT-based phase diagrams, Pourbaix diagrams (E vs pH), projected density of states, and band energy diagrams were used to identify prospective OER catalysts based on rare-earth Ir and Ru pyrochlores. The predicted materials were synthesized using the spray-freeze freeze-drying approach to afford nanoparticulate oxides conforming to the pyrochlore structural type A2B2O7 where A = Nd, Gd, or Yb and B = Ir or Ru. In agreement with the computed Pourbaix diagrams, the materials were found to be moderately stable under OER conditions. All prepared materials show higher stability as compared to the benchmark IrO2 catalyst, and the OER mass activity of Yb2Ir2O7 and the ruthenate pyrochlores (Nd2Ru2O7, Gd2Ru2O7, and Yb2Ru2O7) were also found to exceed those of the benchmark IrO2 catalyst. We find that the OER activity of each pyrochlore series (i.e., iridate or ruthenate) generally improves as the size of the A-site cation decreases, indicating that maintaining control over the structure can be used to influence the electrocatalytic properties.
Collapse
Affiliation(s)
| | - Rebecca K Pittkowski
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 , Prague , Czech Republic
| | - Kateřina Macounová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 , Prague , Czech Republic
| | - Roman Nebel
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 , Prague , Czech Republic
| | | | | | - Ivano E Castelli
- Department of Energy Conversion and Storage , Technical University of Denmark , DK-2800 Kgs. Lyngby , Denmark
| | - Petr Krtil
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 , Prague , Czech Republic
| | - Thomas J Schmidt
- Laboratory of Physical Chemistry , ETH Zürich , CH-8093 Zürich , Switzerland
| |
Collapse
|
34
|
Liu J, Wang Z, Su K, Xv D, Zhao D, Li J, Tong H, Qian D, Yang C, Lu Z. Self-Supported Hierarchical IrO 2@NiO Nanoflake Arrays as an Efficient and Durable Catalyst for Electrochemical Oxygen Evolution. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25854-25862. [PMID: 31256582 DOI: 10.1021/acsami.9b05785] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although traditional IrO2 nanoparticles loaded on a carbon support (IrO2@C) have been taken as a benchmark catalyst for the oxygen evolution reaction (OER), their catalytic efficiency, operation stability, and IrO2 utilization are far from satisfactory due to the inferior powdery structure and inevitable corrosion of both IrO2 and C under the oxidizing potentials. Here, a rational design of a self-supported hierarchical nanocomposite, composed of IrO2@NiO nanoparticle-built porous nanoflake arrays vertically growing on nickel foam, is proposed, which is demonstrated as a versatile strategy to achieve improved OER activity, remarkable long-term stability, and significantly reduced loading of IrO2 (0.62 atom %). Impressively, the resultant catalyst drives a steady OER current density of 10 mA cm-2, requiring 278 mV overpotential in 1.0 M KOH electrolyte for 25 h and outmaneuvring commercial IrO2@C with much higher mass loading. Further electrochemical investigation and mechanism analysis disclose that the greatly improved electrocatalytic activity stems from the advantageous hierarchical structure and the synergistic effect between IrO2 and underlying potential-induced NiOOH, whereas the outstanding durability is attributed to the unique role of NiO in preventing IrO2 dissolution.
Collapse
Affiliation(s)
- Jinlong Liu
- Hunan Provincial Key Laboratory of Chemical Power Resources, College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , P. R. China
- Department of Engineering , University of Cambridge , Cambridge CB3 0FA , United Kingdom
| | - Zhenyu Wang
- Department of Materials Science and Engineering , South University of Science and Technology , Shenzhen 518005 , P. R. China
| | - Kanda Su
- Hunan Provincial Key Laboratory of Chemical Power Resources, College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , P. R. China
| | - Deyao Xv
- Hunan Provincial Key Laboratory of Chemical Power Resources, College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , P. R. China
| | - Dan Zhao
- Hunan Provincial Key Laboratory of Chemical Power Resources, College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , P. R. China
| | - Junhua Li
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, College of Chemistry and Material Science , Hengyang Normal University , Hengyang 421008 , P. R. China
| | - Haixia Tong
- Institute of Chemical and Biological Engineering , Changsha University of Science & Technology , Changsha 410114 , P. R. China
| | - Dong Qian
- Hunan Provincial Key Laboratory of Chemical Power Resources, College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , P. R. China
| | - Chunming Yang
- College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P. R. China
| | - Zhouguang Lu
- Department of Materials Science and Engineering , South University of Science and Technology , Shenzhen 518005 , P. R. China
| |
Collapse
|
35
|
Back S, Tran K, Ulissi ZW. Toward a Design of Active Oxygen Evolution Catalysts: Insights from Automated Density Functional Theory Calculations and Machine Learning. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02416] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seoin Back
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Kevin Tran
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Zachary W. Ulissi
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
36
|
Lee J, Kim I, Park S. Boosting Stability and Activity of Oxygen Evolution Catalyst in Acidic Medium: Bimetallic Ir−Fe Oxides on Reduced Graphene Oxide Prepared through Ultrasonic Spray Pyrolysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201900287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jihoon Lee
- Department of Chemical EngineeringKwangwoon University 20 Kwangwoon-ro, Nowon-gu Seoul 01897 Republic of Korea
| | - Ingyeom Kim
- Department of Chemical and Biological EngineeringKorea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
- Center for Energy ConvergenceKorea Institute of Science & Technology 5 Hwarangno 14-gil, Seongbuk-gu Seoul 02792 Republic of Korea
| | - Sehkyu Park
- Department of Chemical EngineeringKwangwoon University 20 Kwangwoon-ro, Nowon-gu Seoul 01897 Republic of Korea
| |
Collapse
|
37
|
Lee K, Osada M, Hwang HY, Hikita Y. Oxygen Evolution Reaction Activity in IrO x/SrIrO 3 Catalysts: Correlations between Structural Parameters and the Catalytic Activity. J Phys Chem Lett 2019; 10:1516-1522. [PMID: 30883127 DOI: 10.1021/acs.jpclett.9b00173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding how structural properties affect the oxygen evolution reaction (OER) of a catalyst can reveal important information not only on the catalytic mechanism but also on the general design strategy of OER catalysts. We report a variation of ∼0.15 V in the overpotential of the recently discovered IrO x/SrIrO3 OER catalysts, which directly correlates with the structural parameters of the as-synthesized SrIrO3 epitaxial films. This variation is caused by both extrinsic area enhancement and intrinsic electronic structure modification driven by defect formation. These correlations not only indicate that microscopic film defects play an important role in the activity of the IrO x/SrIrO3 catalyst but also provide readily accessible parameters predictive of the activity post-transformation to IrO x/SrIrO3. Establishing strong associations between the catalytic activity and key structural and electronic parameters, rather than synthetic variables, provides important guidance to control and study these complex catalysts independent of the synthetic technique.
Collapse
Affiliation(s)
- Kyuho Lee
- Department of Physics , Stanford University , Stanford , California 94305 , United States
- Geballe Laboratory for Advanced Materials, Department of Applied Physics , Stanford University , Stanford , California 94305 , United States
| | - Motoki Osada
- Geballe Laboratory for Advanced Materials, Department of Applied Physics , Stanford University , Stanford , California 94305 , United States
- Materials Science & Engineering , Stanford University , Stanford , California 94305 , United States
| | - Harold Y Hwang
- Geballe Laboratory for Advanced Materials, Department of Applied Physics , Stanford University , Stanford , California 94305 , United States
- Stanford Institute for Materials & Energy Sciences , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Yasuyuki Hikita
- Stanford Institute for Materials & Energy Sciences , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| |
Collapse
|
38
|
Xu J, Zhang Y, Xu X, Fang X, Xi R, Liu Y, Zheng R, Wang X. Constructing La2B2O7 (B = Ti, Zr, Ce) Compounds with Three Typical Crystalline Phases for the Oxidative Coupling of Methane: The Effect of Phase Structures, Superoxide Anions, and Alkalinity on the Reactivity. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00022] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junwei Xu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, 330031, People’s Republic of China
| | - Yan Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, 330031, People’s Republic of China
| | - Xianglan Xu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, 330031, People’s Republic of China
| | - Xiuzhong Fang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, 330031, People’s Republic of China
| | - Rong Xi
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, 330031, People’s Republic of China
| | - Yameng Liu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, 330031, People’s Republic of China
| | - Renyang Zheng
- Research Institute of Petroleum Processing (RIPP), SINOPEC, 18 Xueyuan Road, Haidian
District, Beijing 100083, China
| | - Xiang Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, 330031, People’s Republic of China
| |
Collapse
|
39
|
Huang ZQ, Lu WX, Wang B, Chen WJ, Xie JL, Pan DS, Zhou LL, Song JL. A mesoporous C,N-co doped Co-based phosphate ultrathin nanosheet derived from a phosphonate-based-MOF as an efficient electrocatalyst for water oxidation. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00973f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A mesoporous C,N-co doped Co-based phosphate ultrathin nanosheet derived from 2D phosphate MOFs has been explored and exhibits highly efficient OER performance.
Collapse
Affiliation(s)
- Zhao-Qian Huang
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Wen-Xiu Lu
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Bin Wang
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Wei-Jun Chen
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Jie-Ling Xie
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Dong-Sheng Pan
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Ling-Li Zhou
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Jun-Ling Song
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
40
|
Yang L, Yu G, Ai X, Yan W, Duan H, Chen W, Li X, Wang T, Zhang C, Huang X, Chen JS, Zou X. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO 6 octahedral dimers. Nat Commun 2018; 9:5236. [PMID: 30531797 PMCID: PMC6286314 DOI: 10.1038/s41467-018-07678-w] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 11/14/2018] [Indexed: 11/09/2022] Open
Abstract
The widespread use of proton exchange membrane water electrolysis requires the development of more efficient electrocatalysts containing reduced amounts of expensive iridium for the oxygen evolution reaction (OER). Here we present the identification of 6H-phase SrIrO3 perovskite (6H-SrIrO3) as a highly active electrocatalyst with good structural and catalytic stability for OER in acid. 6H-SrIrO3 contains 27.1 wt% less iridium than IrO2, but its iridium mass activity is about 7 times higher than IrO2, a benchmark electrocatalyst for the acidic OER. 6H-SrIrO3 is the most active catalytic material for OER among the iridium-based oxides reported recently, based on its highest iridium mass activity. Theoretical calculations indicate that the existence of face-sharing octahedral dimers is mainly responsible for the superior activity of 6H-SrIrO3 thanks to the weakened surface Ir-O binding that facilitates the potential-determining step involved in the OER (i.e., O* + H2O → HOO* + H+ + e¯).
Collapse
Affiliation(s)
- Lan Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, People's Republic of China.,College of Materials Science and Engineering, Jilin University, 130022, Changchun, People's Republic of China
| | - Guangtao Yu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 130023, Changchun, People's Republic of China
| | - Xuan Ai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, People's Republic of China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, People's Republic of China
| | - Hengli Duan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230029, Hefei, Anhui, People's Republic of China
| | - Wei Chen
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 130023, Changchun, People's Republic of China.
| | - Xiaotian Li
- College of Materials Science and Engineering, Jilin University, 130022, Changchun, People's Republic of China
| | - Ting Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 130023, Changchun, People's Republic of China
| | - Chenghui Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 130023, Changchun, People's Republic of China
| | - Xuri Huang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 130023, Changchun, People's Republic of China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, People's Republic of China.
| |
Collapse
|
41
|
Bhanja P, Mohanty B, Patra AK, Ghosh S, Jena BK, Bhaumik A. IrO
2
and Pt Doped Mesoporous SnO
2
Nanospheres as Efficient Electrocatalysts for the Facile OER and HER. ChemCatChem 2018. [DOI: 10.1002/cctc.201801312] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Piyali Bhanja
- School of Materials ScienceIndian Association for the Cultivation of Science Jadavpur 700 032 India
| | - Bishnupad Mohanty
- Colloids & Material Chemistry DepartmentCSIR-Institute of Minerals and Materials Technology Bhubaneswar 751013 India
| | - Astam K. Patra
- School of Materials ScienceIndian Association for the Cultivation of Science Jadavpur 700 032 India
| | - Soumen Ghosh
- Department of ChemistryJadavpur University Jadavpur Kolkata 700 032 India
| | - Bikash Kumar Jena
- Colloids & Material Chemistry DepartmentCSIR-Institute of Minerals and Materials Technology Bhubaneswar 751013 India
| | - Asim Bhaumik
- School of Materials ScienceIndian Association for the Cultivation of Science Jadavpur 700 032 India
| |
Collapse
|
42
|
Kim J, Shih PC, Qin Y, Al-Bardan Z, Sun CJ, Yang H. A Porous Pyrochlore Y 2 [Ru 1.6 Y 0.4 ]O 7-δ Electrocatalyst for Enhanced Performance towards the Oxygen Evolution Reaction in Acidic Media. Angew Chem Int Ed Engl 2018; 57:13877-13881. [PMID: 30160366 DOI: 10.1002/anie.201808825] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 01/20/2023]
Abstract
A robust porous structure is often needed for practical applications in electrochemical devices, such as fuel cells, batteries, and electrolyzers. While templating approach is useful for the preparation of porous materials in general, it is not effective for the synthesis of oxide-based electrocatalysts owing to the chemical instability of disordered porous materials thus created. Now the synthesis of phase-pure porous yttrium ruthenate pyrochlore oxide using an unconventional porogen of perchloric acid is presented. The lattice oxygen defects are formed by the mixed-valence state of Ru4+/5+ through the partial substitution of Ru4+ with Y3+ cations, leading to the formation of mixed B-site Y2 [Ru1.6 Y0.4 ]O7-δ . This porous Y2 [Ru1.6 Y0.4 ]O7-δ electrocatalyst exhibits a turnover frequency (TOF) of 560 s-1 (at 1.5 V versus RHE) for the oxygen evolution reaction, which is two orders of magnitude higher than that of the RuO2 reference catalyst (5.41 s-1 ).
Collapse
Affiliation(s)
- Jaemin Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Pei-Chieh Shih
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Yao Qin
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.,The Institute for Advanced Materials & Nano Biomedicine, Tongji University, 67 Chifeng Rd., Shanghai, 200092, P. R. China
| | - Zaid Al-Bardan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Cheng-Jun Sun
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
43
|
Kim J, Shih P, Qin Y, Al‐Bardan Z, Sun C, Yang H. A Porous Pyrochlore Y
2
[Ru
1.6
Y
0.4
]O
7–
δ
Electrocatalyst for Enhanced Performance towards the Oxygen Evolution Reaction in Acidic Media. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808825] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jaemin Kim
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL 61801 USA
| | - Pei‐Chieh Shih
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL 61801 USA
| | - Yao Qin
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL 61801 USA
- The Institute for Advanced Materials & Nano BiomedicineTongji University 67 Chifeng Rd. Shanghai 200092 P. R. China
| | - Zaid Al‐Bardan
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL 61801 USA
| | - Cheng‐Jun Sun
- X-ray Science DivisionArgonne National Laboratory 9700 South Cass Avenue Argonne IL 60439 USA
| | - Hong Yang
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana IL 61801 USA
| |
Collapse
|
44
|
|
45
|
Sun W, Wang Z, Zaman WQ, Zhou Z, Cao L, Gong XQ, Yang J. Effect of lattice strain on the electro-catalytic activity of IrO2 for water splitting. Chem Commun (Camb) 2018; 54:996-999. [DOI: 10.1039/c7cc09580e] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lattice strain control of the OER activity of IrO2.
Collapse
Affiliation(s)
- Wei Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes
- School of Resources and Environmental Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Zhiqiang Wang
- Key Laboratory for Advanced Materials
- Center for Computational Chemistry and Research Institute of Industrial Catalysis
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Waqas Qamar Zaman
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes
- School of Resources and Environmental Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Zhenhua Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes
- School of Resources and Environmental Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Limei Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes
- School of Resources and Environmental Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials
- Center for Computational Chemistry and Research Institute of Industrial Catalysis
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Ji Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes
- School of Resources and Environmental Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
46
|
Zhou Z, Zaman WQ, Sun W, Cao LM, Tariq M, Yang J. Cultivating crystal lattice distortion in IrO2via coupling with MnO2 to boost the oxygen evolution reaction with high intrinsic activity. Chem Commun (Camb) 2018; 54:4959-4962. [DOI: 10.1039/c8cc02008f] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enhancing the OER performance by cultivating Jahn–Teller distortion in IrO2 with Mn oxide being the substrate material.
Collapse
Affiliation(s)
- Zhenhua Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes
- School of Resources and Environmental Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Waqas Qamar Zaman
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes
- School of Resources and Environmental Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Wei Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes
- School of Resources and Environmental Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Li-mei Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes
- School of Resources and Environmental Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Muhammad Tariq
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes
- School of Resources and Environmental Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Ji Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes
- School of Resources and Environmental Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
47
|
Chun SH, Kim HY, Jang H, Lee Y, Jo A, Lee NS, Yu HK, Lee Y, Kim MH, Lee C. A facile growth process of highly single crystalline Ir1−xVxO2 mixed metal oxide nanorods and their electrochemical properties. CrystEngComm 2017. [DOI: 10.1039/c7ce00637c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|