1
|
Nain S, Kumar N, Avti PK. Effect of Arterial Blood Flow on Magnetic Nanoparticle Thermotherapy Applied on a Realistic Breast Tumor Model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2025; 41:e70039. [PMID: 40209700 DOI: 10.1002/cnm.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/12/2025]
Abstract
The current investigation aims to determine the effects of blood flow through the artery system engulfed in the tumor region, exposed to localized heating during magnetic nanoparticle hyperthermia (MNPH). The MNPH simulations are performed on a physical breast model constructed from MRI images of a female patient with a breast tumor. The DCE_MRI DICOM images of breast cancer from The Cancer Imaging Archive (TCIA) of a patient are utilized to build realistic breast models using 3D slicer software. The visible blood artery, tumor, and surrounding healthy tissue were then imported into the COMSOL Multiphysics software to simulate the underlying physics (bioheat transfer and fluid flow) during MNPH treatment. The tumor tissue is infused with a dose of 5, 5.5, and 6mg / cm 3 $$ \mathrm{mg}/{\mathrm{cm}}^3 $$ (tumor volume) of magnetic nanoparticles (MNPs) using a multi-point injection strategy. The range of magnetic field applied during MNPH simulations are 12, 13, and 14kA / m $$ \mathrm{kA}/\mathrm{m} $$ at a field frequency of 330kHz $$ \mathrm{kHz} $$ . The Arrhenius thermal damage model is applied to evaluate the cell damage to the breast model. Two blood flow conditions, that is, with the flow and without the flow of blood through the artery, are applied to measure the effects of blood flow through the artery in the MNPH procedure. Additionally, tumor damage at different MNP doses and magnetic field conditions have also been observed under different arterial blood flow conditions. Results show that the arterial blood flow carries a significant amount of heat with it during MNPH. This minimizes the heat damage inflicted on tumor tissue during hyperthermia treatment. The presence of arterial blood flow in the partially submerged artery in the tumor site resulted in around a 25% reduction in thermal damage to the tumor tissue. However, the tumor damage can be enhanced by increasing the nanoparticle dose and magnetic field parameters. Enhancing the MNP dose and magnetic field parameters increases the thermal damage to the tumor tissue; however, this may also lead to more healthy tissue damage. The therapeutic benefits of MNPH are significantly impacted by the vasculature in and around the cancerous tissue. So, to achieve the minimal therapeutic thermal effects on the tumor, some compensation for healthy tissue damage could be a possible way with the variation in MNPH parameters such as MNP dose and magnetic field parameters.
Collapse
Affiliation(s)
- Sandeep Nain
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, India
- TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, India
| | - Neeraj Kumar
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, India
- TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, India
| | - Pramod Kumar Avti
- Department of Biophysics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
2
|
Latypova AA, Yaremenko AV, Pechnikova NA, Minin AS, Zubarev IV. Magnetogenetics as a promising tool for controlling cellular signaling pathways. J Nanobiotechnology 2024; 22:327. [PMID: 38858689 PMCID: PMC11163773 DOI: 10.1186/s12951-024-02616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Magnetogenetics emerges as a transformative approach for modulating cellular signaling pathways through the strategic application of magnetic fields and nanoparticles. This technique leverages the unique properties of magnetic nanoparticles (MNPs) to induce mechanical or thermal stimuli within cells, facilitating the activation of mechano- and thermosensitive proteins without the need for traditional ligand-receptor interactions. Unlike traditional modalities that often require invasive interventions and lack precision in targeting specific cellular functions, magnetogenetics offers a non-invasive alternative with the capacity for deep tissue penetration and the potential for targeting a broad spectrum of cellular processes. This review underscores magnetogenetics' broad applicability, from steering stem cell differentiation to manipulating neuronal activity and immune responses, highlighting its potential in regenerative medicine, neuroscience, and cancer therapy. Furthermore, the review explores the challenges and future directions of magnetogenetics, including the development of genetically programmed magnetic nanoparticles and the integration of magnetic field-sensitive cells for in vivo applications. Magnetogenetics stands at the forefront of cellular manipulation technologies, offering novel insights into cellular signaling and opening new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Anastasiia A Latypova
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia
- Moscow Center for Advanced Studies, Moscow, 123592, Russia
| | - Alexey V Yaremenko
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Nadezhda A Pechnikova
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Saint Petersburg Pasteur Institute, Saint Petersburg, 197101, Russia
| | - Artem S Minin
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russia
| | - Ilya V Zubarev
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia.
| |
Collapse
|
3
|
Alsharedeh R, Alshraiedeh N, Aljabali AA, Tambuwala MM. Magnetosomes as Potential Nanocarriers for Cancer Treatment. Curr Drug Deliv 2024; 21:1073-1081. [PMID: 37340750 DOI: 10.2174/1567201820666230619155528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023]
Abstract
Magnetotactic bacteria (MTBs) and their organelles, magnetosomes, are intriguing options that might fulfill the criteria of using bacterial magnetosomes (BMs). The ferromagnetic crystals contained in BMs can condition the magnetotaxis of MTBs, which is common in water storage facilities. This review provides an overview of the feasibility of using MTBs and BMs as nanocarriers in cancer treatment. More evidence suggests that MTBs and BMs can be used as natural nanocarriers for conventional anticancer medicines, antibodies, vaccine DNA, and siRNA. In addition to improving the stability of chemotherapeutics, their usage as transporters opens the possibilities for the targeted delivery of single ligands or combinations of ligands to malignant tumors. Magnetosome magnetite crystals are different from chemically made magnetite nanoparticles (NPs) because they are strong single-magnetic domains that stay magnetized even at room temperature. They also have a narrow size range and a uniform crystal morphology. These chemical and physical properties are essential for their usage in biotechnology and nanomedicine. Bioremediation, cell separation, DNA or antigen regeneration, therapeutic agents, enzyme immobilization, magnetic hyperthermia, and contrast enhancement of magnetic resonance are just a few examples of the many uses for magnetite-producing MTB, magnetite magnetosomes, and magnetosome magnetite crystals. From 2004 to 2022, data mining of the Scopus and Web of Science databases showed that most research using magnetite from MTB was carried out for biological reasons, such as in magnetic hyperthermia and drug delivery.
Collapse
Affiliation(s)
- Rawan Alsharedeh
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163 - P. O. BOX 566, Jordan
| | - Nid'a Alshraiedeh
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Alaa A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163 - P. O. BOX 566, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
4
|
Non-pyrogenic highly pure magnetosomes for efficient hyperthermia treatment of prostate cancer. Appl Microbiol Biotechnol 2023; 107:1159-1176. [PMID: 36633624 DOI: 10.1007/s00253-022-12247-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 01/13/2023]
Abstract
We report the fabrication of highly pure magnetosomes that are synthesized by magnetotactic bacteria (MTB) using pharmaceutically compatible growth media, i.e., without compounds of animal origin (yeast extracts), carcinogenic, mutagenic, or toxic for reproduction (CMR) products, and other heavy metals than iron. To enable magnetosome medical applications, these growth media are reduced and amended compared with media commonly used to grow these bacteria. Furthermore, magnetosomes are made non-pyrogenic by being extracted from these micro-organisms and heated above 400 °C to remove and denature bacterial organic material and produce inorganic magnetosome minerals. To be stabilized, these minerals are further coated with citric acid to yield M-CA, leading to fully reconstructed chains of magnetosomes. The heating properties and anti-tumor activity of highly pure M-CA are then studied by bringing M-CA into contact with PC3-Luc tumor cells and by exposing such assembly to an alternating magnetic field (AMF) of 42 mT and 195 kHz during 30 min. While in the absence of AMF, M-CA are observed to be non-cytotoxic, they result in a 35% decrease in cell viability following AMF application. The treatment efficacy can be associated with a specific absorption rate (SAR) value of M-CA, which is relatively high in cellular environment, i.e., SARcell = 253 ± 11 W/gFe, while being lower than the M-CA SAR value measured in water, i.e., SARwater = 1025 ± 194 W/gFe, highlighting that a reduction in the Brownian contribution to the SAR value in cellular environment does not prevent efficient tumor cell destruction with these nanoparticles. KEY POINTS : • Highly pure magnetosomes were produced in pharmaceutically compatible growth media • Non-pyrogenic and stable magnetosomes were prepared for human injection • Magnetosomes efficiently destroyed prostate tumor cells in magnetic hyperthermia.
Collapse
|
5
|
Kulpa-Greszta M, Wnuk M, Tomaszewska A, Adamczyk-Grochala J, Dziedzic A, Rzeszutek I, Zarychta B, Błoniarz D, Lewińska A, Pązik R. Synergic Temperature Effect of Star-like Monodisperse Iron Oxide Nanoparticles and Their Related Responses in Normal and Cancer Cells. J Phys Chem B 2022; 126:8515-8531. [PMID: 36225102 DOI: 10.1021/acs.jpcb.2c06061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Magnetic nanoparticle (MNP) anisotropy has been tailored by the preparation of MNPs having different shapes (star-like, cubic, and polyhedral) using a self-modified rapid hot-injection process. The surface modification of MNPs was performed through etidronic ligand grafting with a strong binding affinity to mixed metal oxides, ensuring sufficient colloidal stability, surface protection, and minimized aggregation and interparticle interactions. The heating effect was induced by contactless external stimulation through the action of an alternating magnetic field and NIR laser radiation (808 nm). The efficacy of the energy conversion was evaluated as a function of the particle shape, concentration, and external stimuli parameters. In turn, the most efficient star-like particles have been selected to study their response in contact with normal and cancer cells. It was found that the star-like MNPs (Fe3O4 SL-NPs) at 2 mg/mL concentration induce necrosis and significantly alter cell cycle progression, while 0.5 mg/mL can stimulate the antioxidative and anti-inflammatory response in normal cells. A biologically relevant heating effect leading to heat-mediated cell death was achieved at a 2 mg/mL concentration of star-like particles and was enhanced by the addition of ascorbic acid (AA). AA-mediated photomagnetic hyperthermia can lead to the modulation of the heat-shock response in cancer cells that depends on the genotypic and phenotypic variations of cell lines.
Collapse
Affiliation(s)
- Magdalena Kulpa-Greszta
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland.,Faculty of Chemistry, Rzeszow University of Technology, Aleja Powstańców Warszawy 12, 35-959Rzeszow, Poland
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland
| | - Anna Tomaszewska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland
| | - Jagoda Adamczyk-Grochala
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland
| | - Andrzej Dziedzic
- Department of Spectroscopy and Materials, Institute of Physics, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland
| | - Iwona Rzeszutek
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland
| | - Bartosz Zarychta
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052Opole, Poland
| | - Dominika Błoniarz
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland
| | - Anna Lewińska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland
| | - Robert Pązik
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310Rzeszow, Poland
| |
Collapse
|
6
|
Nitica S, Fizesan I, Dudric R, Barbu-Tudoran L, Pop A, Loghin F, Vedeanu N, Lucaciu CM, Iacovita C. A Fast, Reliable Oil-In-Water Microemulsion Procedure for Silica Coating of Ferromagnetic Zn Ferrite Nanoparticles Capable of Inducing Cancer Cell Death In Vitro. Biomedicines 2022; 10:1647. [PMID: 35884954 PMCID: PMC9313231 DOI: 10.3390/biomedicines10071647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
The applications of ferrimagnetic nanoparticles (F-MNPs) in magnetic hyperthermia (MH) are restricted by their stabilization in microscale aggregates due to magnetostatic interactions significantly reducing their heating performances. Coating the F-MNPs in a silica layer is expected to significantly reduce the magnetostatic interactions, thereby increasing their heating ability. A new fast, facile, and eco-friendly oil-in-water microemulsion-based method was used for coating Zn0.4Fe2.6O4 F-MNPs in a silica layer within 30 min by using ultrasounds. The silica-coated clusters were characterized by various physicochemical techniques and MH, while cytotoxicity studies, cellular uptake determination, and in vitro MH experiments were performed on normal and malignant cell lines. The average hydrodynamic diameter of silica-coated clusters was approximately 145 nm, displaying a high heating performance (up to 2600 W/gFe). Biocompatibility up to 250 μg/cm2 (0.8 mg/mL) was recorded by Alamar Blue and Neutral Red assays. The silica-coating increases the cellular uptake of Zn0.4Fe2.6O4 clusters up to three times and significantly improves their intracellular MH performances. A 90% drop in cellular viability was recorded after 30 min of MH treatment (20 kA/m, 355 kHz) for a dosage level of 62.5 μg/cm2 (0.2 mg/mL), while normal cells were more resilient to MH treatment.
Collapse
Affiliation(s)
- Stefan Nitica
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania; (S.N.); (N.V.)
| | - Ionel Fizesan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6A Pasteur St., 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (F.L.)
| | - Roxana Dudric
- Faculty of Physics, “Babes-Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5–7 Clinicilor St., 400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67–103 Donath St., 400293 Cluj-Napoca, Romania
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6A Pasteur St., 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (F.L.)
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6A Pasteur St., 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (F.L.)
| | - Nicoleta Vedeanu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania; (S.N.); (N.V.)
| | - Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania; (S.N.); (N.V.)
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania; (S.N.); (N.V.)
| |
Collapse
|
7
|
Kotakadi SM, Borelli DPR, Nannepaga JS. Therapeutic Applications of Magnetotactic Bacteria and Magnetosomes: A Review Emphasizing on the Cancer Treatment. Front Bioeng Biotechnol 2022; 10:789016. [PMID: 35547173 PMCID: PMC9081342 DOI: 10.3389/fbioe.2022.789016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Magnetotactic bacteria (MTB) are aquatic microorganisms have the ability to biomineralize magnetosomes, which are membrane-enclosed magnetic nanoparticles. Magnetosomes are organized in a chain inside the MTB, allowing them to align with and traverse along the earth’s magnetic field. Magnetosomes have several potential applications for targeted cancer therapy when isolated from the MTB, including magnetic hyperthermia, localized medication delivery, and tumour monitoring. Magnetosomes features and properties for various applications outperform manufactured magnetic nanoparticles in several ways. Similarly, the entire MTB can be regarded as prospective agents for cancer treatment, thanks to their flagella’s ability to self-propel and the magnetosome chain’s ability to guide them. MTBs are conceptualized as nanobiots that can be guided and manipulated by external magnetic fields and are driven to hypoxic areas, such as tumor sites, while retaining the therapeutic and imaging characteristics of isolated magnetosomes. Furthermore, unlike most bacteria now being studied in clinical trials for cancer treatment, MTB are not pathogenic but might be modified to deliver and express certain cytotoxic chemicals. This review will assess the current and prospects of this burgeoning research field and the major obstacles that must be overcome before MTB can be successfully used in clinical treatments.
Collapse
Affiliation(s)
- Sai Manogna Kotakadi
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
| | | | - John Sushma Nannepaga
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
- *Correspondence: John Sushma Nannepaga, , orcid.org/0000-0002-8739-9936
| |
Collapse
|
8
|
Rytov RA, Bautin VA, Usov NA. Towards optimal thermal distribution in magnetic hyperthermia. Sci Rep 2022; 12:3023. [PMID: 35194138 PMCID: PMC8863883 DOI: 10.1038/s41598-022-07062-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
A linear combination of spherically symmetric heat sources is shown to provide optimal stationary thermal distribution in magnetic hyperthermia. Furthermore, such spatial location of heat sources produces suitable temperature distribution in biological medium even for assemblies of magnetic nanoparticles with a moderate value of specific absorption rate (SAR), of the order of 100-150 W/g. We also demonstrate the advantage of using assemblies of spherical magnetic nanocapsules consisting of metallic iron nanoparticles covered with non magnetic shells of sufficient thickness in magnetic hyperthermia. Based on numerical simulation we optimize the size and geometric structure of biocompatible spherical capsules in order to minimize the influence of strong magneto-dipole interaction between closely spaced nanoparticles. It is shown that assembly of capsules can provide sufficiently high SAR values of the order of 250-400 W/g at moderate amplitudes H0 = 50-100 Oe and frequencies f = 100-200 kHz of alternating magnetic field, being appropriate for application in clinics.
Collapse
Affiliation(s)
- R A Rytov
- National University of Science and Technology «MISiS», Moscow, Russia, 119049.
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, Troitsk, Moscow, Russia, 142190.
| | - V A Bautin
- National University of Science and Technology «MISiS», Moscow, Russia, 119049
| | - N A Usov
- National University of Science and Technology «MISiS», Moscow, Russia, 119049
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, Troitsk, Moscow, Russia, 142190
| |
Collapse
|
9
|
Gubanova EM, Usov NA, Oleinikov VA. Heating ability of elongated magnetic nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1404-1412. [PMID: 35028264 PMCID: PMC8722399 DOI: 10.3762/bjnano.12.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Low-frequency hysteresis loops and specific absorption rate (SAR) of various assemblies of elongated spheroidal magnetite nanoparticles have been calculated for a range of particle semiaxis ratios a/b = 1.0-3.0. The SAR of a dilute randomly oriented assembly of magnetite nanoparticles in an alternating magnetic field of moderate frequency, f = 300 kHz, and amplitude H 0 = 100-200 Oe is shown to decrease significantly with an increase in the aspect ratio of nanoparticles. In addition, there is a narrowing and shift of the intervals of optimal particle diameters towards smaller particle sizes. However, the orientation of a dilute assembly of elongated nanoparticles in a magnetic field leads to an almost twofold increase in SAR at the same frequency and amplitude of the alternating magnetic field, the range of optimal particle diameters remaining unchanged. The effect of the magneto-dipole interaction on the SAR of a dilute assembly of oriented clusters of elongated magnetite nanoparticles has also been investigated depending on the volume fraction of nanoparticles in a cluster. It has been found that the SAR of the assembly of oriented clusters decreases by approximately an order of magnitude with an increase in the volume fraction of nanoparticles in a cluster in the range of 0.04-0.2.
Collapse
Affiliation(s)
| | - Nikolai A Usov
- National Research Nuclear University “MEPhI”, 115409, Moscow, Russia
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108480, Troitsk, Moscow, Russia
| | | |
Collapse
|
10
|
Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, Chantrell R, Pellegrino T. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev 2021; 50:11614-11667. [PMID: 34661212 DOI: 10.1039/d1cs00427a] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic hyperthermia (MHT) is a therapeutic modality for the treatment of solid tumors that has now accumulated more than 30 years of experience. In the ongoing MHT clinical trials for the treatment of brain and prostate tumors, iron oxide nanoparticles are employed as intra-tumoral MHT agents under a patient-safe 100 kHz alternating magnetic field (AMF) applicator. Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anemia, magnetic nanoparticles (MNPs) designed for the efficient treatment of MHT must respond to specific physical-chemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. Accordingly, in the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. In this review, we present an overview on MNPs and their assemblies produced via different synthetic routes, focusing on which MNP features have allowed unprecedented heating efficiency levels to be achieved in MHT and highlighting nanoplatforms that prevent magnetic heat loss in the intracellular environment. Moreover, we review the advances on MNP-based nanoplatforms that embrace the concept of multimodal therapy, which aims to combine MHT with chemotherapy, radiotherapy, immunotherapy, photodynamic or phototherapy. Next, for a better control of the therapeutic temperature at the tumor, we focus on the studies that have optimized MNPs to maintain gold-standard MHT performance and are also tackling MNP imaging with the aim to quantitatively assess the amount of nanoparticles accumulated at the tumor site and regulate the MHT field conditions. To conclude, future perspectives with guidance on how to advance MHT therapy will be provided.
Collapse
Affiliation(s)
- Helena Gavilán
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | | | | | - Nisarg Soni
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Marco Cassani
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Binh T Mai
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Roy Chantrell
- Department of Physics, University of York, York YO10 5DD, UK
| | | |
Collapse
|
11
|
Gavilán H, Simeonidis K, Myrovali E, Mazarío E, Chubykalo-Fesenko O, Chantrell R, Balcells L, Angelakeris M, Morales MP, Serantes D. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios. NANOSCALE 2021; 13:15631-15646. [PMID: 34596185 DOI: 10.1039/d1nr03484g] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The use of magnetic nanoparticles (MNPs) to locally increase the temperature at the nanoscale under the remote application of alternating magnetic fields (magnetic particle hyperthermia, MHT) has become an important subject of nanomedicine multidisciplinary research, focusing among other topics on the optimization of the heating performance of MNPs and their assemblies under the effect of the magnetic field. We report experimental data of heat released by MNPs using a wide range of anisometric shapes and their assemblies in different media. We outline a basic theoretical investigation, which assists the interpretation of the experimental data, including the effect of the size, shape and assembly of MNPs on the MNPs' hysteresis loops and the maximum heat delivered. We report heat release data of anisometric MNPs, including nanodisks, spindles (elongated nanoparticles) and nanocubes, analysing, for a given shape, the size dependence. We study the MNPs either acting as individuals or assembled through a magnetic-field-assisted method. Thus, the physical geometrical arrangement of these anisometric particles, the magnetization switching and the heat release (by means of the determination of the specific adsorption rate, SAR values) under the application of AC fields have been analysed and compared in aqueous suspensions and after immobilization in agar matrix mimicking the tumour environment. The different nano-systems were analysed when dispersed at random or in assembled configurations. We report a systematic fall in the SAR for all anisometric MNPs randomly embedded in a viscous environment. However, certain anisometric shapes will have a less marked, an almost total preservation or even an increase in SAR when embedded in a viscous environment with certain orientation, in contrast to the measurements in water solution. Discrepancies between theoretical and experimental values reflect the complexity of the systems due to the interplay of different factors such as size, shape and nanoparticle assembly due to magnetic interactions. We demonstrate that magnetic assembly holds great potential for producing materials with high functional and structural diversity, as we transform our nanoscale building blocks (anisometric MNPs) into a material displaying enhanced SAR properties.
Collapse
Affiliation(s)
- H Gavilán
- Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, 28049 Madrid, Spain.
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - K Simeonidis
- School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - E Myrovali
- School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - E Mazarío
- Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, 28049 Madrid, Spain.
| | - O Chubykalo-Fesenko
- Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, 28049 Madrid, Spain.
| | - R Chantrell
- Department of Physics, University of York, Heslington, York YO10 5DD, UK
| | - Ll Balcells
- Institut de Ciencia de Materiales de Barcelona, CSIC, 08193 Bellaterra, Spain
| | - M Angelakeris
- School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - M P Morales
- Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, 28049 Madrid, Spain.
| | - D Serantes
- Applied Physics Department and Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, 15782, Spain.
| |
Collapse
|
12
|
Lim Y, Noh SH, Shin TH, Lee JU, Lungerich D, Lee JH, Cheon J. Magnetothermally Activated Nanometer-level Modular Functional Group Grafting of Nanoparticles. NANO LETTERS 2021; 21:3649-3656. [PMID: 33856815 DOI: 10.1021/acs.nanolett.1c00770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoparticles with multifunctionality and high colloidal stability are essential for biomedical applications. However, their use is often hindered by the formation of thick coating shells and/or nanoparticle agglomeration. Herein, we report a single nanoparticle coating strategy to form 1 nm polymeric shells with a variety of chemical functional groups and surface charges. Under exposure to alternating magnetic field, nanosecond thermal energy pulses trigger a polymerization in the region only a few nanometers from the magnetic nanoparticle (MNP) surface. Modular coatings containing functional groups, according to the respective choice of monomers, are possible. In addition, the surface charge can be tuned from negative through neutral to positive. We adopted a coating method for use in biomedical targeting studies where obtaining compact nanoparticles with the desired surface charge is critical. A single MNP with a zwitterionic charge can provide excellent colloidal stability and cell-specific targeting.
Collapse
Affiliation(s)
- Yongjun Lim
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Hyun Noh
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Tae-Hyun Shin
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Jung-Uk Lee
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Dominik Lungerich
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae-Hyun Lee
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinwoo Cheon
- Center for NanoMedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Usov NA, Rytov RA, Bautin VA. Properties of assembly of superparamagnetic nanoparticles in viscous liquid. Sci Rep 2021; 11:6999. [PMID: 33772074 PMCID: PMC7997902 DOI: 10.1038/s41598-021-86323-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Detailed calculations of the specific absorption rate (SAR) of a dilute assembly of iron oxide nanoparticles with effective uniaxial anisotropy dispersed in a liquid are performed depending on the particle diameters, the alternating (ac) magnetic field amplitude H0 and the liquid viscosity. For small and moderate H0 values with respect to particle anisotropy field Hk the SAR of the assembly as a function of the particle diameter passes through a characteristic maximum and then reaches a plateau, whereas for sufficiently large amplitudes, H0 ~ Hk, the SAR increases monotonically as a function of diameter. The realization of viscous and magnetic oscillation modes for particle unit magnetization vector and director for moderate and sufficiently large H0 values, respectively, explains this behavior. It is found that the SAR of the assembly changes inversely with the viscosity only in a viscous mode, for nanoparticles of sufficiently large diameters. In the magnetic mode the SAR of the assembly is practically independent of the viscosity, since in this case the nanoparticle director only weakly oscillates around the ac magnetic field direction. The conditions for the validity of the linear response theory have been clarified by comparison with the numerical simulation data.
Collapse
Affiliation(s)
- N A Usov
- National University of Science and Technology (MISiS), 119049, Moscow, Russia. .,Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108480, Troitsk, Moscow, Russia.
| | - R A Rytov
- National University of Science and Technology (MISiS), 119049, Moscow, Russia
| | - V A Bautin
- National University of Science and Technology (MISiS), 119049, Moscow, Russia
| |
Collapse
|
14
|
Chauhan A, Midha S, Kumar R, Meena R, Singh P, Jha SK, Kuanr BK. Rapid tumor inhibition via magnetic hyperthermia regulated by caspase 3 with time-dependent clearance of iron oxide nanoparticles. Biomater Sci 2021; 9:2972-2990. [PMID: 33635305 DOI: 10.1039/d0bm01705a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among conventional cancer therapies, radio-frequency magnetic hyperthermia (MHT) has widely been investigated for use with magnetic nanoparticles (MNPs). However, the majority of in vivo biodistribution studies have tested very low MNP dosages (equivalent to magnetic resonance imaging (MRI) applications) to check for clearance rate; which is far below the clinical dose of MHT. Due to this poor validation in preclinical scenarios, quite a few MNPs already in clinical use were later discontinued, on grounds of unexpected clinical outcomes in terms of inflammation, and prolonged clearance in vivo. By exploiting an economical method of synthesis, we have developed chitosan-coated Fe3O4 nanoparticles with high heating efficiency performance. Their anti-tumor response was evaluated in an ectopic tumor model of C6 glioblastoma by MHT. The intratumoral injection of MNPs on days 1 and 7 resulted in rapid tumor inhibition rate of 69.4% within 8 days, with complete inhibition within 32 days, and no recurrence recorded over a 5-month follow-up. Notably, the MNP-mediated MHT therapy achieved the highest degree of therapeutic efficacy required for complete tumor ablation by combining controlled temperature range (<44 °C), reduced MNP dosage; much lower than in most reported studies, and AMF parameters (time of exposure and frequency) within the clinical safety limit. Periodic body weight measurements confirmed negligible adverse side effects in rats. The anti-tumor activity was validated by severe apoptosis (TUNEL, cleaved Caspase-3), reduced proliferation (Ki 67) and disrupted vasculature (CD 31) in the Fe3O4-MHT-treated group. Real-time gene expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1α, IL-1β) confirmed the intratumoral activation of IL-6, suggesting the role of immunomodulation in triggering the adaptive immune response for faster tumor regression in the treated group. In addition, the biodistribution and clearance rate of MNPs monitored using ICP-OES confirmed their time-dependent biodegradation via excretion (urine, feces), phagocytosis (liver) and circulatory system (blood), with negligible deposition in other major organs (kidney, heart, lungs). Although we could not show complete clearance of our MNPs within the time frame tested, future studies should focus on combining MHT with immunotherapy, and target tumors at a much-reduced iron dose, consequently improving in vivo clearance rate, and hence overcoming the limitations of MHT in clinical therapy.
Collapse
Affiliation(s)
- Anjali Chauhan
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India. and School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Swati Midha
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India. and UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ravindra Meena
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Pooja Singh
- National Institute of Plant Genome research, New Delhi-110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Bijoy K Kuanr
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
15
|
Fabris F, Lohr J, Lima E, de Almeida AA, Troiani HE, Rodríguez LM, Vásquez Mansilla M, Aguirre MH, Goya GF, Rinaldi D, Ghirri A, Peddis D, Fiorani D, Zysler RD, De Biasi E, Winkler EL. Adjusting the Néel relaxation time of Fe 3O 4/Zn x Co 1-x Fe 2O 4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia. NANOTECHNOLOGY 2020; 32:065703. [PMID: 33210620 DOI: 10.1088/1361-6528/abc386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, Fe3O4/Zn x Co1-x Fe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of ∼1.1 nm of thickness, where the Zn atomic ratio (Zn/(Zn + Co) at%) changes from 33 to 68 at%. The magnetic measurements are consistent with a rigid interface coupling between the core and shell phases, where the effective magnetic anisotropy systematically decreases when the Zn concentration increases, without a significant change of the saturation magnetization. Experiments of MFH of 0.1 wt% of these particles dispersed in water, in Dulbecco modified Eagles minimal essential medium, and a high viscosity butter oil, result in a large specific loss power (SLP), up to 150 W g-1, when the experiments are performed at 571 kHz and 200 Oe. The SLP was optimized adjusting the shell composition, showing a maximum for intermediate Zn concentration. This study shows a way to maximize the heat generation in viscous media like cytosol, for those biomedical applications that require smaller particle sizes.
Collapse
Affiliation(s)
- Fernando Fabris
- Instituto de Nanociencia y Nanotecnología CNEA-CONICET-Centro Atómico Bariloche, S. C. de Bariloche, 8400, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Etemadi H, Plieger PG. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000061] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hossein Etemadi
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| | - Paul G. Plieger
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| |
Collapse
|
17
|
Usov NA, Serebryakova ON. Equilibrium properties of assembly of interacting superparamagnetic nanoparticles. Sci Rep 2020; 10:13677. [PMID: 32792603 PMCID: PMC7426820 DOI: 10.1038/s41598-020-70711-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
The stochastic Landau-Lifshitz equation is used to investigate the relaxation process and equilibrium magnetization of interacting assembly of superparamagnetic nanoparticles (SPMNPs) uniformly distributed in a nonmagnetic matrix. For weakly interacting assembly, the equilibrium magnetization is shown to deviate significantly from the Langevin law at moderate and large magnetic fields under the influence of their magnetic anisotropies. For dense assemblies with noticeable influence of the magneto-dipole interaction, a significant dependence of the initial susceptibility on the assembly density is revealed. The difference between the initial susceptibility and the corresponding Langevin susceptibility can serve as an indication of appreciable influence of the magneto-dipole interaction on the assembly properties. A new self-consistent approach is developed to explain the effect of mutual magneto-dipole interaction on the behavior of dense assembly of SPMNPs. The probability densities of the components of random magnetic field acting on magnetic NPs are calculated at thermodynamic equilibrium. The self-consistent probability densities of these components are found to be close to Gaussian distribution. A decreasing equilibrium assembly magnetization as a function of its density can be explained as a disorienting effect of the random magnetic field on the NPs magnetic moments.
Collapse
Affiliation(s)
- N A Usov
- National University of Science and Technology "MISiS", Moscow, 119049, Russia. .,Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, Troitsk, Moscow, 108480, Russia.
| | - O N Serebryakova
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, Troitsk, Moscow, 108480, Russia
| |
Collapse
|
18
|
Etemadi H, Plieger PG. Improvements in the Organic-Phase Hydrothermal Synthesis of Monodisperse M x Fe 3-x O 4 (M = Fe, Mg, Zn) Spinel Nanoferrites for Magnetic Fluid Hyperthermia Application. ACS OMEGA 2020; 5:18091-18104. [PMID: 32743183 PMCID: PMC7391372 DOI: 10.1021/acsomega.0c01641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/24/2020] [Indexed: 05/15/2023]
Abstract
In the quest for optimal heat dissipaters for magnetic fluid hyperthermia applications, monodisperse M x Fe3-x O4 (M = Fe, Mg, Zn) spinel nanoferrites were successfully synthesized through a modified organic-phase hydrothermal route. The chemical composition effect on the size, crystallinity, saturation magnetization, magnetic anisotropy, and heating potential of prepared nanoferrites were assessed using transmission electron microscopy (TEM), dynamic light scattering, X-ray diffraction (XRD), thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDS), atomic absorption spectroscopy (AAS), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometer (VSM) techniques. TEM revealed that a particle diameter between 6 and 14 nm could be controlled by varying the surfactant ratio and doping ions. EDS, AAS, XRD, and XPS confirmed the inclusion of Zn and Mg ions in the Fe3O4 structure. Magnetization studies via VSM revealed both the superparamagnetic nature of the nanoferrites and the dependence on substitution of the doped ions to the final magnetization. The broader zero-field cooling curve of Zn-doped Fe3O4 was related to their large size distribution. Finally, a maximum rising temperature (T max) of 66 °C was achieved for an aqueous ferrofluid of nondoped Fe3O4 nanoparticles after magnetic field activation for 12 min.
Collapse
|
19
|
Usov NA, Gubanova EM. Application of Magnetosomes in Magnetic Hyperthermia. NANOMATERIALS 2020; 10:nano10071320. [PMID: 32635626 PMCID: PMC7408532 DOI: 10.3390/nano10071320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023]
Abstract
Nanoparticles, specifically magnetosomes, synthesized in nature by magnetotactic bacteria, are very promising to be usedin magnetic hyperthermia in cancer treatment. In this work, using the solution of the stochastic Landau–Lifshitz equation, we calculate the specific absorption rate (SAR) in an alternating (AC) magnetic field of assemblies of magnetosome chains depending on the particle size D, the distance between particles in a chain a, and the angle of the applied magnetic field with respect to the chain axis. The dependence of SAR on the a/D ratio is shown to have a bell-shaped form with a pronounced maximum. For a dilute oriented chain assembly with optimally chosen a/D ratio, a strong magneto-dipole interaction between the chain particles leads to an almost rectangular hysteresis loop, and to large SAR values in the order of 400–450 W/g at moderate frequencies f = 300 kHz and small magnetic field amplitudes H0 = 50–100 Oe. The maximum SAR value only weakly depends on the diameter of the nanoparticles and the length of the chain. However, a significant decrease in SAR occurs in a dense chain assembly due to the strong magneto-dipole interaction of nanoparticles of different chains.
Collapse
Affiliation(s)
- Nikolai A. Usov
- National University of Science and Technology «MISiS», 119049 Moscow, Russia
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, Troitsk, 108480 Moscow, Russia
- National Research Nuclear University “MEPhI”, 115409 Moscow, Russia;
- Correspondence:
| | | |
Collapse
|
20
|
Wang R, Liu J, Liu Y, Zhong R, Yu X, Liu Q, Zhang L, Lv C, Mao K, Tang P. The cell uptake properties and hyperthermia performance of Zn 0.5Fe 2.5O 4/SiO 2 nanoparticles as magnetic hyperthermia agents. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191139. [PMID: 32218945 PMCID: PMC7029910 DOI: 10.1098/rsos.191139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/14/2019] [Indexed: 05/14/2023]
Abstract
Zn0.5Fe2.5O4 nanoparticles (NPs) of 22 nm are synthesized by a one-pot approach and coated with silica for magnetic hyperthermia agents. The NPs exhibit superparamagnetic characteristics, high-specific absorption rate (SAR) (1083 wg-1, f = 430 kHz, H = 27 kAm-1), large saturation magnetization (M s = 85 emu g-1), excellent colloidal stability and low cytotoxicity. The cell uptake properties have been investigated by Prussian blue staining, transmission electron microscopy and the inductively coupled plasma-mass spectrometer, which resulted in time-dependent and concentration-dependent internalization. The internalization appeared between 0.5 and 2 h, the NPs were mainly located in the lysosomes and kept in good dispersion after incubation with human osteosarcoma MG-63 cells. Then, the relationship between cell uptake and magnetic hyperthermia performance was studied. Our results show that the hyperthermia efficiency was related to the amount of internalized NPs in the tumour cells, which was dependent on the concentration and incubation time. Interestingly, the NPs could still induce tumour cells to apoptosis/necrosis when extracellular NPs were rinsed, but the cell kill efficiency was lower than that of any rinse group, which indicated that local temperature rise was the main factor that induced tumour cells to death. Our findings suggest that this high SAR and biocompatible silica-coated Zn0.5Fe2.O4 NPs could serve as new agents for magnetic hyperthermia.
Collapse
Affiliation(s)
- Runsheng Wang
- Medical School of Chinese PLA, Beijing 100853, People's Republic of China
- Department of Orthopedics, The Third Affiliated Hospital of Guangxi Traditional Chinese Medicine University, Liuzhou, Guangxi Zhuang Autonomous Region 545001, People's Republic of China
| | - Jianheng Liu
- Medical School of Chinese PLA, Beijing 100853, People's Republic of China
| | - Yihao Liu
- Medical School of Chinese PLA, Beijing 100853, People's Republic of China
| | - Rui Zhong
- Medical School of Chinese PLA, Beijing 100853, People's Republic of China
| | - Xiang Yu
- Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China
| | - Qingzu Liu
- Medical School of Chinese PLA, Beijing 100853, People's Republic of China
| | - Li Zhang
- Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China
| | - Chenhui Lv
- Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China
| | - Keya Mao
- Medical School of Chinese PLA, Beijing 100853, People's Republic of China
| | - Peifu Tang
- Medical School of Chinese PLA, Beijing 100853, People's Republic of China
| |
Collapse
|
21
|
Usov NA, Rytov RA, Bautin VA. Dynamics of superparamagnetic nanoparticles in viscous liquids in rotating magnetic fields. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2294-2303. [PMID: 31807414 PMCID: PMC6880845 DOI: 10.3762/bjnano.10.221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
The dynamics of magnetic nanoparticles in a viscous liquid in a rotating magnetic field has been studied by means of numerical simulations and analytical calculations. In the magneto-dynamics approximation three different modes of motion of the unit magnetization vector and particle director are distinguished depending on frequency and amplitude of the rotating magnetic field. The specific absorption rate of a dilute assembly of superparamagnetic nanoparticles in rotating magnetic field is calculated by solving the Landau-Lifshitz stochastic equation for the unit magnetization vector and the stochastic equation for the particle director. At elevated frequencies an optimal range of particle diameters is found where the specific absorption rate of an assembly in a rotating magnetic field has a maximum. It is shown that with an optimal choice of the particle sizes sufficiently large SAR values of the order of 400-500 W/g can be obtained in a rotating magnetic field with a frequency f = 400 kHz and a moderate magnetic field amplitude H 0 = 100 Oe.
Collapse
Affiliation(s)
- Nikolai A Usov
- National University of Science and Technology «MISIS», 119049, Moscow, Russia
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108480, Troitsk, Moscow, Russia
| | - Ruslan A Rytov
- National University of Science and Technology «MISIS», 119049, Moscow, Russia
| | - Vasiliy A Bautin
- National University of Science and Technology «MISIS», 119049, Moscow, Russia
| |
Collapse
|
22
|
León Félix L, Sanz B, Sebastián V, Torres TE, Sousa MH, Coaquira JAH, Ibarra MR, Goya GF. Gold-decorated magnetic nanoparticles design for hyperthermia applications and as a potential platform for their surface-functionalization. Sci Rep 2019; 9:4185. [PMID: 30862882 PMCID: PMC6414712 DOI: 10.1038/s41598-019-40769-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/11/2019] [Indexed: 11/09/2022] Open
Abstract
The integration of noble metal and magnetic nanoparticles with controlled structures that can couple various specific effects to the different nanocomposite in multifunctional nanosystems have been found interesting in the field of medicine. In this work, we show synthesis route to prepare small Au nanoparticles of sizes = 3.9 ± 0.2 nm attached to Fe3O4 nanoparticle cores ( = 49.2 ± 3.5 nm) in aqueous medium for potential application as a nano-heater. Remarkably, the resulted Au decorated PEI-Fe3O4 (Au@PEI-Fe3O4) nanoparticles are able to retain bulk magnetic moment MS = 82-84 Am2/kgFe3O4, with the Verwey transition observed at TV = 98 K. In addition, the in vitro cytotoxicity analysis of the nanosystem microglial BV2 cells showed high viability (>97.5%) to concentrate up to 100 µg/mL in comparison to the control samples. In vitro heating experiments on microglial BV2 cells under an ac magnetic field (H0 = 23.87 kA/m; f = 571 kHz) yielded specific power absorption (SPA) values of SPA = 43 ± 3 and 49 ± 1 μW/cell for PEI-Fe3O4 and Au@PEI-Fe3O4 NPs, respectively. These similar intracellular SPA values imply that functionalization of the magnetic particles with Au did not change the heating efficiency, providing at the same time a more flexible platform for multifunctional functionalization.
Collapse
Affiliation(s)
- L León Félix
- Laboratory of Magnetic Characterization, Instituto de Física, Universidade de Brasília, Brasília, DF, 70910-900, Brazil.
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza, 50018, Spain.
| | - B Sanz
- nB nanoScale Biomagnetics S.L., Zaragoza, Spain
| | - V Sebastián
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza, 50018, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029, Madrid, Spain
| | - T E Torres
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza, 50018, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - M H Sousa
- Green Nanotechnology Group, University of Brasília, Brasília, DF, 72220-900, Brazil
| | - J A H Coaquira
- Laboratory of Magnetic Characterization, Instituto de Física, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - M R Ibarra
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza, 50018, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - G F Goya
- Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza, 50018, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, 50009, Spain.
| |
Collapse
|
23
|
Fabris F, Lima E, De Biasi E, Troiani HE, Vásquez Mansilla M, Torres TE, Fernández Pacheco R, Ibarra MR, Goya GF, Zysler RD, Winkler EL. Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles. NANOSCALE 2019; 11:3164-3172. [PMID: 30520920 DOI: 10.1039/c8nr07834c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report a simple and effective way to control the heat generation of a magnetic colloid under alternate magnetic fields by changing the shell composition of bimagnetic core-shell Fe3O4/ZnxCo1-xFe2O4 nanoparticles. The core-shell structure constitutes a magnetically-coupled biphase system, with an effective anisotropy that can be tuned by the substitution of Co2+ by Zn2+ ions in the shell. Magnetic hyperthermia experiments of nanoparticles dispersed in hexane and butter oil showed that the magnetic relaxation is dominated by Brown relaxation mechanism in samples with higher anisotropy (i.e., larger concentration of Co within the shell) yielding high specific power absorption values in low viscosity media as hexane. Increasing the Zn concentration of the shell, diminishes the magnetic anisotropy, which results in a change to a Néel relaxation that dominates the process when the nanoparticles are dispersed in a high-viscosity medium. We demonstrate that tuning the Zn contents at the shell of these exchange-coupled core/shell nanoparticles provides a way to control the magnetic anisotropy without loss of saturation magnetization. This ability is an essential prerequisite for most biomedical applications, where high viscosities and capturing mechanisms are present.
Collapse
Affiliation(s)
- Fernando Fabris
- Instituto de Nanociencia y Nanotecnología, CNEA, CONICET, Centro Atómico Bariloche, Av. Bustillo 9500 (8400) S. C. Bariloche, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Usov NA, Nesmeyanov MS, Gubanova EM, Epshtein NB. Heating ability of magnetic nanoparticles with cubic and combined anisotropy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:305-314. [PMID: 30800569 PMCID: PMC6369992 DOI: 10.3762/bjnano.10.29] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 01/01/2019] [Indexed: 05/09/2023]
Abstract
The low frequency hysteresis loops and specific absorption rate (SAR) of assemblies of magnetite nanoparticles with cubic anisotropy are calculated in the diameter range of D = 20-60 nm taking into account both thermal fluctuations of the particle magnetic moments and strong magneto-dipole interaction in assemblies of fractal-like clusters of nanoparticles. Similar calculations are also performed for assemblies of slightly elongated magnetite nanoparticles having combined magnetic anisotropy. A substantial dependence of the SAR on the nanoparticle diameter is obtained for all cases investigated. Due to the influence of the magneto-dipole interaction, the SAR of fractal clusters of nanoparticles decreases considerably in comparison with that for weakly interacting nanoparticles. However, the ability of magnetic nanoparticle assemblies to generate heat can be improved if the nanoparticles are covered by nonmagnetic shells of appreciable thickness.
Collapse
Affiliation(s)
- Nikolai A Usov
- National University of Science and Technology «MISIS», 119049, Moscow, Russia
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108480, Troitsk, Moscow, Russia
- National Research Nuclear University “MEPhI”, 115409, Moscow, Russia
| | - Mikhail S Nesmeyanov
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108480, Troitsk, Moscow, Russia
| | | | | |
Collapse
|
25
|
Lerra L, Farfalla A, Sanz B, Cirillo G, Vittorio O, Voli F, Le Grand M, Curcio M, Nicoletta FP, Dubrovska A, Hampel S, Iemma F, Goya GF. Graphene Oxide Functional Nanohybrids with Magnetic Nanoparticles for Improved Vectorization of Doxorubicin to Neuroblastoma Cells. Pharmaceutics 2018; 11:E3. [PMID: 30583524 PMCID: PMC6359315 DOI: 10.3390/pharmaceutics11010003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/18/2023] Open
Abstract
With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin⁻human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44⁻0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.
Collapse
Affiliation(s)
- Luigi Lerra
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
| | - Annafranca Farfalla
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Beatriz Sanz
- nB nanoSacale Biomagnetics SL, 50012 Zaragoza, Spain.
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia.
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia.
| | - Florida Voli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
| | - Marion Le Grand
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia.
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia.
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site Dresden, 01307 Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-Oncoray, 01307 Dresden, Germany.
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany.
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Gerardo F Goya
- Institute of Nanoscience of Aragon (INA), Department of Condensed Matter Physics, University of Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
26
|
Lak A, Cassani M, Mai BT, Winckelmans N, Cabrera D, Sadrollahi E, Marras S, Remmer H, Fiorito S, Cremades-Jimeno L, Litterst FJ, Ludwig F, Manna L, Teran FJ, Bals S, Pellegrino T. Fe 2+ Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment. NANO LETTERS 2018; 18:6856-6866. [PMID: 30336062 DOI: 10.1021/acs.nanolett.8b02722] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Herein, by studying a stepwise phase transformation of 23 nm FeO-Fe3O4 core-shell nanocubes into Fe3O4, we identify a composition at which the magnetic heating performance of the nanocubes is not affected by the medium viscosity and aggregation. Structural and magnetic characterizations reveal the transformation of the FeO-Fe3O4 nanocubes from having stoichiometric phase compositions into Fe2+-deficient Fe3O4 phases. The resultant nanocubes contain tiny compressed and randomly distributed FeO subdomains as well as structural defects. This phase transformation causes a 10-fold increase in the magnetic losses of the nanocubes, which remain exceptionally insensitive to the medium viscosity as well as aggregation unlike similarly sized single-phase magnetite nanocubes. We observe that the dominant relaxation mechanism switches from Néel in fresh core-shell nanocubes to Brownian in partially oxidized nanocubes and once again to Néel in completely treated nanocubes. The Fe2+ deficiencies and structural defects appear to reduce the magnetic energy barrier and anisotropy field, thereby driving the overall relaxation into Néel process. The magnetic losses of these nanoparticles remain unchanged through a progressive internalization/association to ovarian cancer cells. Moreover, the particles induce a significant cell death after being exposed to hyperthermia treatment. Here, we present the largest heating performance that has been reported to date for 23 nm iron oxide nanoparticles under intracellular conditions. Our findings clearly demonstrate the positive impacts of the Fe2+ deficiencies and structural defects in the Fe3O4 structure on the heating performance into intracellular environment.
Collapse
Affiliation(s)
- Aidin Lak
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | - Marco Cassani
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | - Binh T Mai
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | - Naomi Winckelmans
- EMAT , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium
| | - David Cabrera
- iMdea Nanociencia , Campus Universitario de Cantoblanco , 28049 Madrid , Spain
| | - Elaheh Sadrollahi
- Institute for Condensed Matter Physics , Technische Universität Braunschweig , Mendelssohn-Str. 3 , 38106 Braunschweig , Germany
| | - Sergio Marras
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | - Hilke Remmer
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering , Technische Universität Braunschweig , Hans-Sommer-Str. 66 , 38106 Braunschweig , Germany
| | - Sergio Fiorito
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | | | - Fred Jochen Litterst
- Institute for Condensed Matter Physics , Technische Universität Braunschweig , Mendelssohn-Str. 3 , 38106 Braunschweig , Germany
| | - Frank Ludwig
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering , Technische Universität Braunschweig , Hans-Sommer-Str. 66 , 38106 Braunschweig , Germany
| | - Liberato Manna
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| | - Francisco J Teran
- iMdea Nanociencia , Campus Universitario de Cantoblanco , 28049 Madrid , Spain
- Nanobiotecnología (iMdea Nanociencia) , Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 Madrid , Spain
| | - Sara Bals
- EMAT , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium
| | - Teresa Pellegrino
- Istituto Italiano di Tecnologia , via Morego 30 , 16163 Genoa , Italy
| |
Collapse
|
27
|
Urbano-Bojorge AL, Casanova-Carvajal O, Félix-González N, Fernández L, Madurga R, Sánchez-Cabezas S, Aznar E, Ramos M, Serrano-Olmedo JJ. Influence of medium viscosity and intracellular environment on the magnetization of superparamagnetic nanoparticles in silk fibroin solutions and 3T3 mouse fibroblast cell cultures. NANOTECHNOLOGY 2018; 29:385705. [PMID: 29947336 DOI: 10.1088/1361-6528/aacf4a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biomedical applications based on the magnetic properties of superparamagnetic iron oxide nanoparticles (SPIONs) may be altered by the mechanical attachment or cellular uptake of these nanoparticles. When nanoparticles interact with living cells, they are captured and internalized into intracellular compartments. Consequently, the magnetic behavior of the nanoparticles is modified. In this paper, we investigated the change in the magnetic response of 14 nm magnetic nanoparticles (Fe3O4) in different solutions, both as a stable liquid suspension (one of them mimicking the cellular cytoplasm) and when associated with cells. The field-dependent magnetization curves from inert fluids and cell cultures were determined by using an alternating gradient magnetometer, MicroMagTM 2900. The equipment was adapted to measure liquid samples because it was originally designed only for solids. In order to achieve this goal, custom sample holders were manufactured. Likewise, the nuclear magnetic relaxation dispersion profiles for the inert fluid were also measured by fast field cycling nuclear magnetic relaxation relaxometry. The results show that SPION magnetization in inert fluids was affected by the carrier liquid viscosity and the concentration. In cell cultures, the mechanical attachment or confinement of the SPIONs inside the cells accounted for the change in the dynamic magnetic behavior of the nanoparticles. Nevertheless, the magnetization value in the cell cultures was slightly lower than that of the fluid simulating the viscosity of cytoplasm, suggesting that magnetization loss was not only due to medium viscosity but also to a reduction in the mechanical degrees of freedom of SPIONs rotation and translation inside cells. The findings presented here provide information on the loss of magnetic properties when nanoparticles are suspended in viscous fluids or internalized in cells. This information could be exploited to improve biomedical applications based on magnetic properties such as magnetic hyperthermia, contrast agents and drug delivery.
Collapse
Affiliation(s)
- Ana Lorena Urbano-Bojorge
- Centro de Tecnología Biomédica (CTB), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain. Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cabrera D, Coene A, Leliaert J, Artés-Ibáñez EJ, Dupré L, Telling ND, Teran FJ. Dynamical Magnetic Response of Iron Oxide Nanoparticles Inside Live Cells. ACS NANO 2018; 12:2741-2752. [PMID: 29508990 DOI: 10.1021/acsnano.7b08995] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Magnetic nanoparticles exposed to alternating magnetic fields have shown a great potential acting as magnetic hyperthermia mediators for cancer treatment. However, a dramatic and unexplained reduction of the nanoparticle magnetic heating efficiency has been evidenced when nanoparticles are located inside cells or tissues. Recent studies suggest the enhancement of nanoparticle clustering and/or immobilization after interaction with cells as possible causes, although a quantitative description of the influence of biological matrices on the magnetic response of magnetic nanoparticles under AC magnetic fields is still lacking. Here, we studied the effect of cell internalization on the dynamical magnetic response of iron oxide nanoparticles (IONPs). AC magnetometry and magnetic susceptibility measurements of two magnetic core sizes (11 and 21 nm) underscored differences in the dynamical magnetic response following cell uptake with effects more pronounced for larger sizes. Two methodologies have been employed for experimentally determining the magnetic heat losses of magnetic nanoparticles inside live cells without risking their viability as well as the suitability of magnetic nanostructures for in vitro hyperthermia studies. Our experimental results-supported by theoretical calculations-reveal that the enhancement of intracellular IONP clustering mainly drives the cell internalization effects rather than intracellular IONP immobilization. Understanding the effects related to the nanoparticle transit into live cells on their magnetic response will allow the design of nanostructures containing magnetic nanoparticles whose dynamical magnetic response will remain invariable in any biological environments, allowing sustained and predictable in vivo heating efficiency.
Collapse
Affiliation(s)
- David Cabrera
- iMdea Nanociencia , Campus Universitario de Cantoblanco, C\Faraday, 9 , 28049 Madrid , Spain
- Institute for Science and Technology in Medicine , Keele University , Guy Hilton Research Centre, Thornburrow Drive , Hartshill, Stoke-on-Trent ST4 7QB , United Kingdom
| | - Annelies Coene
- Department of Electrical Energy, Metals, Mechanical Constructions and Systems , Ghent University , Technologiepark 913 , 9052 Zwijnaarde , Belgium
| | - Jonathan Leliaert
- Department of Solid State Sciences , Ghent University , Krijgslaan 281/S1 , 9000 Ghent , Belgium
| | - Emilio J Artés-Ibáñez
- iMdea Nanociencia , Campus Universitario de Cantoblanco, C\Faraday, 9 , 28049 Madrid , Spain
| | - Luc Dupré
- Department of Electrical Energy, Metals, Mechanical Constructions and Systems , Ghent University , Technologiepark 913 , 9052 Zwijnaarde , Belgium
| | - Neil D Telling
- Institute for Science and Technology in Medicine , Keele University , Guy Hilton Research Centre, Thornburrow Drive , Hartshill, Stoke-on-Trent ST4 7QB , United Kingdom
| | - Francisco J Teran
- iMdea Nanociencia , Campus Universitario de Cantoblanco, C\Faraday, 9 , 28049 Madrid , Spain
- Nanobiotecnología (iMdea-Nanociencia) , Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 Madrid , Spain
| |
Collapse
|
29
|
Usov NA, Nesmeyanov MS, Tarasov VP. Magnetic Vortices as Efficient Nano Heaters in Magnetic Nanoparticle Hyperthermia. Sci Rep 2018; 8:1224. [PMID: 29352175 PMCID: PMC5775370 DOI: 10.1038/s41598-017-18162-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022] Open
Abstract
Magnetic vortices existing in soft magnetic nanoparticles with sizes larger than the single-domain diameter can be efficient nano-heaters in biomedical applications. Using micromagnetic numerical simulation we prove that in the optimal range of particle diameters the magnetization reversal of the vortices in spherical iron and magnetite nanoparticles is possible for moderate amplitudes of external alternating magnetic field, H0 < 100 Oe. In contrast to the case of superparamagnetic nanoparticles, for the vortex configuration the hysteresis loop area increases as a function of frequency. Therefore, high values of the specific absorption rate, on the order of 1000 W/g, can be obtained at frequencies f = 0.5-1.0 MHz. Because the diameter D of a non single-domain particle is several times larger than the diameter d of a superparamagnetic particle, the volume of heat generation for the vortex turns out to be (D/d)3 times larger. This shows the advantage of vortex configurations for heat generation in alternating magnetic field in biomedical applications.
Collapse
Affiliation(s)
- N A Usov
- National University of Science and Technology «MISiS», 119049, Moscow, Russia.
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 142190, Troitsk, Moscow, Russia.
- National Research Nuclear University "MEPhI", 115409, Moscow, Russia.
| | - M S Nesmeyanov
- National Research Nuclear University "MEPhI", 115409, Moscow, Russia
| | - V P Tarasov
- National University of Science and Technology «MISiS», 119049, Moscow, Russia
| |
Collapse
|
30
|
Criado M, Sanz B, Goya GF, Mijangos C, Hernández R. Magnetically responsive biopolymeric multilayer films for local hyperthermia. J Mater Chem B 2017; 5:8570-8578. [PMID: 32264525 DOI: 10.1039/c7tb02361h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We present a proof of concept on the use of thermomagnetic polymer films (TMFs) as heating devices for magnetic hyperthermia in vitro. The TMFs were prepared through spray assisted layer-by-layer assembly of polysaccharides and magnetic iron oxide nanoparticles, yielding an alternate magnetic-polymer multilayer structure. By applying a remote alternating magnetic field (AMF) (f = 180 kHz; H = 35 kA m-1) we increased the temperature of the TMFs in a thickness-dependent way, up to 12 °C within the first 5 minutes. To test our films as heating substrates for magnetic hyperthermia, a series of in vitro experiments were designed using human neuroblastoma SH-SY5Y cells, known by their tolerance to thermal stress. The application of two AMF cycles (30 minutes each) showed that the exogenous magnetic hyperthermia resulted in an 85% reduction of cell viability. This capacity of the TMFs of hyperthermia-mediated cell killing using a remote AMF opens new options for the treatment of small and superficial tumor lesions by means of remotely-triggered magnetic hyperthermia.
Collapse
Affiliation(s)
- M Criado
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), c/Juan de la Cierva, 3, 28006 Madrid, Spain.
| | | | | | | | | |
Collapse
|
31
|
Cell damage produced by magnetic fluid hyperthermia on microglial BV2 cells. Sci Rep 2017; 7:8627. [PMID: 28819156 PMCID: PMC5561037 DOI: 10.1038/s41598-017-09059-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023] Open
Abstract
We present evidence on the effects of exogenous heating by water bath (WB) and magnetic hyperthermia (MHT) on a glial micro-tumor phantom. To this, magnetic nanoparticles (MNPs) of 30-40 nm were designed to obtain particle sizes for maximum heating efficiency. The specific power absorption (SPA) values (f = 560 kHz, H = 23.9 kA/m) for as prepared colloids (533-605 W/g) dropped to 98-279 W/g in culture medium. The analysis of the intracellular MNPs distribution showed vesicle-trapped MNPs agglomerates spread along the cytoplasm, as well as large (~0.5-0.9 μm) clusters attached to the cell membrane. Immediately after WB and MHT (T = 46 °C for 30 min) the cell viability was ≈70% and, after 4.5 h, decreased to 20-25%, demonstrating that metabolic processes are involved in cell killing. The analysis of the cell structures after MHT revealed a significant damage of the cell membrane that is correlated to the location of MNPs clusters, while local cell damage were less noticeable after WB without MNPs. In spite of the similar thermal effects of WB and MHT on the cell viability, our results suggest that there is an additional mechanism of cell damage related to the presence of MNPs at the intracellular space.
Collapse
|
32
|
Usov NA, Serebryakova ON, Tarasov VP. Interaction Effects in Assembly of Magnetic Nanoparticles. NANOSCALE RESEARCH LETTERS 2017; 12:489. [PMID: 28808986 PMCID: PMC5555966 DOI: 10.1186/s11671-017-2263-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/02/2017] [Indexed: 05/24/2023]
Abstract
A specific absorption rate of a dilute assembly of various random clusters of iron oxide nanoparticles in alternating magnetic field has been calculated using Landau-Lifshitz stochastic equation. This approach simultaneously takes into account both the presence of thermal fluctuations of the nanoparticle magnetic moments and magneto-dipole interaction between the nanoparticles of the clusters. It is shown that for usual 3D clusters, the intensity of the magneto-dipole interaction is determined mainly by the cluster packing density η = N p V/V cl , where N p is the average number of the particles in the cluster, V is the nanoparticle volume, and V cl is the cluster volume. The area of the low frequency hysteresis loop and the assembly-specific absorption rate have been found to be considerably reduced when the packing density of the clusters increases in the range of 0.005 ≤ η < 0.4. The dependence of the specific absorption rate on the mean nanoparticle diameter is retained with an increase of η, but becomes less pronounced. For fractal clusters of nanoparticles, which arise in biological media, in addition to a considerable reduction of the absorption rate, the absorption maximum is shifted to smaller particle diameters. It is found also that the specific absorption rate of fractal clusters increases appreciably with an increase of the thickness of nonmagnetic shells at the nanoparticle surfaces.
Collapse
Affiliation(s)
- N. A. Usov
- National University of Science and Technology “MISIS”, 119049 Moscow, Russia
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108480 Troitsk Moscow, Russia
| | - O. N. Serebryakova
- National University of Science and Technology “MISIS”, 119049 Moscow, Russia
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108480 Troitsk Moscow, Russia
| | - V. P. Tarasov
- National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| |
Collapse
|
33
|
Hemery G, Keyes AC, Garaio E, Rodrigo I, Garcia JA, Plazaola F, Garanger E, Sandre O. Tuning Sizes, Morphologies, and Magnetic Properties of Monocore Versus Multicore Iron Oxide Nanoparticles through the Controlled Addition of Water in the Polyol Synthesis. Inorg Chem 2017; 56:8232-8243. [DOI: 10.1021/acs.inorgchem.7b00956] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gauvin Hemery
- LCPO, CNRS UMR 5629/Univ. Bordeaux/Bordeaux-INP, ENSCBP 16 avenue Pey Berland, 33607 Pessac, France
| | - Anthony C. Keyes
- LCPO, CNRS UMR 5629/Univ. Bordeaux/Bordeaux-INP, ENSCBP 16 avenue Pey Berland, 33607 Pessac, France
| | - Eneko Garaio
- Elektrizitatea
eta Elektronika Saila, UPV/EHU, 48940 Leioa, Spain
| | - Irati Rodrigo
- Elektrizitatea
eta Elektronika Saila, UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Parque Tecnológico de Bizkaia, Ed. 50, 48160 Derio, Spain
| | - Jose Angel Garcia
- BCMaterials, Parque Tecnológico de Bizkaia, Ed. 50, 48160 Derio, Spain
- Fisika Aplikatua II Saila, UPV/EHU, 48940 Leioa, Spain
| | | | - Elisabeth Garanger
- LCPO, CNRS UMR 5629/Univ. Bordeaux/Bordeaux-INP, ENSCBP 16 avenue Pey Berland, 33607 Pessac, France
| | - Olivier Sandre
- LCPO, CNRS UMR 5629/Univ. Bordeaux/Bordeaux-INP, ENSCBP 16 avenue Pey Berland, 33607 Pessac, France
| |
Collapse
|
34
|
Nanoscale Brownian heating by interacting magnetic dipolar particles. Sci Rep 2017; 7:1656. [PMID: 28490761 PMCID: PMC5431910 DOI: 10.1038/s41598-017-01760-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/12/2017] [Indexed: 11/13/2022] Open
Abstract
Clusters of magnetic nanoparticles have received considerable interest in various research fields. Their capacity to generate heat under an alternating magnetic field has recently opened the way to applications such as cancer therapy by hyperthermia. This work is an attempt to investigate the collective effects of interacting dipoles embedded in magnetic nano-particles (MNP) to predict their thermal dissipation with a liquid. We first present a general approach, based on the tracking of the microscopic dipole fluctuations, to access to the dissipation spectra of any spatial distribution of MNPs. Without any other assumption that the linear response regime, it is shown that increasing the particle concentration (dipolar interactions) dramatically diminishes and blueshifts the dissipation processes. This effect originates in a predominance of the coupling energy over the Brownian torques, which create a long-range ordering that saturates the response of the system to an external field. Consequently, the particle density is of fundamental importance to the control of the absorption of electromagnetic energy and its subsequent dissipation in the form of heat.
Collapse
|