1
|
Lin CC, Hsu CL, Yao CY, Wang YH, Yuan CT, Kuo YY, Lee JY, Shih PT, Kao CJ, Chuang PH, Hsu YC, Hou HA, Chou WC, Tien HF. HOPX as a tumour-suppressive protein in T-cell acute lymphoblastic leukaemia. Br J Haematol 2025; 206:505-516. [PMID: 39737712 DOI: 10.1111/bjh.19965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025]
Abstract
The homeodomain protein homeobox (HOPX), a multifaceted regulator of cellular functions and developmental processes, is predominantly expressed in stem cells across diverse tissues; it has also emerged as a tumour suppressor in various solid cancers. However, its role in haematological malignancies still remains undefined. This study aimed to elucidate its significance in T-cell acute lymphoblastic leukaemia (T-ALL). We firstly uncovered a novel link between reduced HOPX expression, its promoter hypermethylation and increased tumour burden in patients with T-ALL, suggesting its tumour-suppressive role. Next, we induced T-ALL by transducing intracellular NOTCH1 (ICN1) into mice with either conditional knock-in at the Rosa26 locus or knockout of Hopx. We found that T-ALL development was markedly accelerated and impeded in backgrounds with low and high Hopx expression respectively. Further analysis revealed Hopx's roles in modulating the Wnt-β-catenin pathway, a pivotal regulator of the downstream Myc signalling involved in T-ALL transformation and progression.
Collapse
Affiliation(s)
- Chien-Chin Lin
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Yuan Yao
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Hung Wang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Tsu Yuan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Yuan-Yeh Kuo
- Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Jhih-Yi Lee
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pin-Tsen Shih
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chein-Jun Kao
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Han Chuang
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yueh-Chwen Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chien Chou
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei, Taiwan
| |
Collapse
|
2
|
Muntiu A, Moresi F, Vincenzoni F, Rossetti DV, Iavarone F, Messana I, Castagnola M, La Rocca G, Mazzucchi E, Olivi A, Urbani A, Sabatino G, Desiderio C. Proteomic Profiling of Pre- and Post-Surgery Saliva of Glioblastoma Patients: A Pilot Investigation. Int J Mol Sci 2024; 25:12984. [PMID: 39684695 DOI: 10.3390/ijms252312984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor characterized by a high infiltration capability and recurrence rate. Early diagnosis is crucial to improve the prognosis and to personalize the therapeutic approach. This research explored, by LC-MS proteomic analysis after proteolytic digestion, the molecular profile of pre- and post-operative saliva pools from newly diagnosed (ND) GBM patients by comparing different times of collection and tumor recurrence (R). CYCS, PRDX2, RAB1C, PSMB1, KLK6, TMOD3, PAI2, PLBD1, CAST, and AHNAK, all involved in processes of tumor invasiveness and chemo- and radio-resistance, were found to depict the pre-surgery saliva of both ND and R GBM. PADI4 and CRYAB proteins, identified among the most abundant proteins exclusive of ND GBM pre-surgery saliva and classified as proteins elevated in glioma, could have a potential role as disease biomarkers. Selected panels of S100 proteins were found to potentially differentiate ND from R GBM patient saliva. TPD52 and IGKV3, exclusively identified in R GBM saliva, could be additionally distinctive of tumor relapse. Among the proteins identified in all pools, label-free relative quantitation showed statistically significant different levels of TXN, SERPINB5, FABP5, and S100A11 proteins between the pools. All of these proteins showed higher levels in both ND_ and R_T0 pre-surgery saliva with respect to CTRL and different modulation after surgery or chemo-radiotherapy combined treatment, suggesting a role as a potential panel of GBM predictive and prognostic biomarkers. These results highlight and confirm that saliva, a biofluid featured for an easily accessible and low invasiveness collection, is a promising source of GBM biomarkers, showing new potential opportunities for the development of targeted therapies and diagnostic tools.
Collapse
Affiliation(s)
- Alexandra Muntiu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Fabiana Moresi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy
| | - Federica Vincenzoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Diana Valeria Rossetti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168 Rome, Italy
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168 Rome, Italy
| | - Massimo Castagnola
- Centro Europeo di Ricerca sul Cervello-IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Giuseppe La Rocca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Edoardo Mazzucchi
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy
| | - Alessandro Olivi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Andrea Urbani
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Giovanni Sabatino
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, 00168 Rome, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168 Rome, Italy
| |
Collapse
|
3
|
Zhou Y, Li W. Methyltransferase-like 3-mediated m6A modification of miR-1908-5p contributes to nasopharyngeal carcinoma progression by targeting homeodomain-only protein homeobox. ENVIRONMENTAL TOXICOLOGY 2024; 39:1631-1640. [PMID: 38018881 DOI: 10.1002/tox.24032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND N6-methyladenosine (m6A) modification interacting microRNAs (miRNAs) have been confirmed to participate in nasopharyngeal carcinoma (NPC) progression. This research investigated miR-1908-5p's function and regulatory mechanism in the tumorigenesis of NPC via m6A modification and targeting a key gene. METHODS The levels of miR-1908-5p, homeodomain-only protein homeobox (HOPX), and methyltransferase-like 3 (METTL3) expressions were detected via RT-qPCR. The correlation between miR-1908-5p and the HOPX/METTL3 axis, as well as their regulatory mechanism, was investigated by dual luciferase reporter, western blotting, and MeRIP assays. Moreover, the bio-functions of miR-1908-5p, HOPX, and METTL3 in NPC were explored through CCK8, transwell, caspase-3 activity, and xenograft tumor assays. RESULTS RT-qPCR results indicated a miR-1908-5p upregulation in NPC. Knocking down miR-1908-5p diminished the NPC cell viability and migration in vitro. In vivo, downregulating miR-1908-5p repressed NPC cell tumor growth. Moreover, HOPX was specifically targeted by miR-1908-5p, and HOPX downregulation led to reversal of the anti-tumor impact of the miR-1908-5p inhibitor against NPC cell malignancy. Also, METTL3 could mediate the m6A modification of miR-1908-5p to regulate its influence on NPC cells. CONCLUSION This study demonstrated that the METTL3-mediated m6A modification of miR-1908-5p enhanced the tumorigenesis of NPC by targeting HOPX. These findings propose new insights for NPC diagnosis and therapy.
Collapse
Affiliation(s)
- Yuanhong Zhou
- Department of Otolaryngology Head and Neck Surgery, Wuhan Asia General Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Otolaryngology Head and Neck Surgery, Wuhan Asia General Hospital, Wuhan, Hubei, China
| |
Collapse
|
4
|
Yang Q, Patrick M, Lu J, Chen J, Zhang Y, Hemani H, Lehrmann E, De S, Weng NP. Homeodomain-only protein suppresses proliferation and contributes to differentiation- and age-related reduced CD8 + T cell expansion. Front Immunol 2024; 15:1360229. [PMID: 38410516 PMCID: PMC10895957 DOI: 10.3389/fimmu.2024.1360229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
T cell activation is a tightly controlled process involving both positive and negative regulators. The precise mechanisms governing the negative regulators in T cell proliferation remain incompletely understood. Here, we report that homeodomain-only protein (HOPX), a homeodomain-containing protein, and its most abundant isoform HOPXb, negatively regulate activation-induced proliferation of human T cells. We found that HOPX expression progressively increased from naïve (TN) to central memory (TCM) to effector memory (TEM) cells, with a notable upregulation following in vitro stimulation. Overexpression of HOPXb leads to a reduction in TN cell proliferation while HOPX knockdown promotes proliferation of TN and TEM cells. Furthermore, we demonstrated that HOPX binds to promoters and exerts repressive effects on the expression of MYC and NR4A1, two positive regulators known to promote T cell proliferation. Importantly, our findings suggest aging is associated with increased HOPX expression, and that knockdown of HOPX enhances the proliferation of CD8+ T cells in older adults. Our findings provide compelling evidence that HOPX serves as a negative regulator of T cell activation and plays a pivotal role in T cell differentiation and in age-related-reduction in T cell proliferation.
Collapse
Affiliation(s)
- Qian Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Michael Patrick
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jian Lu
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Joseph Chen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Humza Hemani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Nan-ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
5
|
Shafi O, Siddiqui G, Jaffry HA. The benign nature and rare occurrence of cardiac myxoma as a possible consequence of the limited cardiac proliferative/ regenerative potential: a systematic review. BMC Cancer 2023; 23:1245. [PMID: 38110859 PMCID: PMC10726542 DOI: 10.1186/s12885-023-11723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| | - Hassam A Jaffry
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
6
|
Qu M, Jin Z, Xu Y, Sun W, Luo Y, Zhang N, Huang Z, Han L, Gong Y, Xie C. hsa-miR-1301-3p Promotes the Proliferation and Migration of Nonsmall Cell Lung Cancer Cells and Reduces Radiosensitivity via Targeting Homeodomain-Only Protein Homeobox. Genet Test Mol Biomarkers 2023; 27:393-405. [PMID: 38156905 DOI: 10.1089/gtmb.2022.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Background: There is increasing evidence that abnormal expression of microRNAs is involved in the occurrence and progression of tumors. In previous experiments, we found that the content of hsa-miR-1301-3p in tumor tissues of patients with nonsmall cell lung cancer (NSCLC) showed an obvious upward trend compared with that in normal tissues. We performed a detailed study on the impact and underlying mechanism of hsa-miR-1301-3p in NSCLC cells. Methods: The impact of hsa-miR-1301-3p on NSCLC cell proliferation, apoptosis, migration, and invasion was examined using colony formation, flow cytometry, modified Boyden chamber, and wound healing assays. Different doses of radiation were applied to NSCLC cells to investigate their sensitivity to radiotherapy. The potential target gene of hsa-miR-1301-3p was determined by dual-luciferase reporter assay and immunoblotting. Result: hsa-miR-1301-3p was upregulated in NSCLC tissues and cells. hsa-miR-1301-3p effectively promoted the rapid proliferation, migration, and invasion of NSCLC cells, while inhibiting apoptosis. It also induced radioresistance in NSCLC cells. hsa-miR-1301-3p targeted the homeodomain-only protein homeobox (HOPX) mRNA 3' untranslated region and inhibited its transcription in NSCLC cells. Exogenous HOPX overexpression antagonized the mechanism by which hsa-miR-1301-3p regulates NSCLC cell proliferation, metastasis, and apoptosis. Conclusions: hsa-miR-1301-3p plays an oncogenic role in the occurrence and development of NSCLC. By targeting HOPX, hsa-miR-1301-3p can not only promote the proliferation and metastasis of NSCLC cells, but also alleviate apoptosis and reduce radiosensitivity.
Collapse
Affiliation(s)
- Mei Qu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Zhiliang Jin
- Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Yanhua Xu
- Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nannan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
He S, Ding Y, Ji Z, Yuan B, Chen J, Ren W. HOPX is a tumor-suppressive biomarker that corresponds to T cell infiltration in skin cutaneous melanoma. Cancer Cell Int 2023; 23:122. [PMID: 37344870 DOI: 10.1186/s12935-023-02962-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is the most threatening type of skin cancer. Approximately 55,000 people lose their lives every year due to SKCM, illustrating that it seriously threatens human life and health. Homeodomain-only protein homeobox (HOPX) is the smallest member of the homeodomain family and is widely expressed in a variety of tissues. HOPX is involved in regulating the homeostasis of hematopoietic stem cells and is closely related to the development of tumors such as breast cancer, nasopharyngeal carcinoma, and head and neck squamous cell carcinoma. However, its function in SKCM is unclear, and further studies are needed. METHODS We used the R language to construct ROC (Receiver-Operating Characteristic) curves, KM (Kaplan‒Meier) curves and nomograms based on databases such as the TCGA and GEO to analyze the diagnostic and prognostic value of HOPX in SKCM patients. Enrichment analysis, immune scoring, GSVA (Gene Set Variation Analysis), and single-cell sequencing were used to verify the association between HOPX expression and immune infiltration. In vitro experiments were performed using A375 cells for phenotypic validation. Transcriptome sequencing was performed to further analyze HOPX gene-related genes and their signaling pathways. RESULTS Compared to normal cells, SKCM cells had low HOPX expression (p < 0.001). Patients with high HOPX expression had a better prognosis (p < 0.01), and the marker had good diagnostic efficacy (AUC = 0.744). GO/KEGG (Gene Ontology/ Kyoto Encyclopedia of Genes and Genomes) analysis, GSVA and single-cell sequencing analysis showed that HOPX expression is associated with immune processes and high enrichment of T cells and could serve as an immune checkpoint in SKCM. Furthermore, cellular assays verified that HOPX inhibits the proliferation, migration and invasion of A375 cells and promotes apoptosis and S-phase arrest. Interestingly, tumor drug sensitivity analysis revealed that HOPX also plays an important role in reducing clinical drug resistance. CONCLUSION These findings suggest that HOPX is a blocker of SKCM progression that inhibits the proliferation of SKCM cells and promotes apoptosis. Furthermore, it may be a new diagnostic and prognostic indicator and a novel target for immunotherapy in SKCM patients.
Collapse
Affiliation(s)
- Song He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China
- Department of Basic Medicine, Changzhi Medical College, Changzhi, 046000, Shanxi, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China
| | - Jian Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China.
| | - Wenzhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China.
| |
Collapse
|
8
|
Franklin OD, Battle MA. A Balancing Act: GRHL3 Limits WNT Signaling to Promote Tissue Homeostasis in the Esophageal Epithelium. Cell Mol Gastroenterol Hepatol 2023; 15:1247-1248. [PMID: 36805430 PMCID: PMC10140280 DOI: 10.1016/j.jcmgh.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/23/2023]
Affiliation(s)
- Olivia D Franklin
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
9
|
Georgy SR, Rudiatmoko DR, Auden A, Partridge D, Butt T, Srivastava S, Wong N, Swaroop D, Carpinelli MR, Bogeski M, Jane SM. Identification of a Novel GRHL3/HOPX/Wnt/β-Catenin Proto-oncogenic Axis in Squamous Cell Carcinoma of the Esophagus. Cell Mol Gastroenterol Hepatol 2022; 15:1051-1069. [PMID: 36442813 PMCID: PMC10036738 DOI: 10.1016/j.jcmgh.2022.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND & AIMS Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy with a poor long-term prognosis. The molecular mechanisms underlying the initiation and progression of this tumor are largely unknown. The transcription factor GRHL3 functions as a potent tumor suppressor in SCC of skin, head, and neck. This study aims to determine whether GRHL3 also plays a role in the homeostasis of the esophageal epithelium and in the development of ESCC. METHODS The effects of Grhl3 deletion on squamous epithelial homeostasis in embryos and adult mice were examined using immunohistochemistry, transmission electron microscopy, and real-time polymerase chain reaction. The conditionally deleted mice were subsequently used to determine susceptibility to ESCC. Whole-transcriptome sequencing (RNA-seq) was performed on ESCC in wild-type and Grhl3 deleted animals. To decipher the signaling pathways, real-time polymerase chain reaction, immunohistochemistry, analysis of chromatin immunoprecipitation sequencing, chromatin immunoprecipitation-polymerase chain reaction, and RNA seq datasets were used. Primary human samples were used to validate the findings in the mouse model. RESULTS Loss of Grhl3 perturbs the proliferation-differentiation balance in the esophageal epithelium, thereby increasing the susceptibility to esophageal carcinogenesis in adult mice. Grhl3 imparts its tumor suppressor function by regulating the expression of HOPX. We have identified the Wnt/β-catenin pathway as the downstream effectors of GRHL3 and HOPX through our integrated approach using patient-derived ESCC samples and mouse models. CONCLUSIONS GRHL3 conveys its tumor suppressor function in ESCC through regulating its target gene HOPX, which limits Wnt/β-catenin signaling. Targeted therapies to inhibit this pathway could be a potential treatment strategy for ESCC patients with reduced GRHL3 expression.
Collapse
Affiliation(s)
- Smitha Rose Georgy
- Department of Anatomic Pathology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Australia.
| | | | - Alana Auden
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Darren Partridge
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Tariq Butt
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Seema Srivastava
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Nick Wong
- Monash Bioinformatics Platform, Central Clinical School, Melbourne, Australia
| | - Dijina Swaroop
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Marina Rose Carpinelli
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Mirjana Bogeski
- Department of Anatomic Pathology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Stephen M Jane
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
10
|
Bourque J, Kousnetsov R, Hawiger D. Roles of Hopx in the differentiation and functions of immune cells. Eur J Cell Biol 2022; 101:151242. [DOI: 10.1016/j.ejcb.2022.151242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
|
11
|
HOPX: A Unique Homeodomain Protein in Development and Tumor Suppression. Cancers (Basel) 2022; 14:cancers14112764. [PMID: 35681746 PMCID: PMC9179269 DOI: 10.3390/cancers14112764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Homeobox (HOX) genes encode homeodomain proteins that regulate a wide range of molecular pathways. The homeodomain is highly conserved and binds to DNA. One exception is homeodomain-only protein (HOPX) that lacks DNA-binding capacity. HOPX plays a crucial role in development and its functional impairment is associated with a variety of diseases, including cancer. Loss of HOPX function occurs in a wide range of cancer types, where it functions as a tumor suppressor gene. Understanding the molecular mechanisms by which HOPX regulates carcinogenesis will likely lead to the development of new therapeutic approaches. Abstract Homeobox genes are master regulators of morphogenesis and differentiation by acting at the top of genetic hierarchies and their deregulation is associated with a variety of human diseases. They usually contain a highly conserved sequence that codes for the homeodomain of the protein, a specialized motif with three α helices and an N-terminal arm that aids in DNA binding. However, one homeodomain protein, HOPX, is unique among its family members in that it lacks the capacity to bind DNA and instead functions by interacting with transcriptional regulators. HOPX plays crucial roles in organogenesis and is expressed in both embryonic and adult stem cells. Loss of HOPX expression is common in cancer, where it functions primarily as a tumor suppressor gene. In this review, we describe the function of HOPX in development and discuss its role in carcinogenesis.
Collapse
|
12
|
Atef R, Zaky AA, Waly N, El Rouby D, Ezzeldin N. Effect of Diode Laser and Remineralizing Agents on Microstructure and Surface Microhardness of Therapeutic Gamma-Irradiated Primary Teeth Enamel. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Radiation caries is a serious complication to head and neck cancer (HNC) radiotherapy, for which the primary teeth are more susceptible to be affected. Preventive protocols are recommended to enhance dental structure resistance against the direct effects of radiotherapy.
AIM: The aim of the study is to evaluate the effect of diode laser and two types of remineralizing agents on the microhardness of the primary teeth enamel and examine microstructural alterations.
METHODS: Twenty primary molars were sectioned into two halves in a mesiodistal direction, to obtain 40 specimens, which were then randomly allocated into five groups. Group 1 (Control Negative) n = 5 was not subjected to any treatment or radiation. Group 2 (Control positive) n = 5 was gamma irradiated with a dose of 60 Gray. For Groups 3, 4, and 5, specimens were divided into two subgroups: A and B (n = 5/subgroup). Subgroups A were gamma irradiated, then exposed to different surface treatments: 3A:10% nano-hydroxyapatite (nHA) paste, 4A: 5% sodium fluoride varnish (FV), and 5A: diode laser 980 nm. Subgroups B were exposed to surface treatments (3B: 10% nHA, 4 B: 5% FV, and 5B: diode laser 980 nm), then gamma irradiated. Surface micromorphology and microhardness were examined using environmental scanning electron microscope (ESEM), and Vickers microhardness tester, respectively.
RESULTS: Group 2 (G) specimens possessed the lowest mean microhardness, while nHA-G (3B), G-Fl (4A), and L-G (5B) had significantly higher values. ESEM analysis showed an alteration in Group G and the obliteration of enamel micropores with remineralizing agents. The melting and fusion of enamel in laser subgroups were also observed.
CONCLUSIONS: The findings indicated that using FV, nHA, or diode laser increased microhardness and maintained the integrity of the enamel microstructure. Therefore, applying preventive strategies should be considered in HNC radiotherapy.
Collapse
|
13
|
Bourque J, Opejin A, Surnov A, Iberg CA, Gross C, Jain R, Epstein JA, Hawiger D. Landscape of Hopx expression in cells of the immune system. Heliyon 2021; 7:e08311. [PMID: 34805566 PMCID: PMC8590040 DOI: 10.1016/j.heliyon.2021.e08311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
Homeodomain only protein (Hopx) is a regulator of cell differentiation and function, and it has also emerged as a crucial marker of specific developmental and differentiation potentials. Hopx expression and functions have been identified in some stem cells, tumors, and in certain immune cells. However, expression of Hopx in immune cells remains insufficiently characterized. Here we report a comprehensive pattern of Hopx expression in multiple types of immune cells under steady state conditions. By utilizing single-cell RNA sequencing (scRNA-seq) and flow cytometric analysis, we characterize a constitutive expression of Hopx in specific subsets of CD4+ and CD8+ T cells and B cells, as well as natural killer (NK), NKT, and myeloid cells. In contrast, Hopx expression is not present in conventional dendritic cells and eosinophils. The utility of identifying expression of Hopx in immune cells may prove vital in delineating specific roles of Hopx under multiple immune conditions.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| | - Adeleye Opejin
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| | - Alexey Surnov
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| | - Courtney A Iberg
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| | - Cindy Gross
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| | - Rajan Jain
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jonathan A Epstein
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| |
Collapse
|
14
|
Stewart AS, Schaaf CR, Luff JA, Freund JM, Becker TC, Tufts SR, Robertson JB, Gonzalez LM. HOPX + injury-resistant intestinal stem cells drive epithelial recovery after severe intestinal ischemia. Am J Physiol Gastrointest Liver Physiol 2021; 321:G588-G602. [PMID: 34549599 PMCID: PMC8616590 DOI: 10.1152/ajpgi.00165.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/11/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
Intestinal ischemia is a life-threatening emergency with mortality rates of 50%-80% due to epithelial cell death and resultant barrier loss. Loss of the epithelial barrier occurs in conditions including intestinal volvulus and neonatal necrotizing enterocolitis. Survival depends on effective epithelial repair; crypt-based intestinal epithelial stem cells (ISCs) are the source of epithelial renewal in homeostasis and after injury. Two ISC populations have been described: 1) active ISC [aISC; highly proliferative; leucine-rich-repeat-containing G protein-coupled receptor 5 (LGR5+)-positive or sex-determining region Y-box 9 -antigen Ki67-positive (SOX9+Ki67+)] and 2) reserve ISC [rISC; less proliferative; homeodomain-only protein X positive (HOPX+)]. The contributions of these ISCs have been evaluated both in vivo and in vitro using a porcine model of mesenteric vascular occlusion to understand mechanisms that modulate ISC recovery responses following ischemic injury. In our previously published work, we observed that rISC conversion to an activated state was associated with decreased HOPX expression during in vitro recovery. In the present study, we wanted to evaluate the direct role of HOPX on cellular proliferation during recovery after injury. Our data demonstrated that during early in vivo recovery, injury-resistant HOPX+ cells maintain quiescence. Subsequent early regeneration within the intestinal crypt occurs around 2 days after injury, a period in which HOPX expression decreased. When HOPX was silenced in vitro, cellular proliferation of injured cells was promoted during recovery. This suggests that HOPX may serve a functional role in ISC-mediated regeneration after injury and could be a target to control ISC proliferation.NEW & NOTEWORTHY This paper supports that rISCs are resistant to ischemic injury and likely an important source of cellular renewal following near-complete epithelial loss. Furthermore, we have evidence that HOPX controls ISC activity state and may be a critical signaling pathway during ISC-mediated repair. Finally, we use multiple novel methods to evaluate ISCs in a translationally relevant large animal model of severe intestinal injury and provide evidence for the potential role of rISCs as therapeutic targets.
Collapse
Affiliation(s)
- Amy Stieler Stewart
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Cecilia Renee Schaaf
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Jennifer A Luff
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - John M Freund
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Thomas C Becker
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
| | - Sara R Tufts
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - James B Robertson
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Liara M Gonzalez
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
15
|
Rodrigues MFSD, Xavier FCA, Esteves CD, Nascimento RB, Nobile JS, Severino P, de Cicco R, Toporcov TN, Tajara EH, Nunes FD. Homeobox gene amplification and methylation in oral squamous cell carcinoma. Arch Oral Biol 2021; 129:105195. [PMID: 34126417 DOI: 10.1016/j.archoralbio.2021.105195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Investigate the DNA copy number and the methylation profile of the homeobox genes HOXA5, HOXA7, HOXA9, HOXB5, HOXB13, HOXC12, HOXC13, HOXD10, HOXD11, IRX4 and ZHX1, and correlate them with clinicopathological parameters and overall survival. MATERIAL AND METHODS DNA from OSCC samples and surgical margins were submitted to DNA amplification by qPCR and to DNA methylation analysis using a DNA Methylation PCR Array System. RESULTS HOXA5, HOXB5 and HOXD10 were amplified in surgical margins while HOXA9, HOXB13 and IRX4 were amplified in OSCC. HOXD10 demonstrated hypermethylation in half of the tumor while ZHX1 did not show hypermethylation. No correlation of DNA copy number or methylation with clinicopathological parameters or survival was observed. CONCLUSION HOXA9, HOXB13 and IRX4 genes appears to be regulated by amplification and HOXD10 by methylation in OSCC. Further studies are needed to determine the role of these events in OSCC development.
Collapse
Affiliation(s)
| | - Flávia Caló Aquino Xavier
- Laboratory of Oral Surgical Pathology, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Carina Duarte Esteves
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Rebeca Barros Nascimento
- Laboratory of Oral Surgical Pathology, School of Dentistry, Federal University of Bahia, Salvador, Brazil
| | - Juliana Stephan Nobile
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove De Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Patrícia Severino
- Center for Experimental Research, Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | | | | | - Eloiza Helena Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Fábio Daumas Nunes
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
16
|
The role of HOPX in normal tissues and tumor progression. Biosci Rep 2020; 40:221873. [PMID: 31934721 PMCID: PMC6997107 DOI: 10.1042/bsr20191953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
The homeodomain-only protein homeobox (HOPX) as the smallest homeodomain protein, lacks certain conserved residues required for DNA binding. Through our literature search, we reviewed the current understandings of HOPX in normal tissues and tumor progression. HOPX was initially identified as a critical transcription factor in various normal tissues, which interacted with serum response factor (SRF) or other substance to regulate normal physiological function. However, HOPX is at a low expression or methylation level in tumors. These data indicated that HOPX may play a very important role in regulating differentiation phenotype and tumor suppressive function. We predicted the prognosis of HOPX in tumors from TCGA database and discussed the downstream genes of HOPX. To understand how HOPX is involved in the mechanisms between physical and pathological conditions could lead to novel therapeutic strategies for treatment.
Collapse
|
17
|
You Q, Geng Y, Ye H, Zhu G, Gao X, Zhu H. HOPX Is an Epigenetically Inactivated Tumor Suppressor and Overexpression of HOPX Induce Apoptosis and Cell Cycle Arrest in Breast Cancer. Onco Targets Ther 2020; 13:5955-5965. [PMID: 32606804 PMCID: PMC7320906 DOI: 10.2147/ott.s250404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/23/2020] [Indexed: 12/26/2022] Open
Abstract
Background Evidence has been shown that abnormal DNA methylation plays a vital role in the progression of breast cancer via silencing of gene expression. The results of bisulfite sequencing showed that the methylation status of HOPX in breast cancer tissues was higher than that in normal breast cancer tissues, but little known about the biological functions of HOPX in breast cancer. Methods A total of 13 paired breast cancer and adjacent noncancerous tissues were subjected to bisulfite sequencing. Meanwhile, the methylation levels of cg218995965 and cg24862548 in breast cancer cells were detected by methylation-specific PCR (MSP). Flow cytometry, wound healing and transwell invasion assays were used to detect the apoptosis, migration and invasion in breast cancer cells. In addition, the expressions of HOPX, p21, cyclin D1 and CDK4 in cells were detected with Western blot assay. Results Bisulfite sequencing indicated that the CpG sites (cg218995965 and cg24862548) in the HOPX promoter region showed significantly higher methylation in breast cancer tissues. In addition, methylation-specific PCR revealed that HOPX was significantly hypermethylated in breast cancer cell lines MDA-MB-468 and MCF-7. Furthermore, overexpression of HOPX significantly inhibited the proliferation of MDA-MB-468 and MCF-7 cells via inducing the apoptosis. Moreover, upregulation of HOPX markedly inhibited the migration and invasion abilities of MDA-MB-468 cells. Meanwhile, overexpression of HOPX obviously induced cell cycle arrest in MDA-MB-468 cells via upregulation of p21, and downregulation of cyclin D1 and CDK4. Additionally, overexpression of HOPX suppressed tumor growth of breast cancer in vivo. Conclusion Our data showed that HOPX, a tumor suppressor, is epigenetically silenced in breast cancer. Overexpression of HOPX could suppress the progression of breast cancer, and thus indicating that it might serve as a potential target for the treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Qinghua You
- Department of Pathology, Shanghai Pudong Hospital, Shanghai 201399, People's Republic of China
| | - Yuanyuan Geng
- Department of Pathology, Shanghai Pudong Hospital, Shanghai 201399, People's Republic of China
| | - Huiying Ye
- Department of Pathology, Shanghai Pudong Hospital, Shanghai 201399, People's Republic of China
| | - Guixiang Zhu
- Department of Pathology, Shanghai Pudong Hospital, Shanghai 201399, People's Republic of China
| | - Xiaofang Gao
- Department of Pathology, Shanghai Pudong Hospital, Shanghai 201399, People's Republic of China
| | - Hongbo Zhu
- Department of Pathology, Shanghai Pudong Hospital, Shanghai 201399, People's Republic of China
| |
Collapse
|
18
|
Phillips MA, Cánovas A, Rea MA, Islas-Trejo A, Medrano JF, Durbin-Johnson B, Rocke DM, Rice RH. Deducing signaling pathways from parallel actions of arsenite and antimonite in human epidermal keratinocytes. Sci Rep 2020; 10:2890. [PMID: 32076005 PMCID: PMC7031270 DOI: 10.1038/s41598-020-59577-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 11/09/2022] Open
Abstract
Inorganic arsenic oxides have been identified as carcinogens in several human tissues, including epidermis. Due to the chemical similarity between trivalent inorganic arsenic (arsenite) and antimony (antimonite), we hypothesized that common intracellular targets lead to similarities in cellular responses. Indeed, transcriptional and proteomic profiling revealed remarkable similarities in differentially expressed genes and proteins resulting from exposure of cultured human epidermal keratinocytes to arsenite and antimonite in contrast to comparisons of arsenite with other metal compounds. These data were analyzed to predict upstream regulators and affected signaling pathways following arsenite and antimonite treatments. A majority of the top findings in each category were identical after treatment with either compound. Inspection of the predicted upstream regulators led to previously unsuspected roles for oncostatin M, corticosteroids and ephrins in mediating cellular response. The influence of these predicted mediators was then experimentally verified. Together with predictions of transcription factor effects more generally, the analysis has led to model signaling networks largely accounting for arsenite and antimonite action. The striking parallels between responses to arsenite and antimonite indicate the skin carcinogenic risk of exposure to antimonite merits close scrutiny.
Collapse
Affiliation(s)
- Marjorie A Phillips
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Miguel A Rea
- Department of Chemistry, Universidad Autónoma Querétaro, Querétaro, Mexico
| | - Alma Islas-Trejo
- Department of Animal Science, University of California, Davis, CA, USA
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, CA, USA
| | - Blythe Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, Clinical and Translational Science Center Biostatistics Core, University of California, Davis, CA, USA
| | - David M Rocke
- Division of Biostatistics, Department of Public Health Sciences, Clinical and Translational Science Center Biostatistics Core, University of California, Davis, CA, USA
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
19
|
Ooizumi Y, Katoh H, Yokota M, Watanabe M, Yamashita K. Epigenetic silencing of HOPX is critically involved in aggressive phenotypes and patient prognosis in papillary thyroid cancer. Oncotarget 2019; 10:5906-5918. [PMID: 31666923 PMCID: PMC6800262 DOI: 10.18632/oncotarget.27187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/12/2019] [Indexed: 01/14/2023] Open
Abstract
HOPX is involved in multiple organ development and acts as a tumor suppressor in various cancers. Epigenetic silencing of HOPX via its promoter methylation has been shown frequent and cancer-specific in human cancers. The proliferation of thyroid cancer cells and cancer progression are strongly influenced by epigenetic alterations as well as genetic changes. Papillary thyroid cancer (PTC) comprises the vast majority of thyroid cancers and exhibits slow progression. However, ~10% of patients still show disease recurrence and refractoriness to treatment. Accordingly, it is important approach to research epigenetic mechanisms in PTC progression to find useful biomarkers. Here, we aimed to seek into the roles and clinical impact of epigenetic silencing of HOPX in PTC. The promoter methylation of HOPX was observed in five of six human thyroid cancer cell lines. Down-regulation of HOPX was seen in three cell lines including PTC line K1, and demethylating agents restored HOPX expression. The promoter methylation was observed with high sensitivity and specificity in human PTC tissues. HOPX promoter methylation independently predicted disease recurrence in PTC patients. Epigenetic silencing of HOPX was associated with Ki-67 expression. Of note, HOPX promoter methylation was dramatically associated with worse prognosis especially in patients with stage I PTC. Forced HOPX expression suppressed cell proliferation, invasive activities, and anchorage-independent growth in vitro. HOPX promoter methylation is frequent and cancer-specific event, leading to aggressive phenotype in PTC. Epigenetic silencing of HOPX may be a clue to tackle cancer progression and have clinical impact as a novel biomarker in PTC.
Collapse
Affiliation(s)
- Yosuke Ooizumi
- Department of Surgery, Kitasato University Hospital, Kanagawa, Japan
| | - Hiroshi Katoh
- Breast and Endocrine Surgery, Kitasato University Hospital, Kanagawa, Japan
| | - Mitsuo Yokota
- Department of Surgery, Kitasato University Hospital, Kanagawa, Japan.,Breast and Endocrine Surgery, Kitasato University Hospital, Kanagawa, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University Hospital, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University Hospital, Kanagawa, Japan.,Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University Hospital, Kanagawa, Japan
| |
Collapse
|
20
|
Wu J, Chen Z, Zhang L, Cao J, Li X, Gong Z, Bo H, Zhang S, He D. Knockdown of LINC01116 inhibits cell migration and invasion in head and neck squamous cell carcinoma through epithelial-mesenchymal transition pathway. J Cell Biochem 2019; 121:867-875. [PMID: 31452270 DOI: 10.1002/jcb.29331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/18/2019] [Indexed: 12/23/2022]
Abstract
Long noncoding RNAs (lncRNAs) are linked to tumor development and progression. The aim of this study was to determine the prognostic significance and biological role of LINC01116 in head and neck squamous cell carcinoma (HNSCC). We identified 21 aberrantly expressed lncRNAs specific to HNSCC that were common in two microarray datasets. LINC01116 was highly overexpressed in HNSCC tissues and was correlated to shorter overall survival and relapse-free survival duration, as analyzed by the online Gene Expression Profiling Interactive Analysis platform. LINC01116 was also overexpressed in oral squamous cell carcinoma and nasopharyngeal carcinoma tissues, and LINC01116 silencing significantly inhibited the migration and invasion capacities of both cell lines by blocking the epithelial-mesenchymal transition process. In addition, 125 coexpressing genes were identified by circlncRNAnet, and were mainly located on human autosomes and enriched in transforming growth factor-β signaling pathway. These findings indicate that LINC01116 might be a potential therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Jing Wu
- Department of Stomatology, People's Hospital Longhua Shenzhen, Shenzhen, Guangdong, China.,Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhizhao Chen
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Zhang
- Department of Stomatology, People's Hospital Longhua Shenzhen, Shenzhen, Guangdong, China
| | - Jun Cao
- Department of Stomatology, People's Hospital Longhua Shenzhen, Shenzhen, Guangdong, China
| | - Xiaoyu Li
- Department of Stomatology, People's Hospital Longhua Shenzhen, Shenzhen, Guangdong, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Bo
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dong He
- Department of Respiration, The Second People's Hospital of Hunan Province of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
21
|
Penisson M, Ladewig J, Belvindrah R, Francis F. Genes and Mechanisms Involved in the Generation and Amplification of Basal Radial Glial Cells. Front Cell Neurosci 2019; 13:381. [PMID: 31481878 PMCID: PMC6710321 DOI: 10.3389/fncel.2019.00381] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
The development of the cerebral cortex relies on different types of progenitor cell. Among them, the recently described basal radial glial cell (bRG) is suggested to be of critical importance for the development of the brain in gyrencephalic species. These cells are highly numerous in primate and ferret brains, compared to lissencephalic species such as the mouse in which they are few in number. Their somata are located in basal subventricular zones in gyrencephalic brains and they generally possess a basal process extending to the pial surface. They sometimes also have an apical process directed toward the ventricular surface, similar to apical radial glial cells (aRGs) from which they are derived, and whose somata are found more apically in the ventricular zone. bRGs share similarities with aRGs in terms of gene expression (SOX2, PAX6, and NESTIN), whilst also expressing a range of more specific genes (such as HOPX). In primate brains, bRGs can divide multiple times, self-renewing and/or generating intermediate progenitors and neurons. They display a highly specific cytokinesis behavior termed mitotic somal translocation. We focus here on recently identified molecular mechanisms associated with the generation and amplification of bRGs, including bRG-like cells in the rodent. These include signaling pathways such as the FGF-MAPK cascade, SHH, PTEN/AKT, PDGF pathways, and proteins such as INSM, GPSM2, ASPM, TRNP1, ARHGAP11B, PAX6, and HIF1α. A number of these proteins were identified through transcriptome comparisons in human aRGs vs. bRGs, and validated by modifying their activities or expression levels in the mouse. This latter experiment often revealed enhanced bRG-like cell production, even in some cases generating folds (gyri) on the surface of the mouse cortex. We compare the features of the identified cells and methods used to characterize them in each model. These important data converge to indicate pathways essential for the production and expansion of bRGs, which may help us understand cortical development in health and disease.
Collapse
Affiliation(s)
- Maxime Penisson
- Inserm, Institut du Fer à Moulin, Sorbonne Université, Paris, France.,Inserm UMR-S 1270, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Julia Ladewig
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research (gGmbH), Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Richard Belvindrah
- Inserm, Institut du Fer à Moulin, Sorbonne Université, Paris, France.,Inserm UMR-S 1270, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Fiona Francis
- Inserm, Institut du Fer à Moulin, Sorbonne Université, Paris, France.,Inserm UMR-S 1270, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
22
|
Miksiunas R, Mobasheri A, Bironaite D. Homeobox Genes and Homeodomain Proteins: New Insights into Cardiac Development, Degeneration and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:155-178. [PMID: 30945165 DOI: 10.1007/5584_2019_349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases are the most common cause of human death in the developing world. Extensive evidence indicates that various toxic environmental factors and unhealthy lifestyle choices contribute to the risk, incidence and severity of cardiovascular diseases. Alterations in the genetic level of myocardium affects normal heart development and initiates pathological processes leading to various types of cardiac diseases. Homeobox genes are a large and highly specialized family of closely related genes that direct the formation of body structure, including cardiac development. Homeobox genes encode homeodomain proteins that function as transcription factors with characteristic structures that allow them to bind to DNA, regulate gene expression and subsequently control the proper physiological function of cells, tissues and organs. Mutations in homeobox genes are rare and usually lethal with evident alterations in cardiac function at or soon after the birth. Our understanding of homeobox gene family expression and function has expanded significantly during the recent years. However, the involvement of homeobox genes in the development of human and animal cardiac tissue requires further investigation. The phenotype of human congenital heart defects unveils only some aspects of human heart development. Therefore, mouse models are often used to gain a better understanding of human heart function, pathology and regeneration. In this review, we have focused on the role of homeobox genes in the development and pathology of human heart as potential tools for the future development of targeted regenerative strategies for various heart malfunctions.
Collapse
Affiliation(s)
- Rokas Miksiunas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Daiva Bironaite
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
23
|
Lima EU, Rubio IGS, Da Silva JC, Galrão AL, Pêssoa D, Oliveira TC, Carrijo F, Silva Campos I, Fonseca Espinheira L, Sampaio LJ, Lima CR, Cerutti JM, Ramos HE. HOPX homeobox methylation in differentiated thyroid cancer and its clinical relevance. Endocr Connect 2018; 7:1333-1342. [PMID: 30400039 PMCID: PMC6280589 DOI: 10.1530/ec-18-0380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND The inactivation of the tumor-suppressor homeodomain-only protein X (HOPX) usually involves promoter methylation in several cancer types. This study aimed to investigate the HOPX-β mRNA expression and promoter methylation and their clinical relevance in differentiated thyroid cancer (DTC). PATIENTS AND METHODS Clinicopathological data and paraffin-embedded thyroid tumor tissues from 21 patients with DTC and 6 with benign tumors (T) and their non-tumor parenchyma (NT) were investigated. Tumor cell lines (FTC238, FTC236 and WRO) were treated with demethylating agent. HOPX-β mRNA expression was assessed by qRT-PCR and methylation status by Q-MSP. Thyroid cancer data from Cancer Genome Atlas (TCGA) was also collected. RESULTS HOPX-β mRNA re-expression in two cell lines treated with demethylating agent was observed concomitantly with reduced promoter methylation. Reduced mRNA expression in T group compared to their NT was observed, and reduced protein expression in T compared to NT was observed in three cases. Low mRNA expression with high methylation status was detected in 6/14 DTC samples. High methylation status was associated with older age at diagnosis, recurrent or progressive disease and with the presence of new neoplasm event post initial therapy while hyper-methylation correlated with worse overall survival, worse disease-free status and older age. CONCLUSION A moderate coupling of downregulation of HOPX-β mRNA expression in DTC followed by high HOPX-β promoter methylation was observed however; high HOPX promoter methylation status was associated with the worse prognosis of DTC patients.
Collapse
Affiliation(s)
- Erika Urbano Lima
- Biological Science Department, Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo, São Paulo, Brazil
- Structural and Functional Biology Program, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ileana G S Rubio
- Biological Science Department, Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo, São Paulo, Brazil
- Structural and Functional Biology Program, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Joaquim Custodio Da Silva
- Department of Bio-regulation, Thyroid Study Laboratory, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
- Post-graduate Program in Interactive Processes of Organs and Systems, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
| | - Ana Luiza Galrão
- Biological Science Department, Thyroid Molecular Sciences Laboratory, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Danielle Pêssoa
- Department of Bio-regulation, Thyroid Study Laboratory, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
- Post-graduate Program in Interactive Processes of Organs and Systems, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
| | - Taise Cerqueira Oliveira
- Department of Bio-regulation, Thyroid Study Laboratory, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
| | - Fabiane Carrijo
- Department of Bio-regulation, Thyroid Study Laboratory, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
- Post-graduate Program in Interactive Processes of Organs and Systems, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
| | | | - Luciano Fonseca Espinheira
- Department of Pathology, Sao Rafael Hospital, Salvador, Brazil
- Department of Anatomic Pathology & Legal Medicine, Bahia Federal Medical School, Federal University of Bahia, Salvador, Brazil
| | | | | | - Janete Maria Cerutti
- Structural and Functional Biology Program, Universidade Federal de São Paulo, São Paulo, Brazil
- Division of Genetics, Department of Morphology and Genetics, Genetic Basis of Thyroid Tumors Laboratory, Paulista School of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Helton Estrela Ramos
- Department of Bio-regulation, Thyroid Study Laboratory, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
- Post-graduate Program in Interactive Processes of Organs and Systems, Health & Science Institute, Federal University of Bahia, Salvador, Brazil
- Correspondence should be addressed to H E Ramos:
| |
Collapse
|
24
|
Dynamic expression of HOPX in alveolar epithelial cells reflects injury and repair during the progression of pulmonary fibrosis. Sci Rep 2018; 8:12983. [PMID: 30154568 PMCID: PMC6113210 DOI: 10.1038/s41598-018-31214-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/14/2018] [Indexed: 01/29/2023] Open
Abstract
Mechanisms of injury and repair in alveolar epithelial cells (AECs) are critically involved in the progression of various lung diseases including idiopathic pulmonary fibrosis (IPF). Homeobox only protein x (HOPX) contributes to the formation of distal lung during development. In adult lung, alveolar epithelial type (AT) I cells express HOPX and lineage-labeled Hopx+ cells give rise to both ATI and ATII cells after pneumonectomy. However, the cell function of HOPX-expressing cells in adult fibrotic lung diseases has not been investigated. In this study, we have established a flow cytometry-based method to evaluate HOPX-expressing cells in the lung. HOPX expression in cultured ATII cells increased over culture time, which was accompanied by a decrease of proSP-C, an ATII marker. Moreover, HOPX expression was increased in AECs from bleomycin-instilled mouse lungs in vivo. Small interfering RNA-based knockdown of Hopx resulted in suppressing ATII-ATI trans-differentiation and activating cellular proliferation in vitro. In IPF lungs, HOPX expression was decreased in whole lungs and significantly correlated to a decline in lung function and progression of IPF. In conclusion, HOPX is upregulated during early alveolar injury and repair process in the lung. Decreased HOPX expression might contribute to failed regenerative processes in end-stage IPF lungs.
Collapse
|
25
|
Kumar A, Sarode SC, Sarode GS, Majumdar B, Patil S, Sharma NK. Beyond gene dictation in oral squamous cell carcinoma progression and its therapeutic implications. TRANSLATIONAL RESEARCH IN ORAL ONCOLOGY 2017. [DOI: 10.1177/2057178x17701463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Ajay Kumar
- Cancer and Translational Research Lab, Dr D.Y. Patil Biotechnology and Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Sachin C Sarode
- Department of Oral Pathology, Dr D.Y. Patil Dental College and Research, Pimpri, Pune, Maharashtra, India
| | - Gargi S Sarode
- Department of Oral Pathology, Dr D.Y. Patil Dental College and Research, Pimpri, Pune, Maharashtra, India
| | - Barnali Majumdar
- Department of Oral Pathology and Microbiology, Bhojia Dental College and Hospital, Baddi, Himachal Pradesh, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr D.Y. Patil Biotechnology and Bioinformatics Institute, Dr D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
26
|
Mansour MA, Senga T. HOXD8 exerts a tumor-suppressing role in colorectal cancer as an apoptotic inducer. Int J Biochem Cell Biol 2017; 88:1-13. [PMID: 28457970 DOI: 10.1016/j.biocel.2017.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/16/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023]
Abstract
Homeobox (HOX) genes are conserved transcription factors which determine the anterior-posterior body axis patterning. HOXD8 is a member of HOX genes deregulated in several tumors such as lung carcinoma, neuroblastoma, glioma and colorectal cancer (CRC) in a context-dependent manner. In CRC, HOXD8 is downregulated in cancer tissues and metastatic foci as compared to normal tissues. Whether HOXD8 acts as a tumor suppressor of malignant progression and metastasis is still unclear. Also, the underlying mechanism of its function including the downstream targets is totally unknown. Here, we clarified the lower expression of HOXD8 in clinical colorectal cancer vs. normal colon tissues. Also, we showed that stable expression of HOXD8 in colorectal cancer cells significantly reduced the cell proliferation, anchorage-independent growth and invasion. Further, using The Cancer Genome Atlas (TCGA), we identified the genes associated with HOXD8 in order to demonstrate its function as a suppressor or a promoter of colorectal carcinoma. Among inversely related genes, apoptotic inhibitors like STK38 kinase and MYC were shown to be negatively associated with HOXD8. We demonstrated the ability of HOXD8 to upregulate executioner caspases 6 & 7 and cleaved PARP, thus inducing the apoptotic events in colorectal cancer cells.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt; Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - Takeshi Senga
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550 Japan
| |
Collapse
|