1
|
Wang Y, Liu C, Tang K, Zhang J, Liu X, Ma Y, Li X. Exploring shared pathogenesis of multiple myeloma and osteoporosis via bioinformatic analysis. Expert Rev Hematol 2025; 18:167-176. [PMID: 39943780 DOI: 10.1080/17474086.2025.2465456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/29/2025] [Indexed: 02/19/2025]
Abstract
BACKGROUND The purpose of this study is to explore the common differentially expressed genes (DEGs) between multiple myeloma (MM) and osteoporosis and the associated molecular mechanisms. RESEARCH DESIGN AND METHODS We obtained the overlapping DEGs between MM and osteoporosis with the GEO2R online tool. Then, the DEGs were clustered on the MetaCore website to identify the biological process and pathway. In addition, the STRING database and Cytoscape were used to construct the protein-protein interaction (PPI) network and identify hub genes. Finally, miRNA-gene and transcriptional factor (TF)-gene interaction networks were constructed. RESULTS A total of 252 genes were identified as DEGs in the overlapping two datasets. Functional analysis emphasizes the crucial role of the cell cycle in these two diseases. 10 hub genes were identified using cytoHubba, including CCNA2, ASPM, MKI67, FN1, FEN1, STAT1, DEPDC1, ITGB8, DYNC2LI1, HBEGF. In addition, according to the miRNA-gene and TF-gene interaction networks, part of TFs (RELA, TP53), and miRNAs (miR-26b-5p, miR-192-5p) may be identified as key regulators in MM and osteoporosis at the same time. CONCLUSIONS The present study reveals the common pathogenesis of MM and osteoporosis. These shared pathways may provide new targets for further mechanistic studies of the pathogenesis and treatment of MM and osteoporosis.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chengdi Liu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Kegong Tang
- Department of Pathology, The First Affiliated Hospital, Shandong First Medical University& Shandong Qianfoshan Hospital, Jinan, Shandong, China
| | - Jiyun Zhang
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinran Liu
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yiming Ma
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofei Li
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Micheva ID, Atanasova SA. MicroRNA dysregulation in myelodysplastic syndromes: implications for diagnosis, prognosis, and therapeutic response. Front Oncol 2024; 14:1410656. [PMID: 39156702 PMCID: PMC11327013 DOI: 10.3389/fonc.2024.1410656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of malignant clonal hematological disorders with heterogeneous clinical course and risk of transformation to acute myeloid leukemia. Genetic and epigenetic dysregulation, including alterations in microRNA (miRNA) expression, plays a pivotal role in MDS pathogenesis influencing disease development and progression. MiRNAs, known for their regulatory roles in gene expression, have emerged as promising biomarkers in various malignant diseases. This review aims to explore the diagnostic and prognostic roles of miRNAs in MDS. We discuss research efforts aimed at understanding the clinical utility of miRNAs in MDS management. MiRNA dysregulation is linked to specific chromosomal abnormalities in MDS, providing insights into the molecular landscape of the disease. Circulating miRNAs in plasma offer a less invasive avenue for diagnostic and prognostic assessment, with distinct miRNA profiles identified in MDS patients. Additionally, we discuss investigations concerning the role of miRNAs as markers for treatment response to hypomethylating and immunomodulating agents, which could lead to improved treatment decision-making and monitoring. Despite significant progress, further research in larger patient cohorts is needed to fully elucidate the role of miRNAs in MDS pathogenesis and refine personalized approaches to patient care.
Collapse
Affiliation(s)
- Ilina Dimitrova Micheva
- Hematology Department, University Hospital St. Marina, Varna, Bulgaria
- Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| | - Svilena Angelova Atanasova
- Hematology Department, University Hospital St. Marina, Varna, Bulgaria
- Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| |
Collapse
|
3
|
Noh MR, Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of accidental and programmed cell death. Am J Physiol Renal Physiol 2024; 327:F4-F20. [PMID: 38660714 PMCID: PMC11390133 DOI: 10.1152/ajprenal.00275.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The involvement of cell death in acute kidney injury (AKI) is linked to multiple factors including energy depletion, electrolyte imbalance, reactive oxygen species, inflammation, mitochondrial dysfunction, and activation of several cell death pathway components. Since our review in 2003, discussing the relative contributions of apoptosis and necrosis, several other forms of cell death have been identified and are shown to contribute to AKI. Currently, these various forms of cell death can be fundamentally divided into accidental cell death and regulated or programmed cell death based on functional aspects. Several death initiator and effector molecules switch molecules that may act as signaling components triggering either death or protective mechanisms or alternate cell death pathways have been identified as part of the machinery. Intriguingly, several of these cell death pathways share components and signaling pathways suggesting complementary or compensatory functions. Thus, defining the cross talk between distinct cell death pathways and identifying the unique molecular effectors for each type of cell death may be required to develop novel strategies to prevent cell death. Furthermore, depending on the multiple forms of cell death simultaneously induced in different AKI settings, strategies for combination therapies that block multiple cell death pathways need to be developed to completely prevent injury, cell death, and renal function. This review highlights the various cell death pathways, cross talk, and interactions between different cell death modalities in AKI.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Babu J Padanilam
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
4
|
Guo Y, Wu D, Li X, Wang J, Li H, Li Y, Luo D, Yi F, Zhang D. Proximal tubular MBD2 promotes autophagy to drive the progression of AKI caused by vancomycin via regulation of miR-597-5p/S1PR1 axis. FASEB J 2024; 38:e23562. [PMID: 38578557 DOI: 10.1096/fj.202301500r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/03/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Our recent investigation has indicated that the global deletion of MBD2 can mitigate the progression of AKI induced by VAN. Nevertheless, the role and regulatory mechanisms of proximal tubular MBD2 in this pathophysiological process have yet to be elucidated. Our preceding investigation revealed that autophagy played a crucial role in advancing AKI induced by VAN. Consequently, we postulated that MBD2 present in the proximal tubule could upregulate the autophagic process to expedite the onset of AKI. In the present study, we found for the first time that MBD2 mediated the autophagy production induced by VAN. Through the utilization of miRNA chip analysis, we have mechanistically demonstrated that MBD2 initiates the activation of miR-597-5p through promoter demethylation. This process leads to the suppression of S1PR1, which results in the induction of autophagy and apoptosis in renal tubular cells. Besides, PT-MBD2-KO reduced autophagy to attenuate VAN-induced AKI via regulation of the miR-597-5p/S1PR1 axis, which was reversed by rapamycin. Finally, the overexpression of MBD2 aggravated the diminished VAN-induced AKI in autophagy-deficient mice (PT-Atg7-KO). These data demonstrate that proximal tubular MBD2 facilitated the process of autophagy via the miR-597-5p/S1PR1 axis and subsequently instigated VAN-induced AKI through the induction of apoptosis. The potentiality of MBD2 being a target for AKI was established.
Collapse
Affiliation(s)
- Yong Guo
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Organ Procurement Organization, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dengke Wu
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaozhou Li
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Wang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huiling Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yijian Li
- Department of Urinary Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan Luo
- Department of Emergency Medicine, Yueyang Central Hospital, Yueyang, Hunan, China
| | - Feng Yi
- Department of Emergency Medicine, Yueyang Central Hospital, Yueyang, Hunan, China
| | - Dongshan Zhang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Emergency Medicine and Difficult Diseases Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Zhang C, Guan G, Wang J, Wei H, Cai J. MicroRNA-192-5p downregulates Fat Mass and Obesity-associated Protein to aggravate renal ischemia/reperfusion injury. Ren Fail 2023; 45:2285869. [PMID: 38044851 PMCID: PMC11001322 DOI: 10.1080/0886022x.2023.2285869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
Acute kidney injury (AKI) is a common disorder without effective therapy yet. Renal ischemia/reperfusion (I/R) injury is a common cause of AKI. MicroRNA miR-192-5p has been previously reported to be upregulated in AKI models. However, its functional role in renal I/R injury is not fully understood. This study aimed to investigate the effects and the underlying mechanism of miR-192-5p in renal I/R progression. Hypoxia/reoxygenation (H/R)-induced cell injury model in HK-2 cells and I/R-induced renal injury model in mice were established in this study. Cell counting kit-8 assay was performed to determine cell viability. Quantitative real-time PCR and western blot analysis were performed to detect gene expressions. Hematoxylin-eosin and periodic acid-Schiff staining were performed to observe the histopathological changes. Enzyme-linked immunosorbent assay was performed to detect the kidney markers' expression. In vivo and in vitro results showed that miR-192-5p was up-regulated in the I/R-induced mice model and H/R-induced cell model, and miR-192-5p overexpression exacerbated I/R-induced renal damage. Then, the downstream target of miR-192-5p was analyzed by combining the differentially expressed mRNAs and the predicted genes and confirmed using a dual-luciferase reporter assay. It was found that miR-192-5p was found to regulate fat mass and obesity-associated (FTO) protein expression by directly targeting the 3' untranslated region of FTO mRNA. Moreover, in vivo and in vitro studies unveiled that FTO overexpression alleviated renal I/R injury and promoted HK-2 cell viability via stimulating autophagy flux. In conclusion, miR-192-5p aggravated I/R-induced renal injury by blocking autophagy flux via down-regulating FTO.
Collapse
Affiliation(s)
- Chengjun Zhang
- Center of Organ Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Ge Guan
- Center of Organ Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jiantao Wang
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Haijian Wei
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jinzhen Cai
- Center of Organ Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
6
|
Lu H, Xie D, Qu B, Li M, He Y, Liu W. Emodin prevents renal ischemia-reperfusion injury via suppression of p53-mediated cell apoptosis based on network pharmacology. Heliyon 2023; 9:e15682. [PMID: 37215853 PMCID: PMC10195913 DOI: 10.1016/j.heliyon.2023.e15682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Background Previous evidence indicated that emodin has significant advantages for preventing acute kidney injury (AKI). However, the mechanisms responsible for these effects of emodin have yet to be elucidated. Methods We first used network pharmacology and molecular docking to identify the core targets of emodin for AKI and performed a range of experiments to validate this result. Pretreatment with emodin for 7 days, the rats were treated with bilateral renal artery clipping for 45 min to identify the prevention effect. Hypoxia/reoxygenation (H/R), and vancomycin - induced renal tubular epithelial cells (HK-2 cells) were treated with emodin to explore the related molecular mechanism. Results Network pharmacology and molecular docking showed that anti-apoptosis might be the core mechanism responsible for the action of emodin on AKI; this anti-apoptotic effect appears to because by regulation p53-related signaling pathway. Our data showed that pretreatment with emodin significantly improved renal function and renal tubular injury in renal I/R model rats (P < 0.05. The prevention effect of emodin was proved to be related to anti - apoptosis of HK-2 cells, possibly by downregulating the levels of p53, cleaved-caspase-3, pro-caspase-9, and upregulated the levels of Bcl-2. The efficacy and mechanism of emodin on anti - apoptosis was also confirmed in vancomycin - induced HK-2 cells. Meanwhile, the data also showed that emodin promoted angiogenesis in I/R damaged kidneys and H/R-induced HK-2 cells, which was associated with decreasing HIF-1α levels and increasing VEGF levels. Conclusions Our findings indicated that the preventive effect of emodin on AKI is probably attributable to anti-apoptosis response and promoting angiogenesis effect.
Collapse
Affiliation(s)
- Hongmei Lu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
| | - Dengpiao Xie
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Bo Qu
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Mingquan Li
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Yuhua He
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, China
| | - Weijing Liu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
| |
Collapse
|
7
|
Park HJ, Hoffman JR, Brown ME, Bheri S, Brazhkina O, Son YH, Davis ME. Knockdown of deleterious miRNA in progenitor cell-derived small extracellular vesicles enhances tissue repair in myocardial infarction. SCIENCE ADVANCES 2023; 9:eabo4616. [PMID: 36867699 PMCID: PMC9984177 DOI: 10.1126/sciadv.abo4616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Small extracellular vesicles (sEVs) play a critical role in cardiac cell therapy by delivering molecular cargo and mediating cellular signaling. Among sEV cargo molecule types, microRNA (miRNA) is particularly potent and highly heterogeneous. However, not all miRNAs in sEV are beneficial. Two previous studies using computational modeling identified miR-192-5p and miR-432-5p as potentially deleterious in cardiac function and repair. Here, we show that knocking down miR-192-5p and miR-432-5p in cardiac c-kit+ cell (CPC)-derived sEVs enhances the therapeutic capabilities of sEVs in vitro and in a rat in vivo model of cardiac ischemia reperfusion. miR-192-5p- and miR-432-5p-depleted CPC-sEVs enhance cardiac function by reducing fibrosis and necrotic inflammatory responses. miR-192-5p-depleted CPC-sEVs also enhance mesenchymal stromal cell-like cell mobilization. Knocking down deleterious miRNAs from sEV could be a promising therapeutic strategy for treatment of chronic myocardial infarction.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Jessica R. Hoffman
- Molecular and Systems Pharmacology Graduate Training Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Milton E. Brown
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Sruti Bheri
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Olga Brazhkina
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Young Hoon Son
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Michael E. Davis
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Molecular and Systems Pharmacology Graduate Training Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Children's Heart Research and Outcomes (HeRO) Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Mongiorgi S, De Stefano A, Ratti S, Indio V, Astolfi A, Casalin I, Pellagatti A, Paolini S, Parisi S, Cavo M, Pession A, McCubrey JA, Suh PG, Manzoli L, Boultwood J, Finelli C, Cocco L, Follo MY. A miRNA screening identifies miR-192-5p as associated with response to azacitidine and lenalidomide therapy in myelodysplastic syndromes. Clin Epigenetics 2023; 15:27. [PMID: 36803590 PMCID: PMC9940408 DOI: 10.1186/s13148-023-01441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND miRNAs are small non-coding RNAs that regulate gene expression and are linked to cancer development and progression. miRNA profiles are currently studied as new prognostic factors or therapeutic perspectives. Among hematological cancers, myelodysplastic syndromes at higher risk of evolution into acute myeloid leukemia are treated with hypomethylating agents, like azacitidine, alone or in combination with other drugs, such as lenalidomide. Recent data showed that, during azacitidine and lenalidomide therapy, the concurrent acquisition of specific point mutations affecting inositide signalling pathways is associated with lack or loss of response to therapy. As these molecules are implicated in epigenetic processes, possibly involving miRNA regulation, and in leukemic progression, through the regulation of proliferation, differentiation and apoptosis, here we performed a new miRNA expression analysis of 26 high-risk patients with myelodysplastic syndromes treated with azacitidine and lenalidomide at baseline and during therapy. miRNA array data were processed, and bioinformatic results were correlated with clinical outcome to investigate the translational relevance of selected miRNAs, while the relationship between selected miRNAs and specific molecules was experimentally tested and proven. RESULTS Patients' overall response rate was 76.9% (20/26 cases): complete remission (5/26, 19.2%), partial remission (1/26, 3.8%), marrow complete remission (2/26, 7.7%), hematologic improvement (6/26, 23.1%), hematologic improvement with marrow complete remission (6/26, 23.1%), whereas 6/26 patients (23.1%) had a stable disease. miRNA paired analysis showed a statistically significant up-regulation of miR-192-5p after 4 cycles of therapy (vs baseline), that was confirmed by real-time PCR analyses, along with an involvement of BCL2, that was proven to be a miR-192-5p target in hematopoietic cells by luciferase assays. Furthermore, Kaplan-Meier analyses showed a significant correlation between high levels of miR-192-5p after 4 cycles of therapy and overall survival or leukemia-free survival, that was stronger in responders, as compared with patients early losing response and non-responders. CONCLUSIONS This study shows that high levels of miR-192-5p are associated with higher overall survival and leukemia-free survival in myelodysplastic syndromes responding to azacitidine and lenalidomide. Moreover, miR-192-5p specifically targets and inhibits BCL2, possibly regulating proliferation and apoptosis and leading to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Alessia De Stefano
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Annalisa Astolfi
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Irene Casalin
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, OX3 9DU, UK
| | - Stefania Paolini
- IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology " L. e A. Seràgnoli", University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Sarah Parisi
- IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology " L. e A. Seràgnoli", University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Michele Cavo
- IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology " L. e A. Seràgnoli", University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Andrea Pession
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Division of Pediatrics, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27858, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, South Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, OX3 9DU, UK
| | - Carlo Finelli
- IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology " L. e A. Seràgnoli", University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| |
Collapse
|
9
|
Garufi A, Pistritto G, D’Orazi G. HIPK2 as a Novel Regulator of Fibrosis. Cancers (Basel) 2023; 15:1059. [PMID: 36831402 PMCID: PMC9954661 DOI: 10.3390/cancers15041059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Fibrosis is an unmet medical problem due to a lack of evident biomarkers to help develop efficient targeted therapies. Fibrosis can affect almost every organ and eventually induce organ failure. Homeodomain-interacting protein kinase 2 (HIPK2) is a protein kinase that controls several molecular pathways involved in cell death and development and it has been extensively studied, mainly in the cancer biology field. Recently, a role for HIPK2 has been highlighted in tissue fibrosis. Thus, HIPK2 regulates several pro-fibrotic pathways such as Wnt/β-catenin, TGF-β and Notch involved in renal, pulmonary, liver and cardiac fibrosis. These findings suggest a wider role for HIPK2 in tissue physiopathology and highlight HIPK2 as a promising target for therapeutic purposes in fibrosis. Here, we will summarize the recent studies showing the involvement of HIPK2 as a novel regulator of fibrosis.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy
| | - Gabriella D’Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| |
Collapse
|
10
|
The Characterization and Differential Analysis of m 6A Methylation in Hycole Rabbit Muscle and Adipose Tissue and Prediction of Regulatory Mechanism about Intramuscular Fat. Animals (Basel) 2023; 13:ani13030446. [PMID: 36766336 PMCID: PMC9913852 DOI: 10.3390/ani13030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
N6-methyladenosine (m6A) widely participates in various life processes of animals, including disease, memory, growth and development, etc. However, there is no report on m6A regulating intramuscular fat deposition in rabbits. In this study, m6A modification of Hycole rabbit muscle and adipose tissues were detected by MeRIP-Seq. In this case, 3 methylases and 12 genes modified by m6A were found to be significantly different between muscle and adipose tissues. At the same time, we found 3 methylases can regulate the expression of 12 genes in different ways and the function of 12 genes is related to fat deposition base on existing studies. 12 genes were modified by m6A methylase in rabbit muscle and adipose tissues. These results suggest that 3 methylases may regulate the expression of 12 genes through different pathways. In addition, the analysis of results showed that 6 of the 12 genes regulated eight signaling pathways, which regulated intramuscular fat deposition. RT-qPCR was used to validate the sequencing results and found the expression results of RT-qPCR and sequencing results are consistent. In summary, METTL4, ZC3H13 and IGF2BP2 regulated intramuscular fat by m6A modified gene/signaling pathways. Our work provided a new molecular basis and a new way to produce rabbit meat with good taste.
Collapse
|
11
|
Liu J, Li X, Yang J, Zhang D. LncRNA ENSMUST_147219 mediates the progression of ischemic acute kidney injury by targeting the miR-221-5p/IRF6 axis. Apoptosis 2022; 27:531-544. [PMID: 35618996 PMCID: PMC9308590 DOI: 10.1007/s10495-022-01730-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2022] [Indexed: 02/02/2023]
Abstract
Although previous studies have revealed that long noncoding RNAs (lncRNAs) regulate the progression of ischemic acute kidney injury (AKI), the exact role and mechanism of lncRNA ENSMUST_147219 in ischemic AKI are not clear. In the present study, lncRNA ENSMUST_147219 was induced by ischemic injury in vitro and in vivo. Functionally, lncRNA ENSMUST_147219 mediated apoptosis in mouse proximal tubule‐derived cell line (BUMPT). Mechanistically, lncRNA ENSMUST_147219 sponged the microRNA (miR)-221-5p to upregulate the expression of interferon regulatory factor 6 (IRF6) to drive apoptosis. Finally, knockdown of lncRNA ENSMUST_147219 markedly attenuated the ischemic AKI by targeting the miR-221-5p/IRF6 axis. Collectively, our data demonstrated that lncRNA ENSMUST_147219 promoted the development of ischemic AKI by regulating the miR-221-5p/IRF6 pathway, which could be considered a new therapeutic target for ischemic AKI.
Collapse
Affiliation(s)
- Jing Liu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, People's Republic of China.,Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaozhou Li
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, People's Republic of China.
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China. .,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China. .,Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Petejova N, Martinek A, Zadrazil J, Klementa V, Pribylova L, Bris R, Kanova M, Sigutova R, Kacirova I, Svagera Z, Bace E, Stejskal D. Expression and 7-day time course of circulating microRNAs in septic patients treated with nephrotoxic antibiotic agents. BMC Nephrol 2022; 23:111. [PMID: 35305556 PMCID: PMC8933949 DOI: 10.1186/s12882-022-02726-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Through regulation of signaling pathways, microRNAs (miRNAs) can be involved in sepsis and associated organ dysfunction. The aims of this study were to track the 7-day time course of blood miRNAs in patients with sepsis treated with vancomycin, gentamicin, or a non-nephrotoxic antibiotic and miRNA associations with neutrophil gelatinase-associated lipokalin (NGAL), creatinine, procalcitonin, interleukin-6, and acute kidney injury (AKI) stage. Methods Of 46 adult patients, 7 were on vancomycin, 20 on gentamicin, and 19 on another antibiotic. Blood samples were collected on days 1, 4, and 7 of treatment, and miRNAs were identified using quantitative reverse transcription PCR. Results The results showed no relationship between miRNA levels and biochemical variables on day 1. By day 7 of gentamicin treatment miR-15a-5p provided good discrimination between AKI and non-AKI (area under curve, 0.828). In patients taking vancomycin, miR-155-5p and miR-192-5p positively correlated with creatinine and NGAL values, and miR-192-5p and miR-423-5p positively correlated with procalcitonin and interleukin-6 in patients treated with a non-nephrotoxic antibiotic. In patients together we found positive correlation between miR-155-5p and miR-423-5p and all biochemical markers. Conclusion The results suggest that these four miRNAs may serve as diagnostic or therapeutic tool in sepsis, renal injury and nephrotoxic treatment. Trial registration ClinicalTrials.gov, ID: NCT04991376. Registered on 27 July 2021.
Collapse
|
13
|
Yuqiang C, Lisha Z, Jiejun W, Qin X, Niansong W. Pifithrin-α ameliorates glycerol induced rhabdomyolysis and acute kidney injury by reducing p53 activation. Ren Fail 2022; 44:473-481. [PMID: 35285384 PMCID: PMC8928845 DOI: 10.1080/0886022x.2022.2048857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objectives Rhabdomyolysis is a series of symptoms caused by the dissolution of striped muscle, and acute kidney injury (AKI) is a potential complication of severe rhabdomyolysis. The underlying causes of AKI are remarkably complex and diverse. Here, we aim to investigate whether pifithrin-α protected against rhabdomyolysis-induced AKI and to determine the involved mechanisms. Methods Intramuscular injection in the right thigh caudal muscle of C57BL/6J mice with 7.5 ml/kg saline (Group A) or of the same volume 50% glycerol was used to induce rhabdomyolysis and subsequent AKI (Group B). Pifithrin-α was injected intraperitoneally 4 h before (Group C) or 4 h after (Group D) the glycerol injection. Serum creatine kinase, blood urea nitrogen, and creatinine were determined, and the renal cortex was histologically analyzed. Renal expression levels of interested mRNAs and proteins were determined and compared, too. Results Intramuscular injection of glycerol induced rhabdomyolysis and subsequent AKI in mice (Groups B–D). Renal function reduction and histologic injury of renal tubular epithelial cells were associated with increased p53 activation, oxidative stress, and inflammation. Notably, compared with pifithrin-α rescue therapy (Group D), pretreatment of pifithrin-α (Group C) protected the mice from severe injury more effectively. Conclusions Our present study suggests that p53 may be a therapeutic target of AKI caused by glycerol, and the inhibition of p53 can block glycerol-mediated AKI by using pharmacological agents instead of genetic inhibitory approaches, which further supports that p53 played a pivotal role in renal tubular injury when challenged with glycerol.
Collapse
Affiliation(s)
- Chen Yuqiang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhang Lisha
- Department of Emergency, Shanghai Punan Hospital, Pudong New District, Shanghai, China
| | - Wen Jiejun
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xue Qin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wang Niansong
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
14
|
Malkani N, Sohail MI, Ijaz F, Naeem A, Mumtaz S, Saeed Z. Berberis aristata reduces vancomycin-induced nephrotoxicity by down-regulation of cell proliferation markers. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Li X, Pan J, Li H, Li G, Liu B, Tang X, Liu X, He Z, Peng Z, Zhang H, Wang L, Li Y, Xiang X, Chai X, Yuan Y, Zheng P, Zhang D. DsbA-L interacts with VDAC1 in mitochondrion-mediated tubular cell apoptosis and contributes to the progression of acute kidney disease. EBioMedicine 2022; 76:103859. [PMID: 35124430 PMCID: PMC8829058 DOI: 10.1016/j.ebiom.2022.103859] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND we demonstrated that disulfide-bond A oxidoreductase-like protein (DsbA-L) was involved in the progression of renal fibrosis. However, the precise function of DsbA-L in acute kidney injury (AKI), and the mechanisms involved, have yet to be elucidated. METHODS We illustrate the DsbA-L interacted with VDAC1 by co-IP (co-immunoprecipitation) in vitro and vivo, and found the interaction parts of them by mutation experiment. The above findings were verified by co-localization of them. In addition, we constructed the two model of PT-DsbA-L and VDAC1 KO mice to verify the function of DsbA-L and VDAC1 in models of VAN, CLP and I/R-induced AKI. FINDINGS The PT-DsbA-L-KO mice showed amelioration of I/R, VAN-, and CLP-induced AKI progression via the downregulation of VDAC1. Finally, we confirmed these changes in signal molecules by examining in HK-2 cells and kidney biopsies taken from patients with ischemic or acute interstitial nephritis (AIN)-induced AKI. Mechanistically, DsbA-L interacted with amino acids 9-13 and 22-27 of VDAC1 in the mitochondria of BUMPT cells to induce renal cell apoptosis and mitochondrial injury. INTERPRETATION This work suggested that DsbA-L, located in the proximal tubular cells, drives the progression of AKI, by directly upregulating the levels of VDAC1.Running Title: The role of DsbA-L in AKI FUNDING: National Natural Science Foundation of China, a grant from Key Project of Hunan provincial science and technology innovation, Department of Science and Technology of Hunan Province project of International Cooperation and Exchanges, Changsha Science and Technology Bureau project, Natural Science Foundation of Hunan Province, Fundamental Research Funds for the Central Universities of Central South University, Hunan Provincial Innovation Foundation For Postgraduate China Hunan Provincial Science and Technology Department.
Collapse
Affiliation(s)
- Xiaozhou Li
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Jian Pan
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Huiling Li
- Department of Ophthalmology, People's Republic of China
| | - Guangdi Li
- Department of Public Health, Central South University, Changsha, Hunan, People's Republic of China
| | - Bohao Liu
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Xianming Tang
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Xiangfeng Liu
- Department of General Surgery, Second Xiangya Hospital, People's Republic of China
| | - Zhibiao He
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Zhenyu Peng
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Hongliang Zhang
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Luxiang Wang
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Yijian Li
- Departmentof Urinary Surgery, People's Republic of China
| | - Xudong Xiang
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Xiangping Chai
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Yunchang Yuan
- Department of Chestsurgery, People's Republic of China
| | - Peilin Zheng
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.
| |
Collapse
|
16
|
Preferential siRNA delivery to injured kidneys for combination treatment of acute kidney injury. J Control Release 2022; 341:300-313. [PMID: 34826532 PMCID: PMC8776616 DOI: 10.1016/j.jconrel.2021.11.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/03/2023]
Abstract
Acute kidney injury (AKI) is characterized by a sudden loss of renal function and is associated with high morbidity and mortality. Tumor suppressor p53 and chemokine receptor CXCR4 were both implicated in the AKI pathology. Here, we report on the development and evaluation of polymeric CXCR4 antagonist (PCX) siRNA carrier for selective delivery to injured kidneys in AKI. Our results show that PCX/siRNA nanoparticles (polyplexes) provide protection against cisplatin injury to tubule cells in vitro when both CXCR4 and p53 are inhibited. The polyplexes selectively accumulate and are retained in the injured kidneys in cisplatin and bilateral ischemia reperfusion injury models of AKI. Treating AKI with the combined CXCR4 inhibition and p53 gene silencing with the PCX/sip53 polyplexes improves kidney function and decreases renal damage. Overall, our results suggest that the PCX/sip53 polyplexes have a significant potential to enhance renal accumulation in AKI and deliver therapeutic siRNA.
Collapse
|
17
|
Mehanna ET, Khalaf SS, Mesbah NM, Abo-Elmatty DM, Hafez MM. Anti-oxidant, anti-apoptotic, and mitochondrial regulatory effects of selenium nanoparticles against vancomycin induced nephrotoxicity in experimental rats. Life Sci 2021; 288:120098. [PMID: 34715137 DOI: 10.1016/j.lfs.2021.120098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 12/31/2022]
Abstract
AIM Nephrotoxicity is the major limiting factor for the clinical use of vancomycin (VCM) for treatment against multi-resistant Gram-positive bacteria. The present research aimed to investigate the ability of selenium nanoparticles (SeNPs) to protect against VCM-induced nephrotoxicity in rats. MAIN METHODS Experimental rats were divided into five groups; the first was the normal control, the second was treated with VCM (200 mg/kg twice/day, i.p.) for 7 days. The third, fourth, and fifth groups were treated orally with SeNPs (0.5, 1, and 2 mg/kg/day); respectively. SeNPs were administered for 12 days before VCM, 1 week simultaneously with VCM, and for another 1 week after its administration. KEY FINDINGS Levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), and kidney injury molecule-1 (KIM-1) were significantly increased in kidney tissue after VCM administration. Expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), Bcl-2 associated X protein (Bax), caspase 3 and caspase 9 in kidney tissue was significantly increased, while the antioxidant enzymes, mitochondrial complexes, the ATP levels and B-cell lymphoma protein 2 (Bcl-2) were decreased in kidney in the VCM-treated rats compared to the normal control group. Treatment with SeNPs significantly decreased levels of MDA, iNOS, NO, TNF-α, and KIM-1 in the kidney tissue. Administration of SeNPs also downregulated the expression of the proapoptotic agents and enhanced the activities of the antioxidant enzymes and the mitochondrial enzyme complexes in the kidney. SIGNIFICANCE SeNPs alleviated VCM-induced nephrotoxicity through their anti-oxidant, anti-inflammatory, anti-apoptotic and mitochondrial protective effects.
Collapse
Affiliation(s)
- Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Samar S Khalaf
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed M Hafez
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, 6 October City, Egypt
| |
Collapse
|
18
|
Metabolic and Lipidomic Assessment of Kidney Cells Exposed to Nephrotoxic Vancomycin Dosages. Int J Mol Sci 2021; 22:ijms221810111. [PMID: 34576273 PMCID: PMC8466248 DOI: 10.3390/ijms221810111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Vancomycin is a glycopeptide antibiotic used against multi-drug resistant gram-positive bacteria such as Staphylococcus aureus (MRSA). Although invaluable against resistant bacteria, vancomycin harbors adverse drug reactions including cytopenia, ototoxicity, as well as nephrotoxicity. Since nephrotoxicity is a rarely occurring side effect, its mechanism is incompletely understood. Only recently, the actual clinically relevant concentration the in kidneys of patients receiving vancomycin was investigated and were found to exceed plasma concentrations by far. We applied these clinically relevant vancomycin concentrations to murine and canine renal epithelial cell lines and assessed metabolic and lipidomic alterations by untargeted and targeted gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry analyses. Despite marked differences in the lipidome, both cell lines increased anabolic glucose reactions, resulting in higher sorbitol and lactate levels. To the best of our knowledge, this is the first endometabolic profiling of kidney cells exposed to clinically relevant vancomycin concentrations. The presented study will provide a valuable dataset to nephrotoxicity researchers and might add to unveiling the nephrotoxic mechanism of vancomycin.
Collapse
|
19
|
Oshiumi H. Circulating Extracellular Vesicles Carry Immune Regulatory miRNAs and Regulate Vaccine Efficacy and Local Inflammatory Response After Vaccination. Front Immunol 2021; 12:685344. [PMID: 34211472 PMCID: PMC8239358 DOI: 10.3389/fimmu.2021.685344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/31/2021] [Indexed: 01/24/2023] Open
Abstract
Vaccination is the best prophylaxis for the prevention of infectious diseases, including coronavirus disease 2019. However, the efficacy of vaccines and onset of adverse reactions vary among individuals. Circulating extracellular vesicles (EVs) regulate the immune responses after vaccination by delivering microRNAs (miRNAs) to myeloid and lymphoid cells. Among these, miR-192 levels in serum EVs increase with aging, in an IL-6-dependent manner, reducing excessive IL-6 expression in aged mice, creating a negative feedback loop. Excessive IL-6 expression reduces vaccination efficacy in aged mice, while EV miR-192 improves efficacy in these aged mice as well, making this miRNA an interesting focus of study. miR-21 levels in serum EVs also increase with aging, and regulates the expression of IL-12 required for Th1 responses; therefore, EV miR-21 is expected to regulate vaccine efficacy. miR-451a, another important miRNA, is abundant in serum EVs and controls the expression of cytokines, such as type I interferon and IL-6. However, levels differ among individuals and correlate with local inflammatory symptoms experienced after a seasonal flu vaccination. These findings suggest the importance of EV miRNAs as a tool to improve vaccine efficacy and also as biomarkers to predict the immune response and adverse reactions after vaccinations.
Collapse
Affiliation(s)
- Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
20
|
Ren FJ, Yao Y, Cai XY, Fang GY. Emerging Role of MiR-192-5p in Human Diseases. Front Pharmacol 2021; 12:614068. [PMID: 33708127 PMCID: PMC7940509 DOI: 10.3389/fphar.2021.614068] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNAs that play an essential role in numerous biological processes by regulating the post-transcriptional expression of target genes. Recent studies have demonstrated that miR-192-5p, a member of the miR-192 family, partakes in several human diseases, especially various cancers, including cancers of the lung, liver, and breast. Importantly, the levels of miR-192-5p are abundant in biofluids, including the serum and urine, and the exosomal levels of miR-192-5p in circulation can aid in the diagnosis and prognosis of various diseases, such as chronic hepatitis B (CHB) infection disease. Notably, recent studies suggest that miR-192-5p is regulated by long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). However, there are no comprehensive overviews on the role of miR-192-5p in human diseases. This review discusses the significant studies on the role of miR-192-5p in various human diseases, with special emphasis on the diseases of the respiratory and digestive systems.
Collapse
Affiliation(s)
- Fu-Jia Ren
- Department of Pharmacy, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Guo-Ying Fang
- Department of Pharmacy, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
21
|
Li F, Sun A, Cheng G, Liu D, Xiao J, Zhao Z, Dong Z. Compound C Protects Against Cisplatin-Induced Nephrotoxicity Through Pleiotropic Effects. Front Physiol 2021; 11:614244. [PMID: 33424637 PMCID: PMC7785967 DOI: 10.3389/fphys.2020.614244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
AICAR (Acadesine/AICA riboside) as an activator of AMPK, can protect renal tubular cells from cisplatin induced apoptosis. But in our experiment, the dorsomorphin (compound C, an inhibitor of AMPK) also significantly reduced cisplatin induced renal tubular cells apoptosis. Accordingly, we tested whether compound C can protect cisplatin-induced nephrotoxicity and the specific mechanism. Here, we treated Boston University mouse proximal tubular cells (BUMPT-306) with cisplatin and/or different dosages of AICAR (Acadesine/AICA riboside) or compound C to confirm the effect of AICAR and compound C in vitro. The AMPK-siRNA treated cells to evaluate whether the protective effect of compound C was through inhibiting AMPK. Male C57BL/6 mice were used to verify the effect of compound C in vivo. Both compound C and AICAR can reduce renal tubular cells apoptosis in dose-dependent manners, and compound C decreased serum creatinine and renal tubular injury induced by cisplatin. Mechanistically, compound C inhibited P53, CHOP and p-IREα during cisplatin treatment. Our results demonstrated that compound C inhibited AMPK, but the renal protective effects of compound C were not through AMPK. Instead, compound C protected cisplatin nephrotoxicity by inhibiting P53 and endoplasmic reticulum (ER) stress. Therefore, compound C may protect against cisplatin-induced nephrotoxicity through pleiotropic effects.
Collapse
Affiliation(s)
- Fanghua Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Anbang Sun
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Genyang Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Xiao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
22
|
Zhu G, Yang S, Wang R, Lei J, Ji P, Wang J, Tao K, Yang C, Ge S, Wang L. P53/miR-154 Pathway Regulates the Epithelial-Mesenchymal Transition in Glioblastoma Multiforme Cells by Targeting TCF12. Neuropsychiatr Dis Treat 2021; 17:681-693. [PMID: 33664574 PMCID: PMC7924251 DOI: 10.2147/ndt.s273578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Glioblastoma multiforme (GBM) is an aggressive brain tumor with a rather short survival time. Mutation of p53 has been observed and reported to play critical roles in the progression of GBM. However, the pathological mechanisms are still unclear. This study was designed to identify the role of miR-154 in mediating the biological functions of p53 in glioblastoma multiforme. METHODS In the current study, the expression of miR-154 in GBM tissue samples and cell lines with wt-p53 or mutant p53 was evaluated. The functions of miR-154 in tumor migration, invasion and epithelial-mesenchymal transition were analyzed in vitro. A luciferase reporter assay was used to identify the target of miR-154. RESULTS We found that expression of miR-154 was much lower in patient tissues with mutant p53. Further study revealed that p53 was a transcription factor of miR-154 and that the R273H mutation led to its inactivation. In addition, overexpression of miR-154 remarkably suppressed cell migration, invasion and EMT in vitro and tumor growth in vivo. Moreover, TCF12 was proven to be a direct target of miR-154, and the tumor suppressive effect of miR-154 was reversed by TCF12. CONCLUSION Overall, miR-154, which was regulated by wt-p53, inhibited migration, invasion and EMT of GBM cells by targeting TCF12, indicating that miR-154 may act as a biomarker and that the p53/miR-154/TCF12 pathway could be a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Gang Zhu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Shirong Yang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jie Lei
- Department of Neurosurgery, Wuhan General Hospital of PLA, Wuhan, Hubei, People's Republic of China
| | - Peigang Ji
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jiancai Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Kai Tao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Chen Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
23
|
Liu HW, Hu ZL, Li H, Tan QF, Tong J, Zhang YQ. Knockdown of lncRNA ANRIL suppresses the production of inflammatory cytokines and mucin 5AC in nasal epithelial cells via the miR-15a-5p/JAK2 axis. Mol Med Rep 2020; 23:145. [PMID: 33325534 PMCID: PMC7751488 DOI: 10.3892/mmr.2020.11784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The incidence of allergic rhinitis (AR) is increasing worldwide. Human nasal epithelial cells (HNECs) are the key cells in the occurrence of AR. Antisense non-coding RNA in the INK4 locus (ANRIL) was discovered to be involved in the progression of AR. However, the mechanism by which ANRIL mediates the progression of AR remains to be determined. The present study aimed to further explore the mechanism by which ANRIL regulates AR. Thereby, HNECs were treated with IL-13 to mimic AR in vitro. The mRNA expression levels of ANRIL, microRNA (miR)-15a-5p, JAK2, mucin 5AC (MUC5AC), granulocyte-macrophage colony-stimulating factor (GM-CSF) and eotaxin-1, and protein expression levels of JAK2, STAT3 and phosphorylated-STAT3 in HNECs were analyzed using reverse transcription-quantitative PCR and western blotting, respectively. ELISAs were used to detect the secretory levels of inflammatory cytokines and mucin in cell supernatants. In addition, a dual luciferase reporter assay was used to confirm the downstream target of ANRIL and the target gene of miR-15a-5p. The results revealed that the secretory levels of eotaxin-1, GM-CSF and MUC5AC were significantly upregulated by IL-13 in the supernatant of HNECs. The expression levels of ANRIL and JAK2 were also upregulated in IL-13-induced HNECs, while the expression levels of miR-15a-5p were downregulated. In addition, ANRIL was identified to bind to miR-15a-5p. The IL-13-induced upregulation of eotaxin-1, GM-CSF and MUC5AC mRNA expression and secretory levels was significantly inhibited by the genetic knockdown of ANRIL, while the miR-15a-5p inhibitor effectively reversed this effect. JAK2 was also discovered to be directly targeted by miR-15a-5p. The overexpression of JAK2 significantly suppressed the therapeutic effect of miR-15a-5p mimics on IL-13-induced inflammation in vitro. In conclusion, the findings of the present study suggested that the genetic knockdown of ANRIL may suppress the production of inflammatory cytokines and mucin in IL-13-treated HNECs via regulation of the miR-15a-5p/JAK2 axis. Thus, ANRIL may serve as a novel target for AR treatment.
Collapse
Affiliation(s)
- Huo-Wang Liu
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhong-Liang Hu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410007, P.R. China
| | - Hao Li
- Department of Otolaryngology-Head and Neck Surgery, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Qi-Feng Tan
- Department of Otolaryngology-Head and Neck Surgery, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Jing Tong
- Department of Otolaryngology-Head and Neck Surgery, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, P.R. China
| | - Yong-Quan Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
24
|
MBD2 Mediates Septic AKI through Activation of PKCη/p38MAPK and the ERK1/2 Axis. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:76-88. [PMID: 33335794 PMCID: PMC7723772 DOI: 10.1016/j.omtn.2020.09.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022]
Abstract
Our previous study demonstrated that the methyl-CpG-binding domain protein 2 (MBD2) mediates vancomycin (VAN)-induced acute kidney injury (AKI). However, the role and regulation of MBD2 in septic AKI are unknown. Herein, MBD2 was induced by lipopolysaccharide (LPS) in Boston University mouse proximal tubules (BUMPTs) and mice. For both in vitro and in vivo experiments, we showed that inhibition of MBD2 by MBD2 small interfering RNA (siRNA) and MBD2-knockout (KO) substantially improved the survival rate and attenuated both LPS and cecal ligation and puncture (CLP)-induced AKI, renal cell apoptosis, and inflammatory factor production. Global genetic expression analyses and in vitro experiments suggest that the expression of protein kinase C eta (PKCη), caused by LPS, is markedly suppressed in MBD2-KO mice and MBD2 siRNA, respectively. Mechanistically, chromatin immunoprecipitation (ChIP) analysis indicates that MBD2 directly binds to promoter region CpG islands of PKCη via suppression of promoter methylation. Furthermore, PKCη siRNA improves the survival rate and attenuates LPS-induced BUMPT cell apoptosis and inflammatory factor production via inactivation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)1/2, which were further verified by PKCη siRNA treatment in CLP-induced AKI. Finally, MBD2-KO mice exhibited CLP-induced renal cell apoptosis and inflammatory factor production by inactivation of PKCη/p38MAPK and ERK1/2 signaling. Taken together, the data indicate that MBD2 mediates septic-induced AKI through the activation of PKCη/p38MAPK and the ERK1/2 axis. MBD2 represents a potential target for treatment of septic AKI.
Collapse
|
25
|
Petejova N, Martinek A, Zadrazil J, Kanova M, Klementa V, Sigutova R, Kacirova I, Hrabovsky V, Svagera Z, Stejskal D. Acute Kidney Injury in Septic Patients Treated by Selected Nephrotoxic Antibiotic Agents-Pathophysiology and Biomarkers-A Review. Int J Mol Sci 2020; 21:ijms21197115. [PMID: 32993185 PMCID: PMC7583998 DOI: 10.3390/ijms21197115] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
Acute kidney injury is a common complication in critically ill patients with sepsis and/or septic shock. Further, some essential antimicrobial treatment drugs are themselves nephrotoxic. For this reason, timely diagnosis and adequate therapeutic management are paramount. Of potential acute kidney injury (AKI) biomarkers, non-protein-coding RNAs are a subject of ongoing research. This review covers the pathophysiology of vancomycin and gentamicin nephrotoxicity in particular, septic AKI and the microRNAs involved in the pathophysiology of both syndromes. PubMED, UptoDate, MEDLINE and Cochrane databases were searched, using the terms: biomarkers, acute kidney injury, antibiotic nephrotoxicity, sepsis, miRNA and nephrotoxicity. A comprehensive review describing pathophysiology and potential biomarkers of septic and toxic acute kidney injury in septic patients was conducted. In addition, five miRNAs: miR-15a-5p, miR-192-5p, miR-155-5p, miR-486-5p and miR-423-5p specific to septic and toxic acute kidney injury in septic patients, treated by nephrotoxic antibiotic agents (vancomycin and gentamicin) were identified. However, while these are at the stage of clinical testing, preclinical and clinical trials are needed before they can be considered useful biomarkers or therapeutic targets of AKI in the context of antibiotic nephrotoxicity or septic injury.
Collapse
Affiliation(s)
- Nadezda Petejova
- Department of Internal Medicine, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (A.M.); (V.H.)
- Department of Clinical Studies Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
- Department of Internal Medicine III—Nephrology, Rheumatology and Endocrinology, University Hospital and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (J.Z.); (V.K.)
- Correspondence:
| | - Arnost Martinek
- Department of Internal Medicine, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (A.M.); (V.H.)
- Department of Clinical Studies Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
| | - Josef Zadrazil
- Department of Internal Medicine III—Nephrology, Rheumatology and Endocrinology, University Hospital and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (J.Z.); (V.K.)
| | - Marcela Kanova
- Department of Anesthesiology and Resuscitation, University Hospital Ostrava, 70852 Ostrava, Czech Republic;
| | - Viktor Klementa
- Department of Internal Medicine III—Nephrology, Rheumatology and Endocrinology, University Hospital and Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (J.Z.); (V.K.)
| | - Radka Sigutova
- Department of Laboratory Diagnostics Institute of Clinical Biochemistry and Clinical Pharmacology, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (R.S.); (I.K.); (Z.S.); (D.S.)
- Department of Biomedical Sciences Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
| | - Ivana Kacirova
- Department of Laboratory Diagnostics Institute of Clinical Biochemistry and Clinical Pharmacology, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (R.S.); (I.K.); (Z.S.); (D.S.)
- Institute of Clinical Pharmacology Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
| | - Vladimir Hrabovsky
- Department of Internal Medicine, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (A.M.); (V.H.)
- Department of Clinical Studies Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
| | - Zdenek Svagera
- Department of Laboratory Diagnostics Institute of Clinical Biochemistry and Clinical Pharmacology, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (R.S.); (I.K.); (Z.S.); (D.S.)
- Department of Biomedical Sciences Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
| | - David Stejskal
- Department of Laboratory Diagnostics Institute of Clinical Biochemistry and Clinical Pharmacology, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (R.S.); (I.K.); (Z.S.); (D.S.)
- Department of Biomedical Sciences Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
| |
Collapse
|
26
|
Pais GM, Liu J, Zepcan S, Avedissian SN, Rhodes NJ, Downes KJ, Moorthy GS, Scheetz MH. Vancomycin-Induced Kidney Injury: Animal Models of Toxicodynamics, Mechanisms of Injury, Human Translation, and Potential Strategies for Prevention. Pharmacotherapy 2020; 40:438-454. [PMID: 32239518 PMCID: PMC7331087 DOI: 10.1002/phar.2388] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Vancomycin is a recommended therapy in multiple national guidelines. Despite the common use, there is a poor understanding of the mechanistic drivers and potential modifiers of vancomycin-mediated kidney injury. In this review, historic and contemporary rates of vancomycin-induced kidney injury (VIKI) are described, and toxicodynamic models and mechanisms of toxicity from preclinical studies are reviewed. Aside from known clinical covariates that worsen VIKI, preclinical models have demonstrated that various factors impact VIKI, including dose, route of administration, and thresholds for pharmacokinetic parameters. The degree of acute kidney injury (AKI) is greatest with the intravenous route and higher doses that produce larger maximal concentrations and areas under the concentration curve. Troughs (i.e., minimum concentrations) have less of an impact. Mechanistically, preclinical studies have identified that VIKI is a result of drug accumulation in proximal tubule cells, which triggers cellular oxidative stress and apoptosis. Yet, there are several gaps in the knowledge that may represent viable targets to make vancomycin therapy less toxic. Potential strategies include prolonging infusions and lowering maximal concentrations, administration of antioxidants, administering agents that decrease cellular accumulation, and reformulating vancomycin to alter the renal clearance mechanism. Based on preclinical models and mechanisms of toxicity, we propose potential strategies to lessen VIKI.
Collapse
Affiliation(s)
- Gwendolyn M. Pais
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois
- Pharmacometrics Center of Excellence, Midwestern University Chicago College of Pharmacy, Downers Grove, Illinois
| | - Jiajun Liu
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois
- Pharmacometrics Center of Excellence, Midwestern University Chicago College of Pharmacy, Downers Grove, Illinois
| | - Sanja Zepcan
- Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois
| | - Sean N. Avedissian
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center (UNMC) Center for Drug Discovery, UNMC, Omaha, Nebraska
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nathaniel J. Rhodes
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois
- Pharmacometrics Center of Excellence, Midwestern University Chicago College of Pharmacy, Downers Grove, Illinois
| | - Kevin J. Downes
- Division of Infectious Diseases, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ganesh S. Moorthy
- Division of Critical Care, Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marc H. Scheetz
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois
- Pharmacometrics Center of Excellence, Midwestern University Chicago College of Pharmacy, Downers Grove, Illinois
| |
Collapse
|
27
|
Du H, Li Z, Yang Y, Li X, Wei Y, Lin Y, Zhuang X. New insights into the vancomycin-induced nephrotoxicity using in vitro metabolomics combined with physiologically based pharmacokinetic modeling. J Appl Toxicol 2020; 40:897-907. [PMID: 32079046 DOI: 10.1002/jat.3951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 01/12/2023]
Abstract
Vancomycin is a first-line treatment for invasive infections caused by multidrug-resistant gram-positive bacteria. However, vancomycin-induced nephrotoxicity is an increasing burden, particularly in patients with complex life-threatening conditions. Vancomycin-induced nephrotoxicity associated with clinically relevant exposure on the target site has not been well defined. This study aimed to acquire the concentration of vancomycin in the renal tubules and kidneys in humans using physiologically based pharmacokinetic (PBPK) modeling and simulation. Based upon the exposure of vancomycin in the renal tubule, the toxicity of vancomycin in human renal proximal tubular epithelial cells was examined with the XTT assay and in vitro metabolomics analysis. A rat PBPK model predicting plasma and kidney concentration-time profiles of vancomycin matched the observed behavior after a single administration of 10 mg/kg. The concentration of vancomycin in renal tubules was about 40-50 times higher than that in plasma. The human PBPK model transferred from the rat model predicted renal tubule concentrations of vancomycin as 316.1-2136.6 μg/mL at 500 mg every 6 hours, and 199.0-3932.5 μg/mL at 1000 mg every 12 hours. Vancomycin showed significant nephrotoxicity at 4 mg/mL in XTT assessment. In total, 11 lysophosphatidylcholines and one lysophosphatidylethanolamine were identified by metabolomics analysis. The concentration-dependent increase was evident in the release of lysophospholipids after vancomycin treatment (0.125-4 mg/mL) for 24 hours. Our study revealed the relationship between the exposure of vancomycin in the kidney and toxicity of vancomycin at clinically relevant concentrations achieved from a mechanical PBPK model. A series of lysophospholipids as potential metabolic markers of renal toxicity were identified.
Collapse
Affiliation(s)
- Haiyan Du
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zheng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yi Yang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiao Li
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Wei
- Department of Otolaryngological, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yang Lin
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
28
|
Kilic A, Barlak N, Sanli F, Aytatli A, Capik O, Karatas OF. Mode of action of carboplatin via activating p53/miR‐145 axis in head and neck cancers. Laryngoscope 2019; 130:2818-2824. [DOI: 10.1002/lary.28492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
|
29
|
Zou D, Ganugula R, Arora M, Nabity MB, Sheikh-Hamad D, Kumar MNVR. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. Am J Physiol Renal Physiol 2019; 317:F1255-F1264. [DOI: 10.1152/ajprenal.00346.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The popular anticancer drug cisplatin causes many adverse side effects, the most serious of which is acute kidney injury (AKI). Emerging evidence from laboratory and clinical studies suggests that the AKI pathogenesis involves oxidative stress pathways; therefore, regulating such pathways may offer protection. Urolithin A (UA), a gut metabolite of the dietary tannin ellagic acid, possesses antioxidant properties and has shown promise in mouse models of AKI. However, therapeutic potential of UA is constrained by poor bioavailability. We aimed to improve oral bioavailability of UA by formulating it into biodegradable nanoparticles that use a surface-conjugated ligand targeting the gut-expressed transferrin receptor. Nanoparticle encapsulation of UA led to a sevenfold enhancement in oral bioavailability compared with native UA. Treatment with nanoparticle UA also significantly attenuated the histopathological hallmarks of cisplatin-induced AKI and reduced mortality by 63% in the mouse model. Expression analyses indicated that nanoparticle UA therapy coincided with oxidative stress mitigation and downregulation of nuclear factor erythroid 2-related factor 2- and P53-inducible genes. Additionally, normalization of miRNA (miR-192-5p and miR-140-5p) implicated in AKI, poly(ADP-ribose) polymerase 1 levels, antiapoptotic signaling, intracellular NAD+, and mitochondrial oxidative phosphorylation were observed in the treatment group. Our findings suggest that nanoparticles greatly increase the oral bioavailability of UA, leading to improved survival rates in AKI mice, in part by reducing renal oxidative and apoptotic stress.
Collapse
Affiliation(s)
- Dianxiong Zou
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Raghu Ganugula
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Mary B. Nabity
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, Texas
| | | | - M. N. V. Ravi Kumar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| |
Collapse
|
30
|
Zou D, Ganugula R, Arora M, Nabity MB, Sheikh-Hamad D, Kumar MNVR. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. Am J Physiol Renal Physiol 2019. [DOI: 10.1152/ajprenal.00346.2019 pmid: 31532243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The popular anticancer drug cisplatin causes many adverse side effects, the most serious of which is acute kidney injury (AKI). Emerging evidence from laboratory and clinical studies suggests that the AKI pathogenesis involves oxidative stress pathways; therefore, regulating such pathways may offer protection. Urolithin A (UA), a gut metabolite of the dietary tannin ellagic acid, possesses antioxidant properties and has shown promise in mouse models of AKI. However, therapeutic potential of UA is constrained by poor bioavailability. We aimed to improve oral bioavailability of UA by formulating it into biodegradable nanoparticles that use a surface-conjugated ligand targeting the gut-expressed transferrin receptor. Nanoparticle encapsulation of UA led to a sevenfold enhancement in oral bioavailability compared with native UA. Treatment with nanoparticle UA also significantly attenuated the histopathological hallmarks of cisplatin-induced AKI and reduced mortality by 63% in the mouse model. Expression analyses indicated that nanoparticle UA therapy coincided with oxidative stress mitigation and downregulation of nuclear factor erythroid 2-related factor 2- and P53-inducible genes. Additionally, normalization of miRNA (miR-192-5p and miR-140-5p) implicated in AKI, poly(ADP-ribose) polymerase 1 levels, antiapoptotic signaling, intracellular NAD+, and mitochondrial oxidative phosphorylation were observed in the treatment group. Our findings suggest that nanoparticles greatly increase the oral bioavailability of UA, leading to improved survival rates in AKI mice, in part by reducing renal oxidative and apoptotic stress.
Collapse
Affiliation(s)
- Dianxiong Zou
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Raghu Ganugula
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| | - Mary B. Nabity
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, College Station, Texas
| | | | - M. N. V. Ravi Kumar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas
| |
Collapse
|
31
|
Sun CY, Zhang XP, Wang W. Coordination of miR-192 and miR-22 in p53-Mediated Cell Fate Decision. Int J Mol Sci 2019; 20:ijms20194768. [PMID: 31561425 PMCID: PMC6801623 DOI: 10.3390/ijms20194768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/08/2019] [Accepted: 09/22/2019] [Indexed: 12/14/2022] Open
Abstract
p53-targeted microRNAs (miRNAs) markedly affect cellular response to DNA damage. These miRNAs may contribute to either cell cycle arrest or apoptosis induction. However, how these miRNAs coordinate to modulate the decision between cell survival and death remains less understood. Here, we developed an integrated model of p53 signaling network to investigate how p53-targeted miR-192 and miR-22 modulate cellular outcome in response to DNA damage. By numerical simulations, we found that p53 is activated progressively depending on the extent of DNA damage. Upon moderate damage, p53 rises to medium levels and induces miR-192 to promote its own activation, facilitating p21 induction and cell cycle arrest. Upon severe damage, p53 reaches high levels and is fully activated due to phosphatase and tensin homolog (PTEN) induction. As a result, it transactivates miR-22 to repress p21 expression and activate E2F1, resulting in apoptosis. Therefore, miR-192 promotes primary activation of p53, while miR-22 promotes apoptosis by downregulating p21. This work may advance the understanding of the mechanism for cell fate decision between life and death by p53-inducible miRNAs.
Collapse
Affiliation(s)
- Cheng-Yuan Sun
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Xiao-Peng Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.
| | - Wei Wang
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China.
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
32
|
Turk E, Kandemir FM, Yildirim S, Caglayan C, Kucukler S, Kuzu M. Protective Effect of Hesperidin on Sodium Arsenite-Induced Nephrotoxicity and Hepatotoxicity in Rats. Biol Trace Elem Res 2019; 189:95-108. [PMID: 30066062 DOI: 10.1007/s12011-018-1443-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
Abstract
The present study was conducted to investigate the protective effects of hesperidin (HSP) against sodium arsenite (SA)-induced nephrotoxicity and hepatotoxicity in rats. Thirty-five male Sprague Dawley rats were divided into five groups as follows: control, HSP, SA, SA + HSP 100, and SA + HSP 200. Rats were orally gavaged with SA (10 mg/kg body weight) and HSP (100 and 200 mg/kg body weight) for 15 days. SA increased oxidative damage by decreasing antioxidant enzyme activities, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), and glutathione (GSH) level and increasing malondialdehyde (MDA) level in the kidney and liver tissues. In addition, it increased serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and serum urea and creatinine levels. Furthermore, SA caused inflammation, apoptosis, and oxidative DNA damage by increasing tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), interleukin-1β (IL-1β), cysteine aspartate-specific protease-3 (caspase-3), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the kidney and liver tissues and by increasing liver p53 and kidney interleukin-6 (IL-6) expressions. In other words, HSP administration reduced apoptosis, oxidative stress, inflammation, and oxidative DNA damage significantly in SA-induced kidney and liver tissues depending on dose. In this study, it was seen that HSP showed a protective effect against SA-induced kidney and liver toxicity.
Collapse
Affiliation(s)
- Erdinç Turk
- Department of Pharmacy Professional Sciences, Faculty of Pharmacy, Agri Ibrahim Cecen University, 04100, Ağrı, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Muslum Kuzu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
33
|
Xu L, Li X, Zhang F, Wu L, Dong Z, Zhang D. EGFR drives the progression of AKI to CKD through HIPK2 overexpression. Theranostics 2019; 9:2712-2726. [PMID: 31131063 PMCID: PMC6526000 DOI: 10.7150/thno.31424] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/25/2019] [Indexed: 12/30/2022] Open
Abstract
The molecular mechanism underlying the transition of acute kidney injury (AKI) to chronic kidney disease (CKD) induced by vancomycin (VAN) remains largely unknown. Methods: The mice model of VAN drives AKI to CKD was developed to investigate the role and molecular mechanism of epidermal growth factor receptor (EGFR). The EGF receptor mutant (Wa-2) mice and gefitinib were used to inactivation of EGFR. The homeodomain interacting protein kinase 2 (HIPK2) siRNA was applied to silence of HIPK2. Human proximal tubular epithelial cells (HK-2) were used to explore the molecular regulation methanism of EGFR. ChIp analysis was used to investigate if STAT3 interaction with the promoter of HIPK2. Results: A novel VAN-induced AKI mouse model was established for the first time. Moreover, the expression levels collagen I&IV, α-SMA, p-EGFR and the expression of HIPK2 proteins were upregulated in this model. Interestingly, AKI caused by VAN was markedly attenuated in waved-2 mice at the early stage, as evidenced by the suppression of renal dysfunction, renal cell apoptosis and caspase3 activation. In the latter stage, renal fibrosis and inflammation were significantly ameliorated in Wa-2 mice, accompanied by the downregulation of profibrotic molecules and F4/80. Besides, the expression levels of HIPK2 and p-STAT3 were suppressed in Wa-2 mice during VAN-induced transition of AKI to CKD. In addition, renal fibrosis and inflammation, profibrotic molecules, and EGFR/STAT3/HIPK2 signaling were ameliorated by gefitinib treatment after VAN-induced AKI. These results were consistent with the findings of Wa-2 mice. EGFR/STAT3 signaling mediated VAN-induced HIPK2 expression in HK-2 cells. ChIp analysis revealed that STAT3 directly bound to the promoter region of HIPK2. Finally, inhibition of HIPK2 attenuated the VAN drove the progression of AKI to CKD. Conclusion: These data suggest that EGFR plays an important role in VAN-driven progression of AKI to CKD.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Acute Kidney Injury/chemically induced
- Acute Kidney Injury/complications
- Acute Kidney Injury/genetics
- Acute Kidney Injury/metabolism
- Animals
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Caspase 3/genetics
- Caspase 3/metabolism
- Cell Line
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type IV/genetics
- Collagen Type IV/metabolism
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gefitinib/pharmacology
- Gene Expression Regulation
- Humans
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mutation
- Promoter Regions, Genetic
- Protein Binding
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Renal Insufficiency, Chronic/chemically induced
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Vancomycin/administration & dosage
Collapse
Affiliation(s)
- Luyang Xu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, Hunan, People's Republic of China
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China, People's Republic of China
| | - Xiaozhou Li
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, Hunan, People's Republic of China
| | - Fei Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, Hunan, People's Republic of China
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China, People's Republic of China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China, People's Republic of China
| | - Zheng Dong
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Department of cellular Biology and anatomy, Medical college of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
34
|
Zhou G, Zhang X, Wang W, Zhang W, Wang H, Xin G. Both Peripheral Blood and Urinary miR-195-5p, miR-192-3p, miR-328-5p and Their Target Genes PPM1A, RAB1A and BRSK1 May Be Potential Biomarkers for Membranous Nephropathy. Med Sci Monit 2019; 25:1903-1916. [PMID: 30865617 PMCID: PMC6427931 DOI: 10.12659/msm.913057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background To identify noninvasive diagnostic biomarkers for membranous nephropathy (MN). Material/Methods The mRNA microarray datasets GSE73953 using peripheral blood mononuclear cells (PBMCs) of 8 membranous nephropathy patients and 2 control patients; and microRNAs (miRNA) microarray dataset GSE64306 using urine sediments of 4 membranous nephropathy patients and 6 control patients were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were respectively identified from PBMCs and urine sediments of membranous nephropathy patients, followed with functional enrichment analysis, protein-protein interaction (PPI) analysis, and miRNA-target gene analysis. Finally, the DEGs and the target genes of DEMs were overlapped to obtain crucial miRNA-mRNA interaction pairs for membranous nephropathy. Results A total of 1246 DEGs were identified from PBMCs samples, among them upregulated CCL5 was found to be involved in the chemokine signaling pathway, and BAX was found to be apoptosis related; while downregulated PPM1A and CDK1 were associated with the MAPK signaling pathway and the p53 signaling pathway, respectively. The hub role of CDK1 (degree=18) and CCL5 (degree=12) were confirmed after protein-protein interaction network analysis in which CKD1 could interact with RAB1A. A total of 28 DEMs were identified in urine sediments. The 276 target genes of DEMs were involved in cell cycle arrest (PPM1A) and intracellular signal transduction (BRSK1). Thirteen genes were shared between the DEGs in PMBCs and the target genes of DEMs in urine sediments, but only hsa-miR-192-3p-RAB1A, hsa-miR-195-5p-PPM1A, and hsa-miR-328-5p-BRSK1 were negatively related in their expression level. Conclusions Both peripheral blood and urinary miR-195-5p, miR-192-3p, miR-328-5p, and their target genes PPM1A, RAB1A, and BRSK1 may be potential biomarkers for membranous nephropathy by participating in inflammation and apoptosis.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Xiaofei Zhang
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Wenlong Zhang
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Huaying Wang
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Guangda Xin
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
35
|
Xu X, Pan J, Li H, Li X, Fang F, Wu D, Zhou Y, Zheng P, Xiong L, Zhang D. Atg7 mediates renal tubular cell apoptosis in vancomycin nephrotoxicity through activation of PKC-δ. FASEB J 2019; 33:4513-4524. [PMID: 30589566 DOI: 10.1096/fj.201801515r] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent studies have shown that autophagy exhibits a renoprotective role in various models of acute kidney injury (AKI). However, its role in vancomycin (Van)-induced AKI remains largely unclarified. This study was the first to indicate that autophagy was rapidly activated in both human kidney-2 cells and renal tissues, and mammalian target of rapamycin (mTOR) was inactivated via the suppression of ERK1/2 and mTOR during Van treatment. Interestingly, for both in vitro and in vivo experiments, the suppression of autophagy via chloroquine and PT-Atg7-KO significantly ameliorated Van-induced kidney injury and renal tubular cell apoptosis. Global gene expression analysis indicated that the expression levels of 6159 genes were induced by Van treatment in the kidney cortical tissues of PT-Atg7 wild-type mice, and 18 of them were notably suppressed in PT-Atg7-KO mice. These 18 genes were further classified as programmed cell death, protein binding, signal transduction, E3 ubiquitin ligase, nucleoside diphosphate kinase activity, and E1-like activating enzyme. Unexpectedly, following Van treatment, PKC-δ expression was found to be highest among the 4 genes related to cell death, which was remarkably suppressed in vitro and in PT-Atg7-KO mice. In addition, Atg7 could induce renal cell apoptosis during Van treatment via binding to PKC-δ. Likewise, the inhibition of PKCδ ameliorated Van-induced apoptosis in human kidney-2 cells and kidney tissues. Furthermore, the data showed that PT-Atg7-KO exerted a renoprotective effect against Van-induced nephrotoxicity, but this effect was lost after injection with myc-tagged PKCδ. Taken altogether, these results indicate that Van induces autophagy by suppressing the activation of the ERK1/2 and mTOR signaling pathway. In addition, Atg7 mediates Van-induced AKI through the activation of PKCδ. In sum, autophagy inhibition may serve as a novel therapeutic target for treating nephrotoxic AKI induced by Van.-Xu, X., Pan, J., Li, H., Li, X., Fang, F., Wu, D., Zhou, Y., Zheng, P., Xiong, L., Zhang, D. Atg7 mediates renal tubular cell apoptosis in vancomycin nephrotoxicity through activation of PKC-δ.
Collapse
Affiliation(s)
- Xuan Xu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jian Pan
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Huiling Li
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaozhou Li
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Fang Fang
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Dengke Wu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zhou
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Peiling Zheng
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Changsha, China; and
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
36
|
Baisantry A, Berkenkamp B, Rong S, Bhayadia R, Sörensen-Zender I, Schmitt R, Melk A. Time-dependent p53 inhibition determines senescence attenuation and long-term outcome after renal ischemia-reperfusion. Am J Physiol Renal Physiol 2019; 316:F1124-F1132. [PMID: 30785352 DOI: 10.1152/ajprenal.00333.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Inhibition of p53 has been shown to be an efficient strategy for ameliorating kidney ischemia-reperfusion (I/R) injury in experimental models. The therapeutic value of p53 siRNA-based inhibition for I/R in renal transplantation is currently being evaluated in clinical studies. While the major rationale for these studies is the suppression of proapoptotic properties, there are more equally important injury response pathways regulated by p53. A p53-dependent pathway shown to be crucial for renal long-term outcome is cellular senescence. In this study, we tested the hypothesis that p53 siRNA reduces I/R-induced senescence and thereby improves kidney outcome. By comparing the impact of different treatment durations in a mouse model of renal I/R, we found that repetitive administration of p53 siRNA during the first 14 days after I/R reduced the senescence load and ameliorated the postischemic phenotype. Prolonged application of p53 siRNA over a 26-day period after I/R, however, did not provide any additional benefit for senescence reduction but reversed some of the renoprotective effects of the early treatment. These data suggest a time-dependent role of p53 activity supporting the current therapeutic concept of a short-term inhibition, while advocating against a prolonged treatment after I/R.
Collapse
Affiliation(s)
- Arpita Baisantry
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School , Hannover , Germany
| | - Birgit Berkenkamp
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School , Hannover , Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School , Hannover , Germany
| | - Raj Bhayadia
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School , Hannover , Germany
| | - Inga Sörensen-Zender
- Department of Nephrology and Hypertension, Hannover Medical School , Hannover , Germany
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Hannover Medical School , Hannover , Germany
| | - Anette Melk
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School , Hannover , Germany
| |
Collapse
|
37
|
Tang C, Ma Z, Zhu J, Liu Z, Liu Y, Liu Y, Cai J, Dong Z. P53 in kidney injury and repair: Mechanism and therapeutic potentials. Pharmacol Ther 2018; 195:5-12. [PMID: 30347214 DOI: 10.1016/j.pharmthera.2018.10.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acute kidney injury (AKI) is a major kidney disease with poor clinical outcome. Besides its acute consequence of high mortality, AKI may also contribute significantly to the occurrence and progression of chronic kidney diseases (CKD). Accumulating evidence has demonstrated that maladaptive and incomplete kidney repair after AKI leads to the development of renal fibrosis and, ultimately, CKD. p53, a well-known tumor suppressor, plays a critical role in AKI and subsequent kidney repair through the regulation of various cell biologic processes, including apoptosis, cell cycle arrest, and autophagy. Despite the notable progress in deciphering the involvement of p53 in kidney injury and repair, the underlying mechanisms of p53 in these pathological processes remain largely unknown. Further investigation in this area is essential for the application of p53 as therapeutic target to prevent and treat AKI or impede its progression to CKD. In this review, we summarize the recent advances in understanding p53 regulation of AKI and kidney repair, pinpoint the potential of p53 as a therapeutic target, and present future research interests and directions.
Collapse
Affiliation(s)
- Chengyuan Tang
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification in Hunan, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Zhengwei Ma
- Department of Cellular Biology and Anatomy, Charlie Norwood VA Medical Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jiefu Zhu
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification in Hunan, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Zhiwen Liu
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification in Hunan, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Yuxue Liu
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification in Hunan, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Yu Liu
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification in Hunan, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Juan Cai
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification in Hunan, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification in Hunan, The Second Xiangya Hospital at Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Charlie Norwood VA Medical Center, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
38
|
JBP485 attenuates vancomycin-induced nephrotoxicity by regulating the expressions of organic anion transporter (Oat) 1, Oat3, organic cation transporter 2 (Oct2), multidrug resistance-associated protein 2 (Mrp2) and P-glycoprotein (P-gp) in rats. Toxicol Lett 2018; 295:195-204. [DOI: 10.1016/j.toxlet.2018.06.1220] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/02/2018] [Accepted: 06/27/2018] [Indexed: 11/20/2022]
|
39
|
Kandemir FM, Yildirim S, Kucukler S, Caglayan C, Mahamadu A, Dortbudak MB. Therapeutic efficacy of zingerone against vancomycin-induced oxidative stress, inflammation, apoptosis and aquaporin 1 permeability in rat kidney. Biomed Pharmacother 2018; 105:981-991. [DOI: 10.1016/j.biopha.2018.06.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023] Open
|
40
|
Li F, Liu Z, Tang C, Cai J, Dong Z. FGF21 is induced in cisplatin nephrotoxicity to protect against kidney tubular cell injury. FASEB J 2018; 32:3423-3433. [PMID: 29401620 DOI: 10.1096/fj.201701316r] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cisplatin, a widely used cancer therapy drug, induces nephrotoxicity or acute kidney injury (AKI), but the underlying mechanism remains unclear, and renal protective approaches are not available. Fibroblast growth factor (FGF)21 is an endocrine factor that regulates glucose uptake, metabolism, and energy expenditure. However, recent work has also implicated FGF21 in cellular stress response under pathogenic conditions. The role and regulation of FGF21 in AKI are unclear. Here, we show that FGF21 was dramatically induced during cisplatin treatment of renal tubular cells in vitro and mouse kidneys in vivo. The inductive response was suppressed by pifithrin (a pharmacological inhibitor of P53), suggesting a role of P53 in FGF21 induction. In cultured renal tubular cells, knockdown of FGF21 aggravated cisplatin-induced apoptosis, whereas supplementation of recombinant FGF21 was protective. Consistently, recombinant FGF21 alleviated cisplatin-induced kidney dysfunction, tissue damage, and tubular apoptosis in mice. Mechanistically, FGF21 suppressed P53 induction and activation during cisplatin treatment. Together, these results indicate that FGF21 is induced during cisplatin nephrotoxicity to protect renal tubules, and recombinant FGF21 may have therapeutic potential.-Li, F., Liu, Z., Tang, C., Cai, J., Dong, Z. FGF21 is induced in cisplatin nephrotoxicity to protect against kidney tubular cell injury.
Collapse
Affiliation(s)
- Fanghua Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Juan Cai
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| |
Collapse
|
41
|
Li W, Tao S, Wu Q, Wu T, Tao R, Fan J. Glutamine reduces myocardial cell apoptosis in a rat model of sepsis by promoting expression of heat shock protein 90. J Surg Res 2017; 220:247-254. [PMID: 29180187 DOI: 10.1016/j.jss.2017.06.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023]
|
42
|
Genome-wide Profiling of Urinary Extracellular Vesicle microRNAs Associated With Diabetic Nephropathy in Type 1 Diabetes. Kidney Int Rep 2017; 3:555-572. [PMID: 29854963 PMCID: PMC5976846 DOI: 10.1016/j.ekir.2017.11.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023] Open
Abstract
Introduction Diabetic nephropathy (DN) is a form of progressive kidney disease that often leads to end-stage renal disease (ESRD). It is initiated by microvascular complications due to diabetes. Although microalbuminuria (MA) is the earliest clinical indication of DN among patients with type 1 diabetes (T1D), it lacks the sensitivity and specificity to detect the early onset of DN. Recently, microRNAs (miRNAs) have emerged as critical regulators in diabetes as well as various forms of kidney disease, including renal fibrosis, acute kidney injury, and progressive kidney disease. Additionally, circulating extracellular miRNAs, especially miRNAs packaged in extracellular vesicles (EVs), have garnered significant attention as potential noninvasive biomarkers for various diseases and health conditions. Methods As part of the University of Pittsburgh Epidemiology of Diabetes Complications (EDC) study, urine was collected from individuals with T1D with various grades of DN or MA (normal, overt, intermittent, and persistent) over a decade at prespecified intervals. We isolated EVs from urine and analyzed the small-RNA using NextGen sequencing. Results We identified a set of miRNAs that are enriched in urinary EVs compared with EV-depleted samples, and identified a number of miRNAs showing concentration changes associated with DN occurrence, MA status, and other variables, such as hemoglobin A1c levels. Conclusion Many of the miRNAs associated with DN occurrence or MA status directly target pathways associated with renal fibrosis (including transforming growth factor-β and phosphatase and tensin homolog), which is one of the major contributors to the pathology of DN. These miRNAs are potential biomarkers for DN and MA.
Collapse
|
43
|
Wang J, Li H, Qiu S, Dong Z, Xiang X, Zhang D. MBD2 upregulates miR-301a-5p to induce kidney cell apoptosis during vancomycin-induced AKI. Cell Death Dis 2017; 8:e3120. [PMID: 29022913 PMCID: PMC5682674 DOI: 10.1038/cddis.2017.509] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/14/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023]
Abstract
Despite DNA methylation occurred in acute kidney injury (AKI), how it influenced progression of AKI remains unclear. Methyl-CpG-binding domain protein 2 (MBD2), a protein readers of methylation, was used to analyze the impact of DNA methylation on vancomycin (VAN)-induced AKI. Here, in cultured human kidney tubular epithelial cells (HK-2), we show that knockdown of MBD2 by siRNA attenuated VAN-induced apoptosis, caspase activity, and the expression of BAX and cleaved caspase 3. Interestingly, knockdown of MBD2 by siRNA was associated with the suppression of miR-301a-5p. Mechanistic studies confirmed MBD2 binds to these methylated CpG elements of miR-301a-5p promoter, and then activates miR-301a-5p promoter by suppressing methylation. Furthermore, anti-miR-301a-5p significantly blocked VAN-induced apoptosis and caspase activity in HK-2 cells, which was accompanied by downregulation of p53, and upregulation of MITF, HDGF and MDM-4 together. The latter genes were further identified as target genes of miR-301a-5p, and silencing of MDM-4 promoted p53 accumulation. In vivo, mice with MBD2 knockout (MBD2-KO) were counteracted to VAN-induced AKI, indicated by the analysis of renal function, histology, apoptosis and inflammation. MBD2-KO also significantly suppressed the expression of miR-301a-5p, p53, BAX and cleaved caspase 3, and restored the expression of MDM-4, MITF and HDGF. Finally, in vivo inhibition of miR-301a-5p also ameliorated VAN-induced AKI. Together, these results show the novel MBD2/miR-301a-5p/MITF, HDGF and MDM-4/p53 pathway in VAN-induced AKI.
Collapse
Affiliation(s)
- Juan Wang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Huiling Li
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Shuangfa Qiu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zheng Dong
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Xudong Xiang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
44
|
Xu X, Wang J, Yang R, Dong Z, Zhang D. Genetic or pharmacologic inhibition of EGFR ameliorates sepsis-induced AKI. Oncotarget 2017; 8:91577-91592. [PMID: 29207668 PMCID: PMC5710948 DOI: 10.18632/oncotarget.21244] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/06/2017] [Indexed: 12/19/2022] Open
Abstract
Despite recent studies have demonstrated that the EGF receptor (EGFR) activation provided a renoprotective role during ischemic and folic acid-induced AKI, the role and regulation mechanism of EGFR in septic AKI remains unclear. Here, gefitinib, a highly selective EGFR inhibitor, abrogated LPS-induced phosphorylation of EGFR, ERK1/2, and STAT3 as well as expression of COX, eNOS, and proinflammatory cytokines in HK-2 cells. In addition, c-Src is an upstream of EGFR signaling pathway and mediates LPS-induced EGFR transactivation. In vivo, either gefitinib or genetic approaches (Wave-2 mutant mice, which have reduced EGFR tyrosine kinase activity) protected against LPS or cecal ligation and puncture (CLP) induced AKI respectively. Interestingly, the beneficial effects of gefitinib or genetic approaches were accompanied by the dephosphorylation of EGFR, ERK1/2, and STAT3, the down regulation of expression of COX, eNOS, macrophage infiltration, proinflammatory cytokines production and the renal cell apoptosis. Furthermore, mRNA array results indicated that gene families involved in cell death, inflammation, proliferation and signal transduction were down regulated in Wave-2 (Wa-2) mice. Take together, these data suggest that EGFR may mediate renal injury by promoting production of inflammatory factors and cell apoptosis. Inhibition of EGFR may have therapeutic potential for AKI during endotoxemia.
Collapse
Affiliation(s)
- Xuan Xu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, Hunan, People's Republic of China.,Department of Emergency Medicine, Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Juan Wang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, Hunan, People's Republic of China
| | - Ruhao Yang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, Hunan, People's Republic of China
| | - Zheng Dong
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, Hunan, People's Republic of China.,Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|