1
|
Yang QH, Fu YQ, Feng WL, Mao JF, Xu N, Liu Q, Yan QJ, Yang HJ, Zhang XP. LncRNA-MALAT1 promotes triple-negative breast cancer progression and function as ceRNA to target REEP5 by sponging miR-106a-5p. Eur J Med Res 2025; 30:159. [PMID: 40059235 PMCID: PMC11892299 DOI: 10.1186/s40001-025-02420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/01/2025] [Indexed: 05/13/2025] Open
Abstract
Axillary lymph node metastasis (ALNM) in triple negative breast cancer (TNBC) will lead to poor prognosis. Recent studies have shown that long non-coding RNAs (lncRNAs) were involved in the progression of tumors. This study aimed to explore the role and mechanism of lncRNA-MALAT1 in the progression of TNBC and its relationship with ALNM. MALAT1 is highly expressed in TNBC cells lines, tumor tissues and serum, and it is positively correlated with the degree of ALNM. In addition, MALAT1 can act as a competitive endogenous RNA (ceRNA) that regulates cellular biological behavior by competitively binding to miR-106a-5p with REEP5. In conclusion, our results show that MALAT1 could function as ceRNA promote the proliferation, invasion and metastasis of TNBC cells through MALAT1/miR-106a-5p/REEP5 axis, which is expected to provide new ideas for the diagnosis of TNBC in clinic.
Collapse
Affiliation(s)
- Qiu-Hui Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, Zhejiang, China
| | - Ye-Qin Fu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Wei-Liang Feng
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jie-Fei Mao
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Ning Xu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Qing Liu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, Zhejiang, China
| | - Qian-Jun Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, Zhejiang, China
| | - Hong-Jian Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xi-Ping Zhang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
2
|
Garcia MU, Yeh CY, Godfrey B, Perez PN, Barisano G, Varma S, Ahmadian S, Toland A, Granucci M, Trinh T, Vogel H, West R, Angelo M, Tian L, Plevritis SK, Gephart MH. Spatial Profiling Reveals Equivalence-Derived Molecular Signatures of Brain Mimicry and Adaptation in Breast Cancer Brain Metastases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.631781. [PMID: 39868142 PMCID: PMC11760734 DOI: 10.1101/2025.01.13.631781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Brain metastases (BrMets), common for advanced-stage breast cancer patients, are associated with poor median survival and accompanied by severe neurologic decline. Halting the progression of breast cancer brain metastases (BCBMs) may require modulation of the tumor microenvironment (TME), yet little is known about the impact of the primary breast TME on brain tropism, or how, once there, metastatic breast cancer cells coexist with brain-resident cells (e.g., neurons and glia). Traditionally, studies in this space have focused on differential expression analysis, overlooking potential insights gained from investigating genes with equivalent expression between groups. This is particularly crucial in distant metastasis, where tumor cells may co-opt the transcriptional programs of the host organ (e.g., brain) to facilitate successful seeding and outgrowth. Prior to our work, no computational framework existed to determine biologically-relevant equivalent gene expression. To resolve molecular mechanisms of BCBM enabled by metastatic cancer cells and/or resident brain cells, we leveraged Nanostring GeoMx to perform spatially-resolved transcriptomic profiling on 235 patient-derived tissue cores from BCBM (including adjacent normal brain), primary invasive breast cancers, and normal (non-cancer) brain; analyzing 18,677 RNAs in 450 areas of interest (AOIs). We introduce the "Equivalent Expression Index" a highly specific and accurate algorithm that identifies statistically significant "Equivalently-Expressed Genes". This method facilitated the identification of molecular remodeling and mimicry genes within tissue-specific TMEs. By integrating differential expression analysis with the Equivalent Expression Index, we discovered multiple novel gene signatures associated with BCBM and primary tumor brain-metastatic potential. We demonstrate that the Equivalent Expression Index is a powerful tool to uncover shared gene expression programs representing the adaptation of metastatic cells and brain-resident cells to the BCBM microenvironment.
Collapse
|
3
|
Xia L, Wang H, Du G, Cheng X, Zhang R, Yu H, Cheng M, Chen Y, Qin S, Leng W. Receptor accessory protein 6, a novel ferroptosis suppressor, drives oral squamous cell carcinoma by maintaining endoplasmic reticulum hemostasis. Int J Biol Macromol 2024; 283:137565. [PMID: 39566754 DOI: 10.1016/j.ijbiomac.2024.137565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Increasing evidence suggests a close association between endoplasmic-reticulum (ER) stress and ferroptosis. Receptor accessory protein 6 (REEP6) is known to play a crucial role in maintaining ER homeostasis. However, its involvement in ferroptosis remains unknown. In this study, we found that REEP6 was overexpressed, and its overexpression showed a significant association with tumor size and poor survival in OSCC patients. Besides, in vitro and in vivo assays together showed that REEP6 plays an oncogenic role in OSCC progression. The GO/KEGG, and GSEA analysis showed that REEP6 overexpression leads to the inactivation of ferroptosis signaling in OSCC. Moreover, REEP6 overexpression conferred resistance to RSL3, a ferroptosis inducer, whereas REEP6 knockdown sensitized OSCC cells to RSL3. Overexpression of REEP6 decrease the accumulation of iron ions, ROS production, but increase the number of mitochondrial cristae in OSCC cells. More importantly, we confirmed that REEP6 inhibited ferroptosis in OSCC cells by maintaining ER homeostasis via regulating ACSL4 expression. In addition, we identified promoter DNA hypomethylation as the underlying cause of REEP6 overexpression in OSCC. Taken together, REEP6 acts as a novel suppressor of ferroptosis, with its overexpression driven by promoter hypomethylation contributing to OSCC progression by ER stress-mediated ferroptosis via ACSL4.
Collapse
Affiliation(s)
- Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan 442000, China
| | - Hongbing Wang
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan 442000, China
| | - Gao Du
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaobo Cheng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan 442000, China
| | - Rui Zhang
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan 442000, China
| | - Hedong Yu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan 442000, China
| | - Mumo Cheng
- Department of General Practice, Shanghai Baoshan District Wusong Central Hospital (Zhongshan Hospital Wusong Branch, Fudan University), Shanghai 200940, China
| | - Yongji Chen
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan 442000, China.
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan 442000, China.
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Institute of Oral Diseases, School of Dentistry, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
4
|
He X, Feng G, Gao X, Liu J. Comprehensive analysis of clinical features, mRNA splicing, and immunological role of REEP5 in esophageal squamous cell carcinoma. Sci Rep 2024; 14:25675. [PMID: 39463444 PMCID: PMC11514286 DOI: 10.1038/s41598-024-77631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy within the digestive system, characterized by high incidence and mortality rates. The biological role of REEP5 in ESCC progression remains poorly understood, despite its associations with various diseases, potentially accelerating tumor malignancy. We retrieved RNA-seq data and clinical information from 179 ESCC patients from the Gene Expression Omnibus (GEO) and 93 patients from The Cancer Genome Atlas (TCGA) databases. Bioinformatics analyses were conducted to explore the biological functions of REEP5 in ESCC, its role in the tumor microenvironment, and its prognostic value. Additionally, utilizing single-cell RNA-seq (scRNA-seq) data from 3 ESCC patients in the GEO database, we performed cluster analyses to investigate cell-specific expression differences of REEP5 between cancerous and adjacent non-cancerous tissues. Molecular biology experiments were also conducted to validate REEP5 expression disparities between tumor and non-tumor tissues. Compared to normal tissues, REEP5 was significantly enriched in ESCC tissues. High REEP5 expression was closely associated with poor prognosis in ESCC patients. Gene Ontology (GO) analysis revealed strong correlations between REEP5 and processes such as mRNA splicing and protein stabilization. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) indicated positive correlations between REEP5 and mRNA spliceosome assembly and disassembly. Pearson correlation analysis demonstrated positive associations between REEP5 and cancer-inhibitory immune checkpoints CTLA-4, TIM-3, and HVEM. Single-cell clustering and CIBERSORT analysis showed that REEP5 expression was closely related to T-cell infiltration in ESCC, with significant enrichment effects observed in CD8+ T-cell infiltration. REEP5 expression is closely correlated with the pathological and molecular pathology of ESCC, potentially playing a crucial role in Mast cell or T-cell-mediated immune responses in ESCC. Therefore, REEP5 holds promise as a novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Xu He
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Guiyu Feng
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
- Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiang Gao
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jun Liu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
5
|
Chen Z, Jia X, Liu M. REEP4 as Potential Biomarker Associated with Predictive Prognosis and Immune Response in Kidney Clear Cell Carcinoma. J Cancer 2024; 15:4143-4155. [PMID: 38947393 PMCID: PMC11212085 DOI: 10.7150/jca.96135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Kidney clear cell carcinoma (KIRC) commonly presents with metastases upon diagnosis, highlighting the critical need to identify more precise biomarkers for early detection, intervention, and personalized treatment. Although The REEP family has been investigated in cancer development, the specific relationship between REEP4 and cancer remains unclear. In our study, we employed bioinformatics analysis and conducted fundamental experiments to evaluate the potential of REEP4 as a biomarker for predicting the prognosis and therapeutic efficacy of KIRC. Comparing KIRC tumor tissues to normal tissues, we observed a significant upregulation in REEP4 expression, with higher levels of REEP4 correlating positively with tumor malignancy. Further COX regression analysis, as well as single and multifactorial analyses, confirmed that high REEP4 expression indicated lower survival rates in KIRC. Gene function analysis also identified associations between REEP4 and critical pathways such as the cell cycle, along with its involvement in protein binding. Furthermore, our investigation of the immune response suggests that a favorable immunotherapeutic response is linked to a reduction in REEP4 expression. Subsequently, we conducted in vitro experiments to confirm the overexpression of REEP4 in KIRC tumor tissues and renal cancer cells. In summary, our study revealed a close association between REEP4 expression and KIRC, emphasizing its correlation with prognosis and the immune response. These findings suggest that REEP4 is a potential biomarker for KIRC.
Collapse
Affiliation(s)
| | | | - Min Liu
- Department of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| |
Collapse
|
6
|
Zhang Y, Lu M, Huang J, Tian X, Liang M, Wang M, Song X, Xu L, Yan R, Li X. Identification and characterization of the receptors of a microneme adhesive repeat domain of Eimeria maxima microneme protein 3 in chicken intestine epithelial cells. Poult Sci 2024; 103:103486. [PMID: 38350385 PMCID: PMC10874745 DOI: 10.1016/j.psj.2024.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/15/2024] Open
Abstract
Eimeria maxima microneme protein 3 (EmMIC3) is pivotal in the initial recognition and attachment of E. maxima sporozoites to host cells. EmMIC3 comprises 5 tandem Type I microneme adhesive repeat (MAR) domains, among which MAR2 of EmMIC3 (EmMAR2) has been identified as the primary determinant of EmMIC3-mediated tissue tropism. Nonetheless, the mechanisms through which EmMAR2 guides the parasite to its invasion site through interactions with host receptors remained largely uncharted. In this study, we employed yeast two-hybrid (YTH) screening assays and shotgun LC-MS/MS analysis to identify EmMAR2 receptors in chicken intestine epithelial cells. ATPase H+ transporting V1 subunit G1 (ATP6V1G1), receptor accessory protein 5 (REEP5), transmembrane p24 trafficking protein (TMED2), and delta 4-desaturase sphingolipid 1 (DEGS1) were characterized as the 4 receptors of EmMAR2 by both assays. By blocking the interaction of EmMAR2 with each receptor using specific antibodies, we observed varying levels of inhibition on the invasion of E. maxima sporozoites, and the combined usage of all 4 antibodies resulted in the most pronounced inhibitory effect. Additionally, the spatio-temporal expression profiles of ATP6V1G1, REEP5, TMED2, and DEGS1 were assessed. The tissue-specific expression patterns of EmMAR2 receptors throughout E. maxima infection suggested that ATP6V1G1 and DEGS1 might play a role in early-stage invasion, whereas TMED2 could be involved in middle and late-stage invasion and REEP5 and DEGS1 may participate primarily in late-stage invasion. Consequently, E. maxima may employ a multitude of ligand-receptor interactions to drive invasion during different stages of infection. This study marks the first report of EmMAR2 receptors at the interface between E. maxima and the host, providing insights into the invasion mechanisms of E. maxima and the pathogenesis of coccidiosis.
Collapse
Affiliation(s)
- Yang Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jianmei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaowei Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Mingyue Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
7
|
Gonzalez-Garcia P, Fiorillo Moreno O, Zarate Peñata E, Calderon-Villalba A, Pacheco Lugo L, Acosta Hoyos A, Villarreal Camacho JL, Navarro Quiroz R, Pacheco Londoño L, Aroca Martinez G, Moares N, Gabucio A, Fernandez-Ponce C, Garcia-Cozar F, Navarro Quiroz E. From Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVID. Int J Mol Sci 2023; 24:ijms24098290. [PMID: 37175995 PMCID: PMC10179575 DOI: 10.3390/ijms24098290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection triggers various events from molecular to tissue level, which in turn is given by the intrinsic characteristics of each patient. Given the molecular diversity characteristic of each cellular phenotype, the possible cytopathic, tissue and clinical effects are difficult to predict, which determines the heterogeneity of COVID-19 symptoms. The purpose of this article is to provide a comprehensive review of the cytopathic effects of SARS-CoV-2 on various cell types, focusing on the development of COVID-19, which in turn may lead, in some patients, to a persistence of symptoms after recovery from the disease, a condition known as long COVID. We describe the molecular mechanisms underlying virus-host interactions, including alterations in protein expression, intracellular signaling pathways, and immune responses. In particular, the article highlights the potential impact of these cytopathies on cellular function and clinical outcomes, such as immune dysregulation, neuropsychiatric disorders, and organ damage. The article concludes by discussing future directions for research and implications for the management and treatment of COVID-19 and long COVID.
Collapse
Affiliation(s)
| | - Ornella Fiorillo Moreno
- Clínica Iberoamerica, Barranquilla 080001, Colombia
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | - Eloina Zarate Peñata
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | | | - Lisandro Pacheco Lugo
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | - Antonio Acosta Hoyos
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| | | | - Roberto Navarro Quiroz
- Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona, Spanish National Research Council, 08028 Barcelona, Spain
| | | | - Gustavo Aroca Martinez
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
- School of Medicine, Universidad del Norte, Barranquilla 080001, Colombia
| | - Noelia Moares
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Antonio Gabucio
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Cecilia Fernandez-Ponce
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cádiz, Spain
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Francisco Garcia-Cozar
- Institute of Biomedical Research Cadiz (INIBICA), 11009 Cádiz, Spain
- Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Elkin Navarro Quiroz
- Life Science Research Center, Universidad Simon Bolívar, Barranquilla 080001, Colombia
| |
Collapse
|
8
|
Tseng CC, Hung CC, Shu CW, Lee CH, Chen CF, Kuo MS, Kao YY, Chen CL, Ger LP, Liu PF. The Clinical and Biological Effects of Receptor Expression-Enhancing Protein 6 in Tongue Squamous Cell Carcinoma. Biomedicines 2023; 11:biomedicines11051270. [PMID: 37238941 DOI: 10.3390/biomedicines11051270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
There are currently no effective biomarkers for the diagnosis and treatment of tongue squamous cell carcinoma (TSCC), which causes a poor 5-year overall survival rate. Thus, it is crucial to identify more effective diagnostic/prognostic biomarkers and therapeutic targets for TSCC patients. The receptor expression-enhancing protein 6 (REEP6), a transmembrane endoplasmic reticulum resident protein, controls the expression or transport of a subset of proteins or receptors. Although it was reported that REEP6 plays a role in lung and colon cancers, its clinical impact and biological role in TSCC are still unknown. The present study aimed to identify a novel effective biomarker and therapeutic target for TSCC patients. Expression levels of REEP6 in specimens from TSCC patients were determined with immunohistochemistry. Gene knockdown was used to evaluate the effects of REEP6 in cancer malignancy (colony/tumorsphere formation, cell cycle regulation, migration, drug resistance and cancer stemness) of TSCC cells. The clinical impact of REEP6 expression and gene co-expression on prognosis were analyzed in oral cancer patients including TSCC patients from The Cancer Genome Atlas database. Tumor tissues had higher levels of REEP6 compared to normal tissues in TSCC patients. Higher REEP6 expression was related to shorter disease-free survival (DFS) in oral cancer patients with poorly differentiated tumor cells. REEP6-knocked-down TSCC cells showed diminished colony/tumorsphere formation, and they also caused G1 arrest and decreased migration, drug resistance and cancer stemness. A high co-expression of REEP6/epithelial-mesenchymal transition or cancer stemness markers also resulted in poor DFS in oral cancer patients. Thus, REEP6 is involved in the malignancy of TSCC and might serve as a potential diagnostic/prognostic biomarker and therapeutic target for TSCC patients.
Collapse
Affiliation(s)
- Chung-Chih Tseng
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Dentistry, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 81342, Taiwan
| | - Chung-Ching Hung
- Department of Otolaryngology, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 81342, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chun-Feng Chen
- Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Mei-Shu Kuo
- Department of Biotechnology, Chia Nan University, Tainan 71710, Taiwan
| | - Yu-Ying Kao
- Department of Biotechnology, Chia Nan University, Tainan 71710, Taiwan
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
9
|
Sun Y, Chen L, Xu T, Gou B, Mai JW, Luo DX, Xin WJ, Wu JY. MiR-672-5p-Mediated Upregulation of REEP6 in Spinal Dorsal Horn Participates in Bortezomib-Induced Neuropathic Pain in Rats. Neurochem Res 2023; 48:229-237. [PMID: 36064821 DOI: 10.1007/s11064-022-03741-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 01/07/2023]
Abstract
Evidence shows that miRNAs are deeply involved in nervous system diseases, but whether miRNAs contribute to the bortezomib (BTZ)-induced neuropathic pain remains unclear. We aimed to investigate whether miRNAs contribute to bortezomib (BTZ)-induced neuropathic pain and explore the related downstream cascades. The level of miRNAs in the spinal dorsal horn was explored using miRNA microarray and PCR. MiR-672-5p was significantly downregulated in dorsal horn neurons in the rats with BTZ treatment. Intrathecal injection of miR-672-5p agomir blunted the increase of the amplitude and frequency of sEPSCs in dorsal horn neurons and mechanical allodynia induced by BTZ. In addition, the knockdown of miR-672-5p by intrathecal injection of antagomir increased the amplitude and frequency of sEPSCs in dorsal horn neurons and decreased the mechanical withdrawal threshold in naïve rats. Furthermore, silico analysis and the data from subsequent assays indicated that REEP6, a potential miR-672-5p-regulating molecule, was increased in the spinal dorsal horn of rats with BTZ-induced neuropathic pain. Blocking REEP6 alleviated the mechanical pain behavior induced by BTZ, whereas overexpressing REEP6 induced pain hypersensitivity in naïve rats. Importantly, we further found that miR-672-5p was expressed in the REEP6-positive cells, and overexpression or knockdown of miR-672-5p reversely regulated the REEP6 expression. Bioinformatics analysis and double-luciferase reporter assay showed the existence of interaction sites between REEP6 mRNA and miR-672-5p. Overall, our study demonstrated that miR-672-5p directly regulated the expression of REEP6, which participated in the neuronal hyperexcitability in the spinal dorsal horn and neuropathic pain following BTZ treatment. This signaling pathway may potentially serve as a novel therapeutic avenue for chemotherapeutic-induced mechanical hypersensitivity.
Collapse
Affiliation(s)
- Yang Sun
- Graduate Department, Department of Sport Medicine, Xi'an Physical Education University, Xi'an, 710068, Shanxi, China.,Department of Rehabilitation Medicine, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shanxi, China
| | - Li Chen
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Ting Xu
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Bo Gou
- Graduate Department, Department of Sport Medicine, Xi'an Physical Education University, Xi'an, 710068, Shanxi, China
| | - Jing-Wen Mai
- Department of Anesthesiology, Huizhou Central People's Hospital, Huizhou, 516001, Guangdong, China
| | - De-Xing Luo
- Department of Anesthesiology, Huizhou Central People's Hospital, Huizhou, 516001, Guangdong, China
| | - Wen-Jun Xin
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Jia-Yan Wu
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China.
| |
Collapse
|
10
|
He Y, Hu Y, Yuan M, Xu W, Du Y, Liu J. Prognostic and therapeutic implication of m6A methylation in Crohn disease. Medicine (Baltimore) 2022; 101:e32399. [PMID: 36595818 PMCID: PMC9794314 DOI: 10.1097/md.0000000000032399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) methylation has been reported to participate in inflammatory bowel disease (including Crohn disease [CD]). However, the prognostic and therapeutic implication of m6A methylation modification in CD is still unclear. METHODS Genomic information of CD patients was integrated to assess disease-related m6A regulators, and difference and correlation analyses of m6A regulators were explored by using the R packages. Next, CD patients were classified by the expression of differential and intersecting genes in m6A regulators, and difference and correlation analyses were conducted among immune infiltration and therapeutic responses. Finally, colon tissue resected from patients with CD were assessed to verify expression of Wilms tumor 1-associated protein (WTAP) and METTL14 from these m6A regulators. RESULTS We identified 23 m6A regulators in CD patients. Difference analysis of these regulators showed that expression of METTL14, WTAP, RBM15 and YTHDF2/3 was upregulated in the treatment group compared with the control group, with expression of METTL3, YTHDF1, leucine-rich pentatricopeptide repeat motif-containing protein, HNRNPA2B1, IGF2BP1 and fat mass and obesity-associated protein downregulated. Moreover, RBM15, WTAP, leucine-rich pentatricopeptide repeat motif-containing protein, YTHDF1 and YTHDF3 were considered the characteristic genes of CD in m6A regulators. In addition, we identified 4 intersection genes of 3 m6A cluster patterns. Based on the expression of these intersection genes, difference analysis among m6A regulators indicated that the expression of 8 m6A regulators had statistical differences among the 3 geneCluster patterns. Assays of colon tissues from CD patients showed that expression of WTAP and METTL14 were higher in areas of stenosis than non-stenosis. CONCLUSION m6A methylation modification might affect disease risk, immune infiltration and therapeutic responses in CD. Evaluating the expression of m6A regulators might provide insight into the prediction of disease prognosis and therapeutic responses.
Collapse
Affiliation(s)
- Yujin He
- Department of Gastroenterology, Huangshi Hospital of Traditional Chinese Medicine, Hubei Chinese Medical University, Hubei, China
| | - Yonghui Hu
- Endoscopy Center, Huangshi Hospital of Traditional Chinese Medicine, Hubei Chinese Medical University, Hubei, China
| | - Mei Yuan
- Endoscopy Center, Huangshi Hospital of Traditional Chinese Medicine, Hubei Chinese Medical University, Hubei, China
| | - Weiwei Xu
- Department of Anorectal Surgery, Huangshi Hospital of Traditional Chinese Medicine, Hubei Chinese Medical University, Hubei, China
| | - Yaqin Du
- Nephrology, Huangshi Hospital of Traditional Chinese Medicine, Hubei Chinese Medical University, Hubei, China
| | - Jinguo Liu
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
- * Correspondence: Jinguo Liu, The First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China (e-mail: )
| |
Collapse
|
11
|
Fan S, Liu H, Li L. The REEP family of proteins: molecular targets and role in pathophysiology. Pharmacol Res 2022; 185:106477. [PMID: 36191880 DOI: 10.1016/j.phrs.2022.106477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022]
Abstract
Receptor expression-enhancing proteins (REEPs) are an evolutionarily conserved protein family that is pivotal to the structure and function of the endoplasmic reticulum (ER). The REEP family can be classified into two major subfamilies in higher species, the REEP1-4 and REEP5-6 subfamilies. Within the REEP1-4 subfamily, REEP1 and REEP2 are closely related, and REEP3 and REEP4 are similarly related. The REEP family is widely distributed in various tissues. Recent studies indicate that the REEP family is involved in many pathological and physiological processes, such as ER morphogenesis and remodeling, microtubule cytoskeleton regulation, and the trafficking and expression of G protein-coupled receptors (GPCRs). Moreover, the REEP family plays crucial roles in the occurrence and development of many diseases, including neurological diseases, diabetes, retinal diseases, cardiac diseases, infertility, obesity, oligoarticular juvenile idiopathic arthritis (OJIA), COVID-19, and cancer. In the present review, we describe the distribution and structure of the REEP family. Furthermore, we summarize the functions and the associated diseases of this family. Based on the pleiotropic actions of the REEP family, the study of its family members is crucial to understanding the relevant pathophysiological processes and developing strategies to modulate and control these related diseases. AVAILABILITY OF DATA AND MATERIAL: The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Sisi Fan
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Huimei Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
12
|
Liao G, Yang Y, Xie A, Jiang Z, Liao J, Yan M, Zhou Y, Zhu J, Hu J, Zhang Y, Xiao Y, Li X. Applicability of Anticancer Drugs for the Triple-Negative Breast Cancer Based on Homologous Recombination Repair Deficiency. Front Cell Dev Biol 2022; 10:845950. [PMID: 35281113 PMCID: PMC8913497 DOI: 10.3389/fcell.2022.845950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive disease with historically poor outcomes, primarily due to the lack of effective targeted therapies. Here, we established a drug sensitivity prediction model based on the homologous recombination deficiency (HRD) using 83 TNBC patients from TCGA. Through analyzing the effect of HRD status on response efficacy of anticancer drugs and elucidating its related mechanisms of action, we found rucaparib (PARP inhibitor) and doxorubicin (anthracycline) sensitive in HR-deficient patients, while paclitaxel sensitive in the HR-proficient. Further, we identified a HRD signature based on gene expression data and constructed a transcriptomic HRD score, for analyzing the functional association between anticancer drug perturbation and HRD. The results revealed that CHIR99021 (GSK3 inhibitor) and doxorubicin have similar expression perturbation patterns with HRD, and talazoparib (PARP inhibitor) could kill tumor cells by reversing the HRD activity. Genomic characteristics indicated that doxorubicin inhibited tumor cells growth by hindering the process of DNA damage repair, while the resistance of cisplatin was related to the activation of angiogenesis and epithelial-mesenchymal transition. The negative correlation of HRD signature score could interpret the association of doxorubicin pIC50 with worse chemotherapy response and shorter survival of TNBC patients. In summary, these findings explain the applicability of anticancer drugs in TNBC and underscore the importance of HRD in promoting personalized treatment development.
Collapse
Affiliation(s)
- Gaoming Liao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yiran Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Aimin Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zedong Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jianlong Liao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Min Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiali Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jing Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- *Correspondence: Yunpeng Zhang, ; Yun Xiao, ; Xia Li,
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
- *Correspondence: Yunpeng Zhang, ; Yun Xiao, ; Xia Li,
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- *Correspondence: Yunpeng Zhang, ; Yun Xiao, ; Xia Li,
| |
Collapse
|
13
|
Ershov P, Kaluzhskiy L, Mezentsev Y, Yablokov E, Gnedenko O, Ivanov A. Enzymes in the Cholesterol Synthesis Pathway: Interactomics in the Cancer Context. Biomedicines 2021; 9:biomedicines9080895. [PMID: 34440098 PMCID: PMC8389681 DOI: 10.3390/biomedicines9080895] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
A global protein interactome ensures the maintenance of regulatory, signaling and structural processes in cells, but at the same time, aberrations in the repertoire of protein-protein interactions usually cause a disease onset. Many metabolic enzymes catalyze multistage transformation of cholesterol precursors in the cholesterol biosynthesis pathway. Cancer-associated deregulation of these enzymes through various molecular mechanisms results in pathological cholesterol accumulation (its precursors) which can be disease risk factors. This work is aimed at systematization and bioinformatic analysis of the available interactomics data on seventeen enzymes in the cholesterol pathway, encoded by HMGCR, MVK, PMVK, MVD, FDPS, FDFT1, SQLE, LSS, DHCR24, CYP51A1, TM7SF2, MSMO1, NSDHL, HSD17B7, EBP, SC5D, DHCR7 genes. The spectrum of 165 unique and 21 common protein partners that physically interact with target enzymes was selected from several interatomic resources. Among them there were 47 modifying proteins from different protein kinases/phosphatases and ubiquitin-protein ligases/deubiquitinases families. A literature search, enrichment and gene co-expression analysis showed that about a quarter of the identified protein partners was associated with cancer hallmarks and over-represented in cancer pathways. Our results allow to update the current fundamental view on protein-protein interactions and regulatory aspects of the cholesterol synthesis enzymes and annotate of their sub-interactomes in term of possible involvement in cancers that will contribute to prioritization of protein targets for future drug development.
Collapse
|
14
|
Feng L, Yin YY, Liu CH, Xu KR, Li QR, Wu JR, Zeng R. Proteome-wide data analysis reveals tissue-specific network associated with SARS-CoV-2 infection. J Mol Cell Biol 2021; 12:946-957. [PMID: 32642770 PMCID: PMC7454804 DOI: 10.1093/jmcb/mjaa033] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
For patients with COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the damages to multiple organs have been clinically observed. Since most of current investigations for virus–host interaction are based on cell level, there is an urgent demand to probe tissue-specific features associated with SARS-CoV-2 infection. Based on collected proteomic datasets from human lung, colon, kidney, liver, and heart, we constructed a virus-receptor network, a virus-interaction network, and a virus-perturbation network. In the tissue-specific networks associated with virus–host crosstalk, both common and different key hubs are revealed in diverse tissues. Ubiquitous hubs in multiple tissues such as BRD4 and RIPK1 would be promising drug targets to rescue multi-organ injury and deal with inflammation. Certain tissue-unique hubs such as REEP5 might mediate specific olfactory dysfunction. The present analysis implies that SARS-CoV-2 could affect multi-targets in diverse host tissues, and the treatment of COVID-19 would be a complex task.
Collapse
Affiliation(s)
- Li Feng
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan-Yuan Yin
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Hui Liu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke-Ren Xu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Run Li
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia-Rui Wu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Rong Zeng
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
15
|
Fang J, Ji WH, Wang FZ, Xie TM, Wang L, Fu ZF, Wang Z, Yan FQ, Shen QL, Ye ZM. Circular RNA hsa_circ_0000700 promotes cell proliferation and migration in Esophageal Squamous Cell Carcinoma by sponging miR-1229. J Cancer 2021; 12:2610-2623. [PMID: 33854621 PMCID: PMC8040728 DOI: 10.7150/jca.47112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence has demonstrated that circular RNAs (circRNAs) are involved in the pathogenesis of cancer, including that of esophageal squamous cell carcinoma (ESCC). The current study aimed to investigate the role of hsa_circ_0000700 in ESCC. hsa_circ_0000700, miR-1229, and related functional gene expression was measured by RT-qPCR. To characterize the functions of hsa_circ_0000700 and miR-1229, ESCC cells were infected with hsa_circ_0000700-specific siRNA, miR-1229 mimics, and an inhibitor alone or in combination. Cell Counting Kit-8 (CCK8), colony formation, EdU, flow cytometry, and Transwell assays were employed to evaluate cell proliferation, apoptosis, and migration. Luciferase reporter and RNA immunoprecipitation assays were used to confirm the targeting relationship between hsa_circ_0000700 and miR-1229. Finally, a competing endogenous RNAs (ceRNA) network was built for hsa_circ_0000700, and miR-1229 targets were analyzed by bioinformatics. circ_0000700 expression was significantly upregulated in ESCC cell lines. Actinomycin D and RNase R treatment confirmed that circ_0000700 was more stable than its linear CDH9 mRNA form. Moreover, a cytoplasmic and nuclear fractionation assay suggested that circ_0000700 was mainly distributed in the cytoplasm of ECA-109 and TE-1 cells. In vitro, the proliferative and migratory capacities of ECA-109 and TE-1 cells were inhibited by knocking down circ_0000700 expression. Additionally, miR-1229 silencing reversed the circ_0000700-specific siRNA-induced attenuation of malignant phenotypes. Mechanistically, circ_0000700 was identified as a sponge of miR-1229 and could activate PRRG4, REEP5, and PSMB5 indirectly to promote ESCC progression. In summary, our results suggest that hsa_circ_0000700 functions as an oncogenic factor by sponging miR-1229 in ESCC.
Collapse
Affiliation(s)
- Jun Fang
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Wen Hao Ji
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fang Zheng Wang
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| | - Tie Ming Xie
- Department of Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Lei Wang
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| | - Zhen Fu Fu
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| | - Zhun Wang
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Feng Qin Yan
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| | - Qi Liang Shen
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Zhi Min Ye
- Department of Radiotherapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
16
|
Tian Z, He W, Tang J, Liao X, Yang Q, Wu Y, Wu G. Identification of Important Modules and Biomarkers in Breast Cancer Based on WGCNA. Onco Targets Ther 2020; 13:6805-6817. [PMID: 32764968 PMCID: PMC7367932 DOI: 10.2147/ott.s258439] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Breast cancer (BRCA) has the highest incidence among female malignancies, and the prognosis for these patients remains poor. Materials and Methods In this study, core modules and central genes related to BRCA were identified through a weighted gene co-expression network analysis (WGCNA). Gene expression profiles and clinical data of GSE25066 were obtained from the Gene Expression Omnibus (GEO) database. The result was validated with RNA-seq data from The Cancer Genome Atlas (TCGA) and Oncomine database. The top 30 key module genes with the highest intramodule connectivity were selected as the core genes (R2 = 0.40). Results According to TCGA and Oncomine datasets, seven genes were selected as candidate hub genes. Following further experimental verification, four hub genes (FAM171A1, NDFIP1, SKP1, and REEP5) were retained. Conclusion We identified four hub genes as candidate biomarkers for BRCA. These hub genes may provide a theoretical basis for targeted therapy against BRCA.
Collapse
Affiliation(s)
- Zelin Tian
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Weixiang He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xing Liao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Qian Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yumin Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
17
|
Feigman MJ, Moss MA, Chen C, Cyrill SL, Ciccone MF, Trousdell MC, Yang ST, Frey WD, Wilkinson JE, Dos Santos CO. Pregnancy reprograms the epigenome of mammary epithelial cells and blocks the development of premalignant lesions. Nat Commun 2020; 11:2649. [PMID: 32461571 PMCID: PMC7253414 DOI: 10.1038/s41467-020-16479-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Pregnancy causes a series of cellular and molecular changes in mammary epithelial cells (MECs) of female adults. In addition, pregnancy can also modify the predisposition of rodent and human MECs to initiate oncogenesis. Here, we investigate how pregnancy reprograms enhancer chromatin in the mammary epithelium of mice and influences the transcriptional output of the oncogenic transcription factor cMYC. We find that pregnancy induces an expansion of the active cis-regulatory landscape of MECs, which influences the activation of pregnancy-related programs during re-exposure to pregnancy hormones in vivo and in vitro. Using inducible cMYC overexpression, we demonstrate that post-pregnancy MECs are resistant to the downstream molecular programs induced by cMYC, a response that blunts carcinoma initiation, but does not perturb the normal pregnancy-induced epigenomic landscape. cMYC overexpression drives post-pregnancy MECs into a senescence-like state, and perturbations of this state increase malignant phenotypic changes. Taken together, our findings provide further insight into the cell-autonomous signals in post-pregnancy MECs that underpin the regulation of gene expression, cellular activation, and resistance to malignant development. Mammary epithelial cells are epigenetically modified during pregnancy, these changes can influence the pre-disposition to cancer. Here, the authors examine the epigenetic landscape of mammary epithelial cells pre and post pregnancy and identify changes to the epigenetic landscape, which can protect mice from Myc induced cancer.
Collapse
Affiliation(s)
- Mary J Feigman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Matthew A Moss
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Chen Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Samantha L Cyrill
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Michael F Ciccone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | | | - Shih-Ting Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Wesley D Frey
- School of Medicine, Tulane University, New Orleans, LA, 70118, USA
| | - John E Wilkinson
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
| |
Collapse
|
18
|
Devlin DJ, Agrawal Zaneveld S, Nozawa K, Han X, Moye AR, Liang Q, Harnish JM, Matzuk MM, Chen R. Knockout of mouse receptor accessory protein 6 leads to sperm function and morphology defects†. Biol Reprod 2020; 102:1234-1247. [PMID: 32101290 DOI: 10.1093/biolre/ioaa024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/31/2019] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Receptor accessory protein 6 (REEP6) is a member of the REEP/Ypt-interacting protein family that we recently identified as essential for normal endoplasmic reticulum homeostasis and protein trafficking in the retina of mice and humans. Interestingly, in addition to the loss of REEP6 in our knockout (KO) mouse model recapitulating the retinal degeneration of humans with REEP6 mutations causing retinitis pigmentosa (RP), we also found that male mice are sterile. Herein, we characterize the infertility caused by loss of Reep6. Expression of both Reep6 mRNA transcripts is present in the testis; however, isoform 1 becomes overexpressed during spermiogenesis. In vitro fertilization assays reveal that Reep6 KO spermatozoa are able to bind the zona pellucida but are only able to fertilize oocytes lacking the zona pellucida. Although spermatogenesis appears normal in KO mice, cauda epididymal spermatozoa have severe motility defects and variable morphological abnormalities, including bent or absent tails. Immunofluorescent staining reveals that REEP6 expression first appears in stage IV tubules within step 15 spermatids, and REEP6 localizes to the connecting piece, midpiece, and annulus of mature spermatozoa. These data reveal an important role for REEP6 in sperm motility and morphology and is the first reported function for a REEP protein in reproductive processes. Additionally, this work identifies a new gene potentially responsible for human infertility and has implications for patients with RP harboring mutations in REEP6.
Collapse
Affiliation(s)
- Darius J Devlin
- Interdepartmental Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Smriti Agrawal Zaneveld
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Xiao Han
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Reproductive Medical Center, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Abigail R Moye
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Qingnan Liang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jacob Michael Harnish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Martin M Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
19
|
Isyraqiah F, K Kutty M, Durairajanayagam D, Salim N, Singh H. Leptin induces the expression of tumorigenic genes in the gastric mucosa of male Sprague-Dawley rats. Exp Biol Med (Maywood) 2018; 243:1118-1124. [PMID: 30449153 DOI: 10.1177/1535370218813909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Leptin promotes the growth of gastric cancer cells in vitro. It is, however, unknown if leptin induces gastric cancer in vivo. This study therefore investigated the effect of leptin on the histology and expression of tumorigenic genes in the stomach of rats following 40 weeks of leptin treatment. Male Sprague-Dawley rats, aged 6 weeks, were randomized into control and experimental groups ( n = 8 per group). The experimental group was given intraperitoneal injections of leptin (60 µg/kg/day) once daily for 40 weeks, whereas the control group received intraperitoneal injection of an equal volume of normal saline daily. Rats were housed in polypropylene cages for the duration of the study. Body weight was measured weekly. Upon completion of treatment, rats were euthanized and their stomachs were collected for histopathological examination, microarray, and RT-qPCR. Data were analyzed using one-way ANOVA and Fisher’s exact test. On histology, one rat (12.5%) in the leptin-treated group had a large red-colored tumor nodule at the pyloric antrum of the stomach. Microscopically, stomachs of two leptin-treated rats (25%) showed hyperplasia or dysplasia. Microarray analysis revealed significant upregulation of a number of genes in the stomachs of leptin-treated rats that have been shown to be associated with tumorigenesis in other tissues, including Furin (protein maturation), Eef1a1 and Eif4g2 (translation factors), Tmed2 (vesicular trafficking), Rab7a (plasma membrane trafficking), Rfwd2 (protein degradation), Fth1 and Ftl1 (oxygen transport), Tspan8, Tspan1, Fxyd3, and Rack1 (cell migration), Pde4d (signal transduction), Nupr1 and Ybx1 (transcription factors), Ptma and Tmem134 (oncogenes), Srsf2 (mRNA maturation), and Reep5 (cell proliferation). None of the known oncogenes were, however, significantly up-regulated. In conclusion, although the overall effect of leptin on gastric carcinogenesis seems inconclusive, the findings of dysplasia and the up-regulation of some of the cancer-related genes nevertheless warrant further scrutiny on the role of leptin in gastric cancer. Impact statement Gastric cancer is the third most common cause of death due to cancer in the world. Obese individuals are at risk of developing gastric cancer, and the reason for this is unknown. Serum leptin levels are high in obese individuals and leptin is known to induce proliferation of gastric cancer cells in vitro. However, to date, no reports exist on the tumorigenic effects of leptin on the stomach in vivo. This study therefore determines if chronic leptin administration induces gastric carcinogenesis in non-obese rats, which might serve as a useful animal model for future studies. Although the findings are somewhat inconclusive, to our knowledge, however, this is the first study to show the up-regulation of numerous potential driver genes that highlight the potential role of leptin in the higher prevalence of gastric cancer among obese individuals. The findings certainly necessitate further scrutiny of leptin gastric cancer.
Collapse
Affiliation(s)
- Faizatul Isyraqiah
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | - Methil K Kutty
- Faculty of Medicine, Lincoln University College, Petaling Jaya 47301, Malaysia
| | | | - Norita Salim
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | - Harbindarjeet Singh
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia.,IMMB, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia.,I-PPerFORM, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| |
Collapse
|
20
|
Zaneveld SA, Eblimit A, Liang Q, Bertrand R, Wu N, Liu H, Nguyen Q, Zaneveld J, Wang K, Li Y, Chen R. Gene Therapy Rescues Retinal Degeneration in Receptor Expression-Enhancing Protein 6 Mutant Mice. Hum Gene Ther 2018; 30:302-315. [PMID: 30101608 PMCID: PMC6437630 DOI: 10.1089/hum.2018.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hereditary retinal dystrophy is clinically defined as a broad group of chronic and progressive disorders that affect visual function by causing photoreceptor degeneration. Previously, we identified mutations in the gene encoding receptor expression-enhancing protein 6 (REEP6), in individuals with autosomal recessive retinitis pigmentosa (RP), the most common form of inherited retinal dystrophy. One individual was molecularly diagnosed with biallelic REEP6 mutations, a missense mutation over a frameshift mutation. In this study, we generated Reep6 compound heterozygous mice, Reep6L135P/-, which mimic the patient genotype and recapitulate the early-onset retinal degeneration phenotypes observed in the individual with RP. To determine the feasibility of rescuing the Reep6 mutant phenotype via gene replacement therapy, we delivered Reep6.1, the mouse retina-specific isoform of REEP6, to photoreceptors of Reep6 mutant mice on postnatal day 20. Evaluation of the therapeutic effects 2 months posttreatment showed improvements in the photoresponse as well as preservation of photoreceptor cells. Importantly, guanylyl cyclase 1 (GC1) expression was also restored to the outer segment after treatment. Furthermore, rAAV8-Reep6.1 single treatment in Reep6 mutant mice 1 year postinjection showed significant improvements in retinal function and morphology, suggesting that the treatment is effective even after a prolonged period. Findings from this study show that gene replacement therapy in the retina with rAAV overexpressing Reep6 is effective, preserving photoreceptor function in Reep6 mutant mice. These findings provide evidence that rAAV8-based gene therapy can prolong survival of photoreceptors in vivo and can be potentially used as a therapeutic modality for treatment of patients with RP.
Collapse
Affiliation(s)
- Smriti Agrawal Zaneveld
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Aiden Eblimit
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Qingnan Liang
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,3 Department of Biochemistry, Baylor College of Medicine, Houston, TX
| | - Renae Bertrand
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,3 Department of Biochemistry, Baylor College of Medicine, Houston, TX
| | - Nathaniel Wu
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Hehe Liu
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Quynh Nguyen
- 3 Department of Biochemistry, Baylor College of Medicine, Houston, TX
| | - Jacques Zaneveld
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Keqing Wang
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Yumei Li
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Rui Chen
- 1 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX.,2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|