1
|
Mou A, Li X, Li Z, Qu L, Dong Y, Wang Z, Zhang X, Xu Q. Comparative analysis of esophageal gland microbes between two body sizes of Gigantopelta aegis, a hydrothermal snail from the Southwest Indian Ridge. Microbiol Spectr 2025; 13:e0295924. [PMID: 39992146 PMCID: PMC11960433 DOI: 10.1128/spectrum.02959-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/02/2025] [Indexed: 02/25/2025] Open
Abstract
Microbial communities within animals provide nutritional foundation and energy supply for the hydrothermal ecosystem. The peltospirid snail Gigantopelta aegis forms large aggregation in the Longqi vent field on the Southwest Indian Ridge. This endemic species is characterized by a changeable diet and morphology, especially reflected in internal organs such as remarkably enlarged esophageal glands. Here, 16S full-length rRNA gene analysis was performed to compare the variations in esophageal gland microbiota between two body size groups (small and large) of G. aegis. Phyla Proteobacteria and Bacteroidetes were the dominant featured bacteria contributing to the microbial community. No significant differences between the small and large groups were revealed by the diversity index and principal component analysis (PCA) clustering. The differences were in the relative abundance of bacteria. Compared with small-sized snails, the larger ones housed more Thiogranum (9.94% to 34.86%) and fewer Sediminibacterium (29.38% to 4.54%). Functional prediction for all of the microbiota showed that the pathways related to metabolism appeared highly abundant in smaller G. aegis. However, for the larger ones, the most distinctive pathways were those of environmental information processing. Facultative symbiotic Sulfurovum was marked as a core node in the co-occurrence network and suggested an influence on habitat selection of G. aegis in hydrothermal fields. In summary, variations in bacteria composition and potential functions possibly reflected changes in the anatomical structure and dietary habits of G. aegis. These dominant bacteria shared capabilities in nutritional supplementation and ecological niche expansion in the host, potentially a key adaptation for hydrothermal survival.IMPORTANCEDominant in the Longqi hydrothermal vent Southwest Indian Ridge, Gigantopelta aegis was observed to undergo unique and significant morphological changes and diet shifts known as cryptometamorphosis. During this process, G. aegis developed a specialized bacteria-housing organ, the esophageal gland, in the later life stages. Our research discovered variations in esophageal gland microbes between different body size groups of snails. These bacteria were closely related to the development and health of G. aegis. Full-length 16S rRNA gene analysis revealed more Thiogranum and fewer Sediminibacterium, suggesting a potential association with environmental adaptation. In the small-sized group, the potential functions were enriched in metabolism, while in larger G. aegis individuals, predictions indicated adaptive functions such as environmental information processing. Also, symbiotic Sulfurovum could be one of the factors influencing the habitat selection of G. aegis. Understanding the complex relationship between benthic macrofauna and microbes helps us describe the mechanisms of survival in extreme environments.
Collapse
Affiliation(s)
- Anning Mou
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xinlong Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Zhong Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Lingyun Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yue Dong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Zongling Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, Xi'an, China
- Qingdao Marine Engineering Survey, Design and Research Institute Co., Ltd., Qingdao, China
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Qingdao Marine Engineering Survey, Design and Research Institute Co., Ltd., Qingdao, China
| |
Collapse
|
2
|
Roterman CN, McArthur M, Laverty Baralle C, Marsh L, Copley JT. Yeti claws: Cheliped sexual dimorphism and symmetry in deep-sea yeti crabs (Kiwaidae). PLoS One 2025; 20:e0314320. [PMID: 39908246 PMCID: PMC11798501 DOI: 10.1371/journal.pone.0314320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/07/2024] [Indexed: 02/07/2025] Open
Abstract
Yeti crabs (Kiwaidae) are deep-sea hydrothermal vent and methane seep dwelling crustaceans that farm chemosynthetic microbes on their bodies. Sexual dimorphism is a common feature of decapod crustaceans, but little is known about its prevalence in species from deep-sea habitats. We address this knowledge deficit by investigating claw sexual dimorphism and symmetry in the hydrothermal-vent endemic 'Hoff crab', Kiwa tyleri. A total of 135 specimens from the East Scotia Ridge were examined, revealing mean asymmetry indices close to zero with respect to propodus length and height, albeit with a significantly larger number of marginally left-dominant individuals with respect to propodus length, possibly indicative of some task specialisation between claws, or a vestigial ancestral trait. Both male and female claws exhibit positive allometry with increasing carapace length, but males possess significantly larger claws compared with females when accounting for carapace size, exhibiting faster growing propodus length, and broader propodus heights throughout the size distribution. This marked difference is indicative of either male-male competition for mate access, sexual selection, or differential energy allocation (growth vs reproduction) between males and females, as observed in other decapod crustaceans. In contrast, a reanalysis of data for the methane seep inhabiting yeti crab Kiwa puravida revealed no significant difference in claw allometry, indicating a possible lack of similar sexual selection pressures, and highlighting potential key differences in the ecological and reproductive strategies of K. tyleri and K. puravida relating to claw function, microbial productivity and population density. Whether sex differences in claw allometry represents the norm or the exception in Kiwaidae will require the examination of other species in the family. This research enhances our understanding of the behaviour, ecology and evolution of yeti crabs, providing a basis for future studies.
Collapse
Affiliation(s)
| | - Molly McArthur
- Institute of Marine Science, University of Portsmouth, Portsmouth, United Kingdom
| | | | - Leigh Marsh
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| | - Jon T. Copley
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| |
Collapse
|
3
|
Thomas EA, Bond T, Kolbusz JL, Niyazi Y, Swanborn DJB, Jamieson AJ. Deep-sea ecosystems of the Indian Ocean >1000 m. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:176794. [PMID: 39426531 DOI: 10.1016/j.scitotenv.2024.176794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
The Indian Ocean is the third largest of the world's oceans, accounting for ~20 % of the global marine realm. It is geomorphologically complex, hosting a wide variety of ecosystems across basins, trenches, seamounts, ridges, and fracture zones. While modern exploration has contributed significantly to our knowledge of its coastal ecosystems, deeper waters (>1000 m) remain relatively unknown despite accounting for over 90 % of its total area. This study provides the first comprehensive review of the Indian Ocean's diverse deep sea, presenting ecosystem knowledge summaries for each major seafloor feature, contextualised with the broader historical, socioeconomic, geological, and oceanographic conditions. Unsurprisingly, some ecosystems are better characterised than others, from the relatively well-surveyed Java (Sunda) Trench and hydrothermal vents of the Carlsberg, Central and Southwest Indian Ridges, to the unexplored Southeast Indian Ridge and hadal features of the western Indian Ocean. Similarly, there is a large depth discrepancy in available records with a clear bias towards shallower sampling. We identify four outstanding problems to be addressed for the advancement of deep-sea research in the Indian Ocean: 1) inconsistencies in research extent and effort over spatial scales, 2) severe lack of data over temporal scales, 3) unexplored deep pelagic environments, and 4) a need to place the Indian Ocean's deep-sea ecosystems in a global context. By synthesising and championing existing research, identifying knowledge gaps, and presenting the outstanding problems to be addressed, this review provides a platform to ensure this forgotten ocean is prioritised for deep-sea research during the UN Ocean Decade and beyond.
Collapse
Affiliation(s)
- Elin A Thomas
- Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.
| | - Todd Bond
- Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Jess L Kolbusz
- Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Yakufu Niyazi
- Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Denise J B Swanborn
- Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Alan J Jamieson
- Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Alfaro-Lucas JM, Chapman ASA, Tunnicliffe V, Bates AE. High functional vulnerability across the world's deep-sea hydrothermal vent communities. Proc Natl Acad Sci U S A 2024; 121:e2403899121. [PMID: 39467128 PMCID: PMC11551373 DOI: 10.1073/pnas.2403899121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/05/2024] [Indexed: 10/30/2024] Open
Abstract
At the nearly pristine hydrothermal vents of the deep sea, highly endemic animals depend upon bacteria nourished by hydrothermal fluids that emerge as outflows from the seafloor. These animals are remarkable in tolerating extreme conditions, including high heat, toxic reduced sulfide, and low oxygen. Here, we test whether the extreme vent environment has selected for functionally similar species across the world's deep ocean, despite well-established global geographic patterns of high phylogenetic distinctness. High functional redundancy in species pools within regions suggests that the extreme environments select for species with specific traits. Yet, some regions emerge as functional hotspots where species pools with distinct functional trait compositions may represent geological idiosyncrasies of the habitats. Moreover, many species are functionally unique, an outcome of low species richness in a system where the species pool is small at all scales. Given the high proportion of functionally unique species, simulated species extinctions indicate that species losses would rapidly translate to the elimination of functionally irreplaceable species and could tip vent systems to functional collapse. Ocean changes and human-induced threats are expected to significantly impact many vent species as human activities expand in the remote deep sea. The opportunity exists now to take precautionary actions to limit the rates of extinction now ubiquitous in more accessible areas of Earth.
Collapse
Affiliation(s)
| | - Abbie S. A. Chapman
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, LondonWC1H 0NN, United Kingdom
| | - Verena Tunnicliffe
- Department of Biology, University of Victoria, Victoria, BCV8P 5C2, Canada
- School of Earth & Ocean Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Amanda E. Bates
- Department of Biology, University of Victoria, Victoria, BCV8P 5C2, Canada
| |
Collapse
|
5
|
Budaeva N, Agne S, Ribeiro PA, Straube N, Preick M, Hofreiter M. Wide-spread dispersal in a deep-sea brooding polychaete: the role of natural history collections in assessing the distribution in quill worms (Onuphidae, Annelida). Front Zool 2024; 21:1. [PMID: 38233869 PMCID: PMC10795374 DOI: 10.1186/s12983-023-00520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Modern integrative taxonomy-based annelid species descriptions are detailed combining morphological data and, since the last decades, also molecular information. Historic species descriptions are often comparatively brief lacking such detail. Adoptions of species names from western literature in the past led to the assumption of cosmopolitan ranges for many species, which, in many cases, were later found to include cryptic or pseudocryptic lineages with subtle morphological differences. Natural history collections and databases can aid in assessing the geographic ranges of species but depend on correct species identification. Obtaining DNA sequence information from wet-collection museum specimens of marine annelids is often impeded by the use of formaldehyde and/or long-term storage in ethanol resulting in DNA degradation and cross-linking. RESULTS The application of ancient DNA extraction methodology in combination with single-stranded DNA library preparation and target gene capture resulted in successful sequencing of a 110-year-old collection specimen of quill worms. Furthermore, a 40-year-old specimen of quill worms was successfully sequenced using a standard extraction protocol for modern samples, PCR and Sanger sequencing. Our study presents the first molecular analysis of Hyalinoecia species including the previously known species Hyalinoecia robusta, H. tubicloa, H. artifex, and H. longibranchiata, and a potentially undescribed species from equatorial western Africa morphologically indistinguishable from H. tubicola. The study also investigates the distribution of these five Hyalinoecia species. Reassessing the distribution of H. robusta reveals a geographical range covering both the Atlantic and the Indian Oceans as indicated by molecular data obtained from recent and historical specimens. CONCLUSION Our results represent an example of a very wide geographical distribution of a brooding deep-sea annelid with a complex reproduction strategy and seemingly very limited dispersal capacity of its offspring, and highlights the importance of molecular information from museum specimens for integrative annelid taxonomy and biogeography.
Collapse
Affiliation(s)
- Nataliya Budaeva
- Department of Natural History, University Museum of Bergen, University of Bergen, Allégaten 41, 5007, Bergen, Norway.
| | - Stefanie Agne
- Evolutionary Adaptive Genomics, Department of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Pedro A Ribeiro
- Department of Biological Sciences and Centre for Deep-Sea Research, University of Bergen, Thormøhlens Gate 53B, 5006, Bergen, Norway
| | - Nicolas Straube
- Department of Natural History, University Museum of Bergen, University of Bergen, Allégaten 41, 5007, Bergen, Norway
| | - Michaela Preick
- Evolutionary Adaptive Genomics, Department of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Department of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
6
|
Zhong YW, Zhou P, Cheng H, Zhou YD, Pan J, Xu L, Li M, Tao CH, Wu YH, Xu XW. Metagenomic Features Characterized with Microbial Iron Oxidoreduction and Mineral Interaction in Southwest Indian Ridge. Microbiol Spectr 2022; 10:e0061422. [PMID: 36286994 PMCID: PMC9769843 DOI: 10.1128/spectrum.00614-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023] Open
Abstract
The Southwest Indian Ridge (SWIR) is one of the typical representatives of deep-sea ultraslow-spreading ridges, and has increasingly become a hot spot of studying subsurface geological activities and deep-sea mining management. However, the understanding of microbial activities is still limited on active hydrothermal vent chimneys in SWIR. In this study, samples from an active black smoker and a diffuse vent located in the Longqi hydrothermal region were collected for deep metagenomic sequencing, which yielded approximately 290 GB clean data and 295 mid-to-high-quality metagenome-assembled genomes (MAGs). Sulfur oxidation conducted by a variety of Gammaproteobacteria, Alphaproteobacteria, and Campylobacterota was presumed to be the major energy source for chemosynthesis in Longqi hydrothermal vents. Diverse iron-related microorganisms were recovered, including iron-oxidizing Zetaproteobacteria, iron-reducing Deferrisoma, and magnetotactic bacterium. Twenty-two bacterial MAGs from 12 uncultured phyla harbored iron oxidase Cyc2 homologs and enzymes for organic carbon degradation, indicated novel chemolithoheterotrophic iron-oxidizing bacteria that affected iron biogeochemistry in hydrothermal vents. Meanwhile, potential interactions between microbial communities and chimney minerals were emphasized as enriched metabolic potential of siderophore transportation, and extracellular electron transfer functioned by multi-heme proteins was discovered. Composition of chimney minerals probably affected microbial iron metabolic potential, as pyrrhotite might provide more available iron for microbial communities. Collectively, this study provides novel insights into microbial activities and potential mineral-microorganism interactions in hydrothermal vents. IMPORTANCE Microbial activities and interactions with minerals and venting fluid in active hydrothermal vents remain unclear in the ultraslow-spreading SWIR (Southwest Indian Ridge). Understanding about how minerals influence microbial metabolism is currently limited given the obstacles in cultivating microorganisms with sulfur or iron oxidoreduction functions. Here, comprehensive descriptions on microbial composition and metabolic profile on 2 hydrothermal vents in SWIR were obtained based on cultivation-free metagenome sequencing. In particular, autotrophic sulfur oxidation supported by minerals was presumed, emphasizing the role of chimney minerals in supporting chemosynthesis. Presence of novel heterotrophic iron-oxidizing bacteria was also indicated, suggesting overlooked biogeochemical pathways directed by microorganisms that connected sulfide mineral dissolution and organic carbon degradation in hydrothermal vents. Our findings offer novel insights into microbial function and biotic interactions on minerals in ultraslow-spreading ridges.
Collapse
Affiliation(s)
- Ying-Wen Zhong
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Peng Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Hong Cheng
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Ya-Dong Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Lin Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, PR China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, PR China
| | - Chun-Hui Tao
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
- Key Laboratory of Submarine Geosciences, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Yue-Hong Wu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Xue-Wei Xu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| |
Collapse
|
7
|
Zhang Y, Huang N, Jing H. Biogeography and Population Divergence of Microeukaryotes Associated with Fluids and Chimneys in the Hydrothermal Vents of the Southwest Indian Ocean. Microbiol Spectr 2022; 10:e0263221. [PMID: 36121256 PMCID: PMC9603758 DOI: 10.1128/spectrum.02632-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/26/2022] [Indexed: 01/04/2023] Open
Abstract
Deep-sea hydrothermal vents have been proposed as oases for microbes, but microeukaryotes as key components of the microbial loop have not been well studied. Based on high-throughput sequencing and network analysis of the 18S rRNA gene, distinct biogeographical distribution patterns and impacting factors were revealed from samples in the three hydrothermal fields of the southwest Indian Ocean, where higher gene abundance of microeukaryotes appeared in chimneys. The microeukaryotes in the fluids might be explained by hydrogeochemical heterogeneity, especially that of the nitrate and silicate concentrations, while the microeukaryotes in the chimneys coated with either Fe oxides or Fe-Si oxyhydroxides might be explained by potentially different associated prokaryotic groups. Population divergence of microeukaryotes, especially clades of parasitic Syndiniales, was observed among different hydrothermal fluids and chimneys and deserves further exploration to gain a deeper understanding of the trophic relationships and potential ecological function of microeukaryotes in the deep-sea extreme ecosystems, especially in the complex deep-sea chemoautotrophic habitats. IMPORTANCE Deep-sea hydrothermal vents have been proposed as oases for microbes, but microeukaryotes as key components of the microbial loop have not been well studied. Based on high-throughput sequencing and network analysis of the 18S rRNA gene, population divergence of microeukaryotes, especially clades of parasitic Syndiniales, was observed among different hydrothermal fields. This might be attributed to the hydrogeochemical heterogeneity of fluids and to the potentially different associated prokaryotic groups in chimneys.
Collapse
Affiliation(s)
- Yue Zhang
- CAS Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ning Huang
- CAS Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
8
|
Kim SL, Choi H, Eyun SI, Kim D, Yu OH. A New Branchipolynoe (Aphroditiformia: Polynoidae) Scale Worm from the Onnuri Deep-sea Hydrothermal Vent Field, Northern Central Indian Ridge. Zool Stud 2022; 61:e21. [PMID: 36330019 PMCID: PMC9537048 DOI: 10.6620/zs.2022.61-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/03/2022] [Indexed: 06/16/2023]
Abstract
Deep-sea hydrothermal vents are dynamic environments with exotic fauna, including bathymodiolin mussels and scale worm annelids that are often in close association. In this study, we found a new species of Branchipolynoe (Aphroditiformia: Polynoidae) living in the recently discovered mussel Gigantidas vrijenhoeki in deep-sea hydrothermal vents and methane seeps at 2,014-2,023 m depth. Based on the morphology and full mitochondrial genome sequences of specimens of Branchipolynoe from the Onnuri vent field (OVF) on the northern Central Indian Ridge, we describe them as a new species: Branchipolynoe onnuriensis sp. nov. This species resembles B. longqiensis and B. tjiasmantoi, but can be distinguished from these species by the shape of the notopodial acicular lobe and the tips of the subacicular neurochaetae. This identity is well-supported by genetic distance and phylogenetic analyses based on the mitochondrial c oxidase subunit I (COI) gene, with the new species being closest to the Western Pacific species B. tjiasmantoi. Phylogenetic analyses support close relationships between the Indian Ocean and Western Pacific hydrothermal polychaetes. Our data provide a foundation for exploring the evolutionary relationship between scale worms and bathymodiolin mussels.
Collapse
Affiliation(s)
- Sang Lyeol Kim
- Marine Ecosystem and Biological Research Centre, Korea Institute of Ocean Science and Technology, Busan 49111, Korea. E-mail: (Yu); (SL Kim); (Choi); (Eyun); (D Kim)
- Korea Maritime University, Busan 49111, Korea
| | - Hyeongwoo Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Dongsung Kim
- Marine Ecosystem and Biological Research Centre, Korea Institute of Ocean Science and Technology, Busan 49111, Korea. E-mail: (Yu); (SL Kim); (Choi); (Eyun); (D Kim)
- Korea Maritime University, Busan 49111, Korea
| | - Ok Hwan Yu
- Marine Ecosystem and Biological Research Centre, Korea Institute of Ocean Science and Technology, Busan 49111, Korea. E-mail: (Yu); (SL Kim); (Choi); (Eyun); (D Kim)
- Korea Maritime University, Busan 49111, Korea
| |
Collapse
|
9
|
Zhou Y, Chen C, Zhang D, Wang Y, Watanabe HK, Sun J, Bissessur D, Zhang R, Han Y, Sun D, Xu P, Lu B, Zhai H, Han X, Tao C, Qiu Z, Sun Y, Liu Z, Qiu J, Wang C. Delineating biogeographic regions in Indian Ocean deep‐sea vents and implications for conservation. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Yadong Zhou
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Chong Chen
- X‐STAR, Japan Agency for Marine‐Earth Science and Technology (JAMSTEC) Yokosuka Japan
| | - Dongsheng Zhang
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
- School of Oceanography Shanghai Jiao Tong University Shanghai China
| | - Yejian Wang
- Key Laboratory of Submarine Geosciences Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | | | - Jin Sun
- Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao China
| | - Dass Bissessur
- Department for Continental Shelf Maritime Zones Administration & Exploration, Prime Minister’s Office Port Louis Mauritius
| | - Ruiyan Zhang
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Yuru Han
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Dong Sun
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Peng Xu
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Bo Lu
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Hongchang Zhai
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Xiqiu Han
- Key Laboratory of Submarine Geosciences Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Chunhui Tao
- Key Laboratory of Submarine Geosciences Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Zhongyan Qiu
- Key Laboratory of Submarine Geosciences Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Yanan Sun
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Hong Kong Baptist University Hong Kong China
| | - Zhensheng Liu
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
| | - Jian‐Wen Qiu
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Hong Kong Baptist University Hong Kong China
| | - Chunsheng Wang
- Key Laboratory of Marine Ecosystem Dynamics Second Institute of Oceanography Ministry of Natural Resources Hangzhou China
- School of Oceanography Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
10
|
Gerdes K, Kihara TC, Martínez Arbizu P, Kuhn T, Schwarz-Schampera U, Mah CL, Norenburg JL, Linley TD, Shalaeva K, Macpherson E, Gordon D, Stöhr S, Messing CG, Bober S, Guggolz T, Christodoulou M, Gebruk A, Kremenetskaia A, Kroh A, Sanamyan K, Bolstad K, Hoffman L, Gooday AJ, Molodtsova T. Megafauna of the German exploration licence area for seafloor massive sulphides along the Central and South East Indian Ridge (Indian Ocean). Biodivers Data J 2021; 9:e69955. [PMID: 34720635 PMCID: PMC8516849 DOI: 10.3897/bdj.9.e69955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022] Open
Abstract
Background The growing interest in mineral resources of the deep sea, such as seafloor massive sulphide deposits, has led to an increasing number of exploration licences issued by the International Seabed Authority. In the Indian Ocean, four licence areas exist, resulting in an increasing number of new hydrothermal vent fields and the discovery of new species. Most studies focus on active venting areas including their ecology, but the non-vent megafauna of the Central Indian Ridge and South East Indian Ridge remains poorly known. In the framework of the Indian Ocean Exploration project in the German license area for seafloor massive sulphides, baseline imagery and sampling surveys were conducted yearly during research expeditions from 2013 to 2018, using video sledges and Remotely Operated Vehicles. New information This is the first report of an imagery collection of megafauna from the southern Central Indian- and South East Indian Ridge, reporting the taxonomic richness and their distribution. A total of 218 taxa were recorded and identified, based on imagery, with additional morphological and molecular confirmed identifications of 20 taxa from 89 sampled specimens. The compiled fauna catalogue is a synthesis of megafauna occurrences aiming at a consistent morphological identification of taxa and showing their regional distribution. The imagery data were collected during multiple research cruises in different exploration clusters of the German licence area, located 500 km north of the Rodriguez Triple Junction along the Central Indian Ridge and 500 km southeast of it along the Southeast Indian Ridge.
Collapse
Affiliation(s)
- Klaas Gerdes
- INES - Integrated Environmental Solutions, Wilhelmshaven, Germany INES - Integrated Environmental Solutions Wilhelmshaven Germany
| | - Terue Cristina Kihara
- INES - Integrated Environmental Solutions, Wilhelmshaven, Germany INES - Integrated Environmental Solutions Wilhelmshaven Germany
| | - Pedro Martínez Arbizu
- Senckenberg am Meer, German Centre for Marine Biodiversity Research, Wilhelmshaven, Germany Senckenberg am Meer, German Centre for Marine Biodiversity Research Wilhelmshaven Germany
| | - Thomas Kuhn
- Federal Institute for Geosciences and Natural Resources, Hannover, Germany Federal Institute for Geosciences and Natural Resources Hannover Germany
| | - Ulrich Schwarz-Schampera
- International Seabed Authority, Kingston, Jamaica International Seabed Authority Kingston Jamaica
| | - Christopher L Mah
- Smithsonian Institution National Museum of Natural History, Washington, DC, United States of America Smithsonian Institution National Museum of Natural History Washington, DC United States of America
| | - Jon L Norenburg
- Smithsonian Institution National Museum of Natural History, Washington, DC, United States of America Smithsonian Institution National Museum of Natural History Washington, DC United States of America
| | - Thomas D Linley
- Newcastle University, School of Natural and Environmental Sciences, Newcastle, United Kingdom Newcastle University, School of Natural and Environmental Sciences Newcastle United Kingdom
| | - Kate Shalaeva
- Natural History Museum London, London, United Kingdom Natural History Museum London London United Kingdom
| | - Enrique Macpherson
- Centro de Estudios Avanzados de Blanes (CEAB), Blanes, Girona, Spain Centro de Estudios Avanzados de Blanes (CEAB) Blanes, Girona Spain
| | - Dennis Gordon
- NIWA, Newmarket, Auckland, New Zealand NIWA Newmarket, Auckland New Zealand
| | - Sabine Stöhr
- Swedish Museum of Natural History, Stockholm, Sweden Swedish Museum of Natural History Stockholm Sweden
| | - Charles G Messing
- Department of Marine and Environmental Sciences, Nova Southeastern University, Dania Beach, United States of America Department of Marine and Environmental Sciences, Nova Southeastern University Dania Beach United States of America
| | - Simon Bober
- University of Hamburg, Hamburg, Germany University of Hamburg Hamburg Germany
| | - Theresa Guggolz
- University of Hamburg, Hamburg, Germany University of Hamburg Hamburg Germany
| | - Magdalini Christodoulou
- Senckenberg am Meer, German Centre for Marine Biodiversity Research, Wilhelmshaven, Germany Senckenberg am Meer, German Centre for Marine Biodiversity Research Wilhelmshaven Germany
| | - Andrey Gebruk
- P.P. Shirshov Institute of Oceanology, Moscow, Russia P.P. Shirshov Institute of Oceanology Moscow Russia
| | - Antonina Kremenetskaia
- P.P. Shirshov Institute of Oceanology, Moscow, Russia P.P. Shirshov Institute of Oceanology Moscow Russia
| | - Andreas Kroh
- Naturhistorisches Museum, Vienna, Austria Naturhistorisches Museum Vienna Austria
| | - Karen Sanamyan
- Far-Eastern Branch of the Russian Academy of Sciences, Petropavlovsk-Kamchatsky, Russia Far-Eastern Branch of the Russian Academy of Sciences Petropavlovsk-Kamchatsky Russia
| | - Kathrin Bolstad
- Auckland University of Technology, Auckland, New Zealand Auckland University of Technology Auckland New Zealand
| | - Leon Hoffman
- Senckenberg am Meer, German Centre for Marine Biodiversity Research, Wilhelmshaven, Germany Senckenberg am Meer, German Centre for Marine Biodiversity Research Wilhelmshaven Germany
| | - Andrew J Gooday
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, United Kingdom National Oceanography Centre, University of Southampton Waterfront Campus Southampton United Kingdom
| | - Tina Molodtsova
- P.P. Shirshov Institute of Oceanology, Moscow, Russia P.P. Shirshov Institute of Oceanology Moscow Russia
| |
Collapse
|
11
|
Chen C, Zhou Y, Watanabe HK, Zhang R, Wang C. Neolepetopsid true limpets (Gastropoda: Patellogastropoda) from Indian Ocean hot vents shed light on relationships among genera. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Neolepetopsidae is a family of true limpets restricted to deep-sea chemosynthesis-based ecosystems. It is a small and little-studied family with about a dozen species in three genera, namely Eulepetopsis, Neolepetopsis and Paralepetopsis, and all named species were from the Pacific or Atlantic Oceans. Here, we describe three new species from Indian Ocean vents, namely Eulepetopsis crystallina sp. nov. found across three ridges,ŠNeolepetopsis ardua sp. nov. from the Southwest Indian Ridge and Neolepetopsis prismatica sp. nov. from the Carlsberg Ridge. Given that Neolepetopsis appears to specialize on inactive sulfide deposits, the apparent wider distribution of E. crystallina is probably attributable to bias in sampling effort at inactive chimneys. The molecular phylogeny of Patellogastropoda, reconstructed using the COI gene, supported the monophyly of Neolepetopsidae. These are the first molecular data available for Neolepetopsis, confirming that the three genera are genetically distinct. Eulepetopsis appears to be adapted to active vents, and its derived position compared with Paralepetopsis indicates a possible ‘stepping-stone’ evolutionary pathway from seeps and organic falls to vents. Our results provide new insights into this enigmatic family and highlight the importance of surveying the vent periphery, especially given that inactive vents are being eyed as a replacement for active ones in deep-sea mining.
Collapse
Affiliation(s)
- Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Yadong Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Hiromi Kayama Watanabe
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Ruiyan Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Chunsheng Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Chen C, Han Y, Copley JT, Zhou Y. A new peltospirid snail (Gastropoda: Neomphalida) adds to the unique biodiversity of Longqi vent field, Southwest Indian Ridge. J NAT HIST 2021. [DOI: 10.1080/00222933.2021.1923851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yuru Han
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Jonathan T. Copley
- Ocean & Earth Science, University of Southampton, Waterfront Campus, Southampton, UK
| | - Yadong Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
13
|
Ma L, Wang WX. Zinc source differentiation in hydrothermal vent mollusks: Insight from Zn isotope ratios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145653. [PMID: 33582336 DOI: 10.1016/j.scitotenv.2021.145653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Hydrothermal vent represents an extreme environment where metal-enriched fluids are in contact with chemosymbiotic animals. In the present study, Zn isotopic compositions were determined in multiple tissues of three dominant hydrothermal vent mollusks (the mussel Bathymodiolus marisindicus and two gastropods Chrysomallon squamiferum and Gigantopelta aegis) collected from a hydrothermal vent field (Southwest Indian Ridge in the Indian Ocean). We found approximately 1.78‰ differences in the δ66Zn values among the three vent mollusks despite of their similar range of Zn concentrations. The significant variation in the δ66Zn values was considered to be indicative of different Zn uptake sources among the three species as a result of their morphological adaptations. Zinc uptake associated with symbiotic activities may be more relevant in the vent gastropods, whereas Zn uptake from hydrothermal fluids during filter-feeding may also play a role in the vent mussels. However, no significant difference in δ66Zn values was observed among tissues of any of the mollusks, showing the absence of Zn isotope fractionation during internal Zn transport. Our results demonstrated that variable Zn uptake pathways existed among different hydrothermal vent mollusks and could be differentiated by determining the Zn isotopic compositions in their tissues. We also highlight that Zn isotope ratios can be used to track Zn sources to the vent mollusks.
Collapse
Affiliation(s)
- Lan Ma
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
| |
Collapse
|
14
|
Fang Z, Wang WX. Size speciation of dissolved trace metals in hydrothermal plumes on the Southwest Indian Ridge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145367. [PMID: 33548727 DOI: 10.1016/j.scitotenv.2021.145367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Determining the size speciation and chemical transformation of trace metals is of paramount in order to better assess the impact of hydrothermal activities on the ocean metal budgets. In this study, we examined the concentration and size speciation of dissolved trace metals (i.e. Mn, Fe, Cu, Ni, Mo, As, Pb, Cd) in the hydrothermal plumes of two vent fields (i.e. Longqi and Tiancheng) on the Southwest Indian Ridge. The majority of dissolved Mn (75-100%) in the buoyant and non-buoyant plumes were presented as soluble Mn (<1 kDa), while dissolved Fe in the buoyant plume contained considerable colloidal Fe (54-95%). More than 66% of hydrothermally dissolved Fe was removed in the buoyant plume within a short distance of dispersion. Except for the samples most proximal to the fluid source, concentrations of Cu, Ni and Mo in the plumes were comparable to those of the background seawater and independent of the plume dilution. Concentrations of dissolved As and Pb in the buoyant plume of the Tiancheng field were higher than those of the Longqi field, resulting from the scavenging of As in the Longqi field and the release of Pb from metal sulfide dissolution in the Tiancheng field. Concentrations of dissolved Cd in the non-buoyant plume were nearly identical to the background seawater and soluble Cd was dominant (75-92%) in the soluble phase. In contrast, 33-96% (or 0.024-0.085 μg/kg) of dissolved Cd was removed in the buoyant plume and the remaining dissolved Cd was mainly in colloidal phase (up to 96%), suggesting that hydrothermal plume was likely an important sink of oceanic Cd and colloidal ligands played an important role in the stabilization of hydrothermal Cd. Our study has demonstrated the very dynamic nature of trace metal speciation in hydrothermal vent fluids.
Collapse
Affiliation(s)
- Ziming Fang
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
15
|
Ma L, Wang WX. Subcellular metal distribution in two deep-sea mollusks: Insight of metal adaptation and detoxification near hydrothermal vents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115303. [PMID: 32836047 DOI: 10.1016/j.envpol.2020.115303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/03/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
In this study, we determined the concentrations of Cu, Zn, Ni, Cd, Pb and As and their subcellular distributions within the tissues of mussels (Bathymodiolus marisindicus) and snails (Gigantopelta aegis) from two hydrothermal vent regions, i.e., Tiancheng and Longqi, at Southwest Indian Ridge. Mussels collected from the two venting regions showed comparable concentrations for Ni and Pb, but Cu, Zn, Cd and As concentrations were significantly different in mussel gills between the two vent regions. Similar ranges of metal concentrations were found in the snails as those in the mussels, but most of the metals were mainly accumulated in the viscera, except for Ni. Similar subcellular partitioning of Cu, Zn and Cd was documented in different mussel tissues, with cellular debris (50%) being the predominant fraction, followed by equivalent values in other fractions. Lead was distributed in both cellular debris and metal-rich granules (MRG) fraction, whereas Ni was predominantly distributed in MRG (90%). Arsenic was mainly partitioned in cellular debris and metallothionein-like protein. However, deep-sea snails displayed elevated subcellular partitioning of Cu in the organelles (up to 60%) and may be more susceptible to Cu stress than the mussels. Our results demonstrated the metal-specificity of detoxification strategies in these deep-sea hydrothermal vent mollusks, and the mussels may be more adaptable to high metal exposures than the snails at hydrothermal vent.
Collapse
Affiliation(s)
- Lan Ma
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), City University of Hong Kong, Kowloon, Hong Kong; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), City University of Hong Kong, Kowloon, Hong Kong; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
16
|
Ryu T, Kim JG, Lee J, Yu OH, Yum S, Kim D, Woo S. First transcriptome assembly of a newly discovered vent mussel, Gigantidas vrijenhoeki, at Onnuri Vent Field on the northern Central Indian Ridge. Mar Genomics 2020; 57:100819. [PMID: 32933864 DOI: 10.1016/j.margen.2020.100819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2022]
Abstract
This is the first report of a transcriptome assembly of a newly discovered hydrothermal vent mussel, Gigantidas vrijenhoeki (Bivalvia: Mytilidae), on the Central Indian Ridge. Gigantidas vrijenhoeki was identified from material collected at the newly discovered Onnuri Vent Field (OVF) on the Central Indian Ridge in 2018, and was reported as a new species, distinct from another dominant hydrothermal vent mussel, Bathymodiolus marisindicus, in 2020. We sequenced the transcriptome of G. vrijenhoeki using the Illumina HiSeq X System. De novo assembly and analysis of the coding regions predicted 25,405 genes, 84.76% of which was annotated by public databases. The transcriptome of G. vrijenhoeki will be a valuable resource in studying the ecological and biological characteristics of this new species, which is distinct from other deep-sea mussels. These data should also support the investigation of the relationship between the environmental conditions of hydrothermal vents and the unique distribution of G. vrijenhoeki in the OVF of the Central Indian Ridge.
Collapse
Affiliation(s)
- Taewoo Ryu
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Jong Guk Kim
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Jimin Lee
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Ok Hwan Yu
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Seungshic Yum
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology, Geoje 53201, South Korea
| | - Dongsung Kim
- Marine Ecosystem and Biological Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Seonock Woo
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, South Korea.
| |
Collapse
|
17
|
Hatch AS, Liew H, Hourdez S, Rouse GW. Hungry scale worms: Phylogenetics of Peinaleopolynoe (Polynoidae, Annelida), with four new species. Zookeys 2020; 932:27-74. [PMID: 32476973 PMCID: PMC7237507 DOI: 10.3897/zookeys.932.48532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/23/2020] [Indexed: 01/21/2023] Open
Abstract
Polynoidae Kinberg, 1856 has five branchiate genera: Branchipolynoe Pettibone, 1984, Branchinotogluma Pettibone, 1985, Branchiplicatus Pettibone, 1985, Peinaleopolynoe Desbruyères & Laubier, 1988, and Thermopolynoe Miura, 1994, all native to deep-sea, chemosynthetic-based habitats. Of these, Peinaleopolynoe has two accepted species; Peinaleopolynoe sillardi Desbruyères & Laubier, 1988 (Atlantic Ocean) and Peinaleopolynoe santacatalina Pettibone, 1993 (East Pacific Ocean). The goal of this study was to assess the phylogenetic position of Peinaleopolynoe, utilizing DNA sequences from a broad sampling of deep-sea polynoids. Representatives from all five branchiate genera were included, several species of which were sampled from near the type localities; Branchinotogluma sandersi Pettibone, 1985 from the Galápagos Rift (E/V "Nautilus"); Peinaleopolynoe sillardi from organic remains in the Atlantic Ocean; Peinaleopolynoe santacatalina from a whalefall off southern California (R/V "Western Flyer") and Thermopolynoe branchiata Miura, 1994 from Lau Back-Arc Basin in the western Pacific (R/V "Melville"). Phylogenetic analyses were conducted using mitochondrial (COI, 16S rRNA, and CytB) and nuclear (18S rRNA, 28S rRNA, and H3) genes. The analyses revealed four new Peinaleopolynoe species from the Pacific Ocean that are formally described here: Peinaleopolynoe orphanae Hatch & Rouse, sp. nov., type locality Pescadero Basin in the Gulf of California, Mexico (R/V "Western Flyer"); Peinaleopolynoe elvisi Hatch & Rouse, sp. nov. and Peinaleopolynoe goffrediae Hatch & Rouse, sp. nov., both with a type locality in Monterey Canyon off California (R/V "Western Flyer") and Peinaleopolynoe mineoi Hatch & Rouse, sp. nov. from Costa Rica methane seeps (R/V "Falkor"). In addition to DNA sequence data, the monophyly of Peinaleopolynoe is supported by the presence of ventral papillae on segments 12-15. The results also demonstrated the paraphyly of Branchinotogluma and Lepidonotopodium Pettibone, 1983 and taxonomic revision of these genera is required. We apply the subfamily name Lepidonotopodinae Pettibone 1983, for the clade comprised of Branchipolynoe, Branchinotogluma, Bathykurila, Branchiplicatus, Lepidonotopodium, Levensteiniella Pettibone, 1985, Thermopolynoe, and Peinaleopolynoe.
Collapse
Affiliation(s)
- Avery S. Hatch
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Haebin Liew
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USAUniversity of California San DiegoLa JollaUnited States of America
| | - Stéphane Hourdez
- Observatoire Océanologique de Banyuls-sur-Mer, UMR 8222 CNRS-Sorbonne Université, 1 avenue Pierre Fabre, 66650 Banyuls-sur-Mer, FranceCNRS-Sorbonne UniversitéBanyuls-sur-MerFrance
| | - Greg W. Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USAUniversity of California San DiegoLa JollaUnited States of America
| |
Collapse
|
18
|
Sun J, Zhou Y, Chen C, Kwan YH, Sun Y, Wang X, Yang L, Zhang R, Wei T, Yang Y, Qu L, Sun C, Qian PY. Nearest vent, dearest friend: biodiversity of Tiancheng vent field reveals cross-ridge similarities in the Indian Ocean. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200110. [PMID: 32269824 PMCID: PMC7137978 DOI: 10.1098/rsos.200110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/27/2020] [Indexed: 05/24/2023]
Abstract
Biodiversity of hydrothermal vents in the Indian Ocean, particularly those on the Southwest Indian Ridge (SWIR), are still relatively poorly understood. The Tiancheng field on the SWIR was initially reported with only a low-temperature diffuse flow venting area, but here we report two new active areas, including a chimney emitting high-temperature vent fluids. Biological sampling in these new sites doubled the known megafauna and macrofauna richness reported from Tiancheng. Significantly, we found several iconic species, such as the scaly-foot snail and the first Alviniconcha population on the SWIR. Tiancheng shares a high proportion of taxa with vents on the Central Indian Ridge (CIR) and lacks a number of key taxa that characterize other vents investigated so far on the SWIR. Population genetics of the scaly-foot snail confirmed this, as the Tiancheng population was clustered with populations from the CIR, showing low connectivity with the Longqi field. Unlike the previously examined populations, scales of the Tiancheng scaly-foot snail were coated in zinc sulfide, although this results only from precipitation. The close connection between Tiancheng and CIR vents indicates that the dispersal barrier for vent endemic species is not the Rodriguez Triple Junction as previously suggested but the transformation faults between Tiancheng and Longqi, warranting further studies on deep currents in this area to resolve the key barrier, which has important implications for biological conservation.
Collapse
Affiliation(s)
- Jin Sun
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, People's Republic of China
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Yadong Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, People's Republic of China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Yick Hang Kwan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Yanan Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Xuyang Wang
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lei Yang
- Marine Survey Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, People's Republic of China
| | - Ruiyan Zhang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, People's Republic of China
| | - Tong Wei
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Yi Yang
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Lingyun Qu
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, People's Republic of China
| | - Chengjun Sun
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, People's Republic of China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| |
Collapse
|
19
|
Linse K, Copley JT, Connelly DP, Larter RD, Pearce DA, Polunin NVC, Rogers AD, Chen C, Clarke A, Glover AG, Graham AGC, Huvenne VAI, Marsh L, Reid WDK, Roterman CN, Sweeting CJ, Zwirglmaier K, Tyler PA. Fauna of the Kemp Caldera and its upper bathyal hydrothermal vents (South Sandwich Arc, Antarctica). ROYAL SOCIETY OPEN SCIENCE 2019; 6:191501. [PMID: 31827872 PMCID: PMC6894572 DOI: 10.1098/rsos.191501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 05/24/2023]
Abstract
Faunal assemblages at hydrothermal vents associated with island-arc volcanism are less well known than those at vents on mid-ocean ridges and back-arc spreading centres. This study characterizes chemosynthetic biotopes at active hydrothermal vents discovered at the Kemp Caldera in the South Sandwich Arc. The caldera hosts sulfur and anhydrite vent chimneys in 1375-1487 m depth, which emit sulfide-rich fluids with temperatures up to 212°C, and the microbial community of water samples in the buoyant plume rising from the vents was dominated by sulfur-oxidizing Gammaproteobacteria. A total of 12 macro- and megafaunal taxa depending on hydrothermal activity were collected in these biotopes, of which seven species were known from the East Scotia Ridge (ESR) vents and three species from vents outside the Southern Ocean. Faunal assemblages were dominated by large vesicomyid clams, actinostolid anemones, Sericosura sea spiders and lepetodrilid and cocculinid limpets, but several taxa abundant at nearby ESR hydrothermal vents were rare such as the stalked barnacle Neolepas scotiaensis. Multivariate analysis of fauna at Kemp Caldera and vents in neighbouring areas indicated that the Kemp Caldera is most similar to vent fields in the previously established Southern Ocean vent biogeographic province, showing that the species composition at island-arc hydrothermal vents can be distinct from nearby seafloor-spreading systems. δ 13C and δ 15N isotope values of megafaunal species analysed from the Kemp Caldera were similar to those of the same or related species at other vent fields, but none of the fauna sampled at Kemp Caldera had δ 13C values, indicating nutritional dependence on Epsilonproteobacteria, unlike fauna at other island-arc hydrothermal vents.
Collapse
Affiliation(s)
- Katrin Linse
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Jonathan T. Copley
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton SO14 3ZH, UK
| | | | - Robert D. Larter
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - David A. Pearce
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Nick V. C. Polunin
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building, Newcastle upon Tyne NE1 7RU, UK
| | - Alex D. Rogers
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Kanagawa Pref. Japan
| | - Andrew Clarke
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Adrian G. Glover
- Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | | | | - Leigh Marsh
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton SO14 3ZH, UK
| | - William D. K. Reid
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building, Newcastle upon Tyne NE1 7RU, UK
| | - C. Nicolai Roterman
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Christopher J. Sweeting
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building, Newcastle upon Tyne NE1 7RU, UK
| | - Katrin Zwirglmaier
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Paul A. Tyler
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton SO14 3ZH, UK
| |
Collapse
|
20
|
Gerdes KH, Martínez Arbizu P, Schwentner M, Freitag R, Schwarz-Schampera U, Brandt A, Kihara TC. Megabenthic assemblages at the southern Central Indian Ridge - Spatial segregation of inactive hydrothermal vents from active-, periphery- and non-vent sites. MARINE ENVIRONMENTAL RESEARCH 2019; 151:104776. [PMID: 31474311 DOI: 10.1016/j.marenvres.2019.104776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Active hydrothermal vents are small-scale habitats hosting endemic fauna in a well-defined zonation around fluid effluents. The fauna of inactive hydrothermal vents and its relation to active vents and non-vent area is poorly known. Characterizing inactive areas is prerequisite to establish protected areas, especially in the context of potential seafloor massive sulfide mining, which targets inactive sites. Hierarchical clustering and Distance-based Redundancy Analysis revealed five assemblages, with significantly associated substrate types: I) active hydrothermal vent, II) periphery, III) inactive hydrothermal vent and IV) soft- and V) hard-substrate within the non-vent area. For the first time, a unique inactive faunal assemblage could be identified within the hydrothermally extinct inactive Gauss field and on adjacent hard substrates. The spatial separation from the active Edmond field and periphery and the non-vent area indicates the existence of an inactive assemblage.
Collapse
Affiliation(s)
- K H Gerdes
- Senckenberg am Meer, German Center for Marine Biodiversity Research, Wilhelmshaven, Germany; Center of Natural History, Universität Hamburg, Hamburg, Germany; Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
| | - P Martínez Arbizu
- Senckenberg am Meer, German Center for Marine Biodiversity Research, Wilhelmshaven, Germany; Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - M Schwentner
- Center of Natural History, Universität Hamburg, Hamburg, Germany
| | - R Freitag
- Federal Institute for Geosciences and Natural Resources, Hannover, Germany
| | | | - A Brandt
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany; Institute for Ecology, Evolution and Diversity, Goethe-University of Frankfurt, FB 15, Max-von-Laue-Str. 13, 60439, Frankfurt am Main, Germany
| | - T C Kihara
- Senckenberg am Meer, German Center for Marine Biodiversity Research, Wilhelmshaven, Germany
| |
Collapse
|
21
|
Phylogeny and Biogeography of Branchipolynoe (Polynoidae, Phyllodocida, Aciculata, Annelida), with Descriptions of Five New Species from Methane Seeps and Hydrothermal Vents. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11090153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The four named species of Branchipolynoe all live symbiotically in mytilid mussels (Bathymodiolus) that occur at hydrothermal vents or methane seeps. Analyses using mitochondrial (COI and 16S) and nuclear (ITS) genes, as well as morphology, were conducted on a collection of Branchipolynoe from Pacific Costa Rican methane seeps and West Pacific hydrothermal vents. This revealed five new species of Branchipolynoe, and these are formally described. The new species from Costa Rica live in three species of Bathymodiolus mussels (also new) at depths ranging from 1000 to 1800 m. Branchipolynoe kajsae n. sp. and Branchipolynoe halliseyae n. sp. were found in all three undescribed Bathymodiolus species, while Branchipolynoe eliseae n. sp. was found in Bathymodiolus spp. 1 and 2, and Branchipolynoe meridae n. sp. was found in Bathymodiolus spp. 1 and 3. Hence, Bathymodiolus sp. 1 hosted all four of the new species, while the other two Bathymodiolus hosted three each. Most mussels contained only one specimen of Branchipolynoe; where there was more than one, these were often a female and smaller male of the same species. The newly discovered species from the West Pacific, Branchipolynoe tjiasmantoi n. sp., lives in unidentified Bathymodiolus at depths ranging from 674 to 2657 m from hydrothermal vents in the North Fiji (Fiji) and Lau Basins (Tonga) and also from New Zealand, Vanuatu, and the Manus Basin (Papua New Guinea). The phylogenetic and biogeographical implications of this diversity of Branchipolynoe are discussed.
Collapse
|
22
|
Sigwart JD, Chen C. Comparative Oxygen Consumption of Gastropod Holobionts from Deep-Sea Hydrothermal Vents in the Indian Ocean. THE BIOLOGICAL BULLETIN 2018; 235:102-112. [PMID: 30358445 DOI: 10.1086/699326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Physiological traits are the foundation of an organism's success in a dynamic environment, yet basic measurements are unavailable for many taxa and even ecosystems. We measured routine metabolism in two hydrothermal vent gastropods, Alviniconcha marisindica (n = 40) and the scaly-foot gastropod Chrysomallon squamiferum (n = 18), from Kairei and Edmond vent fields on the Central Indian Ridge (23-25°S, about 3000 meter depth). No previous studies have measured metabolism in any Indian Ocean vent animals. After recovering healthy animals to the surface, we performed shipboard closed-chamber respirometry experiments to compare oxygen uptake at different temperatures (10, 16, and 25 °C) at surface pressure (1 atm). The physiology of these species is driven by the demands of their chemoautotrophic symbionts. Chrysomallon has very enlarged respiratory and circulatory systems, and endosymbionts are housed in its trophosome-like internal esophageal gland. By contrast, Alviniconcha has chemoautotrophic bacteria within the gill and less extensive associated anatomical adaptations. Thus, we predicted that routine oxygen consumption of Chrysomallon might be higher than that of Alviniconcha. However, oxygen consumption of Chrysomallon was not higher than that of Alviniconcha, and, further, Chrysomallon maintained a steady metabolic demand in two widely separated experimental temperatures, while Alviniconcha did not. We interpret that these findings indicate that (1) the "trophosome" does not fundamentally increase oxygen requirement compared to other gastropod holobionts, and (2) cold temperatures (10 °C) induce a stress response in Alviniconcha, resulting in aberrantly high uptake. While these two large gastropod species co-occur, differences in oxygen consumption may reflect the separate niches they occupy in the vent ecosystem.
Collapse
|
23
|
Watanabe HK, Chen C, Marie DP, Takai K, Fujikura K, Chan BKK. Phylogeography of hydrothermal vent stalked barnacles: a new species fills a gap in the Indian Ocean 'dispersal corridor' hypothesis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172408. [PMID: 29765686 PMCID: PMC5936951 DOI: 10.1098/rsos.172408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/13/2018] [Indexed: 05/31/2023]
Abstract
Phylogeography of animals provides clues to processes governing their evolution and diversification. The Indian Ocean has been hypothesized as a 'dispersal corridor' connecting hydrothermal vent fauna of Atlantic and Pacific oceans. Stalked barnacles of the family Eolepadidae are common associates of deep-sea vents in Southern, Pacific and Indian oceans, and the family is an ideal group for testing this hypothesis. Here, we describe Neolepas marisindica sp. nov. from the Indian Ocean, distinguished from N. zevinae and N. rapanuii by having a tridentoid mandible in which the second tooth lacks small elongated teeth. Morphological variations suggest that environmental differences result in phenotypic plasticity in the capitulum and scales on the peduncle in eolepadids. We suggest that diagnostic characters in Eolepadidae should be based mainly on more reliable arthropodal characters and DNA barcoding, while the plate arrangement should be used carefully with their intraspecific variation in mind. We show morphologically that Neolepas specimens collected from the South West Indian Ridge, the South East Indian Ridge and the Central Indian Ridge belong to the new species. Molecular phylogeny and fossil evidence indicated that Neolepas migrated from the southern Pacific to the Indian Ocean through the Southern Ocean, providing key evidence against the 'dispersal corridor' hypothesis. Exploration of the South East Indian Ridge is urgently required to understand vent biogeography in the Indian Ocean.
Collapse
Affiliation(s)
- Hiromi Kayama Watanabe
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Chong Chen
- Department of Subsurface Geobiological Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Daniel P. Marie
- Mauritius Oceanography Institute, Avenue des Anchois, Morcellement de Chazal, Albion, Mauritius
| | - Ken Takai
- Department of Subsurface Geobiological Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Katsunori Fujikura
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Benny K. K. Chan
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan, Republic of China
| |
Collapse
|
24
|
Eilertsen MH, Georgieva MN, Kongsrud JA, Linse K, Wiklund H, Glover AG, Rapp HT. Genetic connectivity from the Arctic to the Antarctic: Sclerolinum contortum and Nicomache lokii (Annelida) are both widespread in reducing environments. Sci Rep 2018; 8:4810. [PMID: 29556042 PMCID: PMC5859262 DOI: 10.1038/s41598-018-23076-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/06/2018] [Indexed: 11/23/2022] Open
Abstract
The paradigm of large geographic ranges in the deep sea has been challenged by genetic studies, which often reveal putatively widespread species to be several taxa with more restricted ranges. Recently, a phylogeographic study revealed that the tubeworm Sclerolinum contortum (Siboglinidae) inhabits vents and seeps from the Arctic to the Antarctic. Here, we further test the conspecificity of the same populations of S. contortum with additional mitochondrial and nuclear markers. We also investigate the genetic connectivity of another species with putatively the same wide geographic range - Nicomache lokii (Maldanidae). Our results support the present range of S. contortum, and the range of N. lokii is extended from vents and seeps in the Nordic Seas to mud volcanoes in the Barbados Trench and Antarctic vents. Sclerolinum contortum shows more pronounced geographic structure than N. lokii, but whether this is due to different dispersal capacities or reflects the geographic isolation of the sampled localities is unclear. Two distinct mitochondrial lineages of N. lokii are present in the Antarctic, which may result from two independent colonization events. The environmental conditions inhabited by the two species and implications for their distinct habitat preference is discussed.
Collapse
Affiliation(s)
- Mari H Eilertsen
- Department of Biological Sciences, University of Bergen, PO Box 7800, N-5020, Bergen, Norway. .,K.G. Jebsen Centre for Deep-Sea Research, University of Bergen, PO Box 7803, N-5020, Bergen, Norway.
| | - Magdalena N Georgieva
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Jon A Kongsrud
- Department of Natural History, University Museum of Bergen, PO Box 7800, N-5020, Bergen, Norway
| | - Katrin Linse
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Helena Wiklund
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Adrian G Glover
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Hans T Rapp
- Department of Biological Sciences, University of Bergen, PO Box 7800, N-5020, Bergen, Norway.,K.G. Jebsen Centre for Deep-Sea Research, University of Bergen, PO Box 7803, N-5020, Bergen, Norway.,Uni Research, Uni Environment, PO Box 7810, N-5020, Bergen, Norway
| |
Collapse
|
25
|
Roterman CN, Lee WK, Liu X, Lin R, Li X, Won YJ. A new yeti crab phylogeny: Vent origins with indications of regional extinction in the East Pacific. PLoS One 2018; 13:e0194696. [PMID: 29547631 PMCID: PMC5856415 DOI: 10.1371/journal.pone.0194696] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/07/2018] [Indexed: 11/19/2022] Open
Abstract
The recent discovery of two new species of kiwaid squat lobsters on hydrothermal vents in the Pacific Ocean and in the Pacific sector of the Southern Ocean has prompted a re-analysis of Kiwaid biogeographical history. Using a larger alignment with more fossil calibrated nodes than previously, we consider the precise relationship between Kiwaidae, Chirostylidae and Eumunididae within Chirostyloidea (Decapoda: Anomura) to be still unresolved at present. Additionally, the placement of both new species within a new “Bristly” clade along with the seep-associated Kiwa puravida is most parsimoniously interpreted as supporting a vent origin for the family, rather than a seep-to-vent progression. Fossil-calibrated divergence analysis indicates an origin for the clade around the Eocene-Oligocene boundary in the eastern Pacific ~33–38 Ma, coincident with a lowering of bottom temperatures and increased ventilation in the Pacific deep sea. Likewise, the mid-Miocene (~10–16 Ma) rapid radiation of the new Bristly clade also coincides with a similar cooling event in the tropical East Pacific. The distribution, diversity, tree topology and divergence timing of Kiwaidae in the East Pacific is most consistent with a pattern of extinctions, recolonisations and radiations along fast-spreading ridges in this region and may have been punctuated by large-scale fluctuations in deep-water ventilation and temperature during the Cenozoic; further affecting the viability of Kiwaidae populations along portions of mid-ocean ridge.
Collapse
Affiliation(s)
| | - Won-Kyung Lee
- Department of Life Science, Division of EcoScience, Ewha Womans University, Seoul, Republic of Korea
- Deep-sea and Seabed Mineral Resources Research Center, Korea Institute of Ocean Science & Technology, Ansan, Republic of Korea
| | - Xinming Liu
- Guangxi Academy of Oceanography, Nanning, China
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
| | - Rongcheng Lin
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Xinzheng Li
- Institute of Oceanology, Chinese Academy of Science, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yong-Jin Won
- Department of Life Science, Division of EcoScience, Ewha Womans University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
26
|
Miyazaki J, Kawagucci S, Makabe A, Takahashi A, Kitada K, Torimoto J, Matsui Y, Tasumi E, Shibuya T, Nakamura K, Horai S, Sato S, Ishibashi JI, Kanzaki H, Nakagawa S, Hirai M, Takaki Y, Okino K, Watanabe HK, Kumagai H, Chen C. Deepest and hottest hydrothermal activity in the Okinawa Trough: the Yokosuka site at Yaeyama Knoll. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171570. [PMID: 29308272 PMCID: PMC5750039 DOI: 10.1098/rsos.171570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Since the initial discovery of hydrothermal vents in 1977, these 'extreme' chemosynthetic systems have been a focus of interdisciplinary research. The Okinawa Trough (OT), located in the semi-enclosed East China Sea between the Eurasian continent and the Ryukyu arc, hosts more than 20 known vent sites but all within a relatively narrow depth range (600-1880 m). Depth is a significant factor in determining fluid temperature and chemistry, as well as biological composition. However, due to the narrow depth range of known sites, the actual influence of depth here has been poorly resolved. Here, the Yokosuka site (2190 m), the first OT vent exceeding 2000 m depth is reported. A highly active hydrothermal vent site centred around four active vent chimneys reaching 364°C in temperature, it is the hottest in the OT. Notable Cl depletion (130 mM) and both high H2 and CH4 concentrations (approx. 10 mM) probably result from subcritical phase separation and thermal decomposition of sedimentary organic matter. Microbiota and fauna were generally similar to other sites in the OT, although with some different characteristics. In terms of microbiota, the H2-rich vent fluids in Neuschwanstein chimney resulted in the dominance of hydrogenotrophic chemolithoautotrophs such as Thioreductor and Desulfobacterium. For fauna, the dominance of the deep-sea mussel Bathymodiolus aduloides is surprising given other nearby vent sites are usually dominated by B. platifrons and/or B. japonicus, and a sponge field in the periphery dominated by Poecilosclerida is unusual for OT vents. Our insights from the Yokosuka site implies that although the distribution of animal species may be linked to depth, the constraint is perhaps not water pressure and resulting chemical properties of the vent fluid but instead physical properties of the surrounding seawater. The potential significance of these preliminary results and prospect for future research on this unique site are discussed.
Collapse
Affiliation(s)
- Junichi Miyazaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Shinsuke Kawagucci
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Institute of Geochemistry and Petrology, ETH Zürich, Clausiusstrasse 25, 8092 Zürich, Switzerland
| | - Akiko Makabe
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Ayu Takahashi
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Kazuya Kitada
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Junji Torimoto
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Yohei Matsui
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Eiji Tasumi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Takazo Shibuya
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Kentaro Nakamura
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Department of Systems Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shunsuke Horai
- Department of Earth and Planetary Sciences, School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shun Sato
- Department of Earth and Planetary Sciences, School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jun-ichiro Ishibashi
- Department of Earth and Planetary Sciences, School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hayato Kanzaki
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satoshi Nakagawa
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Miho Hirai
- Research and Development Center for Marine Biosciences, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Research and Development Center for Marine Biosciences, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Kyoko Okino
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8564, Japan
| | - Hiromi Kayama Watanabe
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Department of Marine Biodiversity Research (BIO-DIVE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Hidenori Kumagai
- Research and Development Center for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Chong Chen
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| |
Collapse
|
27
|
Zhang DS, Zhou YD, Wang CS, Rouse GW. A new species of Ophryotrocha (Annelida, Eunicida, Dorvilleidae) from hydrothermal vents on the Southwest Indian Ridge. Zookeys 2017:1-9. [PMID: 29114161 PMCID: PMC5672568 DOI: 10.3897/zookeys.687.13046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/06/2017] [Indexed: 11/12/2022] Open
Abstract
Dorvilleids were collected from hydrothermal vents on the Southwest Indian Ridge by manned submersible Jiaolong. These represent a new species of Ophryotrocha that is here described as Ophryotrocha jiaolongisp. n. This is the first dorvilleid described from vents on the Southwest Indian Ridge. It most closely resembles another vent species, Ophryotrocha akessoni Blake, 1985 from the Galapagos Rift, but can be distinguished by its antennae, palps, jaw structure. The new species has particularly distinctive mandibles, which allow it to be easily identified.
Collapse
Affiliation(s)
- Dong-Sheng Zhang
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310012, China
| | - Ya-Dong Zhou
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310012, China
| | - Chun-Sheng Wang
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310012, China.,State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310012, China
| | - Greg W Rouse
- Scripps Institution of Oceanography, UCSD, La Jolla, CA 92093-0202, USA
| |
Collapse
|
28
|
Djurhuus A, Mikalsen SO, Giebel HA, Rogers AD. Cutting through the smoke: the diversity of microorganisms in deep-sea hydrothermal plumes. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160829. [PMID: 28484604 PMCID: PMC5414241 DOI: 10.1098/rsos.160829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/10/2017] [Indexed: 05/19/2023]
Abstract
There are still notable gaps regarding the detailed distribution of microorganisms between and within insular habitats such as deep-sea hydrothermal vents. This study investigates the community composition of black smoker vent microorganisms in the Southern Hemisphere, and changes thereof along a spatial and chemical gradient ranging from the vent plume to surrounding waters. We sampled two hydrothermal vent fields, one at the South West Indian Ridge (SWIR), the other at the East Scotia Ridge (ESR). Samples were collected across vent fields at varying vertical distances from the origin of the plumes. The microbial data were sequenced on an Illumina MiSeq platform for the 16SrRNA gene. A substantial amount of vent-specific putative chemosynthetic microorganisms were found, particularly in samples from focused hydrothermal venting. Common vent-specific organisms from both vent fields were the genera Arcobacter, Caminibacter and Sulfurimonas from the Epsilonproteobacteria and the SUP05 group from the Gammaproteobacteria. There were no major differences in microbial composition between SWIR and ESR for focused plume samples. However, within the ESR the diffuse flow and focused samples differed significantly in microbial community composition and relative abundance. For Epsilonproteobacteria, we found evidence of niche-specificity to hydrothermal vent environments. This taxon decreased in abundance by three orders of magnitude from the vent orifice to background water. Epsilonproteobacteria distribution followed a distance-decay relationship as vent-effluents mixed with the surrounding seawater. This study demonstrates strong habitat affinity of vent microorganisms on a metre scale with distinct environmental selection.
Collapse
Affiliation(s)
- Anni Djurhuus
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS UK
- e-mail:
| | - Svein-Ole Mikalsen
- Department of Science and Technology, University of the Faroe Islands, Noatun 3, Torshavn, Faroe Islands
| | - Helge-Ansgar Giebel
- Institute of Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, , Germany
| | - Alex D. Rogers
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS UK
| |
Collapse
|