1
|
Laczi M, Herczeg G, Sarkadi F, Gyarmathy H, Herényi M, Jablonszky M, Kőmüves G, Markó G, Nagy G, Rosivall B, Szabó G, Török J, Hegyi G. Nestling Plumage Colour Variation in a Sexually Dichromatic Hole-Nesting Passerine Bird-Potential Functions and Mechanisms. Ecol Evol 2025; 15:e71152. [PMID: 40177693 PMCID: PMC11962215 DOI: 10.1002/ece3.71152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
Animal colouration is subject to various selection pressures, which often result in the phenomena of sexual dichromatism and gradual colour development. Despite extensive knowledge about adult colouration, the significance of nestling or fledgling plumage colouration in birds remains understudied. Focusing on the collared flycatcher (Ficedula albicollis), this explorative study investigated colour variation in the pre-fledgling stage of nestlings. We collected reflectance spectra from the brown primary coverts and the yellow tip of these coverts of the nestlings from 71 nests and applied DNA-based sex determination. We revealed significant sex differences in offspring colour: females had brown coverts with higher brightness and lower UV chroma, and their yellow stripe had lower brightness, UV chroma and saturation. We detected significant but low repeatability of colouration between nestlings in the same broods. Nestlings did not show phenotypic integration between the colour variables of coverts and those of the terminal stripe, suggesting that these could be independent traits. The results also suggested that the yellow colouration of the stripe was probably caused by a white structural background and porphyrin pigmentation. Based on our results, we offer testable hypotheses on the potential adaptive functions of early-life sex-specific colouration patterns in birds for different contexts, including parent-offspring communication or hiding from predators.
Collapse
Affiliation(s)
- Miklós Laczi
- HUN‐REN–ELTE–MTM Integrative Ecology Research GroupELTE Eötvös Loránd UniversityBudapestHungary
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Gábor Herczeg
- HUN‐REN–ELTE–MTM Integrative Ecology Research GroupELTE Eötvös Loránd UniversityBudapestHungary
- Department of Systematic Zoology and Ecology, Institute of BiologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Fanni Sarkadi
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
- Doctoral School of Biology, Institute of BiologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Helga Gyarmathy
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
- Doctoral School of Biology, Institute of BiologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Márton Herényi
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
- Department of Zoology and Ecology, Institute for Wildlife Management and Nature ConservationHungarian University of Agriculture and Life SciencesGödöllőHungary
| | - Mónika Jablonszky
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
- Evolutionary Ecology Research Group, Institute of Ecology and BotanyHUN‐REN Centre for Ecological ResearchVácrátótHungary
| | - Gabriella Kőmüves
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
- Doctoral School of Biology, Institute of BiologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Gábor Markó
- Department of Plant Pathology, Institute of Plant ProtectionHungarian University of Agriculture and Life SciencesBudapestHungary
| | - Gergely Nagy
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
- Evolutionary Ecology Research Group, Institute of Ecology and BotanyHUN‐REN Centre for Ecological ResearchVácrátótHungary
| | - Balázs Rosivall
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Gyula Szabó
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
- Doctoral School of Biology, Institute of BiologyELTE Eötvös Loránd UniversityBudapestHungary
- Lendület Ecosystem Services Research Group, Institute of Ecology and BotanyHUN‐REN Centre for Ecological ResearchVácrátótHungary
| | - János Török
- HUN‐REN–ELTE–MTM Integrative Ecology Research GroupELTE Eötvös Loránd UniversityBudapestHungary
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Gergely Hegyi
- HUN‐REN–ELTE–MTM Integrative Ecology Research GroupELTE Eötvös Loránd UniversityBudapestHungary
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| |
Collapse
|
2
|
Hu B, Yu H, Kong L, Liu S, Du S, Li Q. CgPPOX and CgFECH Mediate Protoporphyrin IX Accumulation Predominantly in the Outer Mantle Fold of Pacific Oyster Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:46. [PMID: 39937285 DOI: 10.1007/s10126-025-10425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
Mollusk shell is secreted through mantle folds and exhibits color polymorphism predominantly caused by pigments. Mantle tissue consists of three folds, with the outer fold playing crucial roles in shell formation. Among various pigments influencing shell color, porphyrins-especially protoporphyrin IX (PPIX)-significantly contribute to orange-shell phenotype. However, the distinct functions of mantle folds in shell coloration and pigmentation remain poorly understood. In this study, the frozen section of fresh mantles from orange and gold shell-color Pacific oyster Crassostrea gigas was observed to have distinct porphyrin distributions. Significant differences in porphyrin spectrum and precise PPIX concentrations were detected among mantle folds of shell-color strains C. gigas. In addition, key genes from porphyrin pathway: protoporphyrinogen oxidase (PPOX) and ferrochelatase (FECH) were characterized to exhibit distinct expression patterns among mantle folds of different shell-colored oysters. Dual-label fluorescence in situ hybridization analysis of CgPPOX and CgFECH with the PPIX translocator protein (CgTspO) verified the predominant functional location of these genes is the oyster outer mantle fold and periostracal groove. Furthermore, in vivo knockdown of CgPPOX and CgFECH verified their roles in PPIX metabolism, resulting in significant changes in porphyrin metabolic-related gene expression and altered PPIX concentrations in both the outer mantle fold and the newly deposited shell of C. gigas. This study identified the differential mantle fold porphyrin distribution and demonstrated essential roles of CgPPOX and CgFECH in PPIX metabolism, correlating with variations in PPIX content and shell color of C. gigas. The results provide new insights into molecular mechanisms underlying shell-color polymorphism in mollusks.
Collapse
Affiliation(s)
- Biyang Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
3
|
Hu B, Yu H, Du S, Li Q. Protoporphyrin IX metabolism mediated via translocator protein (CgTspO) involved in orange shell coloration of pacific oyster (Crassostrea gigas). Int J Biol Macromol 2024; 276:134020. [PMID: 39038584 DOI: 10.1016/j.ijbiomac.2024.134020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Mollusc shell color polymorphism is influenced by various factors. Pigments secreted in vivo by animals play a critical role in shell coloration. Among the different shell-color hues, orange pigmentation has been partially attributed to porphyrins. However, the detailed causal relationship between porphyrins and orange-shell phenotype in molluscs remains largely unexplored. The various strains of Pacific oyster (Crassostrea gigas) with different shell color provide useful models to study the molecular regulation of mollusc coloration. Accordingly, oysters with orange and gold-shells, exhibiting distinct porphyrin distributions, were selected for analysis of total metabolites and gene expression profile through mantle metabolomic and transcriptomic studies. Translocator protein (TspO) and protoporphyrin IX (PPIX) were identified as potential factors influencing oyster shell-color. The concentration of PPIX was measured using HPLC, while expression profiling of CgTspO was analyzed by qPCR, in situ hybridization, Western blotting, and immunofluorescence techniques. Moreover, the roles of CgTspO in regulating PPIX metabolism and affecting the orange-shell-coloration were investigated in vitro and in vivo. These studies indicate that PPIX and its associated metabolic protein, CgTspO may serve as new regulators of orange-shell-coloration in C. gigas. Data of this study offer new insights into oyster shell coloration and enhancing understandings of mollusc shell color polymorphism.
Collapse
Affiliation(s)
- Biyang Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
4
|
Zomer A, Ingham CJ, von Meijenfeldt FAB, Escobar Doncel Á, van de Kerkhof GT, Hamidjaja R, Schouten S, Schertel L, Müller KH, Catón L, Hahnke RL, Bolhuis H, Vignolini S, Dutilh BE. Structural color in the bacterial domain: The ecogenomics of a 2-dimensional optical phenotype. Proc Natl Acad Sci U S A 2024; 121:e2309757121. [PMID: 38990940 PMCID: PMC11260094 DOI: 10.1073/pnas.2309757121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/23/2024] [Indexed: 07/13/2024] Open
Abstract
Structural color is an optical phenomenon resulting from light interacting with nanostructured materials. Although structural color (SC) is widespread in the tree of life, the underlying genetics and genomics are not well understood. Here, we collected and sequenced a set of 87 structurally colored bacterial isolates and 30 related strains lacking SC. Optical analysis of colonies indicated that diverse bacteria from at least two different phyla (Bacteroidetes and Proteobacteria) can create two-dimensional packing of cells capable of producing SC. A pan-genome-wide association approach was used to identify genes associated with SC. The biosynthesis of uroporphyrin and pterins, as well as carbohydrate utilization and metabolism, was found to be involved. Using this information, we constructed a classifier to predict SC directly from bacterial genome sequences and validated it by cultivating and scoring 100 strains that were not part of the training set. We predicted that SCr is widely distributed within gram-negative bacteria. Analysis of over 13,000 assembled metagenomes suggested that SC is nearly absent from most habitats associated with multicellular organisms except macroalgae and is abundant in marine waters and surface/air interfaces. This work provides a large-scale ecogenomics view of SC in bacteria and identifies microbial pathways and evolutionary relationships that underlie this optical phenomenon.
Collapse
Affiliation(s)
- Aldert Zomer
- Division of Infectious Diseases and Immunology, Utrecht University, Utrecht3584 CL, the Netherlands
| | - Colin J. Ingham
- Hoekmine Besloten Vennootschap, Utrecht3515 GJ, the Netherlands
| | - F. A. Bastiaan von Meijenfeldt
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht3584 CH, the Netherlands
- Department of Marine Microbiology & Biogeochemistry, Royal Netherlands Institute for Sea Research, ‘t Horntje1797 SZ, The Netherlands
| | | | - Gea T. van de Kerkhof
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | | | - Sanne Schouten
- Hoekmine Besloten Vennootschap, Utrecht3515 GJ, the Netherlands
| | - Lukas Schertel
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Department of Physics, University of Fribourg, FribourgCH-1700, Switzerland
| | - Karin H. Müller
- Department of Physiology, Development and Neuroscience, Cambridge Advanced Imaging Centre, University of Cambridge, CambridgeCB2 3DY, United Kingdom
| | - Laura Catón
- Hoekmine Besloten Vennootschap, Utrecht3515 GJ, the Netherlands
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Richard L. Hahnke
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures, Braunschweig38124, Germany
| | - Henk Bolhuis
- Department of Marine Microbiology & Biogeochemistry, Royal Netherlands Institute for Sea Research, ‘t Horntje1797 SZ, The Netherlands
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht3584 CH, the Netherlands
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena07743, Germany
| |
Collapse
|
5
|
Hasegawa M, Arai E, Ito S, Wakamatsu K. UV-induced feather color change reflects its porphyrin content. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:6. [PMID: 38300300 DOI: 10.1007/s00114-024-01890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Pigmentary coloration is widespread in animals. Its evolutionary and ecological features are often attributed to the property of predominant pigments; therefore, most research has focused on predominant pigments such as carotenoids in carotenoid-based coloration. However, coloration results from predominant pigments and many other minority pigments, and the importance of the latter is overlooked. Here, we focused on porphyrin, an "uncommon" pigment found in bird feathers, and investigated its importance in the context of feather color changes in the barn swallow Hirundo rustica. We found that the "pheomelanin-based coloration" of the barn swallow faded after the irradiation of UV light, and this effect was particularly strong in the feathers of young swallows (nestlings and fledglings, here). We also found that it is not the predominant pigment, pheomelanin, but protoporphyrin IX pigment that showed the same pattern of depigmentation after the irradiation of UV light, particularly in the feathers of young swallows. In fact, the abovementioned age-dependent feather color change was statistically explained by the amount of porphyrin in the feathers. The current study demonstrates that a minority pigment, porphyrin, explains within-season dynamic color change, an ecological feature of feather coloration. The porphyrin-mediated rapid color change would benefit young birds, in which feather coloration affects the parental food allocation during a few weeks before independence, but not later. Future studies should not ignore these minor but essential pigments and their evolutionary and ecological functions.
Collapse
Affiliation(s)
- Masaru Hasegawa
- Department of Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Emi Arai
- Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
6
|
Slater TS, Ito S, Wakamatsu K, Zhang F, Sjövall P, Jarenmark M, Lindgren J, McNamara ME. Taphonomic experiments reveal authentic molecular signals for fossil melanins and verify preservation of phaeomelanin in fossils. Nat Commun 2023; 14:5651. [PMID: 37803012 PMCID: PMC10558522 DOI: 10.1038/s41467-023-40570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/01/2023] [Indexed: 10/08/2023] Open
Abstract
Melanin pigments play a critical role in physiological processes and shaping animal behaviour. Fossil melanin is a unique resource for understanding the functional evolution of melanin but the impact of fossilisation on molecular signatures for eumelanin and, especially, phaeomelanin is not fully understood. Here we present a model for the chemical taphonomy of fossil eumelanin and phaeomelanin based on thermal maturation experiments using feathers from extant birds. Our results reveal which molecular signatures are authentic signals for thermally matured eumelanin and phaeomelanin, which signatures are artefacts derived from the maturation of non-melanin molecules, and how these chemical data are impacted by sample preparation. Our model correctly predicts the molecular composition of eumelanins in diverse vertebrate fossils from the Miocene and Cretaceous and, critically, identifies direct molecular evidence for phaeomelanin in these fossils. This taphonomic framework adds to the geochemical toolbox that underpins reconstructions of melanin evolution and of melanin-based coloration in fossil vertebrates.
Collapse
Affiliation(s)
- Tiffany S Slater
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
- Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Fucheng Zhang
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, China
| | - Peter Sjövall
- RISE Research Institutes of Sweden, Materials and Production, 501 15, Borås, Sweden
| | | | - Johan Lindgren
- Department of Geology, Lund University, 223 62, Lund, Sweden
| | - Maria E McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
- Environmental Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
7
|
Reinhold LM, Rymer TL, Helgen KM, Wilson DT. Photoluminescence in mammal fur: 111 years of research. J Mammal 2023; 104:892-906. [PMID: 37545668 PMCID: PMC10399922 DOI: 10.1093/jmammal/gyad027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/04/2023] [Indexed: 08/08/2023] Open
Abstract
Photoluminescence in the pelage of mammals, a topic that has gained considerable recent research interest, was first documented in the 1700s and reported sporadically in the literature over the last century. The first detailed species accounts were of rabbits and humans, published 111 years ago in 1911. Recent studies have largely overlooked this earlier research into photoluminescent mammalian taxa and their luminophores. Here we provide a comprehensive update on existing research on photoluminescence in mammal fur, with the intention of drawing attention to earlier pioneering research in this field. We provide an overview on appropriate terminology, explain the physics of photoluminescence, and explore pigmentation and the ubiquitous photoluminescence of animal tissues, before touching on the emerging debate regarding visual function. We then provide a chronological account of research into mammalian fur photoluminescence, from the earliest discoveries and identification of luminophores to the most recent studies. While all mammal fur is likely to have a general low-level photoluminescence due to the presence of the protein keratin, fur glows luminously under ultraviolet light if it contains significant concentrations of tryptophan metabolites or porphyrins. Finally, we briefly discuss issues associated with preserved museum specimens in studies of photoluminescence. The study of mammal fur photoluminescence has a substantial history, which provides a broad foundation on which future studies can be grounded.
Collapse
Affiliation(s)
- Linda M Reinhold
- College of Science and Engineering, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
| | - Tasmin L Rymer
- College of Science and Engineering, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
| | - Kristofer M Helgen
- Australian Museum Research Institute, 1 William Street, Sydney, New South Wales 2010, Australia
| | - David T Wilson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia
| |
Collapse
|
8
|
Terrill RS, Shultz AJ. Feather function and the evolution of birds. Biol Rev Camb Philos Soc 2023; 98:540-566. [PMID: 36424880 DOI: 10.1111/brv.12918] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
The ability of feathers to perform many functions either simultaneously or at different times throughout the year or life of a bird is integral to the evolutionary history of birds. Many studies focus on single functions of feathers, but any given feather performs many functions over its lifetime. These functions necessarily interact with each other throughout the evolution and development of birds, so our knowledge of avian evolution is incomplete without understanding the multifunctionality of feathers, and how different functions may act synergistically or antagonistically during natural selection. Here, we review how feather functions interact with avian evolution, with a focus on recent technological and discovery-based advances. By synthesising research into feather functions over hierarchical scales (pattern, arrangement, macrostructure, microstructure, nanostructure, molecules), we aim to provide a broad context for how the adaptability and multifunctionality of feathers have allowed birds to diversify into an astounding array of environments and life-history strategies. We suggest that future research into avian evolution involving feather function should consider multiple aspects of a feather, including multiple functions, seasonal wear and renewal, and ecological or mechanical interactions. With this more holistic view, processes such as the evolution of avian coloration and flight can be understood in a broader and more nuanced context.
Collapse
Affiliation(s)
- Ryan S Terrill
- Moore Laboratory of Zoology, Occidental College, 1600 Campus rd., Los Angeles, CA, 90042, USA
- Department of Biological Sciences, California State University, Stanislaus, Turlock, CA, 95382, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA, 90007, USA
| |
Collapse
|
9
|
Toussaint SLD, Ponstein J, Thoury M, Métivier R, Kalthoff DC, Habermeyer B, Guilard R, Bock S, Mortensen P, Sandberg S, Gueriau P, Amson E. Fur glowing under ultraviolet: in situ analysis of porphyrin accumulation in the skin appendages of mammals. Integr Zool 2023; 18:15-26. [PMID: 35500584 DOI: 10.1111/1749-4877.12655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Examples of photoluminescence (PL) are being reported with increasing frequency in a wide range of organisms from diverse ecosystems. However, the chemical basis of this PL remains poorly defined, and our understanding of its potential ecological function is still superficial. Among mammals, recent analyses have identified free-base porphyrins as the compounds responsible for the reddish ultraviolet-induced photoluminescence (UV-PL) observed in the pelage of springhares and hedgehogs. However, the localization of the pigments within the hair largely remains to be determined. Here, we use photoluminescence multispectral imaging emission and excitation spectroscopy to detect, map, and characterize porphyrinic compounds in skin appendages in situ. We also document new cases of mammalian UV-PL caused by free-base porphyrins in distantly related species. Spatial distribution of the UV-PL is strongly suggestive of an endogenous origin of the porphyrinic compounds. We argue that reddish UV-PL is predominantly observed in crepuscular and nocturnal mammals because porphyrins are photodegradable. Consequently, this phenomenon may not have a specific function in intra- or interspecific communication but rather represents a byproduct of potentially widespread physiological processes.
Collapse
Affiliation(s)
- Séverine L D Toussaint
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Jasper Ponstein
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,AG Paläobiologie und Evolution, Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Mathieu Thoury
- IPANEMA, CNRS, ministère de la Culture, UVSQ, MNHN, USR3461, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Rémi Métivier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, Gif-sur-Yvette, France
| | - Daniela C Kalthoff
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | | | - Roger Guilard
- ICMUB, UMR CNRS 6302, Université de Bourgogne Franche-Comté, France
| | - Steffen Bock
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Peter Mortensen
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Sverre Sandberg
- Norwegian Porphyria Centre (NAPOS), Haukeland University Hospital, Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), and Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, Norway
| | - Pierre Gueriau
- IPANEMA, CNRS, ministère de la Culture, UVSQ, MNHN, USR3461, Université Paris-Saclay, Gif-sur-Yvette, France.,Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
| | - Eli Amson
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| |
Collapse
|
10
|
Louleb M, Galván I, Latrous L, Justyn NM, Hill GE, Ríos Á, Zougagh M. Detection of Porphyrins in Hair Using Capillary Liquid Chromatography-Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23116230. [PMID: 35682910 PMCID: PMC9181607 DOI: 10.3390/ijms23116230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Unlike humans, some animals have evolved a physiological ability to deposit porphyrins, which are pigments produced during heme synthesis in cells, in the skin and associated integument such as hair. Given the inert nature and easiness of collection of hair, animals that present porphyrin-based pigmentation constitute unique models for porphyrin analysis in biological samples. Here we present the development of a simple, rapid, and efficient analytical method for four natural porphyrins (uroporphyrin I, coproporphyrin I, coproporphyrin III and protoporphyrin IX) in the Southern flying squirrel Glaucomys volans, a mammal with hair that fluoresces and that we suspected has porphyrin-based pigmentation. The method is based on capillary liquid chromatography-mass spectrometry (CLC-MS), after an extraction procedure with formic acid and acetonitrile. The resulting limits of detection (LOD) and quantification (LOQ) were 0.006–0.199 and 0.021–0.665 µg mL−1, respectively. This approach enabled us to quantify porphyrins in flying squirrel hairs at concentrations of 3.6–353.2 µg g−1 with 86.4–98.6% extraction yields. This method provides higher simplicity, precision, selectivity, and sensitivity than other methods used to date, presenting the potential to become the standard technique for porphyrin analysis.
Collapse
Affiliation(s)
- Marwa Louleb
- Regional Institute for Applied Scientific Research, IRICA, 13005 Ciudad Real, Spain; (M.L.); (Á.R.)
- Laboratory of Applied Mineral Chemistry (LCMA) LR19ES02, Department of Chemistry, Faculty of Sciences of Tunis, Campus Universitaire Farat Hached El Manar 1, University of Tunis El Manar, Tunis 2092, Tunisia;
- Department of Analytical Chemistry and Food Technology, University of Castilla—La Mancha, 13071 Ciudad Real, Spain
| | - Ismael Galván
- Department of Evolutionary Ecology, National Museum of Natural Sciences, CSIC, 28006 Madrid, Spain
- Correspondence: (I.G.); (M.Z.); Tel.: +34-926052675 (M.Z.)
| | - Latifa Latrous
- Laboratory of Applied Mineral Chemistry (LCMA) LR19ES02, Department of Chemistry, Faculty of Sciences of Tunis, Campus Universitaire Farat Hached El Manar 1, University of Tunis El Manar, Tunis 2092, Tunisia;
| | - Nicholas M. Justyn
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA; (N.M.J.); (G.E.H.)
| | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA; (N.M.J.); (G.E.H.)
| | - Ángel Ríos
- Regional Institute for Applied Scientific Research, IRICA, 13005 Ciudad Real, Spain; (M.L.); (Á.R.)
- Department of Analytical Chemistry and Food Technology, University of Castilla—La Mancha, 13071 Ciudad Real, Spain
| | - Mohammed Zougagh
- Regional Institute for Applied Scientific Research, IRICA, 13005 Ciudad Real, Spain; (M.L.); (Á.R.)
- Analytical Chemistry and Food Technology Department, Faculty of Pharmacy, University of Castilla—La Ancha, 02008 Albacete, Spain
- Correspondence: (I.G.); (M.Z.); Tel.: +34-926052675 (M.Z.)
| |
Collapse
|
11
|
Douglas HD, Ermakov IV, Gellermann W. Brighter is better: bill fluorescence increases social attraction in a colonial seabird and reveals a potential link with foraging. Behav Ecol Sociobiol 2021; 75. [PMID: 34840402 DOI: 10.1007/s00265-021-03087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Crested auklets (Aethia cristatella) are colonial seabirds with brilliant orange bills during the breeding season. We characterized the bill pigment with spectroscopy methods (resonance Raman, fluorescence, absorbance). We excluded carotenoids as a possible chromophore and showed that the pigment most closely resembles pterins. Like pterins the bill pigment fluoresces, and it occurred in two phenotypes that may differ geographically, perhaps due to environmental heterogeneity. The pigment is unique in the Genus Aethia, and its spectra did not match any known molecule. The UV-Vis absorbance spectrum of the bill pigment overlaps with the extracted pigment of euphausiids, a favored food of crested auklets. A color preference associated with prey may have favored characteristics of the crested auklet's accessory bill plates. Crest size, a signal of dominance, tended to correlate positively with highest fluorescence in the single-band phenotype. Brighter bills may function in self-advertisement and verify the status signal of the crest ornament. We tested for a behavioral preference using identical decoys that differed only in bill fluorescence. Crested auklets approached models with fluorescent bills at a higher frequency. In cases where sex of crested auklets was known, males responded at a higher frequency to fluorescent bills, but females did not. In an evolutionary context, bill fluorescence could have conferred an advantage in social interactions, e.g., in dimly lit rock crevices. Bill brightness and color may communicate success in foraging and may function as an honest signal of mate quality.
Collapse
Affiliation(s)
- H D Douglas
- Science Department, College of Community and Rural Development, University of Alaska Fairbanks, Fairbanks, AK 99775.,Current address: Dept. Biological Sciences, Grambling State University, Grambling, LA 71245
| | - I V Ermakov
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112.,Current address: Longevity Link Corporation, Salt Lake City, UT 84108
| | - W Gellermann
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112.,Current address: Longevity Link Corporation, Salt Lake City, UT 84108
| |
Collapse
|
12
|
Zhu X, Feng S, Jiang Z, Zhang H, Wang Y, Yang H, Wang Z. An ultra-red fluorescent biosensor for highly sensitive and rapid detection of biliverdin. Anal Chim Acta 2021; 1174:338709. [PMID: 34247733 DOI: 10.1016/j.aca.2021.338709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
The important role of BV in clinical diagnostics of liver-related diseases has been established in veterinary medicine. However, the sensitivity and selectivity of the current BV assays remain relatively low compromising its wider application in clinical diagnosis. Herein, we developed a rapid and sensitive BV-detecting biosensor based on a novel far-red fluorescent protein smURFP, which produced fluorescence only through specific interaction with its cofactor BV. In our study, the binding of BV to smURFP was then systematically optimized based on the structures of the smURFP + BV complex to increase the sensitivity of our biosensor. A wide linear range from 0 μM to 25 μM was obtained in both chicken and human serum. The limit of detection (LOD) and limit of quantification (LOQ) for BV was as low as 0.4 nM and 1.5 nM in human serum, and 0.4 nM and 1.2 nM in chicken serum. To our knowledge, this is the lowest LOD that has ever been reported for a BV biosensor. Our study sheds light on the biological and clinical analysis of BV.
Collapse
Affiliation(s)
- Xiaqing Zhu
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Shuren Feng
- Tianjin Women's and Children's Health Centre (TWCHC), Tianjin, 300051, China
| | - Zhongyi Jiang
- Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Huayue Zhang
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Yanyan Wang
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Haitao Yang
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Zefang Wang
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| |
Collapse
|
13
|
Hamchand R, Lafountain AM, Büchel R, Maas KR, Hird SM, Warren M, Frank HA, Brückner C. Red Fluorescence of European Hedgehog (Erinaceus europaeus) Spines Results from Free-Base Porphyrins of Potential Microbial Origin. J Chem Ecol 2021; 47:588-596. [PMID: 33948884 DOI: 10.1007/s10886-021-01279-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 01/04/2023]
Abstract
Bioluminescence has been recognized as an important means for inter- and intra-species communication. A growing number of reports of red fluorescence occurring in keratinaceous materials have become available. The fluorophore(s) in these cases were shown to be, or suspected to be, free base porphyrins. The red fluorescence found in the downs of bustards was associated with inter-species signaling in mate selection. First reported in 1925, we confirm that spines of the European hedgehog (Erinaceus europaeus) when irradiated with UV (365-395 nm) light display red fluorescence localized in the light-colored sections of their proximal ends. Using reflectance fluorescence spectroscopy, we confirmed that the fluorophores responsible for the emission are free-base porphyrins, as suspected in the original report. Base-induced degradation of the spine matrix and subsequent HPLC, UV-vis, and ESI+ mass spectrometry analysis revealed the presence of a mixture of coproporphyrin III and uroporphyrin III as predominant porphyrins and a minor fraction of protoporphyrin IX. Investigation of the spine microbiome uncovered the abundant presence of bacteria known to secrete and/or interconvert porphyrins and that are not present on the non-fluorescing quills of the North American porcupine (Erethizon dorsatum). Given this circumstantial evidence, we propose the porphyrins could originate from commensal bacteria. Furthermore, we hypothesize that the fluorescence may be incidental and of no biological function for the hedgehog.
Collapse
Affiliation(s)
- Randy Hamchand
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA
| | - Amy M Lafountain
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA
| | - Rhea Büchel
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA
| | - Kendra R Maas
- Microbial Analysis, Resources, and Services (MARS), University of Connecticut, Unit-3032, Storrs, CT, 06269-3032, USA
| | - Sarah M Hird
- Department of Molecular and Cell Biology, University of Connecticut, Unit 3125, Storrs, CT, 06269-3125, USA
| | - Martin Warren
- Department of Biochemistry, University of Kent, Canterbury, CT2 7NJ, UK
| | - Harry A Frank
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA
| | - Christian Brückner
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA.
| |
Collapse
|
14
|
Gardner KM, Mennill DJ, Savi LM, Shangi NE, Doucet SM. Sexual selection in a tropical toad: Do female toads choose brighter males in a species with rapid colour change? Ethology 2021. [DOI: 10.1111/eth.13156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Katrina M. Gardner
- Department of Integrative Biology University of Windsor Windsor ON Canada
| | - Daniel J. Mennill
- Department of Integrative Biology University of Windsor Windsor ON Canada
| | - Lincoln M. Savi
- Department of Integrative Biology University of Windsor Windsor ON Canada
| | - Nicole E. Shangi
- Department of Integrative Biology University of Windsor Windsor ON Canada
| | | |
Collapse
|
15
|
de Oliveira Neves AC, Galván I. Models for human porphyrias: Have animals in the wild been overlooked?: Some birds and mammals accumulate significant amounts of porphyrins in the body without showing the injurious symptoms observed in human porphyrias. Bioessays 2020; 42:e2000155. [PMID: 33155299 DOI: 10.1002/bies.202000155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/27/2020] [Indexed: 11/06/2022]
Abstract
Humans accumulate porphyrins in the body mostly during the course of porphyrias, diseases caused by defects in the enzymes of the heme biosynthesis pathway and that produce acute attacks, skin lesions and liver cancer. In contrast, some wild mammals and birds are adapted to accumulate porphyrins without injurious consequences. Here we propose viewing such physiological adaptations as potential solutions to human porphyrias, and suggest certain wild animals as models. Given the enzymatic activity and/or the patterns of porphyrin excretion and accumulation, the fox squirrel, the great bustard and the Eurasian eagle owl may constitute overlooked models for different porphyrias. The Harderian gland of rodents, where large amounts of porphyrins are synthesized, presents an underexplored potential for understanding the carcinogenic/toxic effect of porphyrin accumulation. Investigating how these animals avoid porphyrin pathogenicity may complement the use of laboratory models for porphyrias and provide new insights into the treatment of these disorders.
Collapse
Affiliation(s)
| | - Ismael Galván
- Department of Evolutionary Ecology, Doñana Biological Station, CSIC, Sevilla, 41092, Spain
| |
Collapse
|
16
|
Pérez de Vargas A, Cuadrado M, Camarero PR, Mateo R. An assessment of eggshell pigments as non-invasive biomarkers of organochlorine pollutants in gull-billed tern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139210. [PMID: 32438180 DOI: 10.1016/j.scitotenv.2020.139210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Eggshell pigmentation has been assessed as an indicator of exposure to environmental pollutants in birds, but these studies have only used reflectance spectrophotometry to measure such pigmentation. The present study is the first one that measures eggshell pigments and pollutants in the same eggs to explore their use as biomarkers in birds. We have studied the concentration of organochlorine pesticides and polychlorinated biphenyls (PCBs) in the content of 97 deserted eggs of gull-billed terns (Gelochelidon nilotica) after the abandonment of the colony in Mesas de Asta (Cádiz, S Spain) in 2012. Eggshell thickness and stage of embryo development were studied together along with the concentrations of protoporphyrin IX and biliverdin in eggshells. p,p'-DDE concentrations were high when compared with other studies done with terns in the Mediterranean basin in the past. p,p'-DDE and PCB levels associated with reduced reproductive success were found in 5.1% and 2.1% of the eggs respectively. Eggshell index was largely affected by the embryo development stage, which highlights the need of knowing this information to avoid potential biases in the interpretation of results. The concentrations of protoporphyrin IX and biliverdin in the eggs of gull-billed terns were negatively associated with DDTs levels, which seems to confirm previous observations with phylogenetically related species.
Collapse
Affiliation(s)
- Ana Pérez de Vargas
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain; Veterinary Diagnostic and Research Unit, Veterinary Section, Al Ain Zoo, PO Box 1204, United Arab Emirates
| | - Mariano Cuadrado
- ZooBotánico Jerez - Ayuntamiento de Jerez, Madreselva s/n, 11408 Jerez de la Frontera, Cádiz, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| |
Collapse
|
17
|
Expanding the eggshell colour gamut: uroerythrin and bilirubin from tinamou (Tinamidae) eggshells. Sci Rep 2020; 10:11264. [PMID: 32647200 PMCID: PMC7347609 DOI: 10.1038/s41598-020-68070-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/01/2020] [Indexed: 11/10/2022] Open
Abstract
To date, only two pigments have been identified in avian eggshells: rusty-brown protoporphyrin IX and blue-green biliverdin IXα. Most avian eggshell colours can be produced by a mixture of these two tetrapyrrolic pigments. However, tinamou (Tinamidae) eggshells display colours not easily rationalised by combination of these two pigments alone, suggesting the presence of other pigments. Here, through extraction, derivatization, spectroscopy, chromatography, and mass spectrometry, we identify two novel eggshell pigments: yellow–brown tetrapyrrolic bilirubin from the guacamole-green eggshells of Eudromia elegans, and red–orange tripyrrolic uroerythrin from the purplish-brown eggshells of Nothura maculosa. Both pigments are known porphyrin catabolites and are found in the eggshells in conjunction with biliverdin IXα. A colour mixing model using the new pigments and biliverdin reproduces the respective eggshell colours. These discoveries expand our understanding of how eggshell colour diversity is achieved. We suggest that the ability of these pigments to photo-degrade may have an adaptive value for the tinamous.
Collapse
|
18
|
Roy A, Pittman M, Saitta ET, Kaye TG, Xu X. Recent advances in amniote palaeocolour reconstruction and a framework for future research. Biol Rev Camb Philos Soc 2020; 95:22-50. [PMID: 31538399 PMCID: PMC7004074 DOI: 10.1111/brv.12552] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 01/24/2023]
Abstract
Preserved melanin pigments have been discovered in fossilised integumentary appendages of several amniote lineages (fishes, frogs, snakes, marine reptiles, non-avialan dinosaurs, birds, and mammals) excavated from lagerstätten across the globe. Melanisation is a leading factor in organic integument preservation in these fossils. Melanin in extant vertebrates is typically stored in rod- to sphere-shaped, lysosome-derived, membrane-bound vesicles called melanosomes. Black, dark brown, and grey colours are produced by eumelanin, and reddish-brown colours are produced by phaeomelanin. Specific morphotypes and nanostructural arrangements of melanosomes and their relation to the keratin matrix in integumentary appendages create the so-called 'structural colours'. Reconstruction of colour patterns in ancient animals has opened an exciting new avenue for studying their life, behaviour and ecology. Modern relationships between the shape, arrangement, and size of avian melanosomes, melanin chemistry, and feather colour have been applied to reconstruct the hues and colour patterns of isolated feathers and plumages of the dinosaurs Anchiornis, Sinosauropteryx, and Microraptor in seminal papers that initiated the field of palaeocolour reconstruction. Since then, further research has identified countershading camouflage patterns, and informed subsequent predictions on the ecology and behaviour of these extinct animals. However, palaeocolour reconstruction remains a nascent field, and current approaches have considerable potential for further refinement, standardisation, and expansion. This includes detailed study of non-melanic pigments that might be preserved in fossilised integuments. A common issue among existing palaeocolour studies is the lack of contextualisation of different lines of evidence and the wide variety of techniques currently employed. To that end, this review focused on fossil amniotes: (i) produces an overarching framework that appropriately reconstructs palaeocolour by accounting for the chemical signatures of various pigments, morphology and local arrangement of pigment-bearing vesicles, pigment concentration, macroscopic colour patterns, and taphonomy; (ii) provides background context for the evolution of colour-producing mechanisms; and (iii) encourages future efforts in palaeocolour reconstructions particularly of less-studied groups such as non-dinosaur archosaurs and non-archosaur amniotes.
Collapse
Affiliation(s)
- Arindam Roy
- Vertebrate Palaeontology Laboratory, Department of Earth SciencesThe University of Hong KongPokfulamHong Kong SARChina
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Department of Earth SciencesThe University of Hong KongPokfulamHong Kong SARChina
| | - Evan T. Saitta
- Integrative Research Center, Section of Earth SciencesField Museum of Natural History1400 S. Lake Shore Drive, ChicagoIL60605U.S.A.
| | - Thomas G. Kaye
- Foundation for Scientific Advancement7023 Alhambra Drive, Sierra VistaAZ85650U.S.A.
| | - Xing Xu
- Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of Sciences142 Xizhimenwai Street.Beijing100044China
| |
Collapse
|
19
|
Camacho C, Negro JJ, Redondo I, Palacios S, Sáez-Gómez P. Correlates of individual variation in the porphyrin-based fluorescence of red-necked nightjars (Caprimulgus ruficollis). Sci Rep 2019; 9:19115. [PMID: 31836769 PMCID: PMC6910967 DOI: 10.1038/s41598-019-55522-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/28/2019] [Indexed: 11/19/2022] Open
Abstract
Many nocturnal animals, including invertebrates such as scorpions and a variety of vertebrate species, including toadlets, flying squirrels, owls, and nightjars, emit bright fluorescence under ultraviolet light. However, the ecological significance of this unique coloration so attached to nocturnality remains obscure. Here, we used an intensively studied population of migratory red-necked nightjars (Caprimulgus ruficollis) to investigate inter-individual variation in porphyrin-based pink fluorescence according to sex, age, body condition, time of the year, and the extent of white plumage patches known to be involved in sexual communication. Males and females exhibited a similar extent of pink fluorescence on the under-side of the wings in both juvenile and adult birds, but males had larger white patches than females. Body condition predicted the extent of pink fluorescence in juvenile birds, but not in adults. On average, the extent of pink fluorescence in juveniles increased by ca. 20% for every 10-g increase in body mass. For both age classes, there was a slight seasonal increase (1–4% per week) in the amount of fluorescence. Our results suggest that the porphyrin-based coloration of nightjars might signal individual quality, at least in their first potential breeding season, although the ability of these and other nocturnal birds to perceive fluorescence remains to be unequivocally proven.
Collapse
Affiliation(s)
- Carlos Camacho
- Department of Evolutionary Ecology, Estación Biológica de Doñana (EBD-CSIC), Av. Américo Vespucio 26, 41092, Seville, Spain.,Department of Biology, Centre for Animal Movement Research (CAnMove). Lund University. Ecology Building, 223 62, Lund, Sweden
| | - Juan José Negro
- Department of Evolutionary Ecology, Estación Biológica de Doñana (EBD-CSIC), Av. Américo Vespucio 26, 41092, Seville, Spain.
| | - Iraida Redondo
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Sebastián Palacios
- Monitoring Team of Natural Processes (ICTS-RBD). Estación Biológica de Doñana (EBD-CSIC), Av. Américo Vespucio 26, 41092, Seville, Spain
| | - Pedro Sáez-Gómez
- Department of Integrative Sciences, University of Huelva, Campus Universitario El Carmen, Av. Andalucía, 21071, Huelva, Spain.,Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, 03080, Alicante, Spain
| |
Collapse
|
20
|
Wang Q, He Y, Li J. Conjoint Analysis of SMRT- and Illumina-Based RNA-Sequencing Data of Fenneropenaeus chinensis Provides Insight Into Sex-Biased Expression Genes Involved in Sexual Dimorphism. Front Genet 2019; 10:1175. [PMID: 31803244 PMCID: PMC6872642 DOI: 10.3389/fgene.2019.01175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Fenneropenaeus chinensis (F. chinensis) is one of the most commercially important cultured shrimps in China. The adult F. chinensis exhibit sexual dimorphism in growth and body color. In this research, we profiled the whole transcriptome of F. chinensis by using single molecule real-time-based full-length transcriptome sequencing. We further performed Illumina-based short reads RNA-seq on muscle and gonad of two sexes to detect the sex-biased expression genes. In muscle, we observed significantly more female-biased transcripts. With the differentially expressed transcripts (DETs) in muscle, some pathways related to the energy metabolism were enriched, which may be responsible for the difference of growth. We also digged out a pathway named porphyrin and chlorophyll metabolism. It was speculated to relevant to the difference of body color between the two sexes of shrimp. Interestingly, almost all DETs in these pathways were female-biased expression in muscle, which could explain the phenomenon of better growth performance and darker body color in female. In gonad, several pathways involved in reproduction were enriched. For instance, some female-biased DETs participated in the arachidonic acid metabolism, which was reported crucial in female reproduction. In conclusion, our studies identified abundant sex-biased expression transcripts and important pathways involved in sexual dimorphism by using the RNA-seq method. It provided a basis for future researches on the sexual dimorphism of F. chinensis.
Collapse
Affiliation(s)
- Qiong Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuying He
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
21
|
Galván I, Rodríguez‐Martínez S, Carrascal LM. Dark pigmentation limits thermal niche position in birds. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13094] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ismael Galván
- Department of Evolutionary EcologyDoñana Biological StationCSIC Sevilla Spain
| | | | - Luis M. Carrascal
- Department of Biogeography and Global ChangeNational Museum of Natural SciencesCSIC Madrid Spain
| |
Collapse
|
22
|
Galván I, Delgado MDM, Camarero PR, Mateo R, Lourenço R, Penteriani V. Feather content of porphyrins in Eurasian eagle owl (Bubo bubo) fledglings depends on body condition and breeding site quality. Integr Zool 2018; 13:569-578. [PMID: 29436755 DOI: 10.1111/1749-4877.12313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Porphyrins are pigments produced in most animal cells during the synthesis of heme, but their importance for external coloration is unclear. Owls (Order Strigiformes) are among the few animals that accumulate porphyrins in the integument, where it could serve as a means of signaling. Here we hypothesized that the porphyrin content of feathers may depend on body condition and breeding site quality in Eurasian eagle owl (Bubo bubo) fledglings and, thus, constitute amplifiers of the quality of the area where they are born. Using high-performance liquid chromatography, we found 2 porphyrins (protoporphyrin IX and coproporphyrin III) in the body feathers of 19 eagle owl fledglings from 7 breeding territories. Coproporphyrin III, but not protoporphyrin IX feather concentration, was positively associated with the body mass of fledglings and with the quality of the breeding sites where they were reared with respect to food quality and availability. As coproporphyrin III is produced under oxidative stress, we suggest that good breeding sites may lead to fledglings in good condition. This, in turn, may make fledglings induce a certain level of free radical and coproporphyrin III production to signal to conspecifics their site-mediated capacity to cope with oxidative stress. This is the first time that porphyrin content in the integument has been found to be related to individual quality, opening a new scenario for studying evolution of animal coloration.
Collapse
Affiliation(s)
- Ismael Galván
- Department of Evolutionary Ecology, Doñana Biological Station - CSIC, Sevilla, Spain
| | | | - Pablo R Camarero
- Institute for Game and Wildlife Research, IREC - CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Rafael Mateo
- Institute for Game and Wildlife Research, IREC - CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Rui Lourenço
- Labor - Laboratório de Ornitologia, Instituto de Ciências Agrárias e Ambientais Mediterrânicas, University of Evora, Évora, Portugal
| | - Vincenzo Penteriani
- Research Unit of Biodiversity - UOCSIC-PA, Oviedo University, Mieres, Spain.,Pyrenean Institute of Ecology (IPE) - CSIC, Zaragoza, Spain
| |
Collapse
|
23
|
Galván I, García-Campa J, Negro JJ. Complex Plumage Patterns Can Be Produced Only with the Contribution of Melanins. Physiol Biochem Zool 2017; 90:600-604. [DOI: 10.1086/693962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|