1
|
Tang P, Huang J, Wang J, Wang M, Huang Q, Pan L, Liu F. Genome-wide identification of CaWD40 proteins reveals the involvement of a novel complex (CaAN1-CaDYT1-CaWD40-91) in anthocyanin biosynthesis and genic male sterility in Capsicum annuum. BMC Genomics 2024; 25:851. [PMID: 39261781 PMCID: PMC11389352 DOI: 10.1186/s12864-024-10681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND The WD40 domain, one of the most abundant in eukaryotic genomes, is widely involved in plant growth and development, secondary metabolic biosynthesis, and mediating responses to biotic and abiotic stresses. WD40 repeat (WD40) protein has been systematically studied in several model plants but has not been reported in the Capsicum annuum (pepper) genome. RESULTS Herein, 269, 237, and 257 CaWD40 genes were identified in the Zunla, CM334, and Zhangshugang genomes, respectively. CaWD40 sequences from the Zunla genome were selected for subsequent analysis, including chromosomal localization, phylogenetic relationships, sequence characteristics, motif compositions, and expression profiling. CaWD40 proteins were unevenly distributed on 12 chromosomes, encompassing 19 tandem duplicate gene pairs. The 269 CaWD40s were divided into six main branches (A to F) with 17 different types of domain distribution. The CaWD40 gene family exhibited diverse expression patterns, and several genes were specifically expressed in flowers and seeds. Yeast two-hybrid (Y2H) and dual-luciferase assay indicated that CaWD40-91 could interact with CaAN1 and CaDYT1, suggesting its involvement in anthocyanin biosynthesis and male sterility in pepper. CONCLUSIONS In summary, we systematically characterized the phylogeny, classification, structure, and expression of the CaWD40 gene family in pepper. Our findings provide a valuable foundation for further functional investigations on WD40 genes in pepper.
Collapse
Affiliation(s)
- Peng Tang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jingcai Huang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jin Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Meiqi Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Qing Huang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Luzhao Pan
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Feng Liu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
2
|
Gong J, Wang Y, Xue C, Wu L, Sheng S, Wang M, Peng J, Cao S. Regulation of blue infertile flower pigmentation by WD40 transcription factor HmWDR68 in Hydrangea macrophylla 'forever summer'. Mol Biol Rep 2024; 51:328. [PMID: 38393428 DOI: 10.1007/s11033-024-09287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND WD40 transcription factors are crucial in plant growth and developmental, significantly impacting plant growth regulation. This study investigates the WD40 transcription factor HmWDR68's role in developing the distinctive blue infertile flower colors in Hydrangea macrophylla 'Forever Summer'. METHODS AND RESULTS The HmWDR68 gene was isolated by PCR, revealing an open reading frame of 1026 base pairs, which encodes 341 amino acids. Characterized by four WD40 motifs, HmWDR68 is a member of the WD40 family. Phylogenetic analysis indicates that HmWDR68 shares high homology with PsWD40 in Camellia sinensis and CsWD40 in Paeonia suffruticosa, both of which are integral in anthocyanin synthesis regulation. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that HmWDR68 expression in the blue infertile flowers of 'Forever Summer' hydrangea was significantly higher compared to other tissues and organs. Additionally, in various hydrangea varieties with differently colored infertile flowers, HmWDR68 expression was markedly elevated in comparison to other hydrangea varieties, correlating with the development of blue infertile flowers. Pearson correlation analysis revealed a significant association between HmWDR68 expression and the concentration of delphinidin 3-O-glucoside, as well as key genes involved in anthocyanin biosynthesis (HmF3H, HmC3'5'H, HmDFR, and HmANS) in the blue infertile flowers of 'Forever Summer' hydrangea (P < 0.01). CONCLUSION These findings suggest HmWDR68 may specifically regulate blue infertile flower formation in hydrangea by enhancing delphinidin-3-O-glucoside synthesis, modulating expression of HmF3H, HmC3'5'H, HmDFR and HmANS. This study provides insights into HmWDR68's role in hydrangea's blue flowers development, offering a foundation for further research in this field.
Collapse
Affiliation(s)
- Jingyi Gong
- College of Life Science and Technology, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China
| | - Yu Wang
- College of Forestry, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China
| | - Chao Xue
- College of Life Science and Technology, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China
| | - Linshi Wu
- Hunan Botanical Garden, Changsha, Hunan, 410000, China
| | - Song Sheng
- College of Forestry, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China
| | - Meng Wang
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650000, China
| | - Jiqing Peng
- College of Life Science and Technology, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China.
| | - Shoujin Cao
- College of Forestry, Central South University of Forestry & Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
3
|
Pahal S, Srivastava H, Saxena S, Tribhuvan KU, Kaila T, Sharma S, Grewal S, Singh NK, Gaikwad K. Comparative transcriptome analysis of two contrasting genotypes provides new insights into the drought response mechanism in pigeon pea (Cajanus cajan L. Millsp.). Genes Genomics 2024; 46:65-94. [PMID: 37985548 DOI: 10.1007/s13258-023-01460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Despite plant's ability to adapt and withstand challenging environments, drought poses a severe threat to their growth and development. Although pigeon pea is already quite resistant to drought, the prolonged dehydration induced by the aberrant climate poses a serious threat to their survival and productivity. OBJECTIVE Comparative physiological and transcriptome analyses of drought-tolerant (CO5) and drought-sensitive (CO1) pigeon pea genotypes subjected to drought stress were carried out in order to understand the molecular basis of drought tolerance in pigeon pea. METHODS The transcriptomic analysis allowed us to examine how drought affects the gene expression of C. cajan. Using bioinformatics tools, the unigenes were de novo assembled, annotated, and functionally evaluated. Additionally, a homology-based sequence search against the droughtDB database was performed to identify the orthologs of the DEGs. RESULTS 1102 potential drought-responsive genes were found to be differentially expressed genes (DEGs) between drought-tolerant and drought-sensitive genotypes. These included Abscisic acid insensitive 5 (ABI5), Nuclear transcription factor Y subunit A-7 (NF-YA7), WD40 repeat-containing protein 55 (WDR55), Anthocyanidin reductase (ANR) and Zinc-finger homeodomain protein 6 (ZF-HD6) and were highly expressed in the tolerant genotype. Further, GO analysis revealed that the most enriched classes belonged to biosynthetic and metabolic processes in the biological process category, binding and catalytic activity in the molecular function category and nucleus and protein-containing complex in the cellular component category. Results of KEGG pathway analysis revealed that the DEGs were significantly abundant in signalling pathways such as plant hormone signal transduction and MAPK signalling pathways. Consequently, in our investigation, we have identified and validated by qPCR a group of genes involved in signal reception and propagation, stress-specific TFs, and basal regulatory genes associated with drought response. CONCLUSION In conclusion, our comprehensive transcriptome dataset enabled the discovery of candidate genes connected to pathways involved in pigeon pea drought response. Our research uncovered a number of unidentified genes and transcription factors that could be used to understand and improve susceptibility to drought.
Collapse
Affiliation(s)
- Suman Pahal
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | | | - Swati Saxena
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Sapna Grewal
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India.
| | - Nagendra K Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.
| |
Collapse
|
4
|
Liu M, Wang Y, Teng F, Mai X, Wang X, Su MY, Stjepanovic G. Structure of the DDB1-AMBRA1 E3 ligase receptor complex linked to cell cycle regulation. Nat Commun 2023; 14:7631. [PMID: 37993427 PMCID: PMC10665379 DOI: 10.1038/s41467-023-43174-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
AMBRA1 is a tumor suppressor protein that functions as a substrate receptor of the ubiquitin conjugation system with roles in autophagy and the cell cycle regulatory network. The intrinsic disorder of AMBRA1 has thus far precluded its structural determination. To solve this problem, we analyzed the dynamics of AMBRA1 using hydrogen deuterium exchange mass spectrometry (HDX-MS). The HDX results indicated that AMBRA1 is a highly flexible protein and can be stabilized upon interaction with DDB1, the adaptor of the Cullin4A/B E3 ligase. Here, we present the cryo-EM structure of AMBRA1 in complex with DDB1 at 3.08 Å resolution. The structure shows that parts of the N- and C-terminal structural regions in AMBRA1 fold together into the highly dynamic WD40 domain and reveals how DDB1 engages with AMBRA1 to create a binding scaffold for substrate recruitment. The N-terminal helix-loop-helix motif and WD40 domain of AMBRA1 associate with the double-propeller fold of DDB1. We also demonstrate that DDB1 binding-defective AMBRA1 mutants prevent ubiquitination of the substrate Cyclin D1 in vitro and increase cell cycle progression. Together, these results provide structural insights into the AMBRA1-ubiquitin ligase complex and suggest a mechanism by which AMBRA1 acts as a hub involved in various physiological processes.
Collapse
Affiliation(s)
- Ming Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China
| | - Yang Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China
| | - Fei Teng
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyi Mai
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China
| | - Xi Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China
| | - Ming-Yuan Su
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Goran Stjepanovic
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, China.
| |
Collapse
|
5
|
Wang S, Sass MI, Kwon Y, Ludlam WG, Smith TM, Carter EJ, Gladden NE, Riggi M, Iwasa JH, Willardson BM, Shen PS. Visualizing the chaperone-mediated folding trajectory of the G protein β5 β-propeller. Mol Cell 2023; 83:3852-3868.e6. [PMID: 37852256 PMCID: PMC10841713 DOI: 10.1016/j.molcel.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
The Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with β-propeller domains. Here, we determine the structures of human CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gβ5, a component of Regulator of G protein Signaling (RGS) complexes. Cryoelectron microscopy (cryo-EM) and image processing reveal an ensemble of distinct snapshots that represent the folding trajectory of Gβ5 from an unfolded molten globule to a fully folded β-propeller. These structures reveal the mechanism by which CCT directs Gβ5 folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual β sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT orchestrates folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.
Collapse
Affiliation(s)
- Shuxin Wang
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | - Mikaila I Sass
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Yujin Kwon
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - W Grant Ludlam
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Theresa M Smith
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Ethan J Carter
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Nathan E Gladden
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Margot Riggi
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | - Janet H Iwasa
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA.
| | - Peter S Shen
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
6
|
Raisch J, Dubois ML, Groleau M, Lévesque D, Burger T, Jurkovic CM, Brailly R, Marbach G, McKenna A, Barrette C, Jacques PÉ, Boisvert FM. Pulse-SILAC and Interactomics Reveal Distinct DDB1-CUL4-Associated Factors, Cellular Functions, and Protein Substrates. Mol Cell Proteomics 2023; 22:100644. [PMID: 37689310 PMCID: PMC10565876 DOI: 10.1016/j.mcpro.2023.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Cullin-RING finger ligases represent the largest family of ubiquitin ligases. They are responsible for the ubiquitination of ∼20% of cellular proteins degraded through the proteasome, by catalyzing the transfer of E2-loaded ubiquitin to a substrate. Seven cullins are described in vertebrates. Among them, cullin 4 (CUL4) associates with DNA damage-binding protein 1 (DDB1) to form the CUL4-DDB1 ubiquitin ligase complex, which is involved in protein ubiquitination and in the regulation of many cellular processes. Substrate recognition adaptors named DDB1/CUL4-associated factors (DCAFs) mediate the specificity of CUL4-DDB1 and have a short structural motif of approximately forty amino acids terminating in tryptophan (W)-aspartic acid (D) dipeptide, called the WD40 domain. Using different approaches (bioinformatics/structural analyses), independent studies suggested that at least sixty WD40-containing proteins could act as adaptors for the DDB1/CUL4 complex. To better define this association and classification, the interaction of each DCAFs with DDB1 was determined, and new partners and potential substrates were identified. Using BioID and affinity purification-mass spectrometry approaches, we demonstrated that seven WD40 proteins can be considered DCAFs with a high confidence level. Identifying protein interactions does not always lead to identifying protein substrates for E3-ubiquitin ligases, so we measured changes in protein stability or degradation by pulse-stable isotope labeling with amino acids in cell culture to identify changes in protein degradation, following the expression of each DCAF. In conclusion, these results provide new insights into the roles of DCAFs in regulating the activity of the DDB1-CUL4 complex, in protein targeting, and characterized the cellular processes involved.
Collapse
Affiliation(s)
- Jennifer Raisch
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Line Dubois
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marika Groleau
- Département de biologie, faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dominique Lévesque
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Thomas Burger
- CNRS, INSERM, Université Grenoble Alpes, Grenoble, France
| | - Carla-Marie Jurkovic
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Romain Brailly
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gwendoline Marbach
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alyson McKenna
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Catherine Barrette
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pierre-Étienne Jacques
- Département de biologie, faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François-Michel Boisvert
- Département d'Immunologie et de Biologie cellulaire, faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
7
|
Wang S, Sass MI, Kwon Y, Ludlam WG, Smith TM, Carter EJ, Gladden NE, Riggi M, Iwasa JH, Willardson BM, Shen PS. Visualizing the chaperone-mediated folding trajectory of the G protein β5 β-propeller. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539424. [PMID: 37205387 PMCID: PMC10187262 DOI: 10.1101/2023.05.04.539424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The cytosolic Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with β-propeller domains. Here, we determined structures of CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gβ5, a component of Regulator of G protein Signaling (RGS) complexes. Cryo-EM and image processing revealed an ensemble of distinct snapshots that represent the folding trajectory of Gβ5 from an unfolded molten globule to a fully folded β-propeller. These structures reveal the mechanism by which CCT directs Gβ5 folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual β-sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT directs folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.
Collapse
Affiliation(s)
- Shuxin Wang
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| | - Mikaila I. Sass
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Yujin Kwon
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - W. Grant Ludlam
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Theresa M. Smith
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Ethan J. Carter
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Nathan E. Gladden
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Margot Riggi
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| | - Janet H. Iwasa
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| | - Barry M. Willardson
- Department of Chemistry and Biochemistry, C100 BNSN, Brigham Young University, Provo, UT, 84602, USA
| | - Peter S. Shen
- Department of Biochemistry, 15 N. Medical Drive East, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
8
|
Cermakova K, Hodges HC. Interaction modules that impart specificity to disordered protein. Trends Biochem Sci 2023; 48:477-490. [PMID: 36754681 PMCID: PMC10106370 DOI: 10.1016/j.tibs.2023.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 02/09/2023]
Abstract
Intrinsically disordered regions (IDRs) are especially enriched among proteins that regulate chromatin and transcription. As a result, mechanisms that influence specificity of IDR-driven interactions have emerged as exciting unresolved issues for understanding gene regulation. We review the molecular elements frequently found within IDRs that confer regulatory specificity. In particular, we summarize the differing roles of disordered low-complexity regions (LCRs) and short linear motifs (SLiMs) towards selective nuclear regulation. Examination of IDR-driven interactions highlights SLiMs as organizers of selectivity, with widespread roles in gene regulation and integration of cellular signals. Analysis of recurrent interactions between SLiMs and folded domains suggests diverse avenues for SLiMs to influence phase-separated condensates and highlights opportunities to manipulate these interactions for control of biological activity.
Collapse
Affiliation(s)
- Katerina Cermakova
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - H Courtney Hodges
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Chen L, Cui Y, Yao Y, An L, Bai Y, Li X, Yao X, Wu K. Genome-wide identification of WD40 transcription factors and their regulation of the MYB-bHLH-WD40 (MBW) complex related to anthocyanin synthesis in Qingke (Hordeum vulgare L. var. nudum Hook. f.). BMC Genomics 2023; 24:166. [PMID: 37016311 PMCID: PMC10074677 DOI: 10.1186/s12864-023-09240-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/10/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND WD40 transcription factors, a large gene family in eukaryotes, are involved in a variety of growth regulation and development pathways. WD40 plays an important role in the formation of MYB-bHLH-WD (MBW) complexes associated with anthocyanin synthesis, but studies of Qingke barley are lacking. RESULTS In this study, 164 barley HvWD40 genes were identified in the barley genome and were analyzed to determine their relevant bioinformatics. The 164 HvWD40 were classified into 11 clusters and 14 subfamilies based on their structural and phylogenetic protein profiles. Co-lineage analysis revealed that there were 43 pairs between barley and rice, and 56 pairs between barley and maize. Gene ontology (GO) enrichment analysis revealed that the molecular function, biological process, and cell composition were enriched. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that the RNA transport pathway was mainly enriched. Based on the identification and analysis of the barley WD40 family and the transcriptome sequencing (RNA-seq) results, we found that HvWD40-140 (WD40 family; Gene ID: r1G058730), HvANT1 (MYB family; Gene ID: HORVU7Hr1G034630), and HvANT2 (bHLH family; Gene ID: HORVU2Hr1G096810) were important components of the MBW complex related to anthocyanin biosynthesis in Qingke, which was verified via quantitative real-time fluorescence polymerase chain reaction (qRT-PCR), subcellular location, yeast two-hybrid (Y2H), and bimolecular fluorescent complimentary (BiFC) and dual-luciferase assay analyses. CONCLUSIONS In this study, we identified 164 HvWD40 genes in barley and found that HvnANT1, HvnANT2, and HvWD40-140 can form an MBW complex and regulate the transcriptional activation of the anthocyanin synthesis related structural gene HvDFR. The results of this study provide a theoretical basis for further study of the mechanism of HvWD40-140 in the MBW complex related to anthocyanin synthesis in Qingke.
Collapse
Affiliation(s)
- Lin Chen
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Youhua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Likun An
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Yixiong Bai
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Xin Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China.
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China.
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China.
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China.
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China.
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China.
| |
Collapse
|
10
|
Chen C, Yang Y, Pan L, Xia W, Xu L, Hua B, Zhang Z, Miao M. Genome-Wide Identification of WD40 Proteins in Cucurbita maxima Reveals Its Potential Functions in Fruit Development. Genes (Basel) 2023; 14:genes14010220. [PMID: 36672961 PMCID: PMC9859561 DOI: 10.3390/genes14010220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
WD40 proteins, a super gene family in eukaryotes, are involved in multiple biological processes. Members of this family have been identified in several plants and shown to play key roles in various development processes, including acting as scaffolding molecules with other proteins. However, WD40 proteins have not yet been systematically analyzed and identified in Cucurbita maxima. In this study, 231 WD40 proteins (CmWD40s) were identified in C. maxima and classified into five clusters. Eleven subfamilies were identified based on different conserved motifs and gene structures. The CmWD40 genes were distributed in 20 chromosomes; 5 and 33 pairs of CmWD40s were distinguished as tandem and segmental duplications, respectively. Overall, 58 pairs of orthologous WD40 genes in C. maxima and Arabidopsis thaliana, and 56 pairs of orthologous WD40 genes in C. maxima and Cucumis sativus were matched. Numerous CmWD40s had diverse expression patterns in fruits, leaf, stem, and root. Several genes were involved in responses to NaCl. The expression pattern of CmWD40s suggested their key role in fruit development and abiotic stress response. Finally, we identified 14 genes which might be involved in fruit development. Our results provide valuable basis for further functional verification of CmWD40s in C. maxima.
Collapse
Affiliation(s)
- Chen Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yating Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Liu Pan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wenhao Xia
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lanruoyan Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Bing Hua
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhiping Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Minmin Miao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
11
|
Akbari M, Mohebi M, Berjis K, Ghahremani A, Modarressi MH, Ghafouri-Fard S. A novel variant in TLE6 is associated with embryonic developmental arrest (EDA) in familial female infertility. Sci Rep 2022; 12:17664. [PMID: 36271123 PMCID: PMC9587212 DOI: 10.1038/s41598-022-22687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023] Open
Abstract
This study aims to identify genetic causes of familial female infertility characterized by embryonic developmental arrest (EDA) and repeated implantation failure (RIF) with oocyte donation IVF cycle. We used Whole-exome sequencing and Sanger validation to find causative genes in an Iranian consanguineous family that had 3 infertile daughters, 4 fertile daughters, and 2 fertile sons. All patients in this consanguineous family exhibited typical manifestations of unexplained RIF and EDA. Genetic analysis identified a homozygous missense variant (c.G1054C:p.G352R) in exon 13 of the TLE6 gene that cosegregated with the EDA phenotype in an autosomal recessive pattern. Other members of the family, the gene carriers, remain clinically asymptomatic and fertile. Our findings identify a novel nonsynonymous variant, c.G1054C:p.G352R, in the TLE6 gene within a consanguineous Iranian family with autosomal-recessive female infertility and broaden the genetic spectrum of TLE6-associated EDA.
Collapse
Affiliation(s)
- Mojdeh Akbari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Katayon Berjis
- Department of Reproductive Biology, The Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Amin Ghahremani
- Pars Human Gene Company, Tehran, Iran
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Afza F, Singh N, Shriya S, Bisoyi P, Kashyap AK, Jain BP. Genome wide identification and analysis of WD40 domain containing proteins in Danio rerio. GENE REPORTS 2022; 26:101426. [DOI: 10.1016/j.genrep.2021.101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Genome Wide Identification and Characterization of Apple WD40 Proteins and Expression Analysis in Response to ABA, Drought, and Low Temperature. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Basic WD40 proteins, which are characterized by a conserved WD40 domain, comprise a superfamily of regulatory proteins in plants and play important roles in plant growth and development. However, WD40 genes have been rarely studied in apple (Malus × domestica Borkh.). In this study, 346 WD40 genes classified in 12 subfamilies, were identified in the apple genome. Evolutionary analysis of WD40 proteins in apple and Arabidopsis revealed that the genes were classifiable into 14 groups, and the exon/intron structure of each group showed a similar structure. Analysis of collinearity showed that the large-scale amplification of WD40 genes in apple was largely attributable to recent whole-genome replication events. Nineteen candidate stress-related genes, selected by GO annotation and comparison with Arabidopsis homologs, showed different expression profiles in six organs at different developmental stages in response to exogenous abscisic acid (ABA), drought, and low temperature. Eight genes (MdWD40-17, 24, 70, 74, 219, 256, 283, and 307) showed a distinct response to one or more treatments (ABA, drought, and low temperature) as indicated by quantitative real-time PCR analysis. Taken together, these data provide rich resources for further study of MdWD40 genes and their potential roles in stress responses in apple.
Collapse
|
14
|
Raposo M, Bettencourt C, Melo ARV, Ferreira AF, Alonso I, Silva P, Vasconcelos J, Kay T, Saraiva-Pereira ML, Costa MD, Vilasboas-Campos D, Bettencourt BF, Bruges-Armas J, Houlden H, Heutink P, Jardim LB, Sequeiros J, Maciel P, Lima M. Novel Machado-Joseph disease-modifying genes and pathways identified by whole-exome sequencing. Neurobiol Dis 2021; 162:105578. [PMID: 34871736 DOI: 10.1016/j.nbd.2021.105578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/08/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Machado-Joseph disease (MJD/SCA3) is a neurodegenerative polyglutamine disorder exhibiting a wide spectrum of phenotypes. The abnormal size of the (CAG)n at ATXN3 explains ~55% of the age at onset variance, suggesting the involvement of other factors, namely genetic modifiers, whose identification remains limited. Our aim was to find novel genetic modifiers, analyse their epistatic effects and identify disease-modifying pathways contributing to MJD variable expressivity. We performed whole-exome sequencing in a discovery sample of four age at onset concordant and four discordant first-degree relative pairs of Azorean patients, to identify candidate variants which genotypes differed for each discordant pair but were shared in each concordant pair. Variants identified by this approach were then tested in an independent multi-origin cohort of 282 MJD patients. Whole-exome sequencing identified 233 candidate variants, from which 82 variants in 53 genes were prioritized for downstream analysis. Eighteen disease-modifying pathways were identified; two of the most enriched pathways were relevant for the nervous system, namely the neuregulin signaling and the agrin interactions at neuromuscular junction. Variants at PARD3, NFKB1, CHD5, ACTG1, CFAP57, DLGAP2, ITGB1, DIDO1 and CERS4 modulate age at onset in MJD, with those identified in CFAP57, ACTG1 and DIDO1 showing consistent effects across cohorts of different geographical origins. Network analyses of the nine novel MJD modifiers highlighted several important molecular interactions, including genes/proteins previously related with MJD pathogenesis, namely between ACTG1/APOE and VCP/ITGB1. We describe novel pathways, modifiers, and their interaction partners, providing a broad molecular portrait of age at onset modulation to be further exploited as new disease-modifying targets for MJD and related diseases.
Collapse
Affiliation(s)
- Mafalda Raposo
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal.
| | - Conceição Bettencourt
- Department of Neurodegenerative Disease and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.
| | - Ana Rosa Vieira Melo
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Ana F Ferreira
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal.
| | - Isabel Alonso
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Paulo Silva
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.
| | - João Vasconcelos
- Departamento de Neurologia, Hospital do Divino Espírito Santo, Ponta Delgada, Portugal
| | - Teresa Kay
- Departamento de Genética Clínica, Hospital D. Estefânia, Lisboa, Portugal
| | - Maria Luiza Saraiva-Pereira
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Brazil; Serviço de Genética Médica/Centro de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Marta D Costa
- Instituto de Investigação em Ciências da Vida e Saúde (ICVS), Escola de Medicina, Universidade do Minho, Braga, Portugal; ICVS/3B's - Laboratório Associado, Braga/Guimarães, Portugal.
| | - Daniela Vilasboas-Campos
- Instituto de Investigação em Ciências da Vida e Saúde (ICVS), Escola de Medicina, Universidade do Minho, Braga, Portugal; ICVS/3B's - Laboratório Associado, Braga/Guimarães, Portugal
| | - Bruno Filipe Bettencourt
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira (HSEIT), Angra do Heroísmo, Azores, Portugal
| | - Jácome Bruges-Armas
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira (HSEIT), Angra do Heroísmo, Azores, Portugal; CHRC - Comprehensive Health Research Centre, Faculdade de Ciências Médicas & CEDOC - Chronic Diseases Research Center, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London and Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, United Kingdom, London.
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| | - Laura Bannach Jardim
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica/Centro de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Jorge Sequeiros
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.
| | - Patrícia Maciel
- Instituto de Investigação em Ciências da Vida e Saúde (ICVS), Escola de Medicina, Universidade do Minho, Braga, Portugal; ICVS/3B's - Laboratório Associado, Braga/Guimarães, Portugal.
| | - Manuela Lima
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal.
| |
Collapse
|
15
|
Hay E, Henderson RH, Mansour S, Deshpande C, Jones R, Nutan S, Mankad K, Young RM, Moosajee M, Research Consortium GE, Arno G. Expanding the phenotypic spectrum consequent upon de novo WDR37 missense variants. Clin Genet 2021; 98:191-197. [PMID: 32530092 DOI: 10.1111/cge.13795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Structural eye disorders are increasingly recognised as having a genetic basis, although current genetic testing is limited in its success. De novo missense variants in WDR37 are a recently described cause of a multisystemic syndromic disorder featuring ocular coloboma. This study characterises the phenotypic spectrum of this disorder and reports 2 de novo heterozygous variants (p.Thr115Ile, p.Ser119Tyr) in three unrelated Caucasian individuals. All had a clinical phenotype consisting of bilateral iris and retinal coloboma, developmental delay and additional, variable multisystem features. The variants fall within a highly conserved region upstream of the WD-repeat domains, within an apparent mutation cluster. Consistent with the literature, intellectual disability, structural eye disorders, epilepsy, congenital heart disease, genitorenal anomalies and dysmorphic facial features were observed. In addition, a broader developmental profile is reported with a more specific musculoskeletal phenotype described in association with the novel variant (p.Thr115Ile). We further expand the phenotypic spectrum of WDR37-related disorders to include those with milder developmental delay and strengthen the association of ocular coloboma and musculoskeletal features. We promote the inclusion of WDR37 on gene panels for intellectual disability, epilepsy and structural eye disorders.
Collapse
Affiliation(s)
- Eleanor Hay
- Department of Clinical Genetics, Great Ormond Street Hospital, London, UK
| | - Robert H Henderson
- Department of Ophthalmology, Great Ormond Street Hospital, London, UK.,University College London Institute of Ophthalmology, London, UK
| | - Sahar Mansour
- Department of Clinical Genetics, St George's Hospital, London, UK
| | | | - Rachel Jones
- Department of Clinical Genetics, Guy's Hospital, London, UK
| | - Savita Nutan
- London North Genomic Laboratory Hub, Great Ormond Street Hospital, London, UK
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital, London, UK
| | - Rodrigo M Young
- University College London Institute of Ophthalmology, London, UK
| | - Mariya Moosajee
- Department of Ophthalmology, Great Ormond Street Hospital, London, UK.,University College London Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | - Gavin Arno
- University College London Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Gai Z, Wang Y, Tian L, Gong G, Zhao J. Whole Genome Level Analysis of the Wnt and DIX Gene Families in Mice and Their Coordination Relationship in Regulating Cardiac Hypertrophy. Front Genet 2021; 12:608936. [PMID: 34168671 PMCID: PMC8217762 DOI: 10.3389/fgene.2021.608936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
The Wnt signaling pathway is an evolutionarily conserved signaling pathway that plays essential roles in embryonic development, organogenesis, and many other biological activities. Both Wnt proteins and DIX proteins are important components of Wnt signaling. Systematic studies of Wnt and DIX families at the genome-wide level may provide a comprehensive landscape to elucidate their functions and demonstrate their relationships, but they are currently lacking. In this report, we describe the correlations between mouse Wnt and DIX genes in family expansion, molecular evolution, and expression levels in cardiac hypertrophy at the genome-wide scale. We observed that both the Wnt and DIX families underwent more expansion than the overall average in the evolutionarily early stage. In addition, mirrortree analyses suggested that Wnt and DIX were co-evolved protein families. Collectively, these results would help to elucidate the evolutionary characters of Wnt and DIX families and demonstrate their correlations in mediating cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhongchao Gai
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yujiao Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Lu Tian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jieqiong Zhao
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
17
|
Lidak T, Baloghova N, Korinek V, Sedlacek R, Balounova J, Kasparek P, Cermak L. CRL4-DCAF12 Ubiquitin Ligase Controls MOV10 RNA Helicase during Spermatogenesis and T Cell Activation. Int J Mol Sci 2021; 22:5394. [PMID: 34065512 PMCID: PMC8161014 DOI: 10.3390/ijms22105394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/27/2022] Open
Abstract
Multisubunit cullin-RING ubiquitin ligase 4 (CRL4)-DCAF12 recognizes the C-terminal degron containing acidic amino acid residues. However, its physiological roles and substrates are largely unknown. Purification of CRL4-DCAF12 complexes revealed a wide range of potential substrates, including MOV10, an "ancient" RNA-induced silencing complex (RISC) complex RNA helicase. We show that DCAF12 controls the MOV10 protein level via its C-terminal motif in a proteasome- and CRL-dependent manner. Next, we generated Dcaf12 knockout mice and demonstrated that the DCAF12-mediated degradation of MOV10 is conserved in mice and humans. Detailed analysis of Dcaf12-deficient mice revealed that their testes produce fewer mature sperms, phenotype accompanied by elevated MOV10 and imbalance in meiotic markers SCP3 and γ-H2AX. Additionally, the percentages of splenic CD4+ T and natural killer T (NKT) cell populations were significantly altered. In vitro, activated Dcaf12-deficient T cells displayed inappropriately stabilized MOV10 and increased levels of activated caspases. In summary, we identified MOV10 as a novel substrate of CRL4-DCAF12 and demonstrated the biological relevance of the DCAF12-MOV10 pathway in spermatogenesis and T cell activation.
Collapse
Affiliation(s)
- Tomas Lidak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
- Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Nikol Baloghova
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
| | - Vladimir Korinek
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (R.S.); (J.B.); (P.K.)
| | - Jana Balounova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (R.S.); (J.B.); (P.K.)
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic; (R.S.); (J.B.); (P.K.)
| | - Lukas Cermak
- Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; (T.L.); (N.B.); (V.K.)
| |
Collapse
|
18
|
Tan L, Salih H, Htet NNW, Azeem F, Zhan R. Genomic analysis of WD40 protein family in the mango reveals a TTG1 protein enhances root growth and abiotic tolerance in Arabidopsis. Sci Rep 2021; 11:2266. [PMID: 33500544 PMCID: PMC7838414 DOI: 10.1038/s41598-021-81969-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
WD40 domain-containing proteins constitute one of the most abundant protein families in all higher plants and play vital roles in the regulation of plant growth and developmental processes. To date, WD40 protein members have been identified in several plant species, but no report is available on the WD40 protein family in mango (Mangifera indica L.). In this study, a total of 315 WD40 protein members were identified in mango and further divided into 11 subgroups according to the phylogenetic tree. Here, we reported mango TRANSPARENT TESTA GLABRA 1 (MiTTG1) protein as a novel factor that functions in the regulation of Arabidopsis root growth and development. Bimolecular fluorescence complementation (BiFC) assay in tobacco leaves revealed that MiTTG1 protein physically interacts with MiMYB0, MiTT8 and MibHLH1, implying the formation of a new ternary regulatory complex (MYB-bHLH-WD40) in mango. Furthermore, the MiTTG1 transgenic lines were more adapted to abiotic stresses (mannitol, salt and drought stress) in terms of promoted root hairs and root lengths. Together, our findings indicated that MiTTG1 functions as a novel factor to modulate protein-protein interactions and enhance the plants abilities to adjust different abiotic stress responses.
Collapse
Affiliation(s)
- Lin Tan
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China
| | - Haron Salih
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China ,grid.442436.30000 0004 0447 7877Crop Sciences, Faculty of Agriculture, Zalingei University, Central Darfur, Sudan
| | - Nwe Ni Win Htet
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China ,Microbiology Laboratory, Biotechnology Research Department, Kyaukse, 05151 Myanmar
| | - Farrukh Azeem
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China
| | - Rulin Zhan
- grid.453499.60000 0000 9835 1415Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 Hainan China
| |
Collapse
|
19
|
Sun YB, Zhang XJ, Zhong MC, Dong X, Yu DM, Jiang XD, Wang D, Cui WH, Chen JH, Hu JY. Genome-wide identification of WD40 genes reveals a functional diversification of COP1-like genes in Rosaceae. PLANT MOLECULAR BIOLOGY 2020; 104:81-95. [PMID: 32621166 DOI: 10.1007/s11103-020-01026-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Genome-wide identification of WD40-like genes reveals a duplication of COP1-like genes, one of the key players involved in regulation of flowering time and photomorphogenesis, with strong functional diversification in Rosaceae. WD40 proteins play crucial roles in a broad spectrum of developmental and physiological processes. Here, we conducted a systematic characterization of this family of genes in Rosa chinensis 'Old Blush' (OB), a founder genotype for modern rose domestication. We identified 187 rose WD40 genes and classified them into 5 clusters and 15 subfamilies with 11 of RcWD40s presumably generated via tandem duplication. We found RcWD40 genes were expressed differentially following stages of vegetative and reproductive development. We detected a duplication of CONSTITUTIVE PHOTOMORPHOGENIC1-like genes in rose (RcCOP1 and RcCOP1L) and other Rosaceae plants. Featuring a distinct expression pattern and a different profile of cis-regulatory-elements in the transcriptional regulatory regions, RcCOP1 seemed being evolutionarily conserved while RcCOP1L did not dimerize with RcHY5 and RcSPA4. Our data thus reveals a functional diversification of COP1-like genes in Rosacaeae plants, and provides a valuable resource to explore the potential function and evolution of WD40-like genes in Rosaceae plants.
Collapse
Affiliation(s)
- Yi-Bo Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Jia Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, 650223, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mi-Cai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Dong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dong-Mei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Hua Cui
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang-Hua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, 650223, Yunnan, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
20
|
Mistry BV, Alanazi M, Fitwi H, Al-Harazi O, Rajab M, Altorbag A, Almohanna F, Colak D, Assiri AM. Expression profiling of WD40 family genes including DDB1- and CUL4- associated factor (DCAF) genes in mice and human suggests important regulatory roles in testicular development and spermatogenesis. BMC Genomics 2020; 21:602. [PMID: 32867693 PMCID: PMC7457511 DOI: 10.1186/s12864-020-07016-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The WD40-repeat containing proteins, including DDB1-CUL4-associated factors (DCAFs), are abundant and conserved proteins that play important roles in different cellular processes including spermatogenesis. DCAFs are subset of WD40 family proteins that contain WDxR motif and have been proposed to function as substrate receptor for Cullin4-RING-based E3 ubiquitin ligase complexes to recruit diverse proteins for ubiquitination, a vital process in spermatogenesis. Large number of WD40 genes has been identified in different species including mouse and human. However, a systematic expression profiling of WD40 genes in different tissues of mouse and human has not been investigated. We hypothesize that large number of WD40 genes may express highly or specifically in the testis, where their expression is uniquely regulated during testis development and spermatogenesis. Therefore, the objective of this study is to mine and characterize expression patterns of WD40 genes in different tissues of mouse and human with particular emphasis on DCAF genes expressions during mouse testicular development. RESULTS Publically available RNA sequencing (RNA seq) data mining identified 347 and 349 WD40 genes in mouse and human, respectively. Hierarchical clustering and heat map analyses of RNA seq datasets revealed differential expression patterns of WD40 genes with around 60-73% of the genes were highly or specifically expressed in testis. Similarly, around 74-83% of DCAF genes were predominantly or specifically expressed in testis. Moreover, WD40 genes showed distinct expression patterns during embryonic and postnatal testis development in mice. Finally, different germ cell populations of testis showed specific patterns of WD40 genes expression. Predicted gene ontology analyses revealed more than 80% of these proteins are implicated in cellular, metabolic, biological regulation and cell localization processes. CONCLUSIONS We have identified large number of WD40 family genes that are highly or specifically expressed in the testes of mouse and human. Moreover, WD40 genes have distinct expression patterns during embryonic and postnatal development of the testis in mice. Further, different germ cell populations within the testis showed specific patterns of WD40 genes expression. These results provide foundation for further research towards understanding the functional genomics and molecular mechanisms of mammalian testis development and spermatogenesis.
Collapse
Affiliation(s)
- Bhavesh V Mistry
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Maha Alanazi
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Hanae Fitwi
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Olfat Al-Harazi
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Mohamed Rajab
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Abdullah Altorbag
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Falah Almohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Dilek Colak
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Abdullah M Assiri
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia. .,Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia. .,Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
21
|
Yamaguchi A, Uchida M, Ishibashi H, Hirano M, Ichikawa N, Arizono K, Koyama J, Tominaga N. Potential mechanisms underlying embryonic developmental toxicity caused by benzo[a]pyrene in Japanese medaka (Oryzias latipes). CHEMOSPHERE 2020; 242:125243. [PMID: 31704526 DOI: 10.1016/j.chemosphere.2019.125243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (BaP), are widely distributed in air, water, and sediments; however, limited data are available regarding their potential adverse effects on the early life stages of fish. In this study, we evaluated the embryonic teratogenicity and developmental toxicity of BaP in Japanese medaka (Oryzias latipes) using a nanosecond pulsed electric field (nsPEF) technique and predicted their molecular mechanisms via transcriptome analysis. The gas chromatography/mass spectrometry analyses revealed that the BaP was efficiently incorporated into the embryos by nsPEF treatment. The embryos incorporating BaP presented typical teratogenic and developmental effects, such as cardiovascular abnormalities, developmental abnormalities, and curvature of backbone. DNA microarray analysis revealed several unique upregulated genes, such as those involved in cardiovascular diseases, various cellular processes, and neural development. Furthermore, the gene set enrichment and network analyses found several genes and hub proteins involved in the developmental effects of BaP on the embryos. These findings suggest a potential mechanism of teratogenicity and developmental toxicity caused by exposure to BaP. The nsPEF and transcriptome analyses in combination can be effective for evaluating the potential effects of chemical substances on medaka embryos.
Collapse
Affiliation(s)
- Akemi Yamaguchi
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka, 836-8585, Japan
| | - Masaya Uchida
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka, 836-8585, Japan
| | - Hiroshi Ishibashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Masashi Hirano
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, 2627 Hirayama-shinmachi, Yatsushiro, Kumamoto, 866-8501, Japan
| | - Nobuhiro Ichikawa
- College of Pharmaceutical Sciences, Department of Pharmacy, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Higashi-ku, Tsukide, Kumamoto, 862-8502, Japan
| | - Jiro Koyama
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan
| | - Nobuaki Tominaga
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka, 836-8585, Japan.
| |
Collapse
|
22
|
Genome-wide identification and functional analysis of the WDR protein family in potato. 3 Biotech 2019; 9:432. [PMID: 31696037 DOI: 10.1007/s13205-019-1965-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022] Open
Abstract
WD-repeat (WDR) proteins are highly abundant and participate in a seemingly wide range of interactions and cellular functions acting as scaffolding molecules. However, WDR identification in potato has not been conducted so far. In this study, we demonstrated the presence of at least 168 WDR genes in potato (Solanum tuberosum L.) which can be subdivided into five discrete clusters (Cluster I-V) and 10 classes inferred from their phylogenetic features of the constituent genes and the distribution of domains. These genes are distributed on all 12 chromosomes, of which chromosome 3 carries the most genes with 26 StWDRs. The expression of potato WDR genes showed tissue specificity with a high expression in carpels, callus and roots, and the expression patterns were obviously different among different genes. Transcript profiling of 168 StWDR genes revealed the particular tissues in which the 168 StWDR are expressed, and displayed a high expression in carpels, callus and roots. Most StWDRs were modulated by salt, ABA and Verticillium dahliae stresses, of which StWD092 was found to be highly expressed under all the three stresses. These outcomes revealed the intricate crosstalk between WDRs and other regulatory networks in the event of adverse milieu.
Collapse
|
23
|
Valera-Pérez A, Tyrkalska SD, Viana C, Rojas-Fernández A, Pelegrín P, García-Moreno D, Pérez-Oliva AB, Mulero V. WDR90 is a new component of the NLRC4 inflammasome involved in Salmonella Typhimurium resistance. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 100:103428. [PMID: 31276698 DOI: 10.1016/j.dci.2019.103428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
Inflammasomes are pivotal cytosolic molecular platforms involved in infection resistance. As multiprotein complexes, they consist of NOD-like receptors (NLRs), the adaptor proteins apoptosis-associated speck-like protein containing a CARD (ASC) and the effector molecules caspase-1 and caspase-11, whose assembly and activation depends on homotypic interactions. Here we describe WD repeat containing protein 90 (WDR90) as a new inflammasome component. We found that zebrafish wdr90 is highly induced by guanylate binding protein 4 (Gbp4) independently of inflammasome activation and caspase-1 activity. This gene encodes an evolutionarily conserved protein with unknown functions that contains several WD40 domains, which are involved in coordinating multiprotein complex assembly. Functional studies in zebrafish larvae showed that forced expression of wdr90 increased caspase-1 activity and inflammasome-dependent resistance to Salmonella enterica serovar Typhimurium infection. Wdr90 acted upstream of zebrafish caspase a (Caspa), the functional homolog of mammalian caspase-1, and Asc. Reconstitution experiments of the human inflammasome in HEK293 cells demonstrated that WDR90 was able to physically interact with and to alter the cellular distribution of NLRC4, but not of NLRP3 and AIM2. These results highlight the complexity of the inflammasome and the interest of studying fish immunity to understand not only the evolution of the immune system but also human immunity.
Collapse
Affiliation(s)
- Ana Valera-Pérez
- Facultad de Biología, Departamento de Biología Celular e Histología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Sylwia D Tyrkalska
- Facultad de Biología, Departamento de Biología Celular e Histología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Carlotta Viana
- Facultad de Biología, Departamento de Biología Celular e Histología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Alejandro Rojas-Fernández
- Center for Interdisciplinary Studies on the Nervous System and Institute of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Pelegrín
- Unidad de inflamación y Cirugía Experimental, CIBERehd, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, 30120, Murcia, Spain
| | - Diana García-Moreno
- Facultad de Biología, Departamento de Biología Celular e Histología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - Ana B Pérez-Oliva
- Facultad de Biología, Departamento de Biología Celular e Histología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - Victoriano Mulero
- Facultad de Biología, Departamento de Biología Celular e Histología, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
24
|
Dayebgadoh G, Sardiu ME, Florens L, Washburn MP. Biochemical Reduction of the Topology of the Diverse WDR76 Protein Interactome. J Proteome Res 2019; 18:3479-3491. [PMID: 31353912 DOI: 10.1021/acs.jproteome.9b00373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A hub protein in protein interaction networks will typically have a large number of diverse interactions. Determining the core interactions and the function of such a hub protein remains a significant challenge in the study of networks. Proteins with WD40 repeats represent a large class of proteins that can be hub proteins. WDR76 is a poorly characterized WD40 repeat protein with possible involvement in DNA damage repair, cell-cycle progression, apoptosis, gene expression regulation, and protein quality control. WDR76 has a large and diverse interaction network that has made its study challenging. Here we rigorously carry out a series of affinity purification coupled to mass spectrometry (AP-MS) analyses to map out the WDR76 interactome through different biochemical conditions. We apply AP-MS analysis coupled to size-exclusion chromatography to resolve WDR76-based protein complexes. Furthermore, we also show that WDR76 interacts with the CCT complex via its WD40 repeat domain and with DNA-PK-KU, PARP1, GAN, SIRT1, and histones outside of the WD40 domain. An evaluation of the stability of WDR76 interactions led to focused and streamlined reciprocal analyses that validate the interactions with GAN and SIRT1. Overall, the approaches used to study WDR76 would be valuable to study other proteins containing WD40 repeat domains, which are conserved in a large number of proteins in many organisms.
Collapse
Affiliation(s)
- Gerald Dayebgadoh
- Stowers Institute for Medical Research , Kansas City , Missouri 64110 , United States
| | - Mihaela E Sardiu
- Stowers Institute for Medical Research , Kansas City , Missouri 64110 , United States
| | - Laurence Florens
- Stowers Institute for Medical Research , Kansas City , Missouri 64110 , United States
| | - Michael P Washburn
- Stowers Institute for Medical Research , Kansas City , Missouri 64110 , United States.,Department of Pathology and Laboratory Medicine , The University of Kansas Medical Center , 3901 Rainbow Boulevard , Kansas City , Kansas 66160 , United States
| |
Collapse
|
25
|
Kanca O, Andrews JC, Lee PT, Patel C, Braddock SR, Slavotinek AM, Cohen JS, Gubbels CS, Aldinger KA, Williams J, Indaram M, Fatemi A, Yu TW, Agrawal PB, Vezina G, Simons C, Crawford J, Lau CC, Chung WK, Markello TC, Dobyns WB, Adams DR, Gahl WA, Wangler MF, Yamamoto S, Bellen HJ, Malicdan MCV, Acosta MT, Adams DR, Agrawal P, Alejandro ME, Allard P, Alvey J, Andrews A, Ashley EA, Azamian MS, Bacino CA, Bademci G, Baker E, Balasubramanyam A, Baldridge D, Bale J, Barbouth D, Batzli GF, Bayrak-Toydemir P, Beggs AH, Bejerano G, Bellen HJ, Bernstein JA, Berry GT, Bican A, Bick DP, Birch CL, Bivona S, Bohnsack J, Bonnenmann C, Bonner D, Boone BE, Bostwick BL, Botto L, Briere LC, Brokamp E, Brown DM, Brush M, Burke EA, Burrage LC, Butte MJ, Carey J, Carrasquillo O, Chang TCP, Chao HT, Clark GD, Coakley TR, Cobban LA, Cogan JD, Cole FS, Colley HA, Cooper CM, Cope H, Craigen WJ, D'Souza P, Dasari S, Davids M, Dayal JG, Dell'Angelica EC, Dhar SU, Dorrani N, Dorset DC, Douine ED, Draper DD, Duncan L, Eckstein DJ, Emrick LT, Eng CM, Esteves C, Estwick T, Fernandez L, Ferreira C, Fieg EL, Fisher PG, et alKanca O, Andrews JC, Lee PT, Patel C, Braddock SR, Slavotinek AM, Cohen JS, Gubbels CS, Aldinger KA, Williams J, Indaram M, Fatemi A, Yu TW, Agrawal PB, Vezina G, Simons C, Crawford J, Lau CC, Chung WK, Markello TC, Dobyns WB, Adams DR, Gahl WA, Wangler MF, Yamamoto S, Bellen HJ, Malicdan MCV, Acosta MT, Adams DR, Agrawal P, Alejandro ME, Allard P, Alvey J, Andrews A, Ashley EA, Azamian MS, Bacino CA, Bademci G, Baker E, Balasubramanyam A, Baldridge D, Bale J, Barbouth D, Batzli GF, Bayrak-Toydemir P, Beggs AH, Bejerano G, Bellen HJ, Bernstein JA, Berry GT, Bican A, Bick DP, Birch CL, Bivona S, Bohnsack J, Bonnenmann C, Bonner D, Boone BE, Bostwick BL, Botto L, Briere LC, Brokamp E, Brown DM, Brush M, Burke EA, Burrage LC, Butte MJ, Carey J, Carrasquillo O, Chang TCP, Chao HT, Clark GD, Coakley TR, Cobban LA, Cogan JD, Cole FS, Colley HA, Cooper CM, Cope H, Craigen WJ, D'Souza P, Dasari S, Davids M, Dayal JG, Dell'Angelica EC, Dhar SU, Dorrani N, Dorset DC, Douine ED, Draper DD, Duncan L, Eckstein DJ, Emrick LT, Eng CM, Esteves C, Estwick T, Fernandez L, Ferreira C, Fieg EL, Fisher PG, Fogel BL, Forghani I, Fresard L, Gahl WA, Godfrey RA, Goldman AM, Goldstein DB, Gourdine JPF, Grajewski A, Groden CA, Gropman AL, Haendel M, Hamid R, Hanchard NA, Hayes N, High F, Holm IA, Hom J, Huang A, Huang Y, Isasi R, Jamal F, Jiang YH, Johnston JM, Jones AL, Karaviti L, Kelley EG, Kiley D, Koeller DM, Kohane IS, Kohler JN, Krakow D, Krasnewich DM, Korrick S, Koziura M, Krier JB, Kyle JE, Lalani SR, Lam B, Lanpher BC, Lanza IR, Lau CC, Lazar J, LeBlanc K, Lee BH, Lee H, Levitt R, Levy SE, Lewis RA, Lincoln SA, Liu P, Liu XZ, Longo N, Loo SK, Loscalzo J, Maas RL, Macnamara EF, MacRae CA, Maduro VV, Majcherska MM, Malicdan MCV, Mamounas LA, Manolio TA, Mao R, Markello TC, Marom R, Marth G, Martin BA, Martin MG, Martínez-Agosto JA, Marwaha S, May T, McCauley J, McConkie-Rosell A, McCormack CE, McCray AT, Metz TO, Might M, Morava-Kozicz E, Moretti PM, Morimoto M, Mulvihill JJ, Murdock DR, Nath A, Nelson SF, Newberry JS, Newman JH, Nicholas SK, Novacic D, Oglesbee D, Orengo JP, Pace L, Pak S, Pallais JC, Palmer CG, Papp JC, Parker NH, Phillips JA, Posey JE, Postlethwait JH, Potocki L, Pusey BN, Quinlan A, Raja AN, Renteria G, Reuter CM, Rives L, Robertson AK, Rodan LH, Rosenfeld JA, Rowley RK, Ruzhnikov M, Sacco R, Sampson JB, Samson SL, Saporta M, Schaechter J, Schedl T, Schoch K, Scott DA, Shakachite L, Sharma P, Shashi V, Shields K, Shin J, Signer R, Sillari CH, Silverman EK, Sinsheimer JS, Sisco K, Smith KS, Solnica-Krezel L, Spillmann RC, Stoler JM, Stong N, Sullivan JA, Sutton S, Sweetser DA, Tabor HK, Tamburro CP, Tan QKG, Tekin M, Telischi F, Thorson W, Tifft CJ, Toro C, Tran AA, Urv TK, Velinder M, Viskochil D, Vogel TP, Wahl CE, Walley NM, Walsh CA, Walker M, Wambach J, Wan J, Wang LK, Wangler MF, Ward PA, Waters KM, Webb-Robertson BJM, Wegner D, Westerfield M, Wheeler MT, Wise AL, Wolfe LA, Woods JD, Worthey EA, Yamamoto S, Yang J, Yoon AJ, Yu G, Zastrow DB, Zhao C, Zuchner S. De Novo Variants in WDR37 Are Associated with Epilepsy, Colobomas, Dysmorphism, Developmental Delay, Intellectual Disability, and Cerebellar Hypoplasia. Am J Hum Genet 2019; 105:413-424. [PMID: 31327508 PMCID: PMC6699142 DOI: 10.1016/j.ajhg.2019.06.014] [Show More Authors] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
WD40 repeat-containing proteins form a large family of proteins present in all eukaryotes. Here, we identified five pediatric probands with de novo variants in WDR37, which encodes a member of the WD40 repeat protein family. Two probands shared one variant and the others have variants in nearby amino acids outside the WD40 repeats. The probands exhibited shared phenotypes of epilepsy, colobomas, facial dysmorphology reminiscent of CHARGE syndrome, developmental delay and intellectual disability, and cerebellar hypoplasia. The WDR37 protein is highly conserved in vertebrate and invertebrate model organisms and is currently not associated with a human disease. We generated a null allele of the single Drosophila ortholog to gain functional insights and replaced the coding region of the fly gene CG12333/wdr37 with GAL4. These flies are homozygous viable but display severe bang sensitivity, a phenotype associated with seizures in flies. Additionally, the mutant flies fall when climbing the walls of the vials, suggesting a defect in grip strength, and repeat the cycle of climbing and falling. Similar to wall clinging defect, mutant males often lose grip of the female abdomen during copulation. These phenotypes are rescued by using the GAL4 in the CG12333/wdr37 locus to drive the UAS-human reference WDR37 cDNA. The two variants found in three human subjects failed to rescue these phenotypes, suggesting that these alleles severely affect the function of this protein. Taken together, our data suggest that variants in WDR37 underlie a novel syndromic neurological disorder.
Collapse
|
26
|
Liu H, Pfirrmann T. The Gid-complex: an emerging player in the ubiquitin ligase league. Biol Chem 2019; 400:1429-1441. [DOI: 10.1515/hsz-2019-0139] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022]
Abstract
Abstract
The Saccharomyces cerevisiae Gid-complex is a highly evolutionary conserved ubiquitin ligase with at least seven protein subunits. Here, we review our knowledge about the yeast Gid-complex as an important regulator of glucose metabolism, specifically targeting key enzymes of gluconeogenesis for degradation. Furthermore, we summarize existing data about the individual subunits, the topology and possible substrate recognition mechanisms and compare the striking similarities, but also differences, between the yeast complex and its vertebrate counterpart. Present data is summarized to give an overview about cellular processes regulated by the vertebrate GID-complex that range from cell cycle regulation, primary cilia function to the regulation of energy homeostasis. In conclusion, the vertebrate GID-complex evolved as a versatile ubiquitin ligase complex with functions beyond the regulation of glucose metabolism.
Collapse
Affiliation(s)
- Huaize Liu
- Martin Luther University Halle-Wittenberg , Institute of Physiological Chemistry , Hollystr. 1 , D-06114 Halle , Germany
| | - Thorsten Pfirrmann
- Martin Luther University Halle-Wittenberg , Institute of Physiological Chemistry , Hollystr. 1 , D-06114 Halle , Germany
| |
Collapse
|
27
|
Jain BP. Genome Wide Analysis of WD40 Proteins in Saccharomyces cerevisiae and Their Orthologs in Candida albicans. Protein J 2019; 38:58-75. [PMID: 30511317 DOI: 10.1007/s10930-018-9804-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The WD40 domain containing proteins are present in the lower organisms (Monera) to higher complex metazoans with involvement in diverse cellular processes. The WD40 repeats fold into β propeller structure due to which the proteins harbouring WD40 domains function as scaffold by offering platform for interactions, bring together diverse cellular proteins to form a single complex for mediating downstream effects. Multiple functions of WD40 domain containing proteins in lower eukaryote as in Fungi have been reported with involvement in vegetative and reproductive growth, virulence etc. In this article insilico analysis of the WDR proteins in the budding yeast Saccharomyces cerevisiae was performed. By WDSP software 83 proteins in S. cerevisiae were identified with at least one WD40 motif. WD40 proteins with 6 or more WD40 motifs were considered for further studies. The WD40 proteins in yeast which are involved in various biological processes show distribution on all chromosomes (16 chromosomes in yeast) except chromosome 1. Besides the WD40 domain some of these proteins also contain other protein domains which might be responsible for the diversity in the functions of WD40 proteins in the budding yeast. These proteins in budding yeast were analysed by DAVID and Blast2Go software for functional and domains categorization. Candida albicans, an opportunistic fungal pathogen also have orthologs of these WD40 proteins with possible similar functions. This is the first time genome wide analysis of WD40 proteins in lower eukaryote i.e. budding yeast. This data may be useful in further study of the functional diversity of yeast proteomes.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Bihar, Motihari, 845401, India.
| |
Collapse
|
28
|
Hu R, Xiao J, Gu T, Yu X, Zhang Y, Chang J, Yang G, He G. Genome-wide identification and analysis of WD40 proteins in wheat (Triticum aestivum L.). BMC Genomics 2018; 19:803. [PMID: 30400808 PMCID: PMC6219084 DOI: 10.1186/s12864-018-5157-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND WD40 domains are abundant in eukaryotes, and they are essential subunits of large multiprotein complexes, which serve as scaffolds. WD40 proteins participate in various cellular processes, such as histone modification, transcription regulation, and signal transduction. WD40 proteins are regarded as crucial regulators of plant development processes. However, the systematic identification and analysis of WD40 proteins have yet to be reported in wheat. RESULTS In this study, a total of 743 WD40 proteins were identified in wheat, and they were grouped into 5 clusters and 11 subfamilies. Their gene structures, chromosomal locations, and evolutionary relationships were analyzed. Among them, 39 and 46 pairs of TaWD40s were distinguished as tandem duplication and segmental duplication genes. The 123 OsWD40s were identified to exhibit synteny with TaWD40s. TaWD40s showed the specific characteristics at the reproductive developmental stage, and numerous TaWD40s were involved in responses to stresses, including cold, heat, drought, and powdery mildew infection pathogen, based on the result of RNA-seq data analysis. The expression profiles of some TaWD40s in wheat seed development were confirmed through qRT-PCR technique. CONCLUSION In this study, 743 TaWD40s were identified from the wheat genome. As the main driving force of evolution, duplication events were observed, and homologous recombination was another driving force of evolution. The expression profiles of TaWD40s revealed their importance for the growth and development of wheat and their response to biotic and abiotic stresses. Our study also provided important information for further functional characterization of some WD40 proteins in wheat.
Collapse
Affiliation(s)
- Rui Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jie Xiao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Ting Gu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaofen Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yang Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
29
|
Shen C, Du Y, Qiao F, Kong T, Yuan L, Zhang D, Wu X, Li D, Wu YD. Biophysical and structural characterization of the thermostable WD40 domain of a prokaryotic protein, Thermomonospora curvata PkwA. Sci Rep 2018; 8:12965. [PMID: 30154510 PMCID: PMC6113231 DOI: 10.1038/s41598-018-31140-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/10/2018] [Indexed: 01/25/2023] Open
Abstract
WD40 proteins belong to a big protein family with members identified in every eukaryotic proteome. However, WD40 proteins were only reported in a few prokaryotic proteomes. Using WDSP (http://wu.scbb.pkusz.edu.cn/wdsp/), a prediction tool, we identified thousands of prokaryotic WD40 proteins, among which few proteins have been biochemically characterized. As shown in our previous bioinformatics study, a large proportion of prokaryotic WD40 proteins have higher intramolecular sequence identity among repeats and more hydrogen networks, which may indicate better stability than eukaryotic WD40s. Here we report our biophysical and structural study on the WD40 domain of PkwA from Thermomonospora curvata (referred as tPkwA-C). We demonstrated that the stability of thermophilic tPkwA-C correlated to ionic strength and tPkwA-C exhibited fully reversible unfolding under different denaturing conditions. Therefore, the folding kinetics was also studied through stopped-flow circular dichroism spectra. The crystal structure of tPkwA-C was further resolved and shed light on the key factors that stabilize its beta-propeller structure. Like other WD40 proteins, DHSW tetrad has a significant impact on the stability of tPkwA-C. Considering its unique features, we proposed that tPkwA-C should be a great structural template for protein engineering to study key residues involved in protein-protein interaction of a WD40 protein.
Collapse
Affiliation(s)
- Chen Shen
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ye Du
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,Medical Research Center, The People's Hospital of Longhua, Shenzhen, 518109, China
| | - Fangfang Qiao
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tian Kong
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Lirong Yuan
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Delin Zhang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xianhui Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Dongyang Li
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. .,SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. .,College of Chemistry, Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
Zou XD, An K, Wu YD, Ye ZQ. PPI network analyses of human WD40 protein family systematically reveal their tendency to assemble complexes and facilitate the complex predictions. BMC SYSTEMS BIOLOGY 2018; 12:41. [PMID: 29745845 PMCID: PMC5998875 DOI: 10.1186/s12918-018-0567-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background WD40 repeat proteins constitute one of the largest families in eukaryotes, and widely participate in various fundamental cellular processes by interacting with other molecules. Based on individual WD40 proteins, previous work has demonstrated that their structural characteristics should confer great potential of interaction and complex formation, and has speculated that they may serve as hubs in the protein-protein interaction (PPI) network. However, what roles the whole family plays in organizing the PPI network, and whether this information can be utilized in complex prediction remain unclear. To address these issues, quantitative and systematic analyses of WD40 proteins from the perspective of PPI networks are highly required. Results In this work, we built two human PPI networks by using data sets with different confidence levels, and studied the network properties of the whole human WD40 protein family systematically. Our analyses have quantitatively confirmed that the human WD40 protein family, as a whole, tends to be hubs with an odds ratio of about 1.8 or greater, and the network decomposition has revealed that they are prone to enrich near the global center of the whole network with a fold change of two in the median k-values. By integrating expression profiles, we have further shown that WD40 hub proteins are inclined to be intramodular, which is indicative of complex assembling. Based on this information, we have further predicted 1674 potential WD40-associated complexes by choosing a clique-based method, which is more sensitive than others, and an indirect evaluation by co-expression scores has demonstrated its reliability. Conclusions At the systems level but not sporadic examples’ level, this work has provided rich knowledge for better understanding WD40 proteins’ roles in organizing the PPI network. These findings and predicted complexes can offer valuable clues for prioritizing candidates for further studies. Electronic supplementary material The online version of this article (10.1186/s12918-018-0567-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xu-Dong Zou
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Ke An
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China. .,College of Chemistry, Peking University, Beijing, 100871, People's Republic of China.
| | - Zhi-Qiang Ye
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
31
|
Méheust R, Bhattacharya D, Pathmanathan JS, McInerney JO, Lopez P, Bapteste E. Formation of chimeric genes with essential functions at the origin of eukaryotes. BMC Biol 2018. [PMID: 29534719 PMCID: PMC5851275 DOI: 10.1186/s12915-018-0500-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Eukaryotes evolved from the symbiotic association of at least two prokaryotic partners, and a good deal is known about the timings, mechanisms, and dynamics of these evolutionary steps. Recently, it was shown that a new class of nuclear genes, symbiogenetic genes (S-genes), was formed concomitant with endosymbiosis and the subsequent evolution of eukaryotic photosynthetic lineages. Understanding their origins and contributions to eukaryogenesis would provide insights into the ways in which cellular complexity has evolved. RESULTS Here, we show that chimeric nuclear genes (S-genes), built from prokaryotic domains, are critical for explaining the leap forward in cellular complexity achieved during eukaryogenesis. A total of 282 S-gene families contributed solutions to many of the challenges faced by early eukaryotes, including enhancing the informational machinery, processing spliceosomal introns, tackling genotoxicity within the cell, and ensuring functional protein interactions in a larger, more compartmentalized cell. For hundreds of S-genes, we confirmed the origins of their components (bacterial, archaeal, or generally prokaryotic) by maximum likelihood phylogenies. Remarkably, Bacteria contributed nine-fold more S-genes than Archaea, including a two-fold greater contribution to informational functions. Therefore, there is an additional, large bacterial contribution to the evolution of eukaryotes, implying that fundamental eukaryotic properties do not strictly follow the traditional informational/operational divide for archaeal/bacterial contributions to eukaryogenesis. CONCLUSION This study demonstrates the extent and process through which prokaryotic fragments from bacterial and archaeal genes inherited during eukaryogenesis underly the creation of novel chimeric genes with important functions.
Collapse
Affiliation(s)
- Raphaël Méheust
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), 75005, Paris, France
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Jananan S Pathmanathan
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), 75005, Paris, France
| | - James O McInerney
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, M13 9PL, Manchester, UK
| | - Philippe Lopez
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), 75005, Paris, France
| | - Eric Bapteste
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Evolution Paris Seine - Institut de Biologie Paris Seine (EPS - IBPS), 75005, Paris, France.
| |
Collapse
|
32
|
Genome-Wide Identification and Characterization of WD40 Protein Genes in the Silkworm, Bombyx mori. Int J Mol Sci 2018; 19:ijms19020527. [PMID: 29425159 PMCID: PMC5855749 DOI: 10.3390/ijms19020527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
WD40 proteins are scaffolding molecules in protein-protein interactions and play crucial roles in fundamental biological processes. Genome-wide characterization of WD40 proteins in animals has been conducted solely in humans. We retrieved 172 WD40 protein genes in silkworm (BmWD40s) and identified these genes in 7 other insects, 9 vertebrates and 5 nematodes. Comparative analysis revealed that the WD40 protein gene family underwent lineage-specific expansions during animal evolution, but did not undergo significant expansion during insect evolution. The BmWD40s were categorized into five clusters and 12 classes according to the phylogenetic classification and their domain architectures, respectively. Sequence analyses indicated that tandem and segmental duplication played minor roles in producing the current number of BmWD40s, and domain recombination events of multi-domain BmWD40s might have occurred mainly after gene duplication events. Gene Ontology (GO) analysis revealed that a higher proportion of BmWD40s was involved in processes, such as binding, transcription-regulation and cellular component biogenesis, compared to all silkworm genes annotated in GO. Microarray-based analysis demonstrated that many BmWD40s had tissue-specific expression and exhibited high and/or sex-related expression during metamorphosis. These findings contribute to a better understanding of the evolution of the animal WD40 protein family and assist the study of the functions of BmWD40s.
Collapse
|
33
|
Yamamoto JI, Kasamatsu A, Okubo Y, Nakashima D, Fushimi K, Minakawa Y, Kasama H, Shiiba M, Tanzawa H, Uzawa K. Evaluation of tryptophan-aspartic acid repeat-containing protein 34 as a novel tumor-suppressor molecule in human oral cancer. Biochem Biophys Res Commun 2017; 495:2469-2474. [PMID: 29278705 DOI: 10.1016/j.bbrc.2017.12.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Tryptophan-aspartic acid (WD) repeat-containing protein 34 (WDR34), one of the WDR protein superfamilies with five WD40 domains, inhibits a transforming growth factor-beta (TGF-β) activated kinase 1 (TAK1)-associated NF-κB activation pathway. Nevertheless, little is known about the roles of WDR34 in cancer. The current study sought to elucidate the clinical relevance of WDRsfb34 in oral squamous cell carcinoma (OSCC). We found WDR34 down-regulation in OSCCs compared with normal control tissues using real-time quantitative reverse transcription-polymerase chain reaction, immunoblotting, and immunohistochemistry. Models of overexpression of WDR34 (oeWDR34) showed depressed cellular growth through cell-cycle arrest at the G1 phase. To investigate the inhibitory function of WDR34, we challenged oeWDR34 cells with interleukin (IL)-1, a ligand for activation of the TAK1-NF-κB pathway and assessed the expression of a target gene of the pathway. oeWDR34 strongly inhibited IL-6 expression, which is closely related to tumoral growth, compared with control cells, suggesting that WDR34 would be a critical molecule for control of tumoral progression. In addition to the in vitro experiments, WDR34 negativity was correlated with tumoral growth of OSCCs. Our findings suggested that WDR34 inhibits OSCC progression and might be a potential tumor-suppressor molecule in OSCCs.
Collapse
Affiliation(s)
- Jun-Ichiro Yamamoto
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan.
| | - Yasuhiko Okubo
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuaki Fushimi
- Division of Oral Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Yasuyuki Minakawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Division of Dentistry, Chiba Prefectural Sawara Hospital, Chiba, Japan
| | - Hiroki Kasama
- Division of Oral Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
34
|
Sapam TD, Velmurugan Ilavarasi A, Palaka BK, Elumalai E, Kanika ND, Ampasala DR. Identifying novel small molecule antagonists for mLST8 protein using computational approaches. J Recept Signal Transduct Res 2017; 38:1-11. [PMID: 29041842 DOI: 10.1080/10799893.2017.1387920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mammalian lethal with SEC13 protein 8 (mLST8), is an indispensable protein subunit of mammalian target of rapamycin (mTOR) signaling pathway that interacts with the kinase domain of mTOR protein, thereby stabilizing its active site. Experimental studies reported the over expression of mLST8 in human colon and prostate cancers by activation of both mTORC1/2 complexes and subsequent downstream substrates leading to tumor progression. Considering its role, targeting mLST8 protein would be a therapeutic approach against tumor progression in colon and prostate cancers. Hence, using in silico structure based drug design approach, the comparative binding patterns of 1,1'-binapthyl-2,2'diol (BINOL), 1-(2-carboxynaphth-1yl)-2-naphthoic acid (SCF-12) and their analogs in the cavity of mLST8 were explored. ADME and binding energy calculations led to the identification of five compounds with favorable Glide (G) scores and implicated the importance of Asn132 and Gln225 as key binding residues. Molecular dynamics (MD) simulations and free energy landscape (FEL) approaches helped in elucidating the binding mechanism and suggested the possibility of ligands 1-3 namely, ZINC01765622, ZINC62723702 and ZINC02576980 to be promising antagonists for mLST8. Thus, this study substantiates the prospect of targeting mLST8 protein using potent hits which could hinder tumor progression in colon and prostate cancers.
Collapse
Affiliation(s)
- Tuleshwori Devi Sapam
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry , India
| | | | - Bhagath Kumar Palaka
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry , India
| | - Elakkiya Elumalai
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry , India
| | | | - Dinakara Rao Ampasala
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry , India
| |
Collapse
|
35
|
Hu XJ, Li T, Wang Y, Xiong Y, Wu XH, Zhang DL, Ye ZQ, Wu YD. Prokaryotic and Highly-Repetitive WD40 Proteins: A Systematic Study. Sci Rep 2017; 7:10585. [PMID: 28878378 PMCID: PMC5587647 DOI: 10.1038/s41598-017-11115-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022] Open
Abstract
As an ancient protein family, the WD40 repeat proteins often play essential roles in fundamental cellular processes in eukaryotes. Although investigations of eukaryotic WD40 proteins have been frequently reported, prokaryotic ones remain largely uncharacterized. In this paper, we report a systematic analysis of prokaryotic WD40 proteins and detailed comparisons with eukaryotic ones. About 4,000 prokaryotic WD40 proteins have been identified, accounting for 6.5% of all WD40s. While their abundances are less than 0.1% in most prokaryotes, they are enriched in certain species from Cyanobacteria and Planctomycetes, and participate in various functions such as prokaryotic signal transduction and nutrient synthesis. Comparisons show that a higher proportion of prokaryotic WD40s tend to contain multiple WD40 domains and a large number of hydrogen bond networks. The observation that prokaryotic WD40 proteins tend to show high internal sequence identity suggests that a substantial proportion of them (~20%) should be formed by recent or young repeat duplication events. Further studies demonstrate that the very young WD40 proteins, i.e., Highly-Repetitive WD40s, should be of higher stability. Our results have presented a catalogue of prokaryotic WD40 proteins, and have shed light on their evolutionary origins.
Collapse
Affiliation(s)
- Xue-Jia Hu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Tuan Li
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Yang Wang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Yao Xiong
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Xian-Hui Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - De-Lin Zhang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Zhi-Qiang Ye
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China.
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China.
- College of Chemistry, Peking University, Beijing, 100871, P.R. China.
| |
Collapse
|