1
|
Xiao M, Lv S, Zhu C. Bacterial Patterning: A Promising Biofabrication Technique. ACS APPLIED BIO MATERIALS 2024; 7:8008-8018. [PMID: 38408887 DOI: 10.1021/acsabm.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Bacterial patterning has emerged as a pivotal biofabrication technique in the biomedical field. In the past 2 decades, a diverse array of bacterial patterning approaches have been developed to enable the precise manipulation of the spatial distribution of bacterial patterns for various applications. Despite the significance of these advancements, there is a deficiency of review articles providing an overview of bacterial patterning technologies. In this mini-review, we systematically summarize the progress of bacterial patterning over the past 2 decades. This review commences with an elucidation of the definition and fundamental principles of bacterial patterning. Subsequently, we introduce the established bacterial patterning strategies, accompanied by discussions about the advantages and limitations of each approach. Furthermore, we showcase the biomedical applications of these strategies, highlighting their efficacy in spatial control of biofilms, biosensing, and biointervention. Finally, this mini-review is concluded with a summary and an outlook on future challenges and opportunities. It is anticipated that this mini-review can serve as a concise guide for those who are interested in this exciting and rapidly evolving research area.
Collapse
Affiliation(s)
- Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Brindl N, Boekhoff H, Bauer AS, Gaida MM, Dang HT, Kaiser J, Hoheisel JD, Felix K. Use of Autoreactive Antibodies in Blood of Patients with Pancreatic Intraductal Papillary Mucinous Neoplasms (IPMN) for Grade Distinction and Detection of Malignancy. Cancers (Basel) 2022; 14:cancers14153562. [PMID: 35892825 PMCID: PMC9332220 DOI: 10.3390/cancers14153562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: A reliable non-invasive distinction between low- and high-risk pancreatic intraductal papillary mucinous neoplasms (IPMN) is needed to effectively detect IPMN with malignant potential. This would improve preventative care and reduce the risk of developing pancreatic cancer and overtreatment. The present study aimed at exploring the presence of autoreactive antibodies in the blood of patients with IPMN of various grades of dysplasia. (2) Methods: A single-center cohort was studied composed of 378 serum samples from patients with low-grade IPMN (n = 91), high-grade IPMN (n = 66), IPMN with associated invasive cancer (n = 30), pancreatic ductal adenocarcinoma (PDAC) stages T1 (n = 24) and T2 (n = 113), and healthy controls (n = 54). A 249 full-length recombinant human protein microarray was used for profiling the serum samples. (3) Results: 14 proteins were identified as potential biomarkers for grade distinction in IPMN, yielding high specificity but mediocre sensitivity. (4) Conclusions: The identified autoantibodies are potential biomarkers that may assist in the detection of malignancy in IPMN patients.
Collapse
Affiliation(s)
- Niall Brindl
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (A.S.B.); (J.D.H.)
- Correspondence: (N.B.); (K.F.); Tel.: +49-163-638-1860 (N.B.)
| | - Henning Boekhoff
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (A.S.B.); (J.D.H.)
| | - Andrea S. Bauer
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (A.S.B.); (J.D.H.)
| | - Matthias M. Gaida
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- TRON, Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Hien T. Dang
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19144, USA;
| | - Jörg Kaiser
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Jörg D. Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (A.S.B.); (J.D.H.)
| | - Klaus Felix
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Correspondence: (N.B.); (K.F.); Tel.: +49-163-638-1860 (N.B.)
| |
Collapse
|
3
|
Miao B, Zhang C, Stroh N, Brenner L, Hufnagel K, Hoheisel JD, Bandapalli OR. Transcription factor TFE3 enhances cell cycle and cancer progression by binding to the hTERT promoter. Cancer Commun (Lond) 2021; 41:1423-1426. [PMID: 34523267 PMCID: PMC8696226 DOI: 10.1002/cac2.12216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Beiping Miao
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ)HeidelbergBaden‐Württemberg69120Germany
- Medical Faculty HeidelbergHeidelberg UniversityHeidelbergBaden‐Württemberg69120Germany
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ)HeidelbergBaden‐Württemberg69120Germany
| | - Chaoyang Zhang
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ)HeidelbergBaden‐Württemberg69120Germany
- Medical Faculty HeidelbergHeidelberg UniversityHeidelbergBaden‐Württemberg69120Germany
| | - Nadine Stroh
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ)HeidelbergBaden‐Württemberg69120Germany
| | - Lukas Brenner
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ)HeidelbergBaden‐Württemberg69120Germany
| | - Katrin Hufnagel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ)HeidelbergBaden‐Württemberg69120Germany
| | - Jörg D. Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ)HeidelbergBaden‐Württemberg69120Germany
| | - Obul Reddy Bandapalli
- Medical Faculty HeidelbergHeidelberg UniversityHeidelbergBaden‐Württemberg69120Germany
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ)HeidelbergBaden‐Württemberg69120Germany
| |
Collapse
|
4
|
Wu Y, Kröller L, Miao B, Boekhoff H, Bauer AS, Büchler MW, Hackert T, Giese NA, Taipale J, Hoheisel JD. Promoter Hypermethylation Promotes the Binding of Transcription Factor NFATc1, Triggering Oncogenic Gene Activation in Pancreatic Cancer. Cancers (Basel) 2021; 13:4569. [PMID: 34572796 PMCID: PMC8471171 DOI: 10.3390/cancers13184569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Accepted: 09/08/2021] [Indexed: 01/01/2023] Open
Abstract
Studies have indicated that some genes involved in carcinogenesis are highly methylated in their promoter regions but nevertheless strongly transcribed. It has been proposed that transcription factors could bind specifically to methylated promoters and trigger transcription. We looked at this rather comprehensively for pancreatic ductal adenocarcinoma (PDAC) and studied some cases in more detail. Some 2% of regulated genes in PDAC exhibited higher transcription coupled to promoter hypermethylation in comparison to healthy tissue. Screening 661 transcription factors, several were found to bind specifically to methylated promoters, in particular molecules of the NFAT family. One of them-NFATc1-was substantially more strongly expressed in PDAC than control tissue and exhibited a strong oncogenic role. Functional studies combined with computational analyses allowed determining affected genes. A prominent one was gene ALDH1A3, which accelerates PDAC metastasis and correlates with a bad prognosis. Further studies confirmed the direct up-regulation of ALDH1A3 transcription by NFATc1 promoter binding in a methylation-dependent process, providing insights into the oncogenic role of transcription activation in PDAC that is promoted by DNA methylation.
Collapse
Affiliation(s)
- Yenan Wu
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Lea Kröller
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Beiping Miao
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
- Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Henning Boekhoff
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Andrea S. Bauer
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
| | - Markus W. Büchler
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (M.W.B.); (T.H.); (N.A.G.)
| | - Thilo Hackert
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (M.W.B.); (T.H.); (N.A.G.)
| | - Nathalia A. Giese
- Department of General Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (M.W.B.); (T.H.); (N.A.G.)
| | - Jussi Taipale
- Division of Functional Genomics, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Solna, Sweden;
| | - Jörg D. Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; (Y.W.); (L.K.); (B.M.); (H.B.); (A.S.B.)
| |
Collapse
|
5
|
Miao B, Bauer AS, Hufnagel K, Wu Y, Trajkovic-Arsic M, Pirona AC, Giese N, Taipale J, Siveke JT, Hoheisel JD, Lueong S. The transcription factor FLI1 promotes cancer progression by affecting cell cycle regulation. Int J Cancer 2020; 147:189-201. [PMID: 31846072 DOI: 10.1002/ijc.32831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022]
Abstract
Binding of transcription factors to mutated DNA sequences is a likely regulator of cancer progression. Noncoding regulatory mutations such as those on the core promoter of the gene encoding human telomerase reverse transcriptase have been shown to affect gene expression in cancer. Using a protein microarray of 667 transcription factor DNA-binding domains and subsequent functional assays, we looked for transcription factors that preferentially bind the mutant hTERT promoter and characterized their downstream effects. One of them, friend leukemia integration 1 (FLI1), which belongs to the E26 transforming-specific family of transcription factors, exhibited particularly strong effects with respect to regulating hTERT expression, while the even better binding ELK3 did not. Depletion of FLI1 decreased expression of the genes for cyclin D1 (CCND1) and E2F transcription factor 2 (E2F2) resulting in a G1/S cell cycle arrest and in consequence a reduction of cell proliferation. FLI1 also affected CMTM7, another gene involved in G1/S transition, although by another process that suggests a balanced regulation of the tumor suppressor gene's activity via opposing regulation processes. FLI1 expression was found upregulated and correlated with an increase in CCND1 expression in pancreatic cancer and brain tumors. In non-neoplastic lung cells, however, FLI1 depletion led to rapid progression through the cell cycle. This coincides with the fact that FLI1 is downregulated in lung tumors. Taken together, our data indicate a cell cycle regulatory hub involving FLI1, hTERT, CCND1 and E2F2 in a tissue- and context-dependent manner.
Collapse
Affiliation(s)
- Beiping Miao
- Division of Functional Genome Analysis (B070), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Andrea S Bauer
- Division of Functional Genome Analysis (B070), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Hufnagel
- Infections and Cancer Epidemiology (F022), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yenan Wu
- Division of Functional Genome Analysis (B070), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marija Trajkovic-Arsic
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna C Pirona
- Division of Functional Genome Analysis (B070), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nathalia Giese
- Research Laboratory of the European Pancreas Centre (EPZ) Integrative Oncology Group, University Clinic Heidelberg, Heidelberg, Germany
| | - Jussi Taipale
- Division of Functional Genomics, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Sweden
| | - Jens T Siveke
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis (B070), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Smiths Lueong
- Division of Functional Genome Analysis (B070), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Ghassem-Zadeh S, Hufnagel K, Bauer A, Frossard JL, Yoshida M, Kutsumi H, Acha-Orbea H, Neulinger-Muñoz M, Vey J, Eckert C, Strobel O, Hoheisel JD, Felix K. Novel Autoantibody Signatures in Sera of Patients with Pancreatic Cancer, Chronic Pancreatitis and Autoimmune Pancreatitis: A Protein Microarray Profiling Approach. Int J Mol Sci 2020; 21:E2403. [PMID: 32244327 PMCID: PMC7177860 DOI: 10.3390/ijms21072403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Identification of disease-associated autoantibodies is of high importance. Their assessment could complement current diagnostic modalities and assist the clinical management of patients. We aimed at developing and validating high-throughput protein microarrays able to screen patients' sera to determine disease-specific autoantibody-signatures for pancreatic cancer (PDAC), chronic pancreatitis (CP), autoimmune pancreatitis and their subtypes (AIP-1 and AIP-2). In-house manufactured microarrays were used for autoantibody-profiling of IgG-enriched preoperative sera from PDAC-, CP-, AIP-1-, AIP-2-, other gastrointestinal disease (GID) patients and healthy controls. As a top-down strategy, three different fluorescence detection-based protein-microarrays were used: large with 6400, intermediate with 345, and small with 36 full-length human recombinant proteins. Large-scale analysis revealed 89 PDAC, 98 CP and 104 AIP immunogenic antigens. Narrowing the selection to 29 autoantigens using pooled sera first and individual sera afterwards allowed a discrimination of CP and AIP from PDAC. For validation, predictive models based on the identified antigens were generated which enabled discrimination between PDAC and AIP-1 or AIP-2 yielded high AUC values of 0.940 and 0.925, respectively. A new repertoire of autoantigens was identified and their assembly as a multiplex test will provide a fast and cost-effective tool for differential diagnosis of pancreatic diseases with high clinical relevance.
Collapse
Affiliation(s)
- Sahar Ghassem-Zadeh
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (S.G.-Z.); (M.N.-M.); (O.S.)
- Department of Biochemistry, University of Lausanne, 1066 Epalinges-Lausanne, Switzerland;
| | - Katrin Hufnagel
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Andrea Bauer
- Department of Functional Genomics, DKFZ, 69120 Heidelberg, Germany; (A.B.); (J.D.H.)
| | - Jean-Louis Frossard
- Department of Medical Specialties, Division of Gastroenterology, University Hospital of Geneva, 1205 Geneva, Switzerland;
| | - Masaru Yoshida
- Department of Gastroenterology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Hiromu Kutsumi
- Center for Clinical Research and Advanced Medicine Shiga University of Medical Science Seta Tsukinowa-cho, Otsu 520-2192, Japan;
| | - Hans Acha-Orbea
- Department of Biochemistry, University of Lausanne, 1066 Epalinges-Lausanne, Switzerland;
| | - Matthias Neulinger-Muñoz
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (S.G.-Z.); (M.N.-M.); (O.S.)
| | - Johannes Vey
- Institute of Medical Biometry and Informatics, University Medical Center Ruprecht-Karls University Heidelberg, 69120 Heidelberg, Germany;
| | - Christoph Eckert
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (S.G.-Z.); (M.N.-M.); (O.S.)
| | - Jörg D. Hoheisel
- Department of Functional Genomics, DKFZ, 69120 Heidelberg, Germany; (A.B.); (J.D.H.)
| | - Klaus Felix
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; (S.G.-Z.); (M.N.-M.); (O.S.)
| |
Collapse
|
7
|
Neagu M, Bostan M, Constantin C. Protein microarray technology: Assisting personalized medicine in oncology (Review). WORLD ACADEMY OF SCIENCES JOURNAL 2019. [DOI: 10.3892/wasj.2019.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Monica Neagu
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Marinela Bostan
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Carolina Constantin
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
8
|
Weidmann J, Schnölzer M, Dawson PE, Hoheisel JD. Copying Life: Synthesis of an Enzymatically Active Mirror-Image DNA-Ligase Made of D-Amino Acids. Cell Chem Biol 2019; 26:645-651.e3. [PMID: 30880154 DOI: 10.1016/j.chembiol.2019.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/27/2018] [Accepted: 02/07/2019] [Indexed: 11/17/2022]
Abstract
Our objective is the creation of a mirror-image synthetic biology: that is, to mimic, entirely independent of Nature, a biological system and to re-create it from artificial component parts. Utilizing enantiomeric L-nucleotides and D-amino acids rather than the natural components, we use chemical synthesis toward a basic, self-replicating mirror-image biological system. Here, we report the synthesis of a functional DNA-ligase in the D-enantiomeric conformation, which is an exact mirror-image of the natural enzyme, exhibiting DNA ligation activity on chirally inverted nucleic acids in L-conformation, but not acting on natural substrates and with natural co-factors. Starting from the known structure of the Paramecium bursaria chlorella virus 1 DNA-ligase and the homologous but shorter DNA-ligase of Haemophilus influenza, we designed and synthesized chemically peptides, which could then be assembled into a full-length molecule yielding a functional protein. The structure and the activity of the mirror-image ligase were characterized, documenting its enantiospecific functionality.
Collapse
Affiliation(s)
- Joachim Weidmann
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jörg D Hoheisel
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Pereiro I, Cors JF, Pané S, Nelson BJ, Kaigala GV. Underpinning transport phenomena for the patterning of biomolecules. Chem Soc Rev 2019; 48:1236-1254. [PMID: 30671579 DOI: 10.1039/c8cs00852c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Surface-based assays are increasingly being used in biology and medicine, which in turn demand increasing quantitation and reproducibility. This translates into more stringent requirements on the patterning of biological entities on surfaces (also referred to as biopatterning). This tutorial focuses on mass transport in the context of existing and emerging biopatterning technologies. We here develop a step-by-step analysis of how analyte transport affects surface kinetics, and of the advantages and limitations this entails in major categories of patterning methods, including evaporating sessile droplets, laminar flows in microfluidics or electrochemistry. Understanding these concepts is key to obtaining the desired pattern uniformity, coverage, analyte usage or processing time, and equally applicable to surface assays. A representative technological review accompanies each section, highlighting the technical progress enabled by transport control in e.g. microcontact printing, inkjet printing, dip-pen nanolithography and microfluidic probes. We believe this tutorial will serve researchers to better understand available patterning methods/principles, optimize conditions and to help design protocols/assays. By highlighting fundamental challenges and available approaches, we wish to trigger the development of new surface patterning methods and assays.
Collapse
Affiliation(s)
- Iago Pereiro
- IBM Research - Zurich, Säumerstrasse 4, Rüschlikon, 8803, Switzerland.
| | - Julien F Cors
- IBM Research - Zurich, Säumerstrasse 4, Rüschlikon, 8803, Switzerland. and Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, 8092, Switzerland
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, 8092, Switzerland
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, 8092, Switzerland
| | - Govind V Kaigala
- IBM Research - Zurich, Säumerstrasse 4, Rüschlikon, 8803, Switzerland.
| |
Collapse
|
10
|
Hufnagel K, Reininger D, Ng SW, Gassert N, Rohland JK, Shahryarhesami S, Bauer AS, Waterboer T, Hoheisel JD. In situ, Cell-free Protein Expression on Microarrays and Their Use for the Detection of Immune Responses. Bio Protoc 2019; 9:e3152. [PMID: 33654961 DOI: 10.21769/bioprotoc.3152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 11/02/2022] Open
Abstract
Until recently, whole-proteome microarrays for comprehensive studies of protein interactions were mostly produced by individual cloning and cellular expression of very many open reading frames, followed by protein isolation and purification as well as array production. To overcome this cumbersome process, we have developed a method to generate microarrays representing entire proteomes by a combination of multiple spotting and on-chip, cell-free protein expression. Here, we describe the protocol for the production of bacterial protein microarrays. With slight adaptations, however, the procedure can be applied to the proteome of any organism. Expression constructs of each gene are generated by PCR on bacterial genomic DNA followed by a common secondary amplification that is adding relevant regulative elements to either end of the constructs. The unpurified PCR-products are spotted onto the microarray surface. Full-length proteins are directly expressed in situ in a cell-free manner and stay attached to the surface without further action. As an example of a typical application, we describe here the proteome-wide analysis of the immune response to a bacterial infectious agent by characterizing the binding profiles of the antibodies in patient sera.
Collapse
Affiliation(s)
- Katrin Hufnagel
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Dennis Reininger
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Siu Wang Ng
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadine Gassert
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane K Rohland
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Soroosh Shahryarhesami
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea S Bauer
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Randriantsilefisoa R, Cuellar-Camacho JL, Chowdhury MS, Dey P, Schedler U, Haag R. Highly sensitive detection of antibodies in a soft bioactive three-dimensional bioorthogonal hydrogel. J Mater Chem B 2019. [DOI: 10.1039/c9tb00234k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This three-dimensional detection method of antibodies offers a high sensitivity and good biomolecule stability for new biosensing devices.
Collapse
Affiliation(s)
| | | | | | - Pradip Dey
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- Takustr. 3
- Berlin
- Germany
| | - Uwe Schedler
- PolyAn GmbH
- Rudolf-Baschant-Strasse 2
- 13086 Berlin
- Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- Takustr. 3
- Berlin
- Germany
| |
Collapse
|
12
|
Di C, Syafrizayanti, Zhang Q, Chen Y, Wang Y, Zhang X, Liu Y, Sun C, Zhang H, Hoheisel JD. Function, clinical application, and strategies of Pre-mRNA splicing in cancer. Cell Death Differ 2018; 26:1181-1194. [PMID: 30464224 PMCID: PMC6748147 DOI: 10.1038/s41418-018-0231-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/09/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Pre-mRNA splicing is a fundamental process that plays a considerable role in generating protein diversity. Pre-mRNA splicing is also the key to the pathology of numerous diseases, especially cancers. In this review, we discuss how aberrant splicing isoforms precisely regulate three basic functional aspects in cancer: proliferation, metastasis and apoptosis. Importantly, clinical function of aberrant splicing isoforms is also discussed, in particular concerning drug resistance and radiosensitivity. Furthermore, this review discusses emerging strategies how to modulate pathologic aberrant splicing isoforms, which are attractive, novel therapeutic agents in cancer. Last we outline current and future directions of isoforms diagnostic methodologies reported so far in cancer. Thus, it is highlighting significance of aberrant splicing isoforms as markers for cancer and as targets for cancer therapy.
Collapse
Affiliation(s)
- Cuixia Di
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Syafrizayanti
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.,Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Kampus Limau Manis, Padang, Indonesia
| | - Qianjing Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yupei Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuetian Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Chao Sun
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, 730000, Lanzhou, China.
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Hufnagel K, Lueong S, Willhauck-Fleckenstein M, Hotz-Wagenblatt A, Miao B, Bauer A, Michel A, Butt J, Pawlita M, Hoheisel JD, Waterboer T. Immunoprofiling of Chlamydia trachomatis using whole-proteome microarrays generated by on-chip in situ expression. Sci Rep 2018; 8:7503. [PMID: 29760479 PMCID: PMC5951824 DOI: 10.1038/s41598-018-25918-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 04/25/2018] [Indexed: 11/09/2022] Open
Abstract
Using Chlamydia trachomatis (Ct) as a complex model organism, we describe a method to generate bacterial whole-proteome microarrays using cell-free, on-chip protein expression. Expression constructs were generated by two successive PCRs directly from bacterial genomic DNA. Bacterial proteins expressed on microarrays display antigenic epitopes, thereby providing an efficient method for immunoprofiling of patients and allowing de novo identification of disease-related serum antibodies. Through comparison of antibody reactivity patterns, we newly identified antigens recognized by known Ct-seropositive samples, and antigens reacting only with samples from cervical cancer (CxCa) patients. Large-scale validation experiments using high-throughput suspension bead array serology confirmed their significance as markers for either general Ct infection or CxCa, supporting an association of Ct infection with CxCa. In conclusion, we introduce a method for generation of fast and efficient proteome immunoassays which can be easily adapted for other microorganisms in all areas of infection research.
Collapse
Affiliation(s)
- Katrin Hufnagel
- Division of Molecular Diagnostics of Oncogenic Infections (F020), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
| | - Smiths Lueong
- Division of Molecular Diagnostics of Oncogenic Infections (F020), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Willhauck-Fleckenstein
- Division of Molecular Diagnostics of Oncogenic Infections (F020), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Genomics Proteomics Core Facility HUSAR Bioinformatics Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Beiping Miao
- Division of Functional Genome Analysis (B070), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Bauer
- Division of Functional Genome Analysis (B070), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angelika Michel
- Division of Molecular Diagnostics of Oncogenic Infections (F020), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Butt
- Division of Molecular Diagnostics of Oncogenic Infections (F020), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Pawlita
- Division of Molecular Diagnostics of Oncogenic Infections (F020), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis (B070), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Waterboer
- Division of Molecular Diagnostics of Oncogenic Infections (F020), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
14
|
Latosinska A, Frantzi M, Vlahou A, Merseburger AS, Mischak H. Clinical Proteomics for Precision Medicine: The Bladder Cancer Case. Proteomics Clin Appl 2017; 12. [DOI: 10.1002/prca.201700074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/10/2017] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Antonia Vlahou
- Biotechnology Division; Biomedical Research Foundation; Academy of Athens; Athens Greece
| | - Axel S. Merseburger
- Department of Urology; Campus Lübeck; University Hospital Schleswig-Holstein; Lübeck Germany
| | - Harald Mischak
- Mosaiques Diagnostics GmbH; Hannover Germany
- BHF Glasgow Cardiovascular Research Centre; University of Glasgow; Glasgow UK
| |
Collapse
|