1
|
Başaran SN, Öksüz L. Newly developed antibiotics against multidrug-resistant and carbapenem-resistant Gram-negative bacteria: action and resistance mechanisms. Arch Microbiol 2025; 207:110. [PMID: 40172627 DOI: 10.1007/s00203-025-04298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/20/2025] [Accepted: 03/06/2025] [Indexed: 04/04/2025]
Abstract
Antimicrobial resistance stands as one of the most urgent global health concerns in the twenty-first century, with projections suggesting that deaths related to drug-resistant infections could escalate to 10 million by 2050 if proactive measures are not implemented. In intensive care settings, managing infections caused by multidrug-resistant (MDR) Gram-negative bacteria is particularly challenging, posing a significant threat to public health and contributing substantially to both morbidity and mortality. There are numerous studies on the antibiotics responsible for resistance in Gram-negative bacteria, but comprehensive research on resistance mechanisms against new antibiotics is rare. Considering the possibility that antibiotics may no longer be effective in combating diseases, it is crucial to comprehend the problem of emerging resistance to newly developed antibiotics and to implement preventive measures to curb the spread of resistance. Mutations in porins and efflux pumps play a crucial role in antibiotic resistance by altering drug permeability and active efflux. Porin modifications reduce the influx of antibiotics, whereas overexpression of efflux pumps, particularly those in the resistance-nodulation-cell division (RND) family, actively expels antibiotics from bacterial cells, significantly lowering intracellular drug concentrations and leading to treatment failure.This review examines the mechanisms of action, resistance profiles, and pharmacokinetic/pharmacodynamic characteristics of newly developed antibiotics designed to combat infections caused by MDR and carbapenem-resistant Gram-negative pathogens. The antibiotics discussed include ceftazidime-avibactam, imipenem-relebactam, ceftolozane-tazobactam, meropenem-vaborbactam, aztreonam-avibactam, delafloxacin, temocillin, plazomicin, cefiderocol, and eravacycline.
Collapse
Affiliation(s)
- Sena Nur Başaran
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
- Istanbul University, Institute of Graduate Studies in Health Sciences, Istanbul, Turkey.
- Department of Medical Microbiology, Faculty of Medicine, Agri Ibrahim Cecen University, Agri, Turkey.
| | - Lütfiye Öksüz
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Guérin F, Gravey F, Reissier S, Penven M, Michaux C, Le Hello S, Cattoir V. Temocillin Resistance in the Enterobacter cloacae Complex Is Conferred by a Single Point Mutation in BaeS, Leading to Overexpression of the AcrD Efflux Pump. Antimicrob Agents Chemother 2023; 67:e0035823. [PMID: 37195180 PMCID: PMC10269110 DOI: 10.1128/aac.00358-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
The Enterobacter cloacae complex (ECC) has become a major opportunistic pathogen with antimicrobial resistance issues. Temocillin, an "old" carboxypenicillin that is remarkably stable toward β-lactamases, has been used as an alternative for the treatment of multidrug-resistant ECC infections. Here, we aimed at deciphering the never-investigated mechanisms of temocillin resistance acquisition in Enterobacterales. By comparative genomic analysis of two clonally related ECC clinical isolates, one susceptible (Temo_S [MIC of 4 mg/L]) and the other resistant (Temo_R [MIC of 32 mg/L]), we found that they differed by only 14 single-nucleotide polymorphisms, including one nonsynonymous mutation (Thr175Pro) in the two-component system (TCS) sensor histidine kinase BaeS. By site-directed mutagenesis in Escherichia coli CFT073, we demonstrated that this unique change in BaeS was responsible for a significant (16-fold) increase in temocillin MIC. Since the BaeSR TCS regulates the expression of two resistance-nodulation-cell division (RND)-type efflux pumps (namely, AcrD and MdtABCD) in E. coli and Salmonella, we demonstrated by quantitative reverse transcription-PCR that mdtB, baeS, and acrD genes were significantly overexpressed (15-, 11-, and 3-fold, respectively) in Temo_R. To confirm the role of each efflux pump in this mechanism, multicopy plasmids harboring mdtABCD or acrD were introduced into either Temo_S or the reference strain E. cloacae subsp. cloacae ATCC 13047. Interestingly, only the overexpression of acrD conferred a significant increase (from 8- to 16-fold) of the temocillin MIC. Altogether, we have shown that temocillin resistance in the ECC can result from a single BaeS alteration, likely resulting in the permanent phosphorylation of BaeR and leading to AcrD overexpression and temocillin resistance through enhanced active efflux.
Collapse
Affiliation(s)
- François Guérin
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France
- University of Rennes, INSERM UMR 1230 BRM, Rennes, France
| | - François Gravey
- Normandie Université, UNICAEN, UNIROUEN, INSERM UMR 1311 DYNAMICURE, Caen, France
- Microbiology Department, CHU Caen, Caen, France
| | - Sophie Reissier
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France
- University of Rennes, INSERM UMR 1230 BRM, Rennes, France
| | - Malo Penven
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France
- University of Rennes, INSERM UMR 1230 BRM, Rennes, France
| | | | - Simon Le Hello
- Normandie Université, UNICAEN, UNIROUEN, INSERM UMR 1311 DYNAMICURE, Caen, France
- Microbiology Department, CHU Caen, Caen, France
| | - Vincent Cattoir
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France
- University of Rennes, INSERM UMR 1230 BRM, Rennes, France
| |
Collapse
|
3
|
Abdelsattar AS, Yakoup AY, Khaled Y, Safwat A, El-Shibiny A. The synergistic effect of using bacteriophages and chitosan nanoparticles against pathogenic bacteria as a novel therapeutic approach. Int J Biol Macromol 2023; 228:374-384. [PMID: 36581028 DOI: 10.1016/j.ijbiomac.2022.12.246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Public health and environmental security are seriously at risk due to the growing contamination of pathogenic microorganisms. Therefore, effective antimicrobials are urgently needed. In our study, the antimicrobial effects of three types of nanoparticles were investigated with phage. The biosynthesis of nanoparticles was confirmed based on the color change and shapes, which tended to be mono-dispersed with a spherical shape with a size range of 20-35 nm for Ag-CS-NPs; 15-30 nm for Phage-CS-NPs (Ph-CS-NPs); and 5-35 nm for Propolis-CS-NPs (Pro-CS-NPs). Nanoparticles displayed peaks between 380-420 nm, 335-380 nm, and below 335 nm for Ag-CS-NPs, Pro-CS-NPs, and Ph-CS NPs, respectively. Throughout the three synthesized nanoparticles, AgCs NPs represented a higher antibacterial effect in combination with phages. It showed MIC against S. sciuri, S. Typhimurium, and P. aeruginosa between 31.2 and 62.2 μg/mL and MBC at 500, 62.5, and 31.2 μg/mL, respectively, while in combination with phages showed MIC at 62.2, 31.2, and 15.6 μg/mL, respectively and MBC at 125, 62.2, and 15.6 μg/mL, respectively. Furthermore, a significant killing efficiency was observed with 16.5-30.1 μg/mL of Ag-CS NPs combined with phages. In conclusion, Ag-CS-NPs with phages present potential bactericidal and inhibitory effects against Gram-positive and Gram-negative bacteria, as well as against the production of biofilms.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Aghapy Yermans Yakoup
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Yousef Khaled
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt.
| |
Collapse
|
4
|
Paranos P, Vourli S, Pournaras S, Meletiadis J. Assessing Clinical Potential of Old Antibiotics against Severe Infections by Multi-Drug-Resistant Gram-Negative Bacteria Using In Silico Modelling. Pharmaceuticals (Basel) 2022; 15:1501. [PMID: 36558952 PMCID: PMC9781251 DOI: 10.3390/ph15121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
In the light of increasing antimicrobial resistance among gram-negative bacteria and the lack of new more potent antimicrobial agents, new strategies have been explored. Old antibiotics, such as colistin, temocillin, fosfomycin, mecillinam, nitrofurantoin, minocycline, and chloramphenicol, have attracted the attention since they often exhibit in vitro activity against multi-drug-resistant (MDR) gram-negative bacteria, such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. The current review provides a summary of the in vitro activity, pharmacokinetics and PK/PD characteristics of old antibiotics. In silico modelling was then performed using Monte Carlo simulation in order to combine all preclinical data with human pharmacokinetics and determine the probability of target (1-log kill in thigh/lung infection animal models) attainment (PTA) of different dosing regimens. The potential of clinical efficacy of a drug against severe infections by MDR gram-negative bacteria was considered when PTA was >95% at the epidemiological cutoff values of corresponding species. In vitro potent activity against MDR gram-negative pathogens has been shown for colistin, polymyxin B, temocillin (against E. coli and K. pneumoniae), fosfomycin (against E. coli), mecillinam (against E. coli), minocycline (against E. coli, K. pneumoniae, A. baumannii), and chloramphenicol (against E. coli) with ECOFF or MIC90 ≤ 16 mg/L. When preclinical PK/PD targets were combined with human pharmacokinetics, Monte Carlo analysis showed that among the old antibiotics analyzed, there is clinical potential for polymyxin B against E. coli, K. pneumoniae, and A. baumannii; for temocillin against K. pneumoniae and E. coli; for fosfomycin against E. coli and K. pneumoniae; and for mecillinam against E. coli. Clinical studies are needed to verify the potential of those antibiotics to effectively treat infections by multi-drug resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Paschalis Paranos
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Sophia Vourli
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
5
|
Contreras-Gómez MJ, Martinez JRW, Rivas L, Riquelme-Neira R, Ugalde JA, Wozniak A, García P, Munita JM, Olivares-Pacheco J, Alcalde-Rico M. Role of the multi-drug efflux systems on the baseline susceptibility to ceftazidime/avibactam and ceftolozane/tazobactam in clinical isolates of non-carbapenemase-producing carbapenem-resistant Pseudomonas aeruginosa. Front Pharmacol 2022; 13:1007162. [PMID: 36263116 PMCID: PMC9574371 DOI: 10.3389/fphar.2022.1007162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is one of the pathogens that urgently needs new drugs and new alternatives for its control. The primary strategy to combat this bacterium is combining treatments of beta-lactam with a beta-lactamase inhibitor. The most used combinations against P. aeruginosa are ceftazidime/avibactam (CZA) and ceftolozane/tazobactam (C/T). Although mechanisms leading to CZA and C/T resistance have already been described, among which are the resistance-nodulation-division (RND) efflux pumps, the role that these extrusion systems may play in CZA, and C/T baseline susceptibility of clinical isolates remains unknown. For this purpose, 161 isolates of non-carbapenemase-producing (Non-CP) CRPA were selected, and susceptibility tests to CZA and C/T were performed in the presence and absence of the RND efflux pumps inhibitor, Phenylalanine-arginine β-naphthylamide (PAβN). In the absence of PAβN, C/T showed markedly higher activity against Non-CP-CRPA isolates than observed for CZA. These results were even more evident in isolates classified as extremely-drug resistant (XDR) or with difficult-to-treat resistance (DTR), where CZA decreased its activity up to 55.2% and 20.0%, respectively, whereas C/T did it up to 82.8% (XDR), and 73.3% (DTR). The presence of PAβN showed an increase in both CZA (37.6%) and C/T (44.6%) activity, and 25.5% of Non-CP-CRPA isolates increased their susceptibility to these two combined antibiotics. However, statistical analysis showed that only the C/T susceptibility of Non-CP-CRPA isolates was significantly increased. Although the contribution of RND activity to CZA and C/T baseline susceptibility was generally low (two-fold decrease of minimal inhibitory concentrations [MIC]), a more evident contribution was observed in a non-minor proportion of the Non-CP-CRPA isolates affected by PAβN [CZA: 25.4% (15/59); C/T: 30% (21/70)]. These isolates presented significantly higher MIC values for C/T. Therefore, we conclude that RND efflux pumps are participating in the phenomenon of baseline susceptibility to CZA and, even more, to C/T. However, the genomic diversity of clinical isolates is so great that deeper analyzes are necessary to determine which elements are directly involved in this phenomenon.
Collapse
Affiliation(s)
- María José Contreras-Gómez
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - José R. W. Martinez
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Lina Rivas
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Roberto Riquelme-Neira
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Juan A. Ugalde
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Aniela Wozniak
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Laboratory of Microbiology, Department of Clinical Laboratories, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - Patricia García
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Laboratory of Microbiology, Department of Clinical Laboratories, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - José M. Munita
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- *Correspondence: José M. Munita, ; Jorge Olivares-Pacheco, ; Manuel Alcalde-Rico,
| | - Jorge Olivares-Pacheco
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- *Correspondence: José M. Munita, ; Jorge Olivares-Pacheco, ; Manuel Alcalde-Rico,
| | - Manuel Alcalde-Rico
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- *Correspondence: José M. Munita, ; Jorge Olivares-Pacheco, ; Manuel Alcalde-Rico,
| |
Collapse
|
6
|
Giedraitiene A, Pereckaite L, Bredelyte-Gruodiene E, Virgailis M, Ciapiene I, Tatarunas V. CTX-M-producing Escherichia coli strains: resistance to temocillin, fosfomycin, nitrofurantoin and biofilm formation. Future Microbiol 2022; 17:789-802. [PMID: 35549350 DOI: 10.2217/fmb-2021-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: ESBL-producing and bacterial biofilms-forming Escherichia coli are associated with antimicrobial treatment failure. This study aimed to investigate the phenotypic resistance mechanisms of CTX-M E. coli against old antibiotics - cell wall synthesis inhibitors temocillin, nitrofurantoin and fosfomycin. Materials & Methods: Susceptibility to old antibiotics testing was performed using disk diffusion method, biofilm formation was evaluated spectrophotometrically, and PCR was used for the determination of CTX-M type. Results & conclusion: Temocillin was active against nearly 93%, nitrofurantoin and fosfomycin, respectively, 91.7% and 98.6% of tested E. coli. Thus, it demonstrated to be a good alternative therapeutic option against ESBL infections. Bacteria resistant to old antibiotics had CTX-M-15 or CTX-M-15, TEM-1 and OXA-1 combinations. No significant association was found between CTX-M E. coli resistance to temocillin, nitrofurantoin and fosfomycin; however, the level of biofilm formation was found as not affected by the type of CTX-M β-lactamases.
Collapse
Affiliation(s)
- Agne Giedraitiene
- Institute of Microbiology & Virology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| | - Laura Pereckaite
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Kaunas, LT-50161, Lithuania
| | | | - Marius Virgailis
- Institute of Microbiology & Virology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| | - Ieva Ciapiene
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50161, Lithuania
| | - Vacis Tatarunas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50161, Lithuania
| |
Collapse
|
7
|
Lupia T, De Benedetto I, Stroffolini G, Di Bella S, Mornese Pinna S, Zerbato V, Rizzello B, Bosio R, Shbaklo N, Corcione S, De Rosa FG. Temocillin: Applications in Antimicrobial Stewardship as a Potential Carbapenem-Sparing Antibiotic. Antibiotics (Basel) 2022; 11:493. [PMID: 35453244 PMCID: PMC9032032 DOI: 10.3390/antibiotics11040493] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023] Open
Abstract
Temocillin is an old antibiotic, but given its particular characteristics, it may be a suitable alternative to carbapenems for treating infections due to ESBL-producing Enterobacterales and uncomplicated UTI due to KPC-producers. In this narrative review, the main research question was to summarize current evidence on temocillin and its uses in infectious diseases. A search was run on PubMed using the terms ('Temocillin' [Mesh]) AND ('Infection' [Mesh]). Current knowledge regarding temocillin in urinary tract infection, blood-stream infections, pneumonia, intra-abdominal infections, central nervous system infections, skin and soft tissues infections, surgical sites infections and osteoarticular Infections were summarized. Temocillin retain a favourable profile on microbiota and risk of Clostridioides difficile infections and could be an option for treating outpatients. Temocillin may be a valuable tool to treat susceptible pathogens and for which a carbapenem could be spared. Other advantages in temocillin use are that it is well-tolerated; it is associated with a low rate of C. difficile infections; it is active against ESBL, AmpC, and KPC-producing Enterobacterales; and it can be used in the OPAT clinical setting.
Collapse
Affiliation(s)
- Tommaso Lupia
- Unit of Infectious Diseases, Cardinal Massaia, 14100 Asti, Italy;
| | - Ilaria De Benedetto
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (I.D.B.); (G.S.); (S.M.P.); (B.R.); (R.B.); (N.S.); (S.C.)
| | - Giacomo Stroffolini
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (I.D.B.); (G.S.); (S.M.P.); (B.R.); (R.B.); (N.S.); (S.C.)
| | - Stefano Di Bella
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Simone Mornese Pinna
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (I.D.B.); (G.S.); (S.M.P.); (B.R.); (R.B.); (N.S.); (S.C.)
| | - Verena Zerbato
- Infectious Diseases Unit, Trieste University Hospital (ASUGI), 34125 Trieste, Italy;
| | - Barbara Rizzello
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (I.D.B.); (G.S.); (S.M.P.); (B.R.); (R.B.); (N.S.); (S.C.)
| | - Roberta Bosio
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (I.D.B.); (G.S.); (S.M.P.); (B.R.); (R.B.); (N.S.); (S.C.)
| | - Nour Shbaklo
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (I.D.B.); (G.S.); (S.M.P.); (B.R.); (R.B.); (N.S.); (S.C.)
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (I.D.B.); (G.S.); (S.M.P.); (B.R.); (R.B.); (N.S.); (S.C.)
- School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Francesco Giuseppe De Rosa
- Unit of Infectious Diseases, Cardinal Massaia, 14100 Asti, Italy;
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (I.D.B.); (G.S.); (S.M.P.); (B.R.); (R.B.); (N.S.); (S.C.)
| |
Collapse
|
8
|
Stewart AG, Henderson A, Bauer MJ, Paterson DL, Harris PNA. Activity of temocillin against third-generation cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae bloodstream isolates from a clinical trial. JAC Antimicrob Resist 2021; 4:dlab192. [PMID: 34988445 PMCID: PMC8712245 DOI: 10.1093/jacamr/dlab192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Extended spectrum β-lactamase (ESBL) and AmpC-producing Gram-negative bacilli contribute significantly to the antimicrobial resistance (AMR) burden worldwide. Temocillin is an intravenous semisynthetic antibiotic that is stable to hydrolysis by ESBLs and AmpC. Temocillin may be a treatment option for serious infections due to these organisms.
Methods
Third-generation cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates from the MERINO trial were collected. The majority originated from the urinary tract. Isolates had previously undergone whole genome sequencing (WGS) to identify antimicrobial resistance genes. Temocillin minimum inhibitory concentration (MIC) values were determined by broth microdilution (BMD) with a concentration range of 2 to 128 mg/L. A recent EUCAST guideline has recommended clinical breakpoints for urinary E. coli, Klebsiella spp. (except K. aerogenes) and Proteus mirabilis (resistant >16 mg/L).
Results
317 index bloodstream isolates (275 E. coli and 42 K. pneumoniae) were used. The frequency of β-lactamases among isolates was: CTX-M-15 (56%), OXA-1 (31%), CTX-M-27 (14%), CTX-M-14 (12%) and CMY-2 (8%). Overall, 95% of isolates were susceptible, increased exposure according to EUCAST clinical breakpoints v11.0. Summary MIC values were obtained: MIC50 was 8 mg/L and MIC90 was16 mg/L (range ≤2 to ≥128 mg/L) and did not differ markedly between species. Higher MIC values were seen among isolates that produced more than one β-lactamase but this did not appear to be specific to a single β-lactamase.
Conclusions
Temocillin demonstrated favourable in vitro activity against ceftriaxone-resistant Enterobacterales bloodstream isolates and may be a suitable agent to be trialled for treatment of serious infections due to these organisms.
Collapse
Affiliation(s)
- Adam G Stewart
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women’s Hospital Campus, Brisbane, Australia
- Department of Infectious Diseases, Royal Brisbane and Women’s Hospital, Brisbane, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Andrew Henderson
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women’s Hospital Campus, Brisbane, Australia
- Infection Management Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Michelle J Bauer
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women’s Hospital Campus, Brisbane, Australia
| | - David L Paterson
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women’s Hospital Campus, Brisbane, Australia
- Department of Infectious Diseases, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Patrick N A Harris
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women’s Hospital Campus, Brisbane, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| |
Collapse
|
9
|
β-lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects. Pathogens 2021; 10:pathogens10121638. [PMID: 34959593 PMCID: PMC8706265 DOI: 10.3390/pathogens10121638] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic pathogen, causing a wide range of acute and chronic infections. β-lactam antibiotics including penicillins, carbapenems, monobactams, and cephalosporins play a key role in the treatment of P. aeruginosa infections. However, a significant number of isolates of these bacteria are resistant to β-lactams, complicating treatment of infections and leading to worse outcomes for patients. In this review, we summarize studies demonstrating the health and economic impacts associated with β-lactam-resistant P. aeruginosa. We then describe how β-lactams bind to and inhibit P. aeruginosa penicillin-binding proteins that are required for synthesis and remodelling of peptidoglycan. Resistance to β-lactams is multifactorial and can involve changes to a key target protein, penicillin-binding protein 3, that is essential for cell division; reduced uptake or increased efflux of β-lactams; degradation of β-lactam antibiotics by increased expression or altered substrate specificity of an AmpC β-lactamase, or by the acquisition of β-lactamases through horizontal gene transfer; and changes to biofilm formation and metabolism. The current understanding of these mechanisms is discussed. Lastly, important knowledge gaps are identified, and possible strategies for enhancing the effectiveness of β-lactam antibiotics in treating P. aeruginosa infections are considered.
Collapse
|
10
|
Occurrence of NDM-1 and VIM-2 Co-Producing Escherichia coli and OprD Alteration in Pseudomonas aeruginosa Isolated from Hospital Environment Samples in Northwestern Tunisia. Diagnostics (Basel) 2021; 11:diagnostics11091617. [PMID: 34573959 PMCID: PMC8467603 DOI: 10.3390/diagnostics11091617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/03/2022] Open
Abstract
Hospital environments constitute the main reservoir of multidrug-resistant bacteria. In this study we aimed to investigate the presence of Gram-negative bacteria in one Northwestern Tunisian hospital environment, and characterize the genes involved in bacterial resistance. A total of 152 environmental isolates were collected from various surfaces and isolated using MacConkey medium supplemented with cefotaxime or imipenem, with 81 fermenter bacteria (27 Escherichia coli, and 54 Enterobacter spp., including 46 Enterobacter cloacae), and 71 non-fermenting bacteria (69 Pseudomonas spp., including 54 Pseudomonas aeruginosa, and 2 Stenotrophomonas maltophilia) being identified by the MALDI-TOF-MS method. Antibiotic susceptibility testing was performed by disk diffusion method and E-Test was used to determine MICs for imipenem. Several genes implicated in beta-lactams resistance were characterized by PCR and sequencing. Carbapenem resistance was detected among 12 isolates; nine E. coli (blaNDM-1 (n = 8); blaNDM-1 + blaVIM-2 (n = 1)) and three P. aeruginosa were carbapenem-resistant by loss of OprD porin. The whole-genome sequencing of P. aeruginosa 97H was determined using Illumina MiSeq sequencer, typed ST285, and harbored blaOXA-494. Other genes were also detected, notably blaTEM (n = 23), blaCTX-M-1 (n = 10) and blaCTX-M-9 (n = 6). These new epidemiological data imposed new surveillance strategies and strict hygiene rules to decrease the spread of multidrug-resistant bacteria in this area.
Collapse
|
11
|
The Polyaminoisoprenyl Potentiator NV716 Revives Old Disused Antibiotics against Intracellular Forms of Infection by Pseudomonas aeruginosa. Antimicrob Agents Chemother 2021; 65:AAC.02028-20. [PMID: 33318000 DOI: 10.1128/aac.02028-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/05/2020] [Indexed: 12/24/2022] Open
Abstract
Active efflux confers intrinsic resistance to multiple antibiotics in Pseudomonas aeruginosa, including old disused molecules. Beside resistance, intracellular survival is another reason for failure to eradicate bacteria with antibiotics. We evaluated the capacity of polyaminoisoprenyl potentiators (designed as efflux pump inhibitors [EPIs]) NV716 and NV731 compared to PAβN to restore the activity of disused antibiotics (doxycycline, chloramphenicol [substrates for efflux], and rifampin [nonsubstrate]) in comparison with ciprofloxacin against intracellular P. aeruginosa (strains with variable efflux levels) in THP-1 monocytes exposed over 24 h to antibiotics alone (0.003 to 100× MIC) or combined with EPIs. Pharmacodynamic parameters (apparent static concentrations [C s] and maximal relative efficacy [E max]) were calculated using the Hill equation of concentration-response curves. PAβN and NV731 moderately reduced (0 to 4 doubling dilutions) antibiotic MICs but did not affect their intracellular activity. NV716 markedly reduced (1 to 16 doubling dilutions) the MIC of all antibiotics (substrates or not for efflux; strains expressing efflux or not); it also improved their relative potency and maximal efficacy (i.e., lower C s; more negative E max) intracellularly. In parallel, NV716 reduced the persister fraction in stationary cultures when combined with ciprofloxacin. In contrast to PAβN and NV731, which act only as EPIs against extracellular bacteria, NV716 can resensitize P. aeruginosa to antibiotics whether they are substrates or not for efflux, both extracellularly and intracellularly. This suggests a complex mode of action that goes beyond a simple inhibition of efflux to reduce bacterial persistence. NV716 appears to be a useful adjuvant, including to disused antibiotics with low antipseudomonal activity, to improve their activity, including against intracellular P. aeruginosa.
Collapse
|
12
|
Mohseni N, Rad M, Mokhtari AR, Yahyaraeyat R, Zahraie Salehi T. Evaluation of MexAB-OprM efflux pump and determination of antimicrobial susceptibility in Pseudomonas aeruginosa human and veterinary isolates. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2019-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pseudomonas aeruginosa could cause serious infections in hospitals and is highlighted as a source of financial problems in farms. The revelation of drug resistant, particularly multi-drug resistant (MDR) P. aeruginosa is important around the world. The efflux pump activity is identified as one of the most important intrinsic resistant mechanisms in P. aeruginosa. A total of 96 P. aeruginosa isolates from inpatient and animal sources were tested for antimicrobial susceptibility and subjected to multiplex PCR (mPCR) assay to detect MexAB-OprM efflux pump system. The human isolates have shown the highest resistance against cefazolin, ampicillin, nalidixic acid, trimethoprim/sulfamethoxazole, cephalothin, oxacillin (100%). All farm animal isolates were resistant to cefazolin, kanamycin, amoxicillin clavulanic acid, and cephalothin (100%). In both isolate groups, the presence of MexA was more common than that of MexB. MexAB-OprM was demonstrated as a valuable mechanism in P. aeruginosa antimicrobial resistant strains.
Collapse
|
13
|
Lei Z, Karim A. The challenges and applications of nanotechnology against bacterial resistance. J Vet Pharmacol Ther 2020; 44:281-297. [PMID: 33277732 DOI: 10.1111/jvp.12936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Bacterial resistance to the antibiotics develops rapidly and is increasingly serious health concern in the world. It is an insoluble topic due to the multiple resistant mechanisms. The overexpression of relative activities of the efflux pump has proven to be a frequent and important source of bacterial resistance. Efflux transporters in the membrane from the resistant bacteria could play a key role to inhibit the intracellular drug intake and impede the drug activities. However, nanoparticles (NPs), one of the most frequently used encapsulation materials, could increase the intracellular accumulation of the drug and inhibit the transporter activity effectively. The rational and successful application of nanotechnology is a key factor in overcoming bacterial resistance. Furthermore, nanoparticles such as metallic, carbon nanotubes and so on, may prevent the development of drug resistance and be associated with antibiotic agents, inhibiting biofilm formation or increasing the access into the target cell and exterminating the bacteria eventually. In the current study, the mechanisms of bacterial resistance are discussed and summarized. Additionally, the opportunities and challenges in the use of nanoparticles against bacterial resistance are also illuminated. At the same time, the use of nanoparticles to combat multidrug-resistant bacteria is also investigated by coupling natural antimicrobials or other alternatives. In short, we have provided a new perspective for the application of nanoparticles against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zhiqun Lei
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Aman Karim
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
14
|
Ma KC, Mortimer TD, Hicks AL, Wheeler NE, Sánchez-Busó L, Golparian D, Taiaroa G, Rubin DHF, Wang Y, Williamson DA, Unemo M, Harris SR, Grad YH. Adaptation to the cervical environment is associated with increased antibiotic susceptibility in Neisseria gonorrhoeae. Nat Commun 2020; 11:4126. [PMID: 32807804 PMCID: PMC7431566 DOI: 10.1038/s41467-020-17980-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 07/24/2020] [Indexed: 01/01/2023] Open
Abstract
Neisseria gonorrhoeae is an urgent public health threat due to rapidly increasing incidence and antibiotic resistance. In contrast with the trend of increasing resistance, clinical isolates that have reverted to susceptibility regularly appear, prompting questions about which pressures compete with antibiotics to shape gonococcal evolution. Here, we used genome-wide association to identify loss-of-function (LOF) mutations in the efflux pump mtrCDE operon as a mechanism of increased antibiotic susceptibility and demonstrate that these mutations are overrepresented in cervical relative to urethral isolates. This enrichment holds true for LOF mutations in another efflux pump, farAB, and in urogenitally-adapted versus typical N. meningitidis, providing evidence for a model in which expression of these pumps in the female urogenital tract incurs a fitness cost for pathogenic Neisseria. Overall, our findings highlight the impact of integrating microbial population genomics with host metadata and demonstrate how host environmental pressures can lead to increased antibiotic susceptibility.
Collapse
Affiliation(s)
- Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Allison L Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nicole E Wheeler
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other STIs, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - George Taiaroa
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Daniel H F Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yi Wang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Simon R Harris
- Microbiotica Ltd, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Cabot G, Florit-Mendoza L, Sánchez-Diener I, Zamorano L, Oliver A. Deciphering β-lactamase-independent β-lactam resistance evolution trajectories in Pseudomonas aeruginosa. J Antimicrob Chemother 2019; 73:3322-3331. [PMID: 30189050 DOI: 10.1093/jac/dky364] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 08/13/2018] [Indexed: 11/14/2022] Open
Abstract
Background While resistance related to the expression of β-lactamases, such as AmpC from Pseudomonas aeruginosa, has been deeply studied, this work addresses the gap in the knowledge of other potential bacterial strategies to overcome the activity of β-lactams when β-lactamases are not expressed. Methods We analysed β-lactam resistance evolution trajectories in a WT strain and in isogenic mutants either lacking AmpC (AmpC mutant) or unable to express it (AmpG mutant), exposed to increasing concentrations of ceftazidime for 7 days in quintuplicate experiments. Characterization of evolved lineages included susceptibility profiles, whole-genome sequences, resistance mechanisms, fitness (competitive growth assays) and virulence (Caenorhabditis elegans model). Results Development of resistance was faster for the WT strain but, after 7 days, all strains reached clinical ceftazidime resistance levels. The main resistance mechanism in the WT strain was ampC overexpression, due to mutations in dacB and ampD or mpl. In contrast, ampC overexpression did not evolve in any of the AmpG lineages. Moreover, sequencing of the ΔAmpC and ΔAmpG evolved lineages revealed alternative resistance mutations (not seen in WT lineages) that included, in all cases, large (50-600 kb) deletions of specific chromosomal regions together with mutations leading to β-lactam target [ftsI (PBP3)] modification and/or the overexpression or structural modification of the efflux pump MexAB-OprM. Finally, evolved lineages from the AmpC and, especially, AmpG mutants showed a reduced fitness and virulence. Conclusions In addition to providing new insights into β-lactam resistance mechanisms and evolution, our findings should be helpful for guiding future strategies to combat P. aeruginosa infections.
Collapse
Affiliation(s)
- Gabriel Cabot
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Llorenç Florit-Mendoza
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Irina Sánchez-Diener
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Laura Zamorano
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| |
Collapse
|
16
|
Identification and characterization of phage protein and its activity against two strains of multidrug-resistant Pseudomonas aeruginosa. Sci Rep 2019; 9:13487. [PMID: 31530875 PMCID: PMC6748951 DOI: 10.1038/s41598-019-50030-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with a capacity to develop antibiotic resistance, which underlies a larger proportion of hospital-acquired infections and higher morbidity and mortality, compared to other bacterial infections. Effective novel approaches for treatment of infections induced by this pathogen are therefore necessary. Phage therapy represents a promising alternative solution to eradicate antibiotic-resistant pathogens. Here, we investigated phage protein efficacy against multi-drug resistant (MDR) P. aeruginosa PAR21 and PAR50 strains isolated from diabetic foot ulcer patients. The results obtained using spot assay, zymography, spectrophotometry and scanning electron microscopy at low voltage (SEM-LV) indicate that the phage protein, PA-PP, exerts activity against P. aeruginosa PAR50 while having no impact on the PAR21 strain. Using LC-MS-MS/MS and comparative analysis of the peptide molecular mass with the protein sequence database, PA-PP was identified as a member of the serine protease family, a result corroborated by its ability to digest casein. We additionally showed a capacity of PA-PP to digest porin protein on the bacterial outer membrane (OM). Moreover, synergistic activity between PA-PP protein and piperacillin led to higher sensitivity of bacterial cells to this antibiotic. Our collective findings suggest that PA-PP targets porin protein on PAR50 OM, thereby increasing its sensitivity to specific antibiotics. The adverse effects observed on bacterial cells using SEM-LV suggest further roles of this protein that remain to be established.
Collapse
|
17
|
Abstract
Temocillin, a 6-α-methoxy derivative of ticarcillin, is a forgotten antibiotic that has recently been rediscovered, and issues about clinical breakpoints and optimal therapeutic regimens are still ongoing. Temocillin spectrum is almost restricted to Enterobacteriaceae. The addition of the α-methoxy moiety on ticarcillin confers resistance to hydrolysis by Ambler classes A and C β-lactamases (extended spectrum β-lactamases, Klebsiella pneumoniae carbapenemase and AmpC hyperproduced enzymes). Temocillin is bactericidal, and the effect of inoculum size on its activity is relatively mild. The proportion of spontaneous resistant mutants in vitro to temocillin is low, as found in vivo. After intravenous infusion, temocillin showed a prolonged elimination half-life of approximately 5 h. The percentage of protein binding of temocillin is high (approximately 80%), and is concentration-dependent. Temocillin clearance is mainly renal, and urinary recovery is high, ranging from 72 to 82% after 24 h. Furthermore, the penetration of temocillin into bile and peritoneal fluid is high, but poor into cerebrospinal fluid. The cumulative percentage of a 24-h period during which the free drug concentration exceeds the minimum inhibitory concentration (fT > MIC) at steady-state pharmacokinetic conditions seems to be the best pharmacokinetic/pharmacodynamic (PK/PD) index correlating with temocillin efficacy. An fT > MIC of 40-50% is associated with antibacterial effect and survival in vivo. Monte Carlo simulations performed in critically ill patients showed that the 2 g every 12 h and 2 g every 8 h regimens provide a 95% probability of target attainment of 40% fT > MIC up to an MIC of 8 mg/L. In less severely ill patients or in specific foci of infection, such as urinary tract infection, a 4 g daily regimen should be adequate for strains with temocillin MIC up to 16 mg/L. Data regarding actual wild-type MIC distribution, clinical efficacy, PK profiling in volunteers or patients, and PD targets are scarce, and further studies are required to support appropriate dosing recommendations and determination of clinical breakpoints.
Collapse
Affiliation(s)
- Kevin Alexandre
- Infectious Diseases Department, Rouen University Hospital, GRAM (EA2656), Rouen, France
| | - Bruno Fantin
- Univ. Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, 75018, Paris, France.
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, 100 boulevard du Général Leclerc, 92110, Clichy, France.
| |
Collapse
|
18
|
Resurrecting Old β-Lactams: Potent Inhibitory Activity of Temocillin against Multidrug-Resistant Burkholderia Species Isolates from the United States. Antimicrob Agents Chemother 2019; 63:AAC.02315-18. [PMID: 30718248 DOI: 10.1128/aac.02315-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/26/2019] [Indexed: 12/17/2022] Open
Abstract
Burkholderia spp. are opportunistic human pathogens that infect persons with cystic fibrosis and the immunocompromised. Burkholderia spp. express class A and C β-lactamases, which are transcriptionally regulated by PenRA through linkage to cell wall metabolism and β-lactam exposure. The potency of temocillin, a 6-methoxy-β-lactam, was tested against a panel of multidrug-resistant (MDR) Burkholderia spp. In addition, the mechanistic basis of temocillin activity was assessed and compared to that of ticarcillin. Susceptibility testing with temocillin and ticarcillin was conducted, as was biochemical analysis of the PenA1 class A β-lactamase and AmpC1 class C β-lactamase. Molecular dynamics simulations (MDS) were performed using PenA1 with temocillin and ticarcillin. The majority (86.7%) of 150 MDR Burkholderia strains were susceptible to temocillin, while only 4% of the strains were susceptible to ticarcillin. Neither temocillin nor ticarcillin induced bla expression. Ticarcillin was hydrolyzed by PenA1 (k cat/Km = 1.7 ± 0.2 μM-1 s-1), while temocillin was slow to form a favorable complex (apparent Ki [Ki app] = ∼2 mM). Ticarcillin and temocillin were both potent inhibitors of AmpC1, with Ki app values of 4.9 ± 1.0 μM and 4.3 ± 0.4 μM, respectively. MDS of PenA revealed that ticarcillin is in an advantageous position for acylation and deacylation. Conversely, with temocillin, active-site residues K73 and S130 are rotated and the catalytic water molecule is displaced, thereby slowing acylation and allowing the 6-methoxy of temocillin to block deacylation. Temocillin is a β-lactam with potent activity against Burkholderia spp., as it does not induce bla expression and is poorly hydrolyzed by endogenous β-lactamases.
Collapse
|
19
|
Target (MexB)- and Efflux-Based Mechanisms Decreasing the Effectiveness of the Efflux Pump Inhibitor D13-9001 in Pseudomonas aeruginosa PAO1: Uncovering a New Role for MexMN-OprM in Efflux of β-Lactams and a Novel Regulatory Circuit (MmnRS) Controlling MexMN Expression. Antimicrob Agents Chemother 2019; 63:AAC.01718-18. [PMID: 30420483 DOI: 10.1128/aac.01718-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
Efflux pumps contribute to antibiotic resistance in Gram-negative pathogens. Correspondingly, efflux pump inhibitors (EPIs) may reverse this resistance. D13-9001 specifically inhibits MexAB-OprM in Pseudomonas aeruginosa Mutants with decreased susceptibility to MexAB-OprM inhibition by D13-9001 were identified, and these fell into two categories: those with alterations in the target MexB (F628L and ΔV177) and those with an alteration in a putative sensor kinase of unknown function, PA1438 (L172P). The alterations in MexB were consistent with reported structural studies of the D13-9001 interaction with MexB. The PA1438L172P alteration mediated a >150-fold upregulation of MexMN pump gene expression and a >50-fold upregulation of PA1438 and the neighboring response regulator gene, PA1437. We propose that these be renamed mmnR and mmnS for MexMN regulator and MexMN sensor, respectively. MexMN was shown to partner with the outer membrane channel protein OprM and to pump several β-lactams, monobactams, and tazobactam. Upregulated MexMN functionally replaced MexAB-OprM to efflux these compounds but was insusceptible to inhibition by D13-9001. MmnSL172P also mediated a decrease in susceptibility to imipenem and biapenem that was independent of MexMN-OprM. Expression of oprD, encoding the uptake channel for these compounds, was downregulated, suggesting that this channel is also part of the MmnSR regulon. Transcriptome sequencing (RNA-seq) of cells encoding MmnSL172P revealed, among other things, an interrelationship between the regulation of mexMN and genes involved in heavy metal resistance.
Collapse
|
20
|
Cellulose acetate - essential oil nanocapsules with antimicrobial activity for biomedical applications. Colloids Surf B Biointerfaces 2018; 172:471-479. [DOI: 10.1016/j.colsurfb.2018.08.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 11/20/2022]
|
21
|
Aminoglycoside-inducible expression of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: Involvement of the envelope stress-responsive AmgRS two-component system. PLoS One 2018; 13:e0205036. [PMID: 30289929 PMCID: PMC6173428 DOI: 10.1371/journal.pone.0205036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/18/2018] [Indexed: 11/19/2022] Open
Abstract
Exposure of P. aeruginosa to the aminoglycoside (AG) paromomycin (PAR) induced expression of the PA3720-armR locus and the mexAB-oprM multidrug efflux operon that AmgR controls, although PAR induction of mexAB-oprM was independent of armR. Multiple AGs promoted mexAB-oprM expression and this was lost in the absence of the amgRS locus encoding an aminoglycoside-activated envelope stress-responsive 2-component system (TCS). Purified AmgR bound to the mexAB-oprM promoter region consistent with this response regulator directly regulating expression of the efflux operon. The thiol-active reagent, diamide, which, like AGs, promotes protein aggregation and cytoplasmic membrane damage also promoted AmgRS-dependent mexAB-oprM expression, a clear indication that the MexAB-OprM efflux system is recruited in response to membrane perturbation and/or circumstances that lead to this. Despite the AG and diamide induction of mexAB-oprM, however, MexAB-OprM does not appear to contribute to resistance to these agents.
Collapse
|
22
|
Great phenotypic and genetic variation among successive chronic Pseudomonas aeruginosa from a cystic fibrosis patient. PLoS One 2018; 13:e0204167. [PMID: 30212579 PMCID: PMC6136817 DOI: 10.1371/journal.pone.0204167] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/03/2018] [Indexed: 12/31/2022] Open
Abstract
Background/Objectives Different adapted Pseudomonas aeruginosa morphotypes are found during chronic infections. Relevant biological determinants in P. aeruginosa successively isolated from a cystic fibrosis (CF) patient were analyzed in this work to gain insight into P. aeruginosa heterogeneity during chronic infection. Methods Seventeen P. aeruginosa isolates collected from a patient over a 3 year period were included, 5 small colony variants (SCV) and 12 mucoids. The following analyses were performed: Pulsed-Field-Gel-Electrophoresis (PFGE)/Multilocus- sequence-typing (MLST)/serotype, antimicrobial susceptibility, growth curves, capacity to form biofilm, pigment production, elastase activity, motility; presence/expression of virulence/quorum sensing genes, and identification of resistance mechanisms. Results All isolates had closely related PFGE patterns and belonged to ST412. Important phenotypic and genotypic differences were found. SCVs were more resistant to antimicrobials than mucoid isolates. AmpC hyperproduction and efflux pump activity were detected. Seven isolates contained two integrons and nine isolates only one integron. All SCVs showed the same OprD profile, while three different profiles were identified among mucoids. No amino acid changes were found in MutL and MutS. All isolates were slow-growing, generally produced high biofilm, had reduced their toxin expression and their quorum sensing, and showed low motility. Nevertheless, statistically significant differences were found among SCV and mucoid isolates. SCVs grew faster, presented higher biofilm formation and flicA expression; but produced less pyorubin and pyocyanin, showed lower elastase activity and rhlR, algD, and lasB expression than mucoid isolates. Conclusion These results help to understand the molecular behavior of chronic P. aeruginosa isolates in CF patients.
Collapse
|
23
|
Loss of activity of ceftazidime-avibactam due to MexAB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa isolated from patients suffering from cystic fibrosis. Int J Antimicrob Agents 2018; 52:697-701. [PMID: 30081137 DOI: 10.1016/j.ijantimicag.2018.07.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 07/05/2018] [Accepted: 07/29/2018] [Indexed: 11/24/2022]
Abstract
In Pseudomonas aeruginosa (P. aeruginosa) collected from cystic fibrosis (CF) patients, 24% resistance to ceftazidime-avibactam in isolates negative for carbapenemases and extended-spectrum β-lactamases (ESBLs) has previously been observed. The current study aimed to unravel the underlying mechanism(s). Using the laboratory strain PAO1 and derivatives thereof, with ampC expression induced by a sub-minimum inhibitory concentration (MIC) of imipenem, a higher MIC of ceftazidime-avibactam was found for those overexpressing MexAB-OprM (quantitative polymerase chain reaction (PCR) of mexA) and, to a lesser extent, MexEF-OprN (PCR of mexE), or without OprD expression (SDS-Page and Coomassie blue staining). This was ascribed to (i) an efflux of avibactam (efflux mutants) and (ii) a lack of avibactam penetration (OprD mutants), respectively. We then used 10 CF clinical isolates resistant to ceftazidime (MIC ≥ 128 mg/L) and with (i) variable basal levels of ampC overexpression, (ii) mutations in mexA or mexB inactivating to variable extent the MexAB-OprM transport capacity (assessed by extrusion of N-phenyl-1-naphthylamine [NPN]), and (iii) expression or not of mexE and of OprD porin. The reduction of ceftazidime MIC in the presence of avibactam was partially lost for isolates with large efflux activity of MexAB-OprM and/or increased ampC expression, but not significantly with mexE expression or lack of OprD (non-parametric and parametric tests). This identified MexAB-OprM as a main avibactam efflux transporter in P. aeruginosa that, together with ampC overexpression, reduced avibactam potency. Since about 30% of CF isolates show mutations in MexAB-OprM compromising efflux (Chalhoub, et al. Sci Reports 2017;7:40208), routine susceptibility testing of CF P. aeruginosa with ceftazidime-avibactam is warranted.
Collapse
|
24
|
Abstract
Collective antibiotic drug resistance is a global threat, especially with respect to Gram-negative bacteria. The low permeability of the bacterial outer cell wall has been identified as a challenging barrier that prevents a sufficient antibiotic effect to be attained at low doses of the antibiotic. The Gram-negative bacterial cell envelope comprises an outer membrane that delimits the periplasm from the exterior milieu. The crucial mechanisms of antibiotic entry via outer membrane includes general diffusion porins (Omps) responsible for hydrophilic antibiotics and lipid-mediated pathway for hydrophobic antibiotics. The protein and lipid arrangements of the outer membrane have had a strong impact on the understanding of bacteria and their resistance to many types of antibiotics. Thus, one of the current challenges is effective interpretation at the molecular basis of the outer membrane permeability. This review attempts to develop a state of knowledge pertinent to Omps and their effective role in solute influx. Moreover, it aims toward further understanding and exploration of prospects to improve our knowledge of physicochemical limitations that direct the translocation of antibiotics via bacterial outer membrane.
Collapse
Affiliation(s)
- Ishan Ghai
- School of Engineering and Life Sciences, Jacobs University, Bremen, Germany.,Consultation Division, RSGBIOGEN, New Delhi, India
| | | |
Collapse
|
25
|
Abstract
One of the main fundamental mechanisms of antibiotic resistance in Gram-negative bacteria comprises an effective change in the membrane permeability to antibiotics. The Gram-negative bacterial complex cell envelope comprises an outer membrane that delimits the periplasm from the exterior environment. The outer membrane contains numerous protein channels, termed as porins or nanopores, which are mainly involved in the influx of hydrophilic compounds, including antibiotics. Bacterial adaptation to reduce influx through these outer membrane proteins (Omps) is one of the crucial mechanisms behind antibiotic resistance. Thus to interpret the molecular basis of the outer membrane permeability is the current challenge. This review attempts to develop a state of knowledge pertinent to Omps and their effective role in antibiotic influx. Further, it aims to study the bacterial response to antibiotic membrane permeability and hopefully provoke a discussion toward understanding and further exploration of prospects to improve our knowledge on physicochemical parameters that direct the translocation of antibiotics through the bacterial membrane protein channels.
Collapse
Affiliation(s)
- Ishan Ghai
- School of Engineering and Life Sciences, Jacobs University, Bremen
| | | |
Collapse
|
26
|
Jia R, Yang D, Xu D, Gu T. Mitigation of a nitrate reducing Pseudomonas aeruginosa biofilm and anaerobic biocorrosion using ciprofloxacin enhanced by D-tyrosine. Sci Rep 2017; 7:6946. [PMID: 28761161 PMCID: PMC5537228 DOI: 10.1038/s41598-017-07312-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/05/2017] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is a ubiquitous microbe. It can form recalcitrant biofilms in clinical and industrial settings. PA biofilms cause infections in patients. They also cause biocorrosion of medical implants. In this work, D-tyrosine (D-tyr) was investigated as an antimicrobial enhancer for ciprofloxacin (CIP) against a wild-type PA biofilm (strain PAO1) on C1018 carbon steel in a strictly anaerobic condition. Seven-day biofilm prevention test results demonstrated that 2 ppm (w/w) D-tyr enhanced 30 ppm CIP by achieving extra 2-log sessile cell reduction compared with the 30 ppm CIP alone treatment. The cocktail of 30 ppm CIP + 2 ppm D-tyr achieved similar efficacy as the 80 ppm CIP alone treatment in the biofilm prevention test. Results also indicated that the enhanced antimicrobial treatment reduced weight loss and pitting corrosion. In the 3-hour biofilm removal test, the cocktail of 80 ppm CIP + 5 ppm D-tyr achieved extra 1.5-log reduction in sessile cell count compared with the 80 ppm CIP alone treatment. The cocktail of 80 ppm CIP + 5 ppm D-tyr achieved better efficacy than the 150 ppm CIP alone treatment in the biofilm removal test.
Collapse
Affiliation(s)
- Ru Jia
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH, 45701, USA
| | - Dongqing Yang
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH, 45701, USA
| | - Dake Xu
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
27
|
Stefani S, Campana S, Cariani L, Carnovale V, Colombo C, Lleo MM, Iula VD, Minicucci L, Morelli P, Pizzamiglio G, Taccetti G. Relevance of multidrug-resistant Pseudomonas aeruginosa infections in cystic fibrosis. Int J Med Microbiol 2017; 307:353-362. [PMID: 28754426 DOI: 10.1016/j.ijmm.2017.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa is an important issue for physicians who take care of patients with cystic fibrosis (CF). Here, we review the latest research on how P. aeruginosa infection causes lung function to decline and how several factors contribute to the emergence of antibiotic resistance in P. aeruginosa strains and influence the course of the infection course. However, many aspects of the practical management of patients with CF infected with MDR P. aeruginosa are still to be established. Less is known about the exact role of susceptibility testing in clinical strategies for dealing with resistant infections, and there is an urgent need to find a tool to assist in choosing the best therapeutic strategy for MDR P. aeruginosa infection. One current perception is that the selection of antibiotic therapy according to antibiogram results is an important component of the decision-making process, but other patient factors, such as previous infection history and antibiotic courses, also need to be evaluated. On the basis of the known issues and the best current data on respiratory infections caused by MDR P. aeruginosa, this review provides practical suggestions to optimize the diagnostic and therapeutic management of patients with CF who are infected with these pathogens.
Collapse
Affiliation(s)
- S Stefani
- Department of Biomedical and Biotechnological Sciences, Division of Microbiology, University of Catania, Catania, Italy.
| | - S Campana
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy
| | - L Cariani
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - V Carnovale
- Department of Translational Medical Sciences, Cystic Fibrosis Center, University "Federico II", Naples, Italy
| | - C Colombo
- Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - M M Lleo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - V D Iula
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - L Minicucci
- Microbiology Laboratory, Cystic Fibrosis Center, G. Gaslini Institute, Genoa, Italy
| | - P Morelli
- Department of Paediatric, Cystic Fibrosis Center, G. Gaslini Institute, Genoa, Italy
| | - G Pizzamiglio
- Respiratory Disease Department, Cystic Fibrosis Center Adult Section, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - G Taccetti
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy
| |
Collapse
|