1
|
Zhou Z, Ji C, Hou D, Jiang S, Yang Z, Dong F, Liu S. Study on Mechanical Properties of Nanopores in CoCrFeMnNi High-Entropy Alloy Used as Drug-Eluting Stent. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3314. [PMID: 38998396 PMCID: PMC11243229 DOI: 10.3390/ma17133314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024]
Abstract
The CoCrFeMnNi high-entropy alloy is commonly used for vascular stents due to its excellent mechanical support and ductility. However, as high-entropy alloy stents can cause inflammation in the blood vessels, leading to their re-narrowing, drug-eluting stents have been developed. These stents have nanopores on their surfaces that can carry drug particles to inhibit inflammation and effectively prevent re-narrowing of the blood vessels. To optimize the mechanical properties and drug-carrying capacity of high-entropy alloy stents, a high-entropy alloy system with different wide and deep square-shaped nanopore distributions is created using molecular dynamics. The mechanical characteristics and dislocation evolution mechanism of different nanopore high-entropy alloy systems under tensile stress were studied. The results showed that the CoCrFeMnNi high-entropy alloy with a rational nanopore distribution can effectively maintain the mechanical support required for a vascular stent. This research provides a new direction for the manufacturing process of nanopores on the surfaces of high-entropy alloy stents.
Collapse
Affiliation(s)
- Zhen Zhou
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China; (Z.Z.); (C.J.); (D.H.); (S.J.); (Z.Y.)
| | - Chaoyue Ji
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China; (Z.Z.); (C.J.); (D.H.); (S.J.); (Z.Y.)
| | - Dongyang Hou
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China; (Z.Z.); (C.J.); (D.H.); (S.J.); (Z.Y.)
| | - Shunyong Jiang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China; (Z.Z.); (C.J.); (D.H.); (S.J.); (Z.Y.)
| | - Zihan Yang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China; (Z.Z.); (C.J.); (D.H.); (S.J.); (Z.Y.)
| | - Fang Dong
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China; (Z.Z.); (C.J.); (D.H.); (S.J.); (Z.Y.)
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Sheng Liu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China; (Z.Z.); (C.J.); (D.H.); (S.J.); (Z.Y.)
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Rawat N, Benčina M, Paul D, Kovač J, Lakota K, Žigon P, Kralj-Iglič V, Ho HC, Vukomanović M, Iglič A, Junkar I. Fine-Tuning the Nanostructured Titanium Oxide Surface for Selective Biological Response. ACS APPLIED BIO MATERIALS 2023; 6:5481-5492. [PMID: 38062750 PMCID: PMC10731649 DOI: 10.1021/acsabm.3c00686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Cardiovascular diseases are a pre-eminent global cause of mortality in the modern world. Typically, surgical intervention with implantable medical devices such as cardiovascular stents is deployed to reinstate unobstructed blood flow. Unfortunately, existing stent materials frequently induce restenosis and thrombosis, necessitating the development of superior biomaterials. These biomaterials should inhibit platelet adhesion (mitigating stent-induced thrombosis) and smooth muscle cell proliferation (minimizing restenosis) while enhancing endothelial cell proliferation at the same time. To optimize the surface properties of Ti6Al4V medical implants, we investigated two surface treatment procedures: gaseous plasma treatment and hydrothermal treatment. We analyzed these modified surfaces through scanning electron microscopy (SEM), water contact angle analysis (WCA), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analysis. Additionally, we assessed in vitro biological responses, including platelet adhesion and activation, as well as endothelial and smooth muscle cell proliferation. Herein, we report the influence of pre/post oxygen plasma treatment on titanium oxide layer formation via a hydrothermal technique. Our results indicate that alterations in the titanium oxide layer and surface nanotopography significantly influence cell interactions. This work offers promising insights into designing multifunctional biomaterial surfaces that selectively promote specific cell types' proliferation─which is a crucial advancement in next-generation vascular implants.
Collapse
Affiliation(s)
- Niharika Rawat
- Laboratory
of Physics, Faculty of Electrical Engineering,
University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
| | - Metka Benčina
- Laboratory
of Physics, Faculty of Electrical Engineering,
University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
- Department
of Surface Engineering, Jožef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Domen Paul
- Department
of Surface Engineering, Jožef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Janez Kovač
- Department
of Surface Engineering, Jožef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Katja Lakota
- Department
of Rheumatology, University Medical Centre
Ljubljana, Vodnikova 62, SI-1000 Ljubljana, Slovenia
| | - Polona Žigon
- Department
of Rheumatology, University Medical Centre
Ljubljana, Vodnikova 62, SI-1000 Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- Laboratory
of Clinical Biophysics, Faculty of Health
Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Hsin-Chia Ho
- Advanced
Materials Department, Jožef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Marija Vukomanović
- Advanced
Materials Department, Jožef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory
of Physics, Faculty of Electrical Engineering,
University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
- Chair of
Orthopaedic Surgery, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Ita Junkar
- Department
of Surface Engineering, Jožef Stefan
Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Magill E, Demartis S, Gavini E, Permana AD, Thakur RRS, Adrianto MF, Waite D, Glover K, Picco CJ, Korelidou A, Detamornrat U, Vora LK, Li L, Anjani QK, Donnelly RF, Domínguez-Robles J, Larrañeta E. Solid implantable devices for sustained drug delivery. Adv Drug Deliv Rev 2023; 199:114950. [PMID: 37295560 DOI: 10.1016/j.addr.2023.114950] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Implantable drug delivery systems (IDDS) are an attractive alternative to conventional drug administration routes. Oral and injectable drug administration are the most common routes for drug delivery providing peaks of drug concentrations in blood after administration followed by concentration decay after a few hours. Therefore, constant drug administration is required to keep drug levels within the therapeutic window of the drug. Moreover, oral drug delivery presents alternative challenges due to drug degradation within the gastrointestinal tract or first pass metabolism. IDDS can be used to provide sustained drug delivery for prolonged periods of time. The use of this type of systems is especially interesting for the treatment of chronic conditions where patient adherence to conventional treatments can be challenging. These systems are normally used for systemic drug delivery. However, IDDS can be used for localised administration to maximise the amount of drug delivered within the active site while reducing systemic exposure. This review will cover current applications of IDDS focusing on the materials used to prepare this type of systems and the main therapeutic areas of application.
Collapse
Affiliation(s)
- Elizabeth Magill
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - David Waite
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Linlin Li
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
4
|
Mohanta M, Thirugnanam A. Investigation of optical and biocompatible properties of polyethylene glycol-aspirin loaded commercial pure titanium for cardiovascular device applications. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This research investigates the optical and biocompatible properties of alkali-treated cpTi immersed in aspirin and different molecular weights of polyethylene (PEG). Instrumental characterizations were performed using scanning electron microscopy (SEM), Raman spectroscopy, and ultraviolet–visible spectroscopy. Additionally, drug release, antithrombotic, and cell adhesion studies were conducted in in-vitro conditions. The SEM micrographs showed that heat treatment of NaOH modified cpTi substrates increased the average surface pore size by 217%. Raman spectra’s active modes confirmed the presence of titanate groups which intensified the semiconductive nature of alkali-treated cpTi substrates. Further, the semiconductive nature was confirmed through the shift of the energy bandgap from 2.69 to 2.9 eV. The continuous redshift of the absorbance edge with an increase in the molecular weight of PEG indicates improved optical property. Following the Rigter–Peppas dynamic model, the drug release kinetics showed a non-Fickian dispersion (n < 1) and super case II transport (n = 2.21) for PEG-coated cpTi substrates. The alkali-treated cpTi-aspirin-PEG surface exhibits suitable antithrombotic property and interstitial cell adhesion with PEG coating. The modified surface on cpTi demonstrated a promising technique to improve the optical, antithrombotic, and biocompatibility performances, which are the prime requirement for the blood-interacted cardiovascular devices such as stents.
Collapse
Affiliation(s)
- Monalisha Mohanta
- Department of Biotechnology & Medical Engineering , National Institute of Technology Rourkela , Rourkela , Odisha , 769008 , India
| | - A. Thirugnanam
- Department of Biotechnology & Medical Engineering , National Institute of Technology Rourkela , Rourkela , Odisha , 769008 , India
| |
Collapse
|
5
|
Biocompatibility and Mechanical Stability of Nanopatterned Titanium Films on Stainless Steel Vascular Stents. Int J Mol Sci 2022; 23:ijms23094595. [PMID: 35562988 PMCID: PMC9099593 DOI: 10.3390/ijms23094595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
Nanoporous ceramic coatings such as titania are promoted to produce drug-free cardiovascular stents with a low risk of in-stent restenosis (ISR) because of their selectivity towards vascular cell proliferation. The brittle coatings applied on stents are prone to cracking because they are subjected to plastic deformation during implantation. This study aims to overcome this problem by using a unique process without refraining from biocompatibility. Accordingly, a titanium film with 1 µm thickness was deposited on 316 LVM stainless-steel sheets using magnetron sputtering. Then, the samples were anodized to produce nanoporous oxide. The nanoporous oxide was removed by ultrasonication, leaving an approximately 500 nm metallic titanium layer with a nanopatterned surface. XPS studies revealed the presence of a 5 nm-thick TiO2 surface layer with a trace amount of fluorinated titanium on nanopatterned surfaces. Oxygen plasma treatment of the nanopatterned surface produced an additional 5 nm-thick fluoride-free oxide layer. The samples did not exhibit any cracking or spallation during plastic deformation. Cell viability studies showed that nanopatterned surfaces stimulate endothelial cell proliferation while reducing the proliferation of smooth muscle cells. Plasma treatment further accelerated the proliferation of endothelial cells. Activation of blood platelets did not occur on oxygen plasma-treated, fluoride-free nanopatterned surfaces. The presented surface treatment method can also be applied to other stent materials such as CoCr, nitinol, and orthopedic implants.
Collapse
|
6
|
Tian J, Song X, Wang Y, Cheng M, Lu S, Xu W, Gao G, Sun L, Tang Z, Wang M, Zhang X. Regulatory perspectives of combination products. Bioact Mater 2022; 10:492-503. [PMID: 34901562 PMCID: PMC8637005 DOI: 10.1016/j.bioactmat.2021.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022] Open
Abstract
Combination products with a wide range of clinical applications represent a unique class of medical products that are composed of more than a singular medical device or drug/biological product. The product research and development, clinical translation as well as regulatory evaluation of combination products are complex and challenging. This review firstly introduced the origin, definition and designation of combination products. Key areas of systematic regulatory review on the safety and efficacy of device-led/supervised combination products were then presented. Preclinical and clinical evaluation of combination products was discussed. Lastly, the research prospect of regulatory science for combination products was described. New tools of computational modeling and simulation, novel technologies such as artificial intelligence, needs of developing new standards, evidence-based research methods, new approaches including the designation of innovative or breakthrough medical products have been developed and could be used to assess the safety, efficacy, quality and performance of combination products. Taken together, the fast development of combination products with great potentials in healthcare provides new opportunities for the advancement of regulatory review as well as regulatory science.
Collapse
Affiliation(s)
- Jiaxin Tian
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Xu Song
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Yongqing Wang
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Maobo Cheng
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Shuang Lu
- Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| | - Wei Xu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Guobiao Gao
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Lei Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Zhonglan Tang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Minghui Wang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Sousa AM, Amaro AM, Piedade AP. 3D Printing of Polymeric Bioresorbable Stents: A Strategy to Improve Both Cellular Compatibility and Mechanical Properties. Polymers (Basel) 2022; 14:1099. [PMID: 35335430 PMCID: PMC8954590 DOI: 10.3390/polym14061099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
One of the leading causes of death is cardiovascular disease, and the most common cardiovascular disease is coronary artery disease. Percutaneous coronary intervention and vascular stents have emerged as a solution to treat coronary artery disease. Nowadays, several types of vascular stents share the same purpose: to reduce the percentage of restenosis, thrombosis, and neointimal hyperplasia and supply mechanical support to the blood vessels. Despite the numerous efforts to create an ideal stent, there is no coronary stent that simultaneously presents the appropriate cellular compatibility and mechanical properties to avoid stent collapse and failure. One of the emerging approaches to solve these problems is improving the mechanical performance of polymeric bioresorbable stents produced through additive manufacturing. Although there have been numerous studies in this field, normalized control parameters for 3D-printed polymeric vascular stents fabrication are absent. The present paper aims to present an overview of the current types of stents and the main polymeric materials used to fabricate the bioresorbable vascular stents. Furthermore, a detailed description of the printing parameters' influence on the mechanical performance and degradation profile of polymeric bioresorbable stents is presented.
Collapse
Affiliation(s)
| | | | - Ana P. Piedade
- Department of Mechanical Engineering, CEMMPRE, University of Coimbra, 3030-788 Coimbra, Portugal; (A.M.S.); (A.M.A.)
| |
Collapse
|
8
|
Selvakumar PP, Rafuse MS, Johnson R, Tan W. Applying Principles of Regenerative Medicine to Vascular Stent Development. Front Bioeng Biotechnol 2022; 10:826807. [PMID: 35321023 PMCID: PMC8936177 DOI: 10.3389/fbioe.2022.826807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Stents are a widely-used device to treat a variety of cardiovascular diseases. The purpose of this review is to explore the application of regenerative medicine principles into current and future stent designs. This review will cover regeneration-relevant approaches emerging in the current research landscape of stent technology. Regenerative stent technologies include surface engineering of stents with cell secretomes, cell-capture coatings, mimics of endothelial products, surface topography, endothelial growth factors or cell-adhesive peptides, as well as design of bioresorable materials for temporary stent support. These technologies are comparatively analyzed in terms of their regenerative effects, therapeutic effects and challenges faced; their benefits and risks are weighed up for suggestions about future stent developments. This review highlights two unique regenerative features of stent technologies: selective regeneration, which is to selectively grow endothelial cells on a stent but inhibit the proliferation and migration of smooth muscle cells, and stent-assisted regeneration of ischemic tissue injury.
Collapse
Affiliation(s)
| | | | | | - Wei Tan
- University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
9
|
Cherian AM, Nair SV, Maniyal V, Menon D. Surface engineering at the nanoscale: A way forward to improve coronary stent efficacy. APL Bioeng 2021; 5:021508. [PMID: 34104846 PMCID: PMC8172248 DOI: 10.1063/5.0037298] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Coronary in-stent restenosis and late stent thrombosis are the two major inadequacies of vascular stents that limit its long-term efficacy. Although restenosis has been successfully inhibited through the use of the current clinical drug-eluting stent which releases antiproliferative drugs, problems of late-stent thrombosis remain a concern due to polymer hypersensitivity and delayed re-endothelialization. Thus, the field of coronary stenting demands devices having enhanced compatibility and effectiveness to endothelial cells. Nanotechnology allows for efficient modulation of surface roughness, chemistry, feature size, and drug/biologics loading, to attain the desired biological response. Hence, surface topographical modification at the nanoscale is a plausible strategy to improve stent performance by utilizing novel design schemes that incorporate nanofeatures via the use of nanostructures, particles, or fibers, with or without the use of drugs/biologics. The main intent of this review is to deliberate on the impact of nanotechnology approaches for stent design and development and the recent advancements in this field on vascular stent performance.
Collapse
Affiliation(s)
- Aleena Mary Cherian
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| | - Shantikumar V. Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| | - Vijayakumar Maniyal
- Department of Cardiology, Amrita Institute of Medical Science
and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Cochin
682041, Kerala, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| |
Collapse
|
10
|
De La Encarnacion Bermudez C, Haddadi E, Rampazzo E, Petrizza L, Prodi L, Genovese D. Core-Shell Pluronic-Organosilica Nanoparticles with Controlled Polarity and Oxygen Permeability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4802-4809. [PMID: 33851534 PMCID: PMC8154881 DOI: 10.1021/acs.langmuir.0c03531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Nanostructured systems constitute versatile carriers with multiple functions engineered in a nanometric space. Yet, such multimodality often requires adapting the chemistry of the nanostructure to the properties of the hosted functional molecules. Here, we show the preparation of core-shell Pluronic-organosilica "PluOS" nanoparticles with the use of a library of organosilane precursors. The precursors are obtained via a fast and quantitative click reaction, starting from cost-effective reagents such as diamines and an isocyanate silane derivative, and they condensate in building blocks characterized by a balance between hydrophobic and H-bond-rich domains. As nanoscopic probes for local polarity, oxygen permeability, and solvating properties, we use, respectively, solvatochromic, phosphorescent, and excimer-forming dyes covalently linked to the organosilica matrix during synthesis. The results obtained here clearly show that the use of these organosilane precursors allows for finely tuning polarity, oxygen permeability, and solvating properties of the resulting organosilica core, expanding the toolbox for precise engineering of the particle properties.
Collapse
Affiliation(s)
| | - Elahe Haddadi
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
- Department
of Chemistry, College of Sciences, Shiraz
University, Shiraz 71454, Iran
| | - Enrico Rampazzo
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Luca Petrizza
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Luca Prodi
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Damiano Genovese
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
11
|
Rykowska I, Nowak I, Nowak R. Drug-Eluting Stents and Balloons-Materials, Structure Designs, and Coating Techniques: A Review. Molecules 2020; 25:E4624. [PMID: 33050663 PMCID: PMC7594099 DOI: 10.3390/molecules25204624] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
Controlled drug delivery is a matter of interest to numerous scientists from various domains, as well as an essential issue for society as a whole. In the treatment of many diseases, it is crucial to control the dosing of a drug for a long time and thus maintain its optimal concentration in the tissue. Heart diseases are particularly important in this aspect. One such disease is an obstructive arterial disease affecting millions of people around the world. In recent years, stents and balloon catheters have reached a significant position in the treatment of this condition. Balloon catheters are also successfully used to manage tear ducts, paranasal sinuses, or salivary glands disorders. Modern technology is continually striving to improve the results of previous generations of stents and balloon catheters by refining their design, structure, and constituent materials. These advances result in the development of both successive models of drug-eluting stents (DES) and drug-eluting balloons (DEB). This paper presents milestones in the development of DES and DEB, which are a significant option in the treatment of coronary artery diseases. This report reviews the works related to achievements in construction designs and materials, as well as preparation technologies, of DES and DEB. Special attention was paid to the polymeric biodegradable materials used in the production of the above-mentioned devices. Information was also collected on the various methods of producing drug release coatings and their effectiveness in releasing the active substance.
Collapse
Affiliation(s)
- I. Rykowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - I. Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - R. Nowak
- Eye Department, J. Strus City Hospital, Szwajcarska 3, 61-285 Poznań, Poland;
| |
Collapse
|
12
|
Jana S. Endothelialization of cardiovascular devices. Acta Biomater 2019; 99:53-71. [PMID: 31454565 DOI: 10.1016/j.actbio.2019.08.042] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Blood-contacting surfaces of cardiovascular devices are not biocompatible for creating an endothelial layer on them. Numerous research studies have mainly sought to modify these surfaces through physical, chemical and biological means to ease early endothelial cell (EC) adhesion, migration and proliferation, and eventually to build an endothelial layer on the surfaces. The first priority for surface modification is inhibition of protein adsorption that leads to inhibition of platelet adhesion to the device surfaces, which may favor EC adhesion. Surface modification through surface texturing, if applicable, can bring some hopeful outcomes in this regard. Surface modifications through chemical and/or biological means may play a significant role in easy endothelialization of cardiovascular devices and inhibit smooth muscle cell proliferation. Cellular engineering of cells relevant to endothelialization can boost the positive outcomes obtained through surface engineering. This review briefly summarizes recent developments and research in early endothelialization of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Endothelialization of cardiovascular implants, including heart valves, vascular stents and vascular grafts is crucial to solve many problems in our health care system. Numerous research efforts have been made to improve endothelialization on the surfaces of cardiovascular implants, mainly through surface modifications in three ways - physically, chemically and biologically. This review is intended to highlight comprehensive research studies to date on surface modifications aiming for early endothelialization on the blood-contacting surfaces of cardiovascular implants. It also discusses future perspectives to help guide endothelialization strategies and inspire further innovations.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
13
|
Wu H, Xie L, He M, Zhang R, Tian Y, Liu S, Gong T, Huo F, Yang T, Zhang Q, Guo S, Tian W. A wear-resistant TiO 2 nanoceramic coating on titanium implants for visible-light photocatalytic removal of organic residues. Acta Biomater 2019; 97:597-607. [PMID: 31398472 DOI: 10.1016/j.actbio.2019.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022]
Abstract
An effective treatment for peri-implantitis is to completely remove all the bacterial deposits from the contaminated implants, especially the organic residues, to regain biocompatibility and re-osseointegration, but none of the conventional decontamination treatments has achieve this goal. The photocatalytic activity of TiO2 coating on titanium implants to degrade organic contaminants has attracted researchers' attention recently. But a pure TiO2 coating only responses to harmful ultraviolet light. Additionally, the poor coating mechanical properties are unable to protect the coating integrity versus initial mechanical decontamination. To address these issues, a unique TiO2 nanoceramic coating was fabricated on titanium substrates through an innovative plasma electrolytic oxidation (PEO) based procedure, which showed a disordered layer with oxygen vacancies on the outmost part. As a result, the coating could decompose methylene blue, rhodamine B, and pre-adsorbed lipopolysaccharide (LPS) under visible light. Additionally, the coating showed two-fold higher hardness than untreated titanium and excellent wear resistance against steel decontamination instruments, which could be attributed to the specific micro-structure, including the densely packed nanocrystals and good metallurgical combination. Moreover, the in vitro response of MG63 cells confirmed that the coating had comparable biocompatibility and osteoconductivity to untreated titanium substrates. This study provides a unique coating technique as well as a photocatalytic cleaning strategy to enhance decontamination of titanium dental implants, which will favour the development of peri-implantitis treatments. STATEMENT OF SIGNIFICANCE: The treatment of peri-implantitis is based on the complete removal of bacterial deposits, especially the organic residues, but conventional decontamination treatments are hard to achieve it. The photocatalytic activity of TiO2 coating on titanium implants to degrade organic contaminants provides a promising strategy for deeper decontamination, but its nonactivation to visible light and poor mechanical properties have limited its application. To address these issues, a unique TiO2 nanoceramic coating was fabricated on titanium substrates based on plasma electrolytic oxidation. The coating showed enhanced visible-light photocatalytic activity, excellent wear resistance and satisfied biocompatibility. Based on this functional coating, it is promising to develop a more efficient strategy for deep decontamination of implant surface, which will favour the development of peri-implantitis treatments.
Collapse
|
14
|
Soliman AM, Tolba SA, Sharafeldin IM, Gepreel MAH, Allam NK. Ni-free, built-in nanotubular drug eluting stents: Experimental and theoretical insights. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109750. [PMID: 31349498 DOI: 10.1016/j.msec.2019.109750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022]
Abstract
Stents used for cardiovascular applications are composed of three main elements; a metal, polymer coating and the specific drug component. Nickel-based metals and polymer coatings currently used in the stent market have increased the recurrence of in-stent restenosis and stent failure due to inflammation. In this study, a Ti-8Mn alloy was used to fabricate a nanostructured surface that can be used for drug eluting stents to overcome the hypersensitivity of metals that are currently used in stent making as well as introducing a new built-in nano-drug reservoir instead of polymer coatings. Two different systems were studied: titanium dioxide nanotubes (NTs) and Ti-8Mn oxides NTs. The materials were characterized using field emission electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), roughness, wettability and surface energy measurements. Nanoindentation was used to evaluate the mechanical properties of the nanotubes as well as their stability. In-vitro cytotoxicity and cell proliferation assays were used to study the effect of the nanotubes on cell viability. Computational insights were also used to test the blood compatibility using band gap model analysis, comparing the band gap of the materials under investigation with that of the fibrinogen, in order to study the possibility of charge transfer that affects the blood clotting mechanism. In addition, the drug loading capacity of the materials was studied using acetyl salicylic acid as a drug model.
Collapse
Affiliation(s)
- Alaa M Soliman
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Sarah A Tolba
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Icell M Sharafeldin
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed Abdel-Hady Gepreel
- Department of Materials Science and Engineering, Egypt-Japan University for Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
15
|
Superelasticity Evaluation of the Biocompatible Ti-17Nb-6Ta Alloy. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:8353409. [PMID: 30728927 PMCID: PMC6341265 DOI: 10.1155/2019/8353409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/20/2018] [Accepted: 12/05/2018] [Indexed: 11/24/2022]
Abstract
Recently, studying the shape memory effect of the biocompatible Ti alloys takes much attention in the biomedical and healthcare applications. This study concerns about characterizing the superelasticity of the new biocompatible Ti-17Nb-6Ta (TNT) alloy. Microstructure of TNT was observed using optical and confocal microscopes. The alloy consists of two phases: β (predominant phase) and α″ martensite phase. The influence of cold rolling deformation on the microstructure was illustrated in which the martensitic-induced transformation appeared by cold rolling. The alloy is ductile as only the fracture dimples appeared in its fracture surface. Multicyclic loading and deloading tensile testing was applied to TNT specimens (flat and wire shapes) in order to evaluate the superelasticity. A superelastic strain as high as 3.5% was recorded for this TNT alloy. Therefore, TNT alloy has high potential for many biomedical and healthcare applications.
Collapse
|
16
|
Borhani S, Hassanajili S, Ahmadi Tafti SH, Rabbani S. Cardiovascular stents: overview, evolution, and next generation. Prog Biomater 2018; 7:175-205. [PMID: 30203125 PMCID: PMC6173682 DOI: 10.1007/s40204-018-0097-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/25/2018] [Indexed: 12/01/2022] Open
Abstract
Compared to bare-metal stents (BMSs), drug-eluting stents (DESs) have been regarded as a revolutionary change in coronary artery diseases (CADs). Releasing pharmaceutical agents from the stent surface was a promising progress in the realm of cardiovascular stents. Despite supreme advantages over BMSs, in-stent restenosis (ISR) and long-term safety of DESs are still deemed ongoing concerns over clinically application of DESs. The failure of DESs for long-term clinical use is associated with following factors including permanent polymeric coating materials, metallic stent platforms, non-optimal drug releasing condition, and factors that have recently been supposed as contributory factors such as degradation products of polymers, metal ions due to erosion and degradation of metals and their alloys utilizing in some stents as metal frameworks. Discovering the direct relation between stent materials and associating adverse effects is a complicated process, and yet it has not been resolved. For clinical success it is of significant importance to optimize DES design and explore novel strategies to overcome all problems including inflammatory response, delay endothelialization, and sub-acute stent thrombosis (ST) simultaneously. In this work, scientific reports are reviewed particularly focusing on recent advancements in DES design which covers both potential improvements of existing and recently novel prototype stent fabrications. Covering a wide range of information from the BMSs to recent advancement, this study mostly sheds light on DES's concepts, namely stent composition, drug release mechanism, and coating techniques. This review further reports different forms of DES including fully biodegradable DESs, shape-memory ones, and polymer-free DESs.
Collapse
Affiliation(s)
- Setareh Borhani
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Shadi Hassanajili
- Department of Nanochemical Engineering, School of New Science and Technology, Shiraz University, Shiraz, Iran.
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, North Kargar, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, North Kargar, Tehran, Iran
| |
Collapse
|
17
|
Farah S. Protective Layer Development for Enhancing Stability and Drug-Delivery Capabilities of DES Surface-Crystallized Coatings. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9010-9022. [PMID: 29436817 DOI: 10.1021/acsami.7b18733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Carrier-free drug-eluting stents (DES)-based crystalline coatings are gaining prominence because of their function, skipping many limitations and clinical complications of the currently marketed DES. However, their usage has been humbled by inflexibility of the crystalline coating and limited mechanical and physical properties. This study reports for the first time the development of a protective top coating for enhancing the merits and delivery capabilities of the crystalline coating. Flexible and water-soluble polysaccharide top coating was developed and applied onto rapamycin (RM) crystalline carpet. The top coating prevented crystalline coating delamination during stent crimping and expansion without affecting its release profile. Crystalline coating strata and its interfaces with the metallic substrate and top coating were fully studied and characterized. The crystalline top-coated stents showed significant physical, mechanical, and chemical stability enhancement with ∼2% RM degradation after 1 year under different storage conditions. Biocompatibility study of the top-coated stents implanted subcutaneously for 1 month into SD rats did not provoke any safety concerns. Incorporating RM into the top coating to develop a bioactive protective coating for multilayer release purposes was also investigated. The developed protective coating had wide applicability and may be further implemented for various drugs and implantable medical devices.
Collapse
Affiliation(s)
- Shady Farah
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and Synthesis , The Hebrew University of Jerusalem , Jerusalem 91120 , Israel
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , 500 Main Street , Cambridge , Massachusetts 02139 , United States
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
18
|
Bedair TM, ElNaggar MA, Joung YK, Han DK. Recent advances to accelerate re-endothelialization for vascular stents. J Tissue Eng 2017; 8:2041731417731546. [PMID: 28989698 PMCID: PMC5624345 DOI: 10.1177/2041731417731546] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/19/2017] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases are considered as one of the serious diseases that leads to the death of millions of people all over the world. Stent implantation has been approved as an easy and promising way to treat cardiovascular diseases. However, in-stent restenosis and thrombosis remain serious problems after stent implantation. It was demonstrated in a large body of previously published literature that endothelium impairment represents a major factor for restenosis. This discovery became the driving force for many studies trying to achieve an optimized methodology for accelerated re-endothelialization to prevent restenosis. Thus, in this review, we summarize the different methodologies opted to achieve re-endothelialization, such as, but not limited to, manipulation of surface chemistry and surface topography.
Collapse
Affiliation(s)
- Tarek M Bedair
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Mahmoud A ElNaggar
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| |
Collapse
|