1
|
Abele S, Alanis-Lobato G, Oti M, Rust W, Blazevic D, Danner-Liskus J, Mayer C, Zimmermann G, Zuckschwerdt K, Schönberger T, Gross P, Lempp C, Michelfelder S, Strobel B. Mapping administration route-dependent transduction profiles of commonly used AAV variants in mice by barcode amplicon sequencing. Mol Ther Methods Clin Dev 2025; 33:101468. [PMID: 40337478 PMCID: PMC12056398 DOI: 10.1016/j.omtm.2025.101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
The tissue transduction profiles and transgene expression efficiencies of adeno-associated viruses (AAVs) depend not only on the utilized capsid and dose but also on the administration route. Yet, despite the plethora of available natural and capsid-engineered variants, a comprehensive evaluation of the administration route dependency of AAV tropism has been lacking so far. Therefore, we here compared transduction and transgene expression profiles for 34 well-known AAV capsids following intravenous (i.v.) and intraperitoneal (i.p.) injection in male C57BL/6 mice by multiplexed biodistribution analyses based on AAV genome-barcoding. Readout on viral genome and transcript level confirmed pronounced liver targeting by most AAV variants after i.v. administration, as well as known tissue tropism for benchmark capsids (e.g., AAV-PHP.eB: brain and AAV2-ESGHGYF: lung). In contrast, i.p. administration generally decreased liver targeting, while concurrently increasing expression in other abdominal organs in a capsid-specific fashion. For example, AAV6.2 and AAV-DJ, which showed almost exclusive liver transduction after i.v. administration, displayed differential biodistribution profiles with enhanced expression in the diaphragm, adipose tissue, and pancreas when administered intraperitoneally. In summary, our data guide study design by enabling the selection of optimal vector and administration route combinations for refined tissue targeting approaches in preclinical in vivo experiments.
Collapse
Affiliation(s)
- Sarah Abele
- Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Gregorio Alanis-Lobato
- Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Martin Oti
- Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Werner Rust
- Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Dragica Blazevic
- Eye Health & Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Jenny Danner-Liskus
- Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Christine Mayer
- Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Gudrun Zimmermann
- Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Kai Zuckschwerdt
- Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Tanja Schönberger
- Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Peter Gross
- Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Charlotte Lempp
- Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Stefan Michelfelder
- Eye Health & Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Benjamin Strobel
- Global Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| |
Collapse
|
2
|
Tamura N, Suzuki K, Shiraki H, Waguri I, Segi-Nishida E. Production of Adeno-Associated Virus Vector Serotype rh.10 and Optimization of Its Purification via Chloroform Extraction. Biol Pharm Bull 2025; 48:355-362. [PMID: 40222918 DOI: 10.1248/bpb.b24-00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Recombinant adeno-associated virus (AAV) vectors are widely used for manipulating gene expression. AAVrh.10 is a highly infectious AAV serotype for the central nervous system and various tissues. Owing to its potential use in research, we aimed to optimize the production strategy and develop a simple purification protocol for the AAVrh.10 vector. In this study, we explored a simple production and purification strategy for the AAVrh.10 vector via chloroform extraction and ultrafiltration. Initially, we evaluated the optimal conditions for AAVrh.10-CAG-GFP production using AAV-293 cells. AAVrh.10-CAG-GFP was successfully produced in a serum-free medium after plasmid transfection. Moreover, the culture medium contained a substantial amount of the virus. Therefore, both AAVrh.10-containing cell lysate and culture medium should be used to prepare the AAVrh.10 viral vector. To purify and concentrate AAVrh.10-CAG-GFP from the crude lysate and medium, we optimized the chloroform extraction and ultrafiltration strategies. Subsequently, purified AAVrh.10-CAG-GFP was used to infect HEK-293T cells. Overall, this study provides a simple and effective AAVrh.10 vector preparation strategy for basic and preclinical research.
Collapse
Affiliation(s)
- Naoki Tamura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kanzo Suzuki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hirono Shiraki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Issei Waguri
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
3
|
Liao D, Yi X, Bai Y, Yang Y, Ai J. Adeno-associated virus-based gene therapy for cystinuria. BJU Int 2024; 134:742-744. [PMID: 38923343 DOI: 10.1111/bju.16451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Affiliation(s)
- Dazhou Liao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianyanling Yi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunjin Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Hart CC, Lee YI, Xie J, Gao G, Lin BL, Hammers DW, Sweeney HL. Potential limitations of microdystrophin gene therapy for Duchenne muscular dystrophy. JCI Insight 2024; 9:e165869. [PMID: 38713520 PMCID: PMC11382885 DOI: 10.1172/jci.insight.165869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Clinical trials delivering high doses of adeno-associated viruses (AAVs) expressing truncated dystrophin molecules (microdystrophins) are underway for Duchenne muscular dystrophy (DMD). We examined the efficiency and efficacy of this strategy with 4 microdystrophin constructs (3 in clinical trials and a variant of the largest clinical construct), in a severe mouse model of DMD, using AAV doses comparable with those in clinical trials. We achieved high levels of microdystrophin expression in striated muscles with cardiac expression approximately 10-fold higher than that observed in skeletal muscle. Significant, albeit incomplete, correction of skeletal muscle disease was observed. Surprisingly, a lethal acceleration of cardiac disease occurred with 2 of the microdystrophins. The detrimental cardiac effect appears to be caused by variable competition (dependent on microdystrophin design and expression level) between microdystrophin and utrophin at the cardiomyocyte membrane. There may also be a contribution from an overloading of protein degradation. The significance of these observations for patients currently being treated with AAV-microdystrophin therapies is unclear since the levels of expression being achieved in the DMD hearts are unknown. However, these findings suggest that microdystrophin treatments need to avoid excessively high levels of expression in the heart and that cardiac function should be carefully monitored in these patients.
Collapse
Affiliation(s)
- Cora C Hart
- Department of Pharmacology & Therapeutics and
- Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Young Il Lee
- Department of Pharmacology & Therapeutics and
- Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worchester, Massachusetts, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worchester, Massachusetts, USA
| | - Brian L Lin
- Department of Cell Biology, Neurobiology, and Anatomy & Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David W Hammers
- Department of Pharmacology & Therapeutics and
- Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics and
- Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
5
|
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 2024; 9:78. [PMID: 38565561 PMCID: PMC10987683 DOI: 10.1038/s41392-024-01780-w] [Citation(s) in RCA: 180] [Impact Index Per Article: 180.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
6
|
Yu DL, van Lieshout LP, Stevens BAY, Near KJ(J, Stodola JK, Stinson KJ, Slavic D, Wootton SK. AAV Vectors Pseudotyped with Capsids from Porcine and Bovine Species Mediate In Vitro and In Vivo Gene Delivery. Viruses 2023; 16:57. [PMID: 38257756 PMCID: PMC10820940 DOI: 10.3390/v16010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Adeno-associated virus (AAV) vectors are among the most widely used delivery vehicles for in vivo gene therapy as they mediate robust and sustained transgene expression with limited toxicity. However, a significant impediment to the broad clinical success of AAV-based therapies is the widespread presence of pre-existing humoral immunity to AAVs in the human population. This immunity arises from the circulation of non-pathogenic endemic human AAV serotypes. One possible solution is to use non-human AAV capsids to pseudotype transgene-containing AAV vector genomes of interest. Due to the low probability of human exposure to animal AAVs, pre-existing immunity to animal-derived AAV capsids should be low. Here, we characterize two novel AAV capsid sequences: one derived from porcine colon tissue and the other from a caprine adenovirus stock. Both AAV capsids proved to be effective transducers of HeLa and HEK293T cells in vitro. In vivo, both capsids were able to transduce the murine nose, lung, and liver after either intranasal or intraperitoneal administration. In addition, we demonstrate that the porcine AAV capsid likely arose from multiple recombination events involving human- and animal-derived AAV sequences. We hypothesize that recurrent recombination events with similar and distantly related AAV sequences represent an effective mechanism for enhancing the fitness of wildtype AAV populations.
Collapse
Affiliation(s)
- Darrick L. Yu
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | - Jenny K. Stodola
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kevin J. Stinson
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Durda Slavic
- Animal Health Laboratory, Laboratory Services Division, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
7
|
Sasaki N, Kok CY, Westhaus A, Alexander IE, Lisowski L, Kizana E. In Search of Adeno-Associated Virus Vectors With Enhanced Cardiac Tropism for Gene Therapy. Heart Lung Circ 2023; 32:816-824. [PMID: 37451880 DOI: 10.1016/j.hlc.2023.06.704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Globally, adeno-associated virus (AAV) vectors have been increasingly used for clinical gene therapy trials. In Australia, AAV-based gene therapy is available for hereditary diseases such as retinal dystrophy or spinal muscular atrophy 1 (SMA1). Many preclinical studies have used AAV vectors for gene therapy in models of cardiac disease with outcomes of varying translational potential. However, major barriers to effective and safe therapeutic gene delivery to the human heart remain to be overcome. These include tropism, efficient gene transfer, mitigating off-target gene delivery and avoidance of the host immune response. Developing such an enhanced AAV vector for cardiac gene therapy is of great interest to the field of advanced cardiac therapeutics. In this review, we provide an overview of the approaches currently being employed in the search for cardiac cell-specific AAV capsids, ranging from natural AAVs selected as a result of infection and latency in the heart, to the use of cutting-edge molecular techniques to engineer and select AAVs specific for cardiac cells with the use of high-throughput methods.
Collapse
Affiliation(s)
- Natsuki Sasaki
- The Centre for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Cindy Y Kok
- The Centre for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Adrian Westhaus
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Eddy Kizana
- The Centre for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Hasan KM, Parveen M, Pena A, Bautista F, Rivera JC, Huerta RR, Martinez E, Espinoza-Derout J, Sinha-Hikim AP, Friedman TC. Fatty Acid Excess Dysregulates CARF to Initiate the Development of Hepatic Steatosis. Cells 2023; 12:1069. [PMID: 37048142 PMCID: PMC10093423 DOI: 10.3390/cells12071069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
CARF (CDKN2AIP) regulates cellular fate in response to various stresses. However, its role in metabolic stress is unknown. We found that fatty livers from mice exhibit low CARF expression. Similarly, overloaded palmitate inhibited CARF expression in HepG2 cells, suggesting that excess fat-induced stress downregulates hepatic CARF. In agreement with this, silencing and overexpressing CARF resulted in higher and lower fat accumulation in HepG2 cells, respectively. Furthermore, CARF overexpression lowered the ectopic palmitate accumulation in HepG2 cells. We were interested in understanding the role of hepatic CARF and underlying mechanisms in the development of NAFLD. Mechanistically, transcriptome analysis revealed that endoplasmic reticulum (ER) stress and oxidative stress pathway genes significantly altered in the absence of CARF. IRE1α, GRP78, and CHOP, markers of ER stress, were increased, and the treatment with TUDCA, an ER stress inhibitor, attenuated fat accumulation in CARF-deficient cells. Moreover, silencing CARF caused a reduction of GPX3 and TRXND3, leading to oxidative stress and apoptotic cell death. Intriguingly, CARF overexpression in HFD-fed mice significantly decreased hepatic steatosis. Furthermore, overexpression of CARF ameliorated the aberrant ER function and oxidative stress caused by fat accumulation. Our results further demonstrated that overexpression of CARF alleviates HFD-induced insulin resistance assessed with ITT and GTT assay. Altogether, we conclude that excess fat-induced reduction of CARF dysregulates ER functions and lipid metabolism leading to hepatic steatosis.
Collapse
Affiliation(s)
- Kamrul M. Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Meher Parveen
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Alondra Pena
- California State University Dominguez Hills, Carson, CA 90747, USA
| | | | - Juan Carlos Rivera
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Roxana Ramirez Huerta
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Erica Martinez
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Amiya P. Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Theodore C. Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Ai J, Li J, Su Q, Ma H, He R, Wei Q, Li H, Gao G. rAAV-based and intraprostatically delivered miR-34a therapeutics for efficient inhibition of prostate cancer progression. Gene Ther 2022; 29:418-424. [PMID: 34226687 PMCID: PMC8848550 DOI: 10.1038/s41434-021-00275-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 02/05/2023]
Abstract
At present, there is no effective treatment for prostate cancer (PCa). Previous studies have reported that miR-34a is significantly downregulated in PCa cells; therefore, modulation of miR-34a expression might be a promising therapeutic approach for PCa treatment. To this end, we first verified the downregulation of miR-34a in prostate tumors from a transgenic adenocarcinoma mouse prostate (TRAMP) model. We found that miR-34a overexpression significantly inhibited the cell cycle, viability, and migration of PCa cells by targeting its downstream genes. Next, we tested the concept of intraprostatic injection of rAAV9·pri-miR-34a into 8-week-old TRAMP mice to inhibit PCa progression. We observed that the treatment lowered body weights significantly compared to the control treatment starting at 30 weeks after injection. rAAV9·pri-miR-34a treatment also obviously extended the lifespan of TRAMP mice. Moreover, we confirmed that the neoplasia in the treated prostates was significantly diminished compared to that in the control group. In addition, overexpressed miR-34a downregulated the expression of its target genes. Taken together, our results demonstrated, for the first time, the potential of rAAV-mediated efficient modulation of miR-34a expression in the prostate to inhibit PCa progression by regulating its downstream gene expression.
Collapse
Affiliation(s)
- Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ran He
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
10
|
Ai J, Li J, Su Q, Ma H, Wei Q, Li H, Gao G. rAAV-delivered PTEN therapeutics for prostate cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:122-132. [PMID: 34976432 PMCID: PMC8671520 DOI: 10.1016/j.omtn.2021.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 11/28/2021] [Indexed: 02/05/2023]
Abstract
Effective treatments for prostate cancer (PCa) require further development, and previous studies have reported that PTEN and its downstream target CDKN1B are significantly downregulated in PCa cells compared with normal cells. Therefore, modulation of PTEN and CDKN1B expression might be a promising therapeutic approach for PCa treatment. Expression of PTEN and CDKN1B was verified in specimens from PCa patients and transgenic adenocarcinoma mouse prostate (TRAMP) mice. The effect of PTEN on PCa cell migration, apoptosis, and the cell cycle was analyzed in vitro using a wound-healing assay and flow cytometry. We assessed the ability of intraprostatic and intratumoral injections of recombinant adeno-associated virus (rAAV) 9 expressing Pten or Cdkn1b into TRAMP mice and a subcutaneous tumor xenograft mouse model, respectively, to inhibit PCa progression. PTEN and CDKN1B were significantly downregulated in human and mouse PCa samples, and CDKN1B expression correlated positively with PTEN expression. PTEN overexpression significantly inhibited cell migration and cell-cycle progression and promoted apoptosis in PCa cells by decreasing Ccnd1 expression and increasing that of Cdkn1b. Importantly, treatment with the rAAV9.Pten or rAAV9.Cdkn1b extended the lifespan of TRAMP mice and inhibited the growth rate of tumor xenografts by regulating downstream gene expression. Moreover, neoplasia in treated prostates was significantly diminished compared with that in control prostates, and apoptosis was markedly observed in xenografts treated with Pten or Cdkn1b. These data indicate that rAAV-based PTEN/CDKN1B delivery is promising for the development of novel therapeutics for PCa.
Collapse
Affiliation(s)
- Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Hong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
11
|
Richner M, Gonçalves NP, Jensen PH, Nyengaard JR, Vægter CB, Jan A. Recombinant adeno-associated virus mediated gene delivery in the extracranial nervous system of adult mice by direct nerve immersion. STAR Protoc 2022; 3:101181. [PMID: 35243373 PMCID: PMC8861814 DOI: 10.1016/j.xpro.2022.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This protocol outlines a minimally invasive and quickly performed approach for transgene delivery in the extracranial nervous system of adult mice using recombinant adeno-associated virus (AAV). The technique, named Sciatic Nerve Direct Immersion (SciNDi), relies on the direct bilateral immersion of the exposed sciatic nerve with AAV. We show that in comparison with intramuscular AAV delivery, SciNDi results in widespread transduction in connected neuroanatomical tracts both in the sciatic nerve trunk and the lumbar spinal cord. For complete details on the use and execution of this protocol, please refer to Jan et al. (2019) and Richner et al. (2011, 2017). A facile approach for AAV delivery in the peripheral nervous system of adult mice Transduction of sciatic nerve and modestly in spinal cord ventral horn neurons Avoids tissue trauma associated with direct intraparenchymal injection of AAV
Collapse
Affiliation(s)
- Mette Richner
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
- Corresponding author
| | - Nádia Pereira Gonçalves
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Poul Henning Jensen
- DANDRITE, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| | - Jens Randel Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy Department of Clinical Medicine, Aarhus University, Department of Pathology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Christian Bjerggaard Vægter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Asad Jan
- DANDRITE, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
- Corresponding author
| |
Collapse
|
12
|
Kang J, Huang L, Zheng W, Luo J, Zhang X, Song Y, Liu A. Promoter CAG is more efficient than hepatocyte‑targeting TBG for transgene expression via rAAV8 in liver tissues. Mol Med Rep 2021; 25:16. [PMID: 34779500 DOI: 10.3892/mmr.2021.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/18/2021] [Indexed: 11/06/2022] Open
Abstract
The recombinant adeno‑associated virus 8 (rAAV8) vector is a widely used tool in basic research and clinical trials. The cytomegalovirus immediate‑early enhancer/chicken β‑actin (CAG) promoter is a synthetic promoter used in adenoviral constructs with a wide spectrum and notable efficiency. The thyroxine binding globulin (TBG) promoter is a liver‑specific promoter, which directs transgene expression in hepatocytes. However, the transduction efficiency of the rAAV vector is dependent on both the administration routes and the promoter elements. In the present study, the transduction efficiency in the liver following intraperitoneal (IP) and intravenous (IV) injections of rAAV8 with the CAG, TBG669 and TBG410 promoters was compared. Enhanced green fluorescent protein (EGFP) expression was used as the biomarker to indicate efficiency. Among the three different promoters, CAG exhibited the highest efficiency from both IV and IP injections. Following IV administration, EGFP expression, induced by the CAG promoter, was 67‑fold higher compared with that in the TBG410 promoter group and 26‑fold higher compared with that in the TBG669 promoter group. EGFP protein expression was higher with IV injection compared with that for IP injection for both the CAG and TBG669 promoters (P<0.05). With the CAG promoter, EGFP protein expression was 1.5‑fold higher with the use of IV injection than with IP injection. With the TBG410 promoter, no differences were observed between the two administrations. In conclusion, these findings demonstrated that the CAG promoter was much more efficient at driving gene expression in the liver compared with that for the TBG promoters in rAAV8. In addition, IP administration produced comparable efficiency for gene delivery via the rAAV8 vector, particularly with the promoter TBG410.
Collapse
Affiliation(s)
- Jinyu Kang
- Department of Gastroenterology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Lujie Huang
- Department of Gastroenterology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Wentao Zheng
- Department of Gastroenterology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Jia Luo
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| | - Xie Zhang
- Department of Gastroenterology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Yufei Song
- Department of Gastroenterology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Aiming Liu
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
13
|
Ocana-Santero G, Díaz-Nido J, Herranz-Martín S. Future Prospects of Gene Therapy for Friedreich's Ataxia. Int J Mol Sci 2021; 22:1815. [PMID: 33670433 PMCID: PMC7918362 DOI: 10.3390/ijms22041815] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Friedreich's ataxia is an autosomal recessive neurogenetic disease that is mainly associated with atrophy of the spinal cord and progressive neurodegeneration in the cerebellum. The disease is caused by a GAA-expansion in the first intron of the frataxin gene leading to a decreased level of frataxin protein, which results in mitochondrial dysfunction. Currently, there is no effective treatment to delay neurodegeneration in Friedreich's ataxia. A plausible therapeutic approach is gene therapy. Indeed, Friedreich's ataxia mouse models have been treated with viral vectors en-coding for either FXN or neurotrophins, such as brain-derived neurotrophic factor showing promising results. Thus, gene therapy is increasingly consolidating as one of the most promising therapies. However, several hurdles have to be overcome, including immunotoxicity and pheno-toxicity. We review the state of the art of gene therapy in Friedreich's ataxia, addressing the main challenges and the most feasible solutions for them.
Collapse
Affiliation(s)
- Gabriel Ocana-Santero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (G.O.-S.); (J.D.-N.)
- Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, University of Oxford, Oxford OX1 3PT, UK
| | - Javier Díaz-Nido
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (G.O.-S.); (J.D.-N.)
| | - Saúl Herranz-Martín
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (G.O.-S.); (J.D.-N.)
| |
Collapse
|
14
|
Bhere D, Arghiani N, Lechtich ER, Yao Y, Alsaab S, Bei F, Matin MM, Shah K. Simultaneous downregulation of miR-21 and upregulation of miR-7 has anti-tumor efficacy. Sci Rep 2020; 10:1779. [PMID: 32019988 PMCID: PMC7000780 DOI: 10.1038/s41598-020-58072-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Dysregulation of miRNA expression has been implicated in cancer. Numerous strategies have been explored to modulate miR but sub-optimal delivery and inability to concurrently target multiple pathways involved in tumor progression have limited their efficacy. In this study, we explored the potential co-modulation of upregulated miR-21 and downregulated miR-7 to enhance therapeutic outcomes in heterogenic tumor types. We first engineered lentiviral (LV) and adeno-associated viral (AAV) vectors that preferentially express anti-sense miR against miR-21(miRzip-21) and show that modulating miR-21 via miRzip extensively targets tumor cell proliferation, migration and invasion in vitro in a broad spectrum of cancer types and has therapeutic efficacy in vivo. Next, we show a significantly increased expression of caspase-mediated apoptosis by simultaneously downregulating miR-21 and upregulating miR-7 in different tumor cells. In vivo co-treatment with AAV-miRzip-21 and AAV-miR-7 in mice bearing malignant brain tumors resulted in significantly decreased tumor burden with a corresponding increase in survival. To our knowledge, this is the first study that demonstrates the therapeutic efficacy of simultaneously upregulating miR-7 and downregulating miR-21 and establishes a roadmap towards clinical translation of modulating miRs for various cancer types.
Collapse
Affiliation(s)
- Deepak Bhere
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nahid Arghiani
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biology and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Esther Revai Lechtich
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yizheng Yao
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah Alsaab
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Joint Center of Excellence in Biomedicine, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Fengfeng Bei
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Maryam M Matin
- Department of Biology and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
15
|
Cansby E, Magnusson E, Nuñez-Durán E, Amrutkar M, Pedrelli M, Parini P, Hoffmann J, Ståhlman M, Howell BW, Marschall HU, Borén J, Mahlapuu M. STK25 Regulates Cardiovascular Disease Progression in a Mouse Model of Hypercholesterolemia. Arterioscler Thromb Vasc Biol 2019; 38:1723-1737. [PMID: 29930001 DOI: 10.1161/atvbaha.118.311241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective- Recent cohort studies have shown that nonalcoholic fatty liver disease (NAFLD), and especially nonalcoholic steatohepatitis (NASH), associate with atherosclerosis and cardiovascular disease, independently of conventional cardiometabolic risk factors. However, the mechanisms underlying the pathophysiological link between NAFLD/NASH and cardiovascular disease still remain unclear. Our previous studies have identified STK25 (serine/threonine protein kinase 25) as a critical determinant in ectopic lipid storage, meta-inflammation, and progression of NAFLD/NASH. The aim of this study was to assess whether STK25 is also one of the mediators in the complex molecular network controlling the cardiovascular disease risk. Approach and Results- Atherosclerosis was induced in Stk25 knockout and transgenic mice, and their wild-type littermates, by gene transfer of gain-of-function mutant of PCSK9 (proprotein convertase subtilisin/kexin type 9), which induces the downregulation of hepatic LDLR (low-density lipoprotein receptor), combined with an atherogenic western-type diet. We found that Stk25-/- mice displayed reduced atherosclerosis lesion area as well as decreased lipid accumulation, macrophage infiltration, collagen formation, and oxidative stress in aortic lesions compared with wild-type littermates, independently from alterations in dyslipidemia. Reciprocally, Stk25 transgenic mice presented aggravated plaque formation and maturation compared with wild-type littermates despite similar levels of fasting plasma cholesterol. We also found that STK25 protein was expressed in all layers of the aorta, suggesting a possible direct role in cardiovascular disease. Conclusions- This study provides the first evidence that STK25 plays a critical role in regulation of cardiovascular disease risk and suggests that pharmacological inhibition of STK25 function may provide new possibilities for prevention/treatment of atherosclerosis.
Collapse
Affiliation(s)
- Emmelie Cansby
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | - Elin Magnusson
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | - Esther Nuñez-Durán
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | - Manoj Amrutkar
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Sweden; Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Norway (M.A.)
| | | | - Paolo Parini
- Department of Laboratory Medicine (M.P., P.P.).,Department of Medicine, Metabolism Unit (P.P.)
| | - Jenny Hoffmann
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | | | - Brian W Howell
- Karolinska Institute, Stockholm, Sweden; and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse (B.W.H.)
| | | | - Jan Borén
- Wallenberg Laboratory (M.S., H.-U.M., J.B.)
| | - Margit Mahlapuu
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| |
Collapse
|
16
|
Lai J, Ge M, Shen S, Yang L, Jin T, Cao D, Xu H, Zheng X, Qiu S, Wang K, Wei Q, Li H, Ai J. Activation of NFKB-JMJD3 signaling promotes bladder fibrosis via boosting bladder smooth muscle cell proliferation and collagen accumulation. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2403-2410. [PMID: 31102789 DOI: 10.1016/j.bbadis.2019.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/28/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Chronic cystitis is characterized by the hyperplasia and fibrosis of the bladder wall as well as attenuated compliance of the bladder. To further unravel its underlying molecular mechanism, the role of NFκB-JMJD3 signaling pathway in cystitis induced bladder fibrosis was investigated. Jmjd3 and Col1/3 expression was detected in a cystitis mouse model that was developed by intraperitoneal injection of cyclophosphamide (CYP). Human bladder smooth muscle cells (hBSMCs) were stimulated in vitro with lipopolysaccharide (LPS), and the cell proliferation and collagen accumulation were detected using EdU, CCK8, flow cytometry, qPCR, western blotting and immunofluorescence assays. Furthermore, the effects of NFκB and JMJD3 on cell proliferation and collagen accumulation were investigated using its selective antagonists, JSH23 and GSK-J4, respectively. CYP induced cystitis significantly increased Jmjd3, Col1 and Col3 expression in the bladder muscle cells. Furthermore, LPS stimulation markedly activated NFκB signaling and elevated JMJD3 expression in hBSMCs, and the activation of NFκB-JMJD3 signaling significantly promoted cell proliferation and collagen accumulation by upregulating CCND1 and COL1/3 expression, respectively. Our study reveals the critical role of NFκB-JMJD3 signaling in cystitis induced bladder reconstruction by regulating hBSMC proliferation and extracellular matrix (ECM) deposition, and these findings provide an avenue for effective treatment of patients with cystitis.
Collapse
Affiliation(s)
- Junyu Lai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China; Department of Urology, the Affiliated TCM Hospital of Southwest Medical University, China
| | - Manqing Ge
- Department of Anorectal Surgery, the Affiliated TCM Hospital of Southwest Medical University, China
| | - Sikui Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Tao Jin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Xiaonan Zheng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Kunjie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Hong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, China.
| |
Collapse
|
17
|
Xu R, Jia Y, Zygmunt DA, Martin PT. rAAVrh74.MCK.GALGT2 Protects against Loss of Hemodynamic Function in the Aging mdx Mouse Heart. Mol Ther 2019; 27:636-649. [PMID: 30711447 PMCID: PMC6403484 DOI: 10.1016/j.ymthe.2019.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/31/2018] [Accepted: 01/07/2019] [Indexed: 01/16/2023] Open
Abstract
Dilated cardiomyopathy is a common cause of death in patients with Duchenne muscular dystrophy (DMD). Gene therapies for DMD must, therefore, have a therapeutic impact in cardiac as well as skeletal muscles. Our previous studies have shown that GALGT2 overexpression in mdx skeletal muscles can prevent muscle damage. Here we have tested whether rAAVrh74.MCK.GALGT2 gene therapy in mdx cardiac muscle can prevent the loss of heart function. Treatment of mdx hearts with rAAVrh74.MCK.GALGT2 1 day after birth did not negatively alter hemodynamic function, tested at 3 months of age, and it prevented early left ventricular remodeling and expression of fibrotic gene markers. Intravenous treatment of mdx mice with rAAVrh74.MCK.GALGT2 at 2 months of age significantly improved stroke volume and cardiac output compared to mock-treated mice analyzed at 17 months, both at rest and after stimulation with dobutamine. rAAVrh74.MCK.GALGT2 treatment of mdx heart correlated with increased glycosylation of α-dystroglycan with the CT glycan and increased utrophin protein expression. These data provide the first demonstration that GALGT2 overexpression can inhibit the loss of cardiac function in the dystrophin-deficient heart and, thus, may benefit both cardiac and skeletal muscles in DMD patients.
Collapse
Affiliation(s)
- Rui Xu
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Ying Jia
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Deborah A Zygmunt
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Paul T Martin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Therapeutic potential of combined viral transduction and CRISPR/Cas9 gene editing in treating neurodegenerative diseases. Neurol Sci 2018; 39:1827-1835. [DOI: 10.1007/s10072-018-3521-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022]
|
19
|
Kleven MD, Gomes MM, Wortham AM, Enns CA, Kahl CA. Ultrafiltered recombinant AAV8 vector can be safely administered in vivo and efficiently transduces liver. PLoS One 2018; 13:e0194728. [PMID: 29621273 PMCID: PMC5886455 DOI: 10.1371/journal.pone.0194728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/08/2018] [Indexed: 12/20/2022] Open
Abstract
Viral vectors are extensively purified for use in biomedical research, in order to separate biologically active virus particles and to eliminate production related impurities that are assumed to be detrimental to the host. For recombinant adeno-associated virus (rAAV) vectors this is typically accomplished using density gradient-based methods, which are tedious and require specialized ultracentrifugation equipment. In order to streamline the preparation of rAAV vectors for pilot and small animal studies, we recently devised a simple ultrafiltration approach that permits rapid virus concentration and partial removal of production-related impurities. Here we show that systemic administration of such rapidly prepared (RP) rAAV8 vectors in mice is safe and efficiently transduces the liver. Across a range of doses, delivery of RP rAAV8-CMV-eGFP vector induced enhanced green fluorescent protein (eGFP) expression in liver that was comparable to that obtained from a conventional iodixanol gradient-purified (IP) vector. Surprisingly, no liver inflammation or systemic cytokine induction was detected in RP rAAV injected animals, revealing that residual impurities in the viral vector preparation are not deleterious to the host. Together, these data demonstrate that partially purified rAAV vector can be safely and effectively administered in vivo. The speed and versatility of the RP method and lack of need for cumbersome density gradients or expensive ultracentrifuge equipment will enable more widespread use of RP prepared rAAV vectors, such as for pilot liver gene transfer studies.
Collapse
Affiliation(s)
- Mark D. Kleven
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michelle M. Gomes
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Aaron M. Wortham
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Caroline A. Enns
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Christoph A. Kahl
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
20
|
Kumar R, Kumar V, Kumar S. Production of recombinant Erns protein of classical swine fever virus and assessment of its enzymatic activity: A recombinant Newcastle disease virus-based approach. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Therapeutic advances in musculoskeletal AAV targeting approaches. Curr Opin Pharmacol 2017; 34:56-63. [PMID: 28743034 DOI: 10.1016/j.coph.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/24/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022]
Abstract
The use of recombinant adeno-associated viruses (rAAVs) is highly prevalent in musculoskeletal gene therapies due to their versatility, high transduction efficiency, natural tropism and vector genome persistence for years. As the largest organ in the body, treatment of skeletal muscle for widespread and sufficient therapeutic gene expression is highly challenging. In addition to disease-specific hurdles, vector genome loss, off-target gene transfer and immune responses to treatment can diminish the overall benefit of rAAV therapies. A variety of approaches have been developed to overcome these challenges and improve musculoskeletal targeting of rAAVs. This review focuses on recent advancements and remaining obstacles in creating optimal rAAV-based therapies for musculoskeletal application.
Collapse
|