1
|
Perez CM, Gong Z, Yoo C, Roy D, Deoraj A, Felty Q. Inhibitor of DNA Binding Protein 3 (ID3) and Nuclear Respiratory Factor 1 (NRF1) Mediated Transcriptional Gene Signatures are Associated with the Severity of Cerebral Amyloid Angiopathy. Mol Neurobiol 2024; 61:835-882. [PMID: 37668961 DOI: 10.1007/s12035-023-03541-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/25/2023] [Indexed: 09/06/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is a degenerative vasculopathy. We have previously shown that transcription regulating proteins- inhibitor of DNA binding protein 3 (ID3) and the nuclear respiratory factor 1 (NRF1) contribute to vascular dysregulation. In this study, we have identified sex specific ID3 and NRF1-mediated gene networks in CAA patients diagnosed with Alzheimer's Disease (AD). High expression of ID3 mRNA coupled with low NRF1 mRNA levels was observed in the temporal cortex of men and women CAA patients. Low NRF1 mRNA expression in the temporal cortex was found in men with severe CAA. High ID3 expression was found in women with the genetic risk factor APOE4. Low NRF1 expression was also associated with APOE4 in women with CAA. Genome wide transcriptional activity of both ID3 and NRF1 paralleled their mRNA expression levels. Sex specific differences in transcriptional gene signatures of both ID3 and NRF1 were observed. These findings were further corroborated by Bayesian machine learning and the GeNIe simulation models. Dynamic machine learning using a Monte Carlo Markov Chain (MCMC) gene ordering approach revealed that ID3 was associated with disease severity in women. NRF1 was associated with CAA and severity of this disease in men. These findings suggest that aberrant ID3 and NRF1 activity presumably plays a major role in the pathogenesis and severity of CAA. Further analyses of ID3- and NRF1-regulated molecular drivers of CAA may provide new targets for personalized medicine and/or prevention strategies against CAA.
Collapse
Affiliation(s)
- Christian Michael Perez
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Zhenghua Gong
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Changwon Yoo
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Deodutta Roy
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Alok Deoraj
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Quentin Felty
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA.
| |
Collapse
|
2
|
Mei H, Simino J, Li L, Jiang F, Bis JC, Davies G, Hill WD, Xia C, Gudnason V, Yang Q, Lahti J, Smith JA, Kirin M, De Jager P, Armstrong NJ, Ghanbari M, Kolcic I, Moran C, Teumer A, Sargurupremraj M, Mahmud S, Fornage M, Zhao W, Satizabal CL, Polasek O, Räikkönen K, Liewald DC, Homuth G, Callisaya M, Mather KA, Windham BG, Zemunik T, Palotie A, Pattie A, van der Auwera S, Thalamuthu A, Knopman DS, Rudan I, Starr JM, Wittfeld K, Kochan NA, Griswold ME, Vitart V, Brodaty H, Gottesman R, Cox SR, Psaty BM, Boerwinkle E, Chasman DI, Grodstein F, Sachdev PS, Srikanth V, Hayward C, Wilson JF, Eriksson JG, Kardia SLR, Grabe HJ, Bennett DA, Ikram MA, Deary IJ, van Duijn CM, Launer L, Fitzpatrick AL, Seshadri S, Bressler J, Debette S, Mosley TH. Multi-omics and pathway analyses of genome-wide associations implicate regulation and immunity in verbal declarative memory performance. Alzheimers Res Ther 2024; 16:14. [PMID: 38245754 PMCID: PMC10799499 DOI: 10.1186/s13195-023-01376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Uncovering the functional relevance underlying verbal declarative memory (VDM) genome-wide association study (GWAS) results may facilitate the development of interventions to reduce age-related memory decline and dementia. METHODS We performed multi-omics and pathway enrichment analyses of paragraph (PAR-dr) and word list (WL-dr) delayed recall GWAS from 29,076 older non-demented individuals of European descent. We assessed the relationship between single-variant associations and expression quantitative trait loci (eQTLs) in 44 tissues and methylation quantitative trait loci (meQTLs) in the hippocampus. We determined the relationship between gene associations and transcript levels in 53 tissues, annotation as immune genes, and regulation by transcription factors (TFs) and microRNAs. To identify significant pathways, gene set enrichment was tested in each cohort and meta-analyzed across cohorts. Analyses of differential expression in brain tissues were conducted for pathway component genes. RESULTS The single-variant associations of VDM showed significant linkage disequilibrium (LD) with eQTLs across all tissues and meQTLs within the hippocampus. Stronger WL-dr gene associations correlated with reduced expression in four brain tissues, including the hippocampus. More robust PAR-dr and/or WL-dr gene associations were intricately linked with immunity and were influenced by 31 TFs and 2 microRNAs. Six pathways, including type I diabetes, exhibited significant associations with both PAR-dr and WL-dr. These pathways included fifteen MHC genes intricately linked to VDM performance, showing diverse expression patterns based on cognitive status in brain tissues. CONCLUSIONS VDM genetic associations influence expression regulation via eQTLs and meQTLs. The involvement of TFs, microRNAs, MHC genes, and immune-related pathways contributes to VDM performance in older individuals.
Collapse
Affiliation(s)
- Hao Mei
- Department of Data Science, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS, USA.
- Gertrude C. Ford Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Jeannette Simino
- Department of Data Science, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS, USA.
- Gertrude C. Ford Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Lianna Li
- Department of Biology, Tougaloo College, Jackson, MS, USA
| | - Fan Jiang
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Joshua C Bis
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Gail Davies
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - W David Hill
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Charley Xia
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Jari Lahti
- Turku Institute for Advanced Research, University of Turku, Turku, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Mirna Kirin
- Work completed while at The University of Edinburgh, Edinburgh, UK
| | - Philip De Jager
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Columbia Irving University Medical Center, New York, NY, USA
- Center for Translational and Computational Neuro-Immunology, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | | | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus Medical Center University Medical Center, Rotterdam, The Netherlands
| | - Ivana Kolcic
- School of Medicine, University of Split, Split, Croatia
| | - Christopher Moran
- Department of Geriatric Medicine, Frankston Hospital, Peninsula Health, Melbourne, Australia
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Murali Sargurupremraj
- Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, University of Bordeaux, Bordeaux, France
| | - Shamsed Mahmud
- Department of Data Science, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS, USA
| | - Myriam Fornage
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Claudia L Satizabal
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ozren Polasek
- School of Medicine, University of Split, Split, Croatia
- Algebra University College, Ilica 242, Zagreb, Croatia
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - David C Liewald
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Michele Callisaya
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - B Gwen Windham
- Gertrude C. Ford Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Medicine, Division of Geriatrics, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Aarno Palotie
- Department of Medicine, Department of Neurology and Department of Psychiatry, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alison Pattie
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Sandra van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | | | - Igor Rudan
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - John M Starr
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/ Greifswald, Rostock, Germany
| | - Nicole A Kochan
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Michael E Griswold
- Gertrude C. Ford Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Medicine, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Dementia Centre for Research Collaboration, University of New South Wales, Sydney, NSW, Australia
| | - Rebecca Gottesman
- Stroke, Cognition, and Neuroepidemiology (SCAN) Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Simon R Cox
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Bruce M Psaty
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Daniel I Chasman
- Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Francine Grodstein
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia
| | - Velandai Srikanth
- Department of Geriatric Medicine, Frankston Hospital, Peninsula Health, Melbourne, Australia
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Public Health Solutions, Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
- Folkhälsan Research Centre, Helsinki, Finland
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/ Greifswald, Rostock, Germany
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center University Medical Center, Rotterdam, The Netherlands
| | - Ian J Deary
- Department of Psychology, Lothian Birth Cohorts Group, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Cornelia M van Duijn
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Lenore Launer
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, Bethesda, MD, USA
| | - Annette L Fitzpatrick
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Family Medicine, University of Washington, Seattle, WA, USA
| | - Sudha Seshadri
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stephanie Debette
- Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, University of Bordeaux, Bordeaux, France
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, CHU de Bordeaux, Bordeaux, France
| | - Thomas H Mosley
- Gertrude C. Ford Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Medicine, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
3
|
Hattori Y, Saito S, Nakaoku Y, Ogata S, Hattori M, Nakatsuji M, Nishimura K, Ihara M. Taxifolin for Cognitive Preservation in Patients with Mild Cognitive Impairment or Mild Dementia. J Alzheimers Dis 2023; 93:743-754. [PMID: 37092223 DOI: 10.3233/jad-221293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND The development of numerous disease-modifying drugs for age-related dementia has been attempted based on the amyloid-β (Aβ) hypothesis without much success. Taxifolin (TAX), a natural bioactive flavonoid, shows pleiotropic neuroprotective effects with inhibition of Aβ aggregation, production, and glycation, antiinflammatory effects, and amelioration of the waste clearance system. We hypothesized that TAX intake is associated with the suppression of cognitive deterioration. OBJECTIVE To investigate associations between TAX intake and cognitive changes. METHODS We retrospectively identified patients who orally took TAX 300 mg/day and regularly underwent Alzheimer's Disease Assessment Scale-Cognitive Subscale 13 (ADAS-Cog) and Montreal Cognitive Assessment (MoCA) and compared the temporal changes in ADAS-Cog and MoCA between the non-treatment (pre-TAX) period (180±100 days) and following treatment (on-TAX) period (180±100 days) from June 2020 to November 2021. Since some additional patients underwent the Mini-Mental State Examination (MMSE) instead of the MoCA at the beginning of the pre-TAX period, the same comparison was performed using the MoCA total score converted from MMSE as a sensitivity analysis. RESULTS Sixteen patients were identified. TAX intake was associated with significantly higher interval changes in the MoCA subscale scores of visuospatial/executive function (p = 0.016), verbal fluency (p = 0.02), and the total score (p = 0.034), but not with ADAS-Cog (total score, p = 0.27). In the sensitivity analysis, 29 patients were included. TAX intake was associated with a significantly higher interval change in the total MoCA score (p = 0.004) but not with ADAS-Cog (p = 0.41). CONCLUSION Our findings provide a basis for TAX as a novel strategy for maintaining brain health during aging. A prospective cohort study is required to confirm these findings.
Collapse
Affiliation(s)
- Yorito Hattori
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yuriko Nakaoku
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Soshiro Ogata
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Masashi Hattori
- Next Generation Business Development Department, Business Development Division, Towa Pharmaceutical Co., Ltd, Kadoma, Osaka, Japan
| | - Mio Nakatsuji
- Scientific Research and Business Development Department, Towa Pharmaceutical Co., Ltd, Settsu, Osaka, Japan
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
4
|
Rueter J, Rimbach G, Treitz C, Schloesser A, Lüersen K, Tholey A, Huebbe P. The mitochondrial BCKD complex interacts with hepatic apolipoprotein E in cultured cells in vitro and mouse livers in vivo. Cell Mol Life Sci 2023; 80:59. [PMID: 36749362 PMCID: PMC9905200 DOI: 10.1007/s00018-023-04706-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Apolipoprotein E (APOE) is known for its role in lipid metabolism and its association with age-related disease pathology. The aim of the present work was to identify previously unknown functions of APOE based on the detection of novel APOE protein-protein interaction candidates. APPROACH AND RESULTS APOE targeted replacement mice and transfected cultured hepatocytes expressing the human isoforms APOE3 and APOE4 were used. For 7 months, APOE3 and APOE4 mice were fed a high-fat and high-sugar diet to induce obesity, while a subgroup was subjected to 30% dietary restriction. Proteomic analysis of coimmunoprecipitation products from APOE mouse liver extracts revealed 28 APOE-interacting candidate proteins, including branched-chain alpha-keto acid dehydrogenase (BCKD) complex subunit alpha (BCKDHA) and voltage-dependent anion-selective channel 1 (VDAC1). The binding of APOE and BCKDHA was verified in situ by proximity ligation assay in cultured cells. The activity of the BCKD enzyme complex was significantly higher in obese APOE4 mice than in APOE3 mice, while the plasma levels of branched-chain amino acids and mTOR signalling proteins were not different. However, the protein-protein interaction with VDAC1 was strongly induced in APOE3 and APOE4 mice upon dietary restriction, suggesting a prominent role of APOE in mitochondrial function. CONCLUSIONS The protein-protein interactions of APOE with BCKDHA and VDAC1 appear to be of physiological relevance and are modulated upon dietary restriction. Because these are mitochondrial proteins, it may be suggested that APOE is involved in mitochondria-related processes and adaptation to hepatic energy demands.
Collapse
Affiliation(s)
- Johanna Rueter
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany.
| | - Christian Treitz
- Institute of Experimental Medicine, University of Kiel, Niemannsweg 11, 24105, Kiel, Germany
| | - Anke Schloesser
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| | - Andreas Tholey
- Institute of Experimental Medicine, University of Kiel, Niemannsweg 11, 24105, Kiel, Germany
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| |
Collapse
|
5
|
Rao RV, Subramaniam KG, Gregory J, Bredesen AL, Coward C, Okada S, Kelly L, Bredesen DE. Rationale for a Multi-Factorial Approach for the Reversal of Cognitive Decline in Alzheimer's Disease and MCI: A Review. Int J Mol Sci 2023; 24:ijms24021659. [PMID: 36675177 PMCID: PMC9865291 DOI: 10.3390/ijms24021659] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, progressive, neurodegenerative disease typically characterized by memory loss, personality changes, and a decline in overall cognitive function. Usually manifesting in individuals over the age of 60, this is the most prevalent type of dementia and remains the fifth leading cause of death among Americans aged 65 and older. While the development of effective treatment and prevention for AD is a major healthcare goal, unfortunately, therapeutic approaches to date have yet to find a treatment plan that produces long-term cognitive improvement. Drugs that may be able to slow down the progression rate of AD are being introduced to the market; however, there has been no previous solution for preventing or reversing the disease-associated cognitive decline. Recent studies have identified several factors that contribute to the progression and severity of the disease: diet, lifestyle, stress, sleep, nutrient deficiencies, mental health, socialization, and toxins. Thus, increasing evidence supports dietary and other lifestyle changes as potentially effective ways to prevent, slow, or reverse AD progression. Studies also have demonstrated that a personalized, multi-therapeutic approach is needed to improve metabolic abnormalities and AD-associated cognitive decline. These studies suggest the effects of abnormalities, such as insulin resistance, chronic inflammation, hypovitaminosis D, hormonal deficiencies, and hyperhomocysteinemia, in the AD process. Therefore a personalized, multi-therapeutic program based on an individual's genetics and biochemistry may be preferable over a single-drug/mono-therapeutic approach. This article reviews these multi-therapeutic strategies that identify and attenuate all the risk factors specific to each affected individual. This article systematically reviews studies that have incorporated multiple strategies that target numerous factors simultaneously to reverse or treat cognitive decline. We included high-quality clinical trials and observational studies that focused on the cognitive effects of programs comprising lifestyle, physical, and mental activity, as well as nutritional aspects. Articles from PubMed Central, Scopus, and Google Scholar databases were collected, and abstracts were reviewed for relevance to the subject matter. Epidemiological, pathological, toxicological, genetic, and biochemical studies have all concluded that AD represents a complex network insufficiency. The research studies explored in this manuscript confirm the need for a multifactorial approach to target the various risk factors of AD. A single-drug approach may delay the progression of memory loss but, to date, has not prevented or reversed it. Diet, physical activity, sleep, stress, and environment all contribute to the progression of the disease, and, therefore, a multi-factorial optimization of network support and function offers a rational therapeutic strategy. Thus, a multi-therapeutic program that simultaneously targets multiple factors underlying the AD network may be more effective than a mono-therapeutic approach.
Collapse
Affiliation(s)
- Rammohan V. Rao
- Apollo Health, Burlingame, CA 94011, USA
- Correspondence: (R.V.R.); (D.E.B.)
| | | | | | | | | | - Sho Okada
- Apollo Health, Burlingame, CA 94011, USA
| | | | - Dale E. Bredesen
- Apollo Health, Burlingame, CA 94011, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90024, USA
- Correspondence: (R.V.R.); (D.E.B.)
| |
Collapse
|
6
|
Pires M, Rego AC. Apoe4 and Alzheimer's Disease Pathogenesis-Mitochondrial Deregulation and Targeted Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24010778. [PMID: 36614219 PMCID: PMC9821307 DOI: 10.3390/ijms24010778] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
APOE ε4 allele (ApoE4) is the primary genetic risk factor for sporadic Alzheimer's disease (AD), expressed in 40-65% of all AD patients. ApoE4 has been associated to many pathological processes possibly linked to cognitive impairment, such as amyloid-β (Aβ) and tau pathologies. However, the exact mechanism underlying ApoE4 impact on AD progression is unclear, while no effective therapies are available for this highly debilitating neurodegenerative disorder. This review describes the current knowledge of ApoE4 interaction with mitochondria, causing mitochondrial dysfunction and neurotoxicity, associated with increased mitochondrial Ca2+ and reactive oxygen species (ROS) levels, and it effects on mitochondrial dynamics, namely fusion and fission, and mitophagy. Moreover, ApoE4 translocates to the nucleus, regulating the expression of genes involved in aging, Aβ production, inflammation and apoptosis, potentially linked to AD pathogenesis. Thus, novel therapeutical targets can be envisaged to counteract the effects induced by ApoE4 in AD brain.
Collapse
Affiliation(s)
- Mariana Pires
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Polo I, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Polo III, 3004-354 Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Polo I, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Polo III, 3004-354 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-820190; Fax: +351-239-822776
| |
Collapse
|
7
|
Perez C, Felty Q. Molecular basis of the association between transcription regulators nuclear respiratory factor 1 and inhibitor of DNA binding protein 3 and the development of microvascular lesions. Microvasc Res 2022; 141:104337. [PMID: 35143811 PMCID: PMC8923910 DOI: 10.1016/j.mvr.2022.104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/25/2022]
Abstract
The prognosis of patients with microvascular lesions remains poor because vascular remodeling eventually obliterates the lumen. Here we have focused our efforts on vessel dysfunction in two different organs, the lung and brain. Despite tremendous progress in understanding the importance of blood vessel integrity, gaps remain in our knowledge of the underlying molecular factors contributing to vessel injury, including microvascular lesions. Most of the ongoing research on these lesions have focused on oxidative stress but have not found major molecular targets for the discovery of new treatment or early diagnosis. Herein, we have focused on elucidating the molecular mechanism(s) based on two new emerging molecules NRF1 and ID3, and how they may contribute to microvascular lesions in the lung and brain. Redox sensitive transcriptional activation of target genes depends on not only NRF1, but the recruitment of co-activators such as ID3 to the target gene promoter. Our review highlights the fact that targeting NRF1 and ID3 could be a promising therapeutic approach as they are major players in influencing cell growth, cell repair, senescence, and apoptotic cell death which contribute to vascular lesions. Knowledge about the molecular biology of these processes will be relevant for future therapeutic approaches to not only PAH but cerebral angiopathy and other vascular disorders. Therapies targeting transcription regulators NRF1 or ID3 have the potential for vascular disease-modification because they will address the root causes such as genomic instability and epigenetic changes in vascular lesions. We hope that our findings will serve as a stimulus for further research towards an effective treatment of microvascular lesions.
Collapse
Affiliation(s)
- Christian Perez
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
8
|
Patel K, Srivastava S, Kushwah S, Mani A. Perspectives on the Role of APOE4 as a Therapeutic Target for Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:899-910. [PMID: 35088039 PMCID: PMC8764632 DOI: 10.3233/adr-210027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/21/2021] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is coupled with chronic cognitive dysfunction. AD cases are mostly late onset, and genetic risk factors like the Apolipoprotein E (APOE) play a key role in this process. APOE ɛ2, APOE ɛ3, and APOE ɛ4 are three key alleles in the human APOE gene. For late onset, APOE ɛ4 has the most potent risk factor while APOE ɛ2 plays a defensive role. Several studies suggests that APOE ɛ4 causes AD via different processes like neurofibrillary tangle formation by amyloid-β accumulation, exacerbated neuroinflammation, cerebrovascular disease, and synaptic loss. But the pathway is still unclear that which actions of APOE ɛ4 lead to AD development. Since APOE was found to contribute to many AD pathways, targeting APOE ɛ4 can lead to a hopeful plan of action in development of new drugs to target AD. In this review, we focus on recent studies and perspectives, focusing on APOE ɛ4 as a key molecule in therapeutic strategies.
Collapse
Affiliation(s)
- Kavita Patel
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Siwangi Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shikha Kushwah
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
9
|
Mamun AA, Uddin MS, Bin Bashar MF, Zaman S, Begum Y, Bulbul IJ, Islam MS, Sarwar MS, Mathew B, Amran MS, Md Ashraf G, Bin-Jumah MN, Mousa SA, Abdel-Daim MM. Molecular Insight into the Therapeutic Promise of Targeting APOE4 for Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5086250. [PMID: 32509144 PMCID: PMC7245681 DOI: 10.1155/2020/5086250] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that causes chronic cognitive dysfunction. Most of the AD cases are late onset, and the apolipoprotein E (APOE) isoform is a key genetic risk factor. The APOE gene has 3 key alleles in humans including APOE2, APOE3, and APOE4. Among them, APOE4 is the most potent genetic risk factor for late-onset AD (LOAD), while APOE2 has a defensive effect. Research data suggest that APOE4 leads to the pathogenesis of AD through various processes such as accelerated beta-amyloid aggregations that raised neurofibrillary tangle formation, cerebrovascular diseases, aggravated neuroinflammation, and synaptic loss. However, the precise mode of actions regarding in what way APOE4 leads to AD pathology remains unclear. Since APOE contributes to several pathological pathways of AD, targeting APOE4 might serve as a promising strategy for the development of novel drugs to combat AD. In this review, we focus on the recent studies about APOE4-targeted therapeutic strategies that have been advanced in animal models and are being prepared for use in humans for the management of AD.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md. Fahim Bin Bashar
- Department of Pharmacy, University of Development Alternative, Dhaka, Bangladesh
| | - Sonia Zaman
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Yesmin Begum
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | | | - Md. Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY 12144, USA
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
10
|
Positive regulation of human PINK1 and Parkin gene expression by nuclear respiratory factor 1. Mitochondrion 2020; 51:22-29. [DOI: 10.1016/j.mito.2019.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 01/24/2023]
|
11
|
Buskbjerg CDR, Amidi A, Demontis D, Nissen ER, Zachariae R. Genetic risk factors for cancer-related cognitive impairment: a systematic review. Acta Oncol 2019; 58:537-547. [PMID: 30822178 DOI: 10.1080/0284186x.2019.1578410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Cancer-related cognitive impairment (CRCI) is a commonly reported complaint among non-CNS cancer patients. Even subtle CRCI may have detrimental effects on quality of life and identifying patients at increased risk for CRCI to improve survivorship care is important. In the present paper, we systematically reviewed available studies of possible genetic risk factors for developing CRCI. Methods: Keyword-based systematic searches were undertaken on 24 July 2018 in PubMed, Web of Science, The Cochrane Library, and CINAHL. Three authors independently evaluated full-texts of identified papers and excluded studies with registration of reasons. Seventeen studies reporting results from 14 independent samples were included for review. Two authors independently quality assessed the included studies. The review was preregistered with PROSPERO (CRD42018107689). Results: Ten studies investigated apolipoprotein E (APOE), with four studies reporting that carrying at least one risk allele (APOE4 (ε4)) was associated with CRCI, while six studies found no association. The remaining identified genetic risk variants associated with CRCI located in: COMT, four DNA repair genes, five oxidative stress genes, 22 genes related to breast cancer phenotype, and GNB3. No associations were found between CRCI and genes coding for interleukin-6 (IL6), tumor necrosis factor alpha (TNF), interleukin 1 beta (IL1B), and brain-derived neurotropic factor (BDNF). With the exception of APOE, the genetic risk factors had only been investigated in one or two studies each. Conclusions: Overall, the available evidence of possible genetic risk factors for CRCI is limited. While some research suggests a role for the ε4 allele, the literature is generally inconsistent, and the currently available evidence does not allow clear-cut conclusions regarding the role of genetic factors in the development of CRCI. Larger genetic studies and studies investigating additional genetic variants are needed to uncover genetic risk factors for CRCI.
Collapse
Affiliation(s)
- Cecilie D. R. Buskbjerg
- Unit for Psychooncology and Health Psychology, Department of Oncology, Aarhus University Hospital, and Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
| | - Ali Amidi
- Unit for Psychooncology and Health Psychology, Department of Oncology, Aarhus University Hospital, and Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
- Department of Biomedicine – Human Genetics, Aarhus University, Aarhus, Denmark
| | - Eva R. Nissen
- Unit for Psychooncology and Health Psychology, Department of Oncology, Aarhus University Hospital, and Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
| | - Robert Zachariae
- Unit for Psychooncology and Health Psychology, Department of Oncology, Aarhus University Hospital, and Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Womersley JS, Spies G, Seedat S, Hemmings SMJ. Childhood trauma interacts with ApoE to influence neurocognitive function in women living with HIV. J Neurovirol 2019; 25:183-193. [PMID: 30478798 PMCID: PMC7010592 DOI: 10.1007/s13365-018-0700-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) describes a spectrum of behavioural, motor and cognitive disturbances that can occur secondary to HIV infection. Less severe forms of the disorder persist despite advances in antiretroviral medication efficacy and availability. Childhood trauma (CT) may predispose individuals to developing HAND. As genetic variation in human apolipoprotein E (ApoE) has been implicated in cognitive decline and may mediate the development of long-term health outcomes following CT, we investigated the influence of ApoE and CT on cognitive function in the context of HIV. One hundred twenty-eight HIV-positive Xhosa women completed the Childhood Trauma Questionnaire-Short Form (CTQ-SF) as well as the HIV Neurobehavioural Research Center neurocognitive test battery. rs7412 and rs429358 were genotyped using KASP assays, and this data was used to determine the ApoE isoform. Baseline differences in demographic and clinical variables according to CT exposure were calculated. Analysis of covariance was used to assess the contributions of CT and ApoE variants, as well as their interaction, to cognitive function. Eighty-eight participants reported experiencing CT. The rs7412 C allele protected against the harmful effect of CT on motor scores using an additive model. The interaction of ApoE ε4 and CT was associated with worse attention/working memory scores. ApoE ε4, alone and in combination with CT, is associated with poorer cognitive function. Further research into this gene-environment interaction may assist in identifying at-risk individuals for targeted interventions.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa
| | - Georgina Spies
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa.
| |
Collapse
|
13
|
Abstract
BACKGROUND The growing body of evidence indicating the heterogeneity of Alzheimer's disease (AD), coupled with disappointing clinical studies directed at a fit-for-all therapy, suggest that the development of a single magic cure suitable for all cases may not be possible. This calls for a shift in paradigm where targeted treatment is developed for specific AD subpopulations that share distinct genetic or pathological properties. Apolipoprotein E4 (apoE4), the most prevalent genetic risk factor of AD, is expressed in more than half of AD patients and is thus an important possible AD therapeutic target. REVIEW This review focuses initially on the pathological effects of apoE4 in AD, as well as on the corresponding cellular and animal models and the suggested cellular and molecular mechanisms which mediate them. The second part of the review focuses on recent apoE4-targeted (from the APOE gene to the apoE protein and its interactors) therapeutic approaches that have been developed in animal models and are ready to be translated to human. Further, the issue of whether the pathological effects of apoE4 are due to loss of protective function or due to gain of toxic function is discussed herein. It is possible that both mechanisms coexist, with certain constituents of the apoE4 molecule and/or its downstream signaling mediating a toxic effect, while others are associated with a loss of protective function. CONCLUSION ApoE4 is a promising AD therapeutic target that remains understudied. Recent studies are now paving the way for effective apoE4-directed AD treatment approaches.
Collapse
|
14
|
Orr AL, Kim C, Jimenez-Morales D, Newton BW, Johnson JR, Krogan NJ, Swaney DL, Mahley RW. Neuronal Apolipoprotein E4 Expression Results in Proteome-Wide Alterations and Compromises Bioenergetic Capacity by Disrupting Mitochondrial Function. J Alzheimers Dis 2019; 68:991-1011. [PMID: 30883359 PMCID: PMC6481541 DOI: 10.3233/jad-181184] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
Apolipoprotein (apo) E4, the major genetic risk factor for Alzheimer's disease (AD), alters mitochondrial function and metabolism early in AD pathogenesis. When injured or stressed, neurons increase apoE synthesis. Because of its structural difference from apoE3, apoE4 undergoes neuron-specific proteolysis, generating fragments that enter the cytosol, interact with mitochondria, and cause neurotoxicity. However, apoE4's effect on mitochondrial respiration and metabolism is not understood in detail. Here we used biochemical assays and proteomic profiling to more completely characterize the effects of apoE4 on mitochondrial function and cellular metabolism in Neuro-2a neuronal cells stably expressing apoE4 or apoE3. Under basal conditions, apoE4 impaired respiration and increased glycolysis, but when challenged or stressed, apoE4-expressing neurons had 50% less reserve capacity to generate ATP to meet energy requirements than apoE3-expressing neurons. ApoE4 expression also decreased the NAD+/NADH ratio and increased the levels of reactive oxygen species and mitochondrial calcium. Global proteomic profiling revealed widespread changes in mitochondrial processes in apoE4 cells, including reduced levels of numerous respiratory complex subunits and major disruptions to all detected subunits in complex V (ATP synthase). Also altered in apoE4 cells were levels of proteins related to mitochondrial endoplasmic reticulum-associated membranes, mitochondrial fusion/fission, mitochondrial protein translocation, proteases, and mitochondrial ribosomal proteins. ApoE4-induced bioenergetic deficits led to extensive metabolic rewiring, but despite numerous cellular adaptations, apoE4-expressing neurons remained vulnerable to metabolic stress. Our results provide insights into potential molecular targets of therapies to correct apoE4-associated mitochondrial dysfunction and altered cellular metabolism.
Collapse
Affiliation(s)
- Adam L. Orr
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Present address: Helen & Robert Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Chaeyoung Kim
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - David Jimenez-Morales
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Present address: Department of Medicine, Division of Cardiovascular Medicine, Stanford University, CA, USA
| | - Billy W. Newton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Jeffrey R. Johnson
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Nevan J. Krogan
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Danielle L. Swaney
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Robert W. Mahley
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Pathology and Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
15
|
Transcriptional Effects of ApoE4: Relevance to Alzheimer's Disease. Mol Neurobiol 2017; 55:5243-5254. [PMID: 28879423 DOI: 10.1007/s12035-017-0757-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
Abstract
The major genetic risk factor for sporadic Alzheimer's disease (AD) is the lipid binding and transporting carrier protein apolipoprotein E, epsilon 4 allele (ApoE4). One of the unsolved mysteries of AD is how the presence of ApoE4 elicits this age-associated, currently incurable neurodegenerative disease. Recently, we showed that ApoE4 acts as a transcription factor and binds to the promoters of genes involved in a range of processes linked to aging and AD disease pathogenesis. These findings point to novel therapeutic strategies for AD and aging, resulting in an extension of human healthspan, the disease-free and functional period of life. Here, we review the effects and implications of the putative transcriptional role of ApoE4 and propose a model of Alzheimer's disease that focuses on the transcriptional nature of ApoE4 and its downstream effects, with the aim that this knowledge will help to define the role ApoE4 plays as a risk factor for AD, aging, and other processes such as inflammation and cardiovascular disease.
Collapse
|
16
|
Kaushik AC, Kumar A, Dwivedi VD, Bharadwaj S, Kumar S, Bharti K, Kumar P, Chaudhary RK, Mishra SK. Deciphering the Biochemical Pathway and Pharmacokinetic Study of Amyloid βeta-42 with Superparamagnetic Iron Oxide Nanoparticles (SPIONs) Using Systems Biology Approach. Mol Neurobiol 2017; 55:3224-3236. [DOI: 10.1007/s12035-017-0546-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
|