1
|
Kartal B, Alimoğulları E, Çaylı S. Investigation of the effects of small VCP-interacting protein (SVIP)on the migration and invasion of breast cancer cells. Pathol Res Pract 2025; 269:155929. [PMID: 40184728 DOI: 10.1016/j.prp.2025.155929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Endoplasmic reticulum-associated protein degradation(ERAD) eliminates misfolded proteins. Although there are many proteins involved in ERAD, we focused on small VCP-interacting protein (SVIP). The study aimed to investigate the expression of SVIP in breast cancer types and to determine whether SVIP contributes to the migration and invasion of breast cancer cells. Normal (MCF -10A), estrogen-positive (MCF-7), and triple-negative (MDA-MB-231) breast cancer cell lines were used in this study. Cellular localization of SVIP in breast cancer cells was examined by immunocytochemistry Western blot analysis was used to evaluate protein expression after SVIP siRNA transfection. RTCA identified the consequences of this suppression on cell invasion and migration. The immunoexpression of SVIP was observed in the cytoplasm of MCF-10A, MCF-7, and MDA-MB-231. The transfection of cells with SVIP siRNA led to a reduction in the protein expression of SVIP. SVIPsi RNA suppression results in decreased invasion and migration of MCF -10A. MDA-MB 231 cells' index of invasion and migration increased, and MCF- 7 cell index increased in the invasion but decreased in the migration as a result of SVIP siRNA suppression. In conclusion, SVIPsi transfection of the three cell types altered the ability of migration and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Bahar Kartal
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey.
| | - Ebru Alimoğulları
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey.
| | - Sevil Çaylı
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey.
| |
Collapse
|
2
|
Kobayashi H, Matsubara S, Yoshimoto C, Shigetomi H, Imanaka S. A Comprehensive Review of the Contribution of Mitochondrial DNA Mutations and Dysfunction in Polycystic Ovary Syndrome, Supported by Secondary Database Analysis. Int J Mol Sci 2025; 26:1172. [PMID: 39940939 PMCID: PMC11818232 DOI: 10.3390/ijms26031172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting women of reproductive age characterized by a spectrum of clinical, metabolic, reproductive, and psychological abnormalities. This syndrome is associated with significant long-term health risks, necessitating elucidation of its pathophysiology, early diagnosis, and comprehensive management strategies. Several contributory factors in PCOS, including androgen excess and insulin resistance, collectively enhance oxidative stress, which subsequently leads to mitochondrial dysfunction. However, the precise mechanisms through which oxidative stress induces mitochondrial dysfunction remain incompletely understood. Comprehensive searches of electronic databases were conducted to identify relevant studies published up to 30 September 2024. Mitochondria, the primary sites of reactive oxygen species (ROS) generation, play critical roles in energy metabolism and cellular homeostasis. Oxidative stress can inflict damage on components, including lipids, proteins, and DNA. Damage to mitochondrial DNA (mtDNA), which lacks efficient repair mechanisms, may result in mutations that impair mitochondrial function. Dysfunctional mitochondrial activity further amplifies ROS production, thereby perpetuating oxidative stress. These disruptions are implicated in the complications associated with the syndrome. Advances in genetic analysis technologies, including next-generation sequencing, have identified point mutations and deletions in mtDNA, drawing significant attention to their association with oxidative stress. Emerging data from mtDNA mutation analyses challenge conventional paradigms and provide new insights into the role of oxidative stress in mitochondrial dysfunction. We are rethinking the pathogenesis of PCOS based on these database analyses. In conclusion, this review explores the intricate relationship between oxidative stress, mtDNA mutations, and mitochondrial dysfunction, offers an updated perspective on the pathophysiology of PCOS, and outlines directions for future research.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan;
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
- Department of Medicine, Kei Oushin Clinic, 5-2-6 Naruo-cho, Nishinomiya 663-8184, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, 2-897-5 Shichijyonishi-machi, Nara 630-8581, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, 3-3-17 Kitatomigaoka-cho, Nara 634-0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan;
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
| |
Collapse
|
3
|
Duan F, Kong F, Jiang T, Liu H. SYVN1 modulates papillary thyroid carcinoma progression by destabilizing HMGB1. Cell Div 2024; 19:15. [PMID: 38679705 PMCID: PMC11057142 DOI: 10.1186/s13008-024-00121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
E3 ubiquitin ligase synoviolin (SYVN1) has been reported to participate in many human cancers. This study aimed to investigate SYVN1's roles and molecular pathways in papillary thyroid cancer (PTC). The functions of SYVN1 in PTC were further analyzed using gain- and loss-of-function methods and numerous investigations in cellular function and molecular biology. The findings demonstrated that the overexpression of SYVN1 markedly suppressed the proliferation, migration, and invasion of PTC cell lines (NPA87 and TPC-1). We found that SYVN1 interacted with HMGB1 and promoted its ubiquitination and degradation. In addition, SYVN1 effectively impairs cell proliferation, migration, invasion, and the formation of tumor xenografts in mice models. However, this effect may be partly reversed by overexpressing HMGB1. Thus, SYVN1 may inhibit the proliferation, migration, and invasion of PTC cells by disrupting HMGB1. Consequently, SYVN1 might be considered a promising therapeutic target for PTC.
Collapse
Affiliation(s)
- Fei Duan
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Fanli Kong
- Department of Otolaryngology Head and Neck Surgery, Jiujiang First People's Hospital, Jiujiang, 332600, China
| | - Taifeng Jiang
- Department of Otolaryngology Head and Neck Surgery, Jiujiang First People's Hospital, Jiujiang, 332600, China
| | - Hongbing Liu
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
4
|
Sukjoi W, Young C, Acland M, Siritutsoontorn S, Roytrakul S, Klingler-Hoffmann M, Hoffmann P, Jitrapakdee S. Proteomic analysis of holocarboxylase synthetase deficient-MDA-MB-231 breast cancer cells revealed the biochemical changes associated with cell death, impaired growth signaling, and metabolism. Front Mol Biosci 2024; 10:1250423. [PMID: 38283944 PMCID: PMC10812114 DOI: 10.3389/fmolb.2023.1250423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
We have previously shown that the holocarboxylase synthetase (HLCS) is overexpressed in breast cancer tissue of patients, and silencing of its expression in triple-negative cancer cell line inhibits growth and migration. Here we investigated the global biochemical changes associated with HLCS knockdown in MDA-MB-231 cells to discern the pathways that involve HLCS. Proteomic analysis of two independent HLCS knockdown cell lines identified 347 differentially expressed proteins (DEPs) whose expression change > 2-fold (p < 0.05) relative to the control cell line. GO enrichment analysis showed that these DEPs were mainly associated with the cellular process such as cellular metabolic process, cellular response to stimulus, and cellular component organization or biogenesis, metabolic process, biological regulation, response to stimuli, localization, and signaling. Among the 347 identified DEPs, 64 proteins were commonly found in both HLCS knockdown clones, confirming their authenticity. Validation of some of these DEPs by Western blot analysis showed that plasminogen activator inhibitor type 2 (SerpinB2) and interstitial collagenase (MMP1) were approximately 90% decreased in HLCS knockdown cells, consistent with a 50%-60% decrease in invasion ability of knockdown cells. Notably, argininosuccinate synthase 1 (ASS1), one of the enzymes in the urea cycle, showed approximately a 10-fold increase in the knockdown cells, suggesting the crucial role of HLCS in supporting the urea cycle in the triple-negative cancer cell line. Collectively, our proteomic data provide biochemical insights into how suppression of HLCS expression perturbs global changes in cellular processes and metabolic pathways, impairing cell growth and invasion.
Collapse
Affiliation(s)
- Witchuda Sukjoi
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Clifford Young
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mitchell Acland
- Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | | | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Agency, Pathumthani, Thailand
| | | | - Peter Hoffmann
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Erzurumlu Y, Dogan HK, Catakli D. New mode of action of curcumin on prostate cancer cells: Modulation of endoplasmic reticulum-associated degradation mechanism and estrogenic signaling. J Biochem Mol Toxicol 2024; 38:e23636. [PMID: 38229314 DOI: 10.1002/jbt.23636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
Prostate cancer is leading to cancer-related mortality in numerous men each year worldwide. While there are several treatment options, acquired drug resistance mostly limits the success of treatments. Therefore, there is a need for the development of innovative treatments. Curcumin is one of the bioactive polyphenolic ingredients identified in turmeric and has numerous biological activities, such as anti-inflammatory and anticancer. In the present study, we investigated the effect of curcumin on the ER-associated degradation (ERAD) and estrogenic signaling in prostate cancer cells. The antiproliferative effect of curcumin on human androgen-dependent prostate cancer cell lines LNCaP and VCaP was estimated by WST-1 assay. Morphological alterations were investigated with an inverted microscope. We investigated the effect of curcumin on ERAD and estrogen signaling proteins by immunoblotting assay. To evaluate the impact of curcumin on endoplasmic reticulum (ER) protein quality-related, the expression level of 32 genes was analyzed by quantitative reverse transcription polymerase chain reaction. The nuclear translocation of estrogen receptor was examined by nuclear fractionation and immunofluorescence microscopy. We found that curcumin effectively reduced the proliferation rates of LNCaP and VCaP cells. ERAD proteins; Hrd1, gp78, p97/VCP, Ufd1 and Npl4 were strongly induced by curcumin. Also, the steady-state level of polyubiquitin was increased in a dose-dependent manner in both cell lines. Curcumin administration remarkably decreased the protein levels of estrogen receptor-alfa (Erα), whereas estrogen receptor-beta unaffected. Additionally, curcumin strongly restricted the nuclear translocation of Erα. Present data suggest that curcumin may be effectively used in therapeutic approaches associated with the targeting ER protein quality control mechanism and modulation of estrogen signaling in prostate cancer.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
6
|
Dakir EH, Gajate C, Mollinedo F. Antitumor activity of alkylphospholipid edelfosine in prostate cancer models and endoplasmic reticulum targeting. Biomed Pharmacother 2023; 167:115436. [PMID: 37683591 DOI: 10.1016/j.biopha.2023.115436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer is the second most frequent cancer and the fifth leading cause of cancer death among men worldwide. While the five-year survival in local and regional prostate cancer is higher than 99%, it falls to about 28% in advanced metastatic prostate cancer. The ether lipid edelfosine is considered the prototype of a family of promising antitumor drugs collectively named as alkylphospholipid analogs. Here, we found that edelfosine was the most potent alkylphospholipid analog in inducing apoptosis in three different human prostate cancer cell lines (LNCaP, PC3, and DU145) with distinct androgen dependency, and differing in tumor suppressor phosphatase and tensin homolog (PTEN) and p53 status. Edelfosine accumulated in the endoplasmic reticulum of prostate cancer cells, leading to endoplasmic reticulum stress and cell death in the three prostate cancer cells. Inhibition of autophagy potentiated the pro-apoptotic activity of edelfosine in LNCaP and PC3 cells, where autophagy was induced as a survival response. Edelfosine induced a slight and transient inhibition of AKT in PTEN-negative LNCaP and PC3 cells, but not in PTEN-positive DU145 cells. Daily oral administration of edelfosine in murine prostate restricted AKT kinase transgenic mice, expressing active AKT in a prostate-specific manner, and in a DU145 xenograft mouse model resulted in significant tumor regression and apoptosis in tumor cells. Taken together, these results show a significant in vitro and in vivo antitumor activity of edelfosine against prostate cancer, and highlight the endoplasmic reticulum as a novel and promising therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- El-Habib Dakir
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Faculty of Biology, University of Latvia, Riga, Latvia.
| | - Consuelo Gajate
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas - Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas - Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| |
Collapse
|
7
|
Erzurumlu Y, Dogan HK, Catakli D, Aydogdu E, Muhammed MT. Estrogens drive the endoplasmic reticulum-associated degradation and promote proto-oncogene c-Myc expression in prostate cancer cells by androgen receptor/estrogen receptor signaling. J Cell Commun Signal 2023; 17:793-811. [PMID: 36696010 PMCID: PMC10409964 DOI: 10.1007/s12079-022-00720-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
The tumorigenic properties of prostate cancer are regulated by advanced hormonal regulation-mediated complex molecular signals. Therefore, characterizing the regulation of these signal transduction systems is crucial for understanding prostate cancer biology. Recent studies have shown that endoplasmic reticulum (ER)-localized protein quality control mechanisms, including ER-associated degradation (ERAD) and unfolded protein response (UPR) signaling contribute to prostate carcinogenesis and to the development of drug resistance. It has also been determined that these systems are tightly regulated by androgens. However, the role of estrogenic signaling in prostate cancer and its effects on protein quality control mechanisms is not fully understood. Herein, we investigated the regulatory effects of estrogens on ERAD and UPR and their impacts on prostate carcinogenesis. We found that estrogens strongly regulated the ERAD components and IRE1⍺ branch of UPR by Er⍺/β/AR axis. Besides, estrogenic signaling rigorously regulated the tumorigenicity of prostate cancer cells by promoting c-Myc expression and epithelial-mesenchymal transition (EMT). Moreover, estrogenic signal blockage significantly decreased the tumorigenic features of prostate cancer cells. Additionally, simultaneous inhibition of androgenic/estrogenic signals more efficiently inhibited tumorigenicity of prostate cancer cells, including proliferation, migration, invasion and colonial growth. Furthermore, computational-based molecular docking, molecular dynamics simulations and MMPBSA calculations supported the estrogenic stimulation of AR. Present findings suggested that ERAD components and IRE1⍺ signaling are tightly regulated by estrogen-stimulated AR and Er⍺/β. Our data suggest that treatment approaches targeting the co-inhibition of androgenic/estrogenic signals may pave the way for new treatment approaches to be developed for prostate cancer. The present model of the impact of estrogens on ERAD and UPR signaling in androgen-sensitive prostate cancer cells.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Esra Aydogdu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| |
Collapse
|
8
|
Arıcı A, Erdemir F. A Determination of p97/VCP (Valosin Containing Protein) and SVIP (Small VCP Interacting Protein) Expression Patterns in Human Testis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1079. [PMID: 37374283 DOI: 10.3390/medicina59061079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: The ubiquitin proteosome system (UPS) is a non-lysosomal pathway that functions in all eukaryotes. The transport of polyubiquitinated proteins to proteosomes takes place via the p97/Valosin-containing protein (VCP) chaperone protein. The p97/VCP binds to polyubiquitinated proteins, allowing these proteins to reach the proteasome and, thus, their destruction. In the case of p97/VCP deficiency, ubiquitinated proteins accumulate in the cell cytoplasm, and their subsequent failure to break down produces various pathological conditions. Small VCP interacting protein (SVIP) and p97/VCP proteins have not been studied in human testicular tissues from different postnatal periods. Therefore, in our study, we aimed to examine the expression of SVIP and p97/VCP in postnatal human testicular tissues. Our study aimed to contribute to further studies on the use of these proteins as testicular cell biomarkers in cases of unexplained male infertility. Materials and Methods: Immunohistochemical studies with the aim of determining the expression of p97/VCP and SVIP proteins in neonatal, prepubertal, pubertal, adult, and geriatric human testis tissues were performed. Results: In testicular sections obtained from a neonatal group, p97/VCP and SVIP were localized in different testicular and interstitial cells, and the lowest expression was observed in this group. While the expressions of these proteins were low in the neonatal period, they increased gradually in the prepubertal, pubertal and adult periods. The expression of p97/VCP and SVIP, which peaked in adulthood, showed a significant decrease in the geriatric period. Conclusions: As a result, the expression of p97/VCP and SVIP correlated with the increase in age, but it decreased significantly in older groups.
Collapse
Affiliation(s)
- Akgül Arıcı
- Department of Medical Pathology, Tokat Gaziosmanpasa University, 60100 Tokat, Turkey
| | - Fikret Erdemir
- Department of Urology, Tokat Gaziosmanpasa University, 60100 Tokat, Turkey
| |
Collapse
|
9
|
Erzurumlu Y, Muhammed MT. Triiodothyronine positively regulates endoplasmic reticulum-associated degradation (ERAD) and promotes androgenic signaling in androgen-dependent prostate cancer cells. Cell Signal 2023:110745. [PMID: 37271348 DOI: 10.1016/j.cellsig.2023.110745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Thyroid hormones (THs) play crucial roles in numerous physiological processes of nearly all mammalian tissues, including differentiation and metabolism. Deterioration of TH signaling has been associated with several pathologies, including cancer. The effect of highly active triiodothyronine (T3) has been investigated in many in vivo and in vitro cancer models. However, the role of T3 on cancerous prostate tissue is controversial. Recent studies have focused on the characterization of the supportive roles of the endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR) signaling in prostate cancer (PCa) and investigating new hormonal regulation patterns, including estrogen, progesterone and 1,25(OH)2D3. Additionally, androgenic signaling controlled by androgens, which are critical in PCa progression, has been shown to be regulated by other steroid hormones. While the effects of T3 on ERAD and UPR are unknown today, the impact on androgenic signaling is still not understood in PCa. Therefore, we aimed to investigate the molecular action of T3 on the ERAD mechanism and UPR signaling in PCa cells and also extensively examined the effect of T3 on androgenic signaling. Our data strongly indicated that T3 tightly regulates ERAD and UPR signaling in androgen-dependent PCa cells. We also found that T3 stimulates androgenic signaling by upregulating AR mRNA and protein levels and enhancing its nuclear translocation. Additionally, advanced computational studies supported the ligand binding effect of T3 on AR protein. Our data suggest that targeting thyroidal signaling should be considered in therapeutic approaches to be developed for prostate malignancy in addition to other steroidal regulations.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260, Turkey.
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey.
| |
Collapse
|
10
|
Atalay Şahar E, Ballar Kirmizibayrak P. Differential Expression and Function of SVIP in Breast Cancer Cell Lines and In Silico Analysis of Its Expression and Prognostic Potential in Human Breast Cancer. Cells 2023; 12:1362. [PMID: 37408196 DOI: 10.3390/cells12101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
The heterogeneity of cancer strongly suggests the need to explore additional pathways to target. As cancer cells have increased proteotoxic stress, targeting proteotoxic stress-related pathways such as endoplasmic reticulum stress is attracting attention as a new anticancer treatment. One of the downstream responses to endoplasmic reticulum stress is endoplasmic reticulum-associated degradation (ERAD), a major degradation pathway that facilitates proteasome-dependent degradation of unfolded or misfolded proteins. Recently, SVIP (small VCP/97-interacting protein), an endogenous ERAD inhibitor, has been implicated in cancer progression, especially in glioma, prostate, and head and neck cancers. Here, the data of several RNA-sequencing (RNA-seq) and gene array studies were combined to evaluate the SVIP gene expression analysis on a variety of cancers, with a particular focus on breast cancer. The mRNA level of SVIP was found to be significantly higher in primary breast tumors and correlated well with its promoter methylation status and genetic alterations. Strikingly, the SVIP protein level was found to be low despite increased mRNA levels in breast tumors compared to normal tissues. On the other hand, the immunoblotting analysis showed that the expression of SVIP protein was significantly higher in breast cancer cell lines compared to non-tumorigenic epithelial cell lines, while most of the key proteins of gp78-mediated ERAD did not exhibit such an expression pattern, except for Hrd1. Silencing of SVIP enhanced the proliferation of p53 wt MCF-7 and ZR-75-1 cells but not p53 mutant T47D and SK-BR-3 cells; however, it increased the migration ability of both types of cell lines. Importantly, our data suggest that SVIP may increase p53 protein levels in MCF7 cells by inhibiting Hrd1-mediated p53 degradation. Overall, our data reveal the differential expression and function of SVIP on breast cancer cell lines together with in silico data analysis.
Collapse
Affiliation(s)
- Esra Atalay Şahar
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir 35100, Turkey
| | - Petek Ballar Kirmizibayrak
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir 35100, Turkey
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey
| |
Collapse
|
11
|
Erzurumlu Y, Catakli D, Dogan HK. Potent carotenoid astaxanthin expands the anti-cancer activity of cisplatin in human prostate cancer cells. J Nat Med 2023; 77:572-583. [PMID: 37130999 DOI: 10.1007/s11418-023-01701-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
Prostate cancer (PCa) is the second most common type of cancer and the sixth cause of death in men worldwide. Radiotherapy and immunotherapy are commonly used in treating PCa, but understanding the crosstalk mechanisms of carcinogenesis and new therapeutic approaches is essential for supporting poor diagnosis and existing therapies. Astaxanthin (ASX) is a member of the xanthophyll family that is an oxygenated derivative of carotenoids whose synthesis is in plant extracts from lycopene. ASX has protective effects on various diseases, such as Parkinson's disease and cancer by showing potent antioxidant and anti-inflammatory properties. However, there is an ongoing need for a detailed investigation of the molecular mechanism of action to expand its therapeutic use. In the present study, we showed the new regulatory role of ASX in PCa cells by affecting the unfolded protein response (UPR) signaling, autophagic activity, epithelial-mesenchymal transition (EMT) and regulating the expression level of angiogenesis-related protein vascular endothelial growth factor A (VEGF-A), proto-oncogene c-Myc and prostate-specific antigen (PSA). Additionally, we determined that it exhibited synergistic action with cisplatin and significantly enhanced apoptotic cell death in PCa cells. Present findings suggest that ASX may be a potent adjuvant therapeutic option in PCa treatment when used alone or combined with chemotherapeutics. Schematic illustration of the biochemical activity of astaxanthin and its combination with cisplatin.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260, Isparta, Turkey.
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, 32260, Isparta, Turkey
| |
Collapse
|
12
|
Zeng C, Guo J, Wu J, Che T, Huang X, Liu H, Lin Z. HRD1 Promotes Non-small Cell Lung Carcinoma Metastasis by Blocking Autophagy-mediated MIEN1 Degradation. J Biol Chem 2023; 299:104723. [PMID: 37075843 DOI: 10.1016/j.jbc.2023.104723] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023] Open
Abstract
Dysregulation of autophagy has been implicated in the development of many diseases, including cancer. Here, we revealed a novel function of the E3 ubiquitin ligase HRD1 in non-small cell lung carcinoma (NSCLC) metastasis by regulating autophagy. Mechanistically, HRD1 inhibits autophagy by promoting ATG3 ubiquitination and degradation. Additionally, a pro-migratory and invasive factor, MIEN1 (migration and invasion enhancer 1), was found to be autophagically degraded upon HRD1 deficiency. Importantly, both HRD1 and MIEN1 expression are upregulated and positively correlated in lung tumors. Based on these results, we proposed a novel mechanism of HRD1 function that the degradation of ATG3 protein by HRD1 leads to autophagy inhibition and MIEN1 release, thus promoting NSCLC metastasis. Therefore, our findings provided new insights into the role of HRD1 in NSCLC metastasis and new therapeutic targets for lung cancer treatment.
Collapse
Affiliation(s)
- Cheng Zeng
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Jing Guo
- Affiliated Three Gorges Central Hospital of Chongqing University, Chongqing, P. R. China
| | - Jiajia Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Tiantian Che
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Xiaoping Huang
- Affiliated Three Gorges Central Hospital of Chongqing University, Chongqing, P. R. China
| | - Huawen Liu
- Affiliated Three Gorges Central Hospital of Chongqing University, Chongqing, P. R. China.
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, P.R. China.
| |
Collapse
|
13
|
Erzurumlu Y, Kubra Dogan H, Cataklı D. Dexamethasone-stimulated glucocorticoid receptor signaling positively regulates the endoplasmic reticulum-associated degradation (ERAD) mechanism in hepatocellular carcinoma cells. Steroids 2023; 195:109238. [PMID: 37044236 DOI: 10.1016/j.steroids.2023.109238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Hepatocellular carcinoma is one of the most common types of primary liver cancer in adults and also it is the third leading cause of cancer-related deaths worldwide. Although there are various treatment options such as surgery, radiation, targeted drug therapy, immunotherapy and chemotherapy, most hepatocellular carcinomas are highly resistant to systemic treatments. Today, the molecular pathogenesis of hepatocellular carcinoma remains largely obscure. Therefore, there is a need for detailed research for the characterization of molecular signaling networks related to the development of hepatocellular carcinoma. Recent studies have attention to the hormonal regulation of hepatocellular carcinoma cells mediated by systemic hormones such as glucocorticoids. However, glucocorticoid-mediated regulation of endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR), which are known to be important survival mechanisms for cancer cells remains unknown in hepatocellular carcinoma. In the present study, we showed that dexamethasone-induced glucocorticoid receptor signaling mediated advanced regulation of ERAD and UPR signaling in hepatocellular carcinoma cells. Glucocorticoid signaling positively regulates mRNA and protein levels of ERAD components and also protein kinase RNA-like ER Kinase (PERK) and inositol-requiring enzyme 1⍺ (IRE1⍺) branches of UPR signaling are accompanied the glucocorticoid signaling. In addition, putative glucocorticoid response elements (GREs) were determined in the promoter regions of ERAD members in in-silico analyses. Additionally, silencing of ERAD components significantly reduced the tumorigenic features of hepatocellular carcinoma cells, including cell proliferation, metastasis, invasion and 3D tumor formation. Collectively, these results reveal a novel pattern of regulation of ERAD components by glucocorticoid-mediated in human hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260, Isparta, Turkey.
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, 32260, Isparta, Turkey.
| | - Deniz Cataklı
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260, Isparta, Turkey.
| |
Collapse
|
14
|
Erzurumlu Y, Catakli D, Dogan HK. Circadian Oscillation Pattern of Endoplasmic Reticulum Quality Control (ERQC) Components in Human Embryonic Kidney HEK293 Cells. J Circadian Rhythms 2023; 21:1. [PMID: 37033333 PMCID: PMC10077977 DOI: 10.5334/jcr.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
The circadian clock regulates the “push-pull” of the molecular signaling mechanisms that arrange the rhythmic organization of the physiology to maintain cellular homeostasis. In mammals, molecular clock genes tightly arrange cellular rhythmicity. It has been shown that this circadian clock optimizes various biological processes, including the cell cycle and autophagy. Hence, we explored the dynamic crosstalks between the circadian rhythm and endoplasmic reticulum (ER)-quality control (ERQC) mechanisms. ER-associated degradation (ERAD) is one of the most important parts of the ERQC system and is an elaborate surveillance system that eliminates misfolded proteins. It regulates the steady-state levels of several physiologically crucial proteins, such as 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and the metastasis suppressor KAI1/CD82. However, the circadian oscillation of ERQC members and their roles in cellular rhythmicity requires further investigation. In the present study, we provided a thorough investigation of the circadian rhythmicity of the fifteen crucial ERQC members, including gp78, Hrd1, p97/VCP, SVIP, Derlin1, Ufd1, Npl4, EDEM1, OS9, XTP3B, Sel1L, Ufd2, YOD1, VCIP135 and FAM8A1 in HEK293 cells. We found that mRNA and protein accumulation of the ubiquitin conjugation, binding and processing factors, retrotranslocation-dislocation, substrate recognition and targeting components of ERQC exhibit oscillation under the control of the circadian clock. Moreover, we found that Hrd1 and gp78 have a possible regulatory function on Bmal1 turnover. The findings of the current study indicated that the expression level of ERQC components is fine-tuned by the circadian clock and major ERAD E3 ligases, Hrd1 and gp78, may influence the regulation of circadian oscillation by modulation of Bmal1 stability.
Collapse
|
15
|
Erzurumlu Y, Aydogdu E, Dogan HK, Catakli D, Muhammed MT, Buyuksandic B. 1,25(OH) 2 D 3 induced vitamin D receptor signaling negatively regulates endoplasmic reticulum-associated degradation (ERAD) and androgen receptor signaling in human prostate cancer cells. Cell Signal 2023; 103:110577. [PMID: 36567009 DOI: 10.1016/j.cellsig.2022.110577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Steroid hormone signaling is critical in the tumor progression and the regulation of physiological mechanisms such as endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR) in prostate cancer. 1,25(OH)2 D3 is an active metabolite of vitamin D classified as a steroid hormone. It exhibits anti-tumor effects, including angiogenesis and suppression of cell cycle progression. Moreover, progressively reducing expression levels of vitamin D receptor (VDR) are observed in many cancer types, including the prostate. In the present study, we investigated the molecular action of 1,25(OH)2 D3 on ERAD, UPR and androgenic signaling. We found that 1,25(OH)2 D3 negatively regulated the expression level of ERAD components and divergently controlled the inositol-requiring enzyme 1⍺ (IRE1⍺) and protein kinase RNA-like ER kinase (PERK) branches of UPR in LNCaP human prostate cancer cells. Also, similar results were obtained with another human prostate cancer cell line, 22Rv1. More strikingly, we found that androgenic signaling is negatively regulated by VDR signaling. Also, molecular docking supported the inhibitory effect of 1,25(OH)2 D3 on AR signaling. Moreover, we found VDR signaling suppressed tumor progression by decreasing c-Myc expression and reducing the epithelial-mesenchymal transition (EMT). Additionally, 1,25(OH)2 D3 treatment significantly inhibited the 3D-tumor formation of LNCaP cells. Our results suggest that further molecular characterization of the action of VDR signaling in other cancer types such as estrogenic signal in breast cancer will provide important contributions to a better understanding of the roles of steroid hormone receptors in carcinogenesis processes.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey.
| | - Esra Aydogdu
- Department of Pharmaceutical Research and Development, Institute of Health Sciences, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey.
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey.
| | - Buket Buyuksandic
- Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| |
Collapse
|
16
|
Kartal B, Alimoğulları E, Çaylı S. The immunoexpression of valosin-containing protein and small VCP-interacting protein in rat ovaries. Anat Histol Embryol 2023. [PMID: 36843060 DOI: 10.1111/ahe.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/07/2022] [Accepted: 02/13/2023] [Indexed: 02/28/2023]
Abstract
Numerous cellular processes are controlled by the ubiquitin-proteasome-mediated degradation pathway, involve the 97-kDa valosin-containing protein (p97/VCP). Small p97/VCP-interacting protein (SVIP) was first discovered as one of the novel androgen-responsive genes as well as one of the many cofactors controlling p97/VCP. The aim of the study was to investigate localization and immunoexpression of p97/VCP and SVIP in rat ovarian tissue. The histomorphological examination of rat ovarian tissue was performed by using haematoxylin-eosin (HE) staining. Using the immunohistochemical technique, cellular location and expression of p97/VCP and SVIP in rat ovarian tissue were examined. The nuclear and cytoplasmic immunoexpression of p97/VCP and SVIP was observed in the different stages of ovarian follicles and corpus luteum in the rat ovaries. The immunolocalization of SVIP and VCP in the rat ovaries suggest that they may be involved in the oogenesis. Further studies should be performed about the function of the VCP and SVIP in the female reproductive tract.
Collapse
Affiliation(s)
- Bahar Kartal
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Medical Faculty, Ankara, Turkey
| | - Ebru Alimoğulları
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Medical Faculty, Ankara, Turkey
| | - Sevil Çaylı
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Medical Faculty, Ankara, Turkey
| |
Collapse
|
17
|
Erzurumlu Y, Dogan HK, Catakli D. Progesterone regulates the endoplasmic reticulum-associated degradation and Unfolded Protein Response axis by mimicking the androgenic stimulation in prostate cancer cells. Mol Biol Rep 2023; 50:1253-1265. [PMID: 36445513 DOI: 10.1007/s11033-022-08065-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Today, androgen receptor (AR)-mediated signaling mechanisms in prostate cancer are intensively studied. However, the roles of other steroid hormones in prostate cancer and their effects on androgenic signaling still remain a mystery. Recent studies focused on the androgen-mediated regulation of protein quality control mechanisms such as endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR) in prostate cancer cells. Present study, we investigated the action of progesterone signaling on ERAD and UPR mechanisms and analyzed the crosstalk of progesterone signaling with androgenic signal in prostate cancer cells. METHODS AND RESULTS The mode of action of progesterone on ERAD, UPR and AR signaling in prostate cancer was investigated by cell culture studies using LNCaP and 22Rv1 cells. To this aim qRT-PCR, western-blotting assay, immunofluorescent microscopy, nuclear fractionation and bioinformatic analysis were used. Our results indicated that progesterone positively regulates mRNA and protein levels of ERAD components in LNCaP cells. Also, it induced the IRE⍺ and PERK branches of UPR signaling. Progesterone receptor antagonist effectively antagonized the progesterone-induced responses. We also had similar results in 22Rv1 cells. Also, we tested the effect of the pharmacologically reducing of IRE⍺ and PERK signaling on progesterone-induced ERAD. Additionally, we determined the presence of putative progesterone response elements (PREs) in the promoter regions of ERAD members by bioinformatic tool. More strikingly, we found progesterone regulates AR signaling by modulating the nuclear transactivation of AR. CONCLUSION Herein, we defined that progesterone hormone positively regulates ERAD and UPR mechanisms in prostate cancer cells and that progesterone contributes to the molecular biology of prostate cancer by regulating androgenic signaling. Mode of Action of Progesteron on Androgen sensitive prostate cancer cells.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260, Isparta, Turkey.
| | - Hatice Kubra Dogan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, 32260, Isparta, Turkey
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260, Isparta, Turkey
| |
Collapse
|
18
|
de la Calle CM, Shee K, Yang H, Lonergan PE, Nguyen HG. The endoplasmic reticulum stress response in prostate cancer. Nat Rev Urol 2022; 19:708-726. [PMID: 36168057 DOI: 10.1038/s41585-022-00649-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
In order to proliferate in unfavourable conditions, cancer cells can take advantage of the naturally occurring endoplasmic reticulum-associated unfolded protein response (UPR) via three highly conserved signalling arms: IRE1α, PERK and ATF6. All three arms of the UPR have key roles in every step of tumour progression: from cancer initiation to tumour growth, invasion, metastasis and resistance to therapy. At present, no cure for metastatic prostate cancer exists, as targeting the androgen receptor eventually results in treatment resistance. New research has uncovered an important role for the UPR in prostate cancer tumorigenesis and crosstalk between the UPR and androgen receptor signalling pathways. With an improved understanding of the mechanisms by which cancer cells exploit the endoplasmic reticulum stress response, targetable points of vulnerability can be uncovered.
Collapse
Affiliation(s)
- Claire M de la Calle
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin Shee
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Heiko Yang
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Peter E Lonergan
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, St. James's Hospital, Dublin, Ireland
- Department of Surgery, Trinity College, Dublin, Ireland
| | - Hao G Nguyen
- Department of Urology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Rzeszotek S, Kolasa A, Pilutin A, Misiakiewicz-Has K, Sielatycka K, Wiszniewska B. The Interplay between Finasteride-Induced Androgen Imbalance, Endoplasmic Reticulum Stress, Oxidative Stress, and Liver Disorders in Paternal and Filial Generation. Biomedicines 2022; 10:2725. [PMID: 36359245 PMCID: PMC9687381 DOI: 10.3390/biomedicines10112725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/20/2023] Open
Abstract
Finasteride (Fin) causes androgen imbalance by inhibiting the conversion of testosterone (T) to its more active metabolite, dihydrotestosterone (DHT). Androgen receptors (AR) are present (e.g., in hepatocytes), which have well-developed endoplasmic reticulum (ERet). Cellular protein quality control is carried out by ERet in two paths: (i) unfolded protein response (UPR) and/or (ii) endoplasmic reticulum associated degradation (ERAD). ERet under continuous stress can generate changes in the UPR and can direct the cell on the pathway of life or death. It has been demonstrated that genes involved in ERet stress are among the genes controlled by androgens in some tissues. Oxidative stress is also one of the factors affecting the functions of ERet and androgens are one of the regulators of antioxidant enzyme activity. In this paper, we discuss/analyze a possible relationship between androgen imbalance in paternal generation with ERet stress and liver disorders in both paternal and filial generation. In our rat model, hyperglycemia and subsequent higher accumulation of hepatic glycogen were observed in all filial generation obtained from females fertilized by Fin-treated males (F1:Fin). Importantly, genes encoding enzymes involved in glucose and glycogen metabolism have been previously recognized among UPR targets.
Collapse
Affiliation(s)
- Sylwia Rzeszotek
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Anna Pilutin
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Kamila Misiakiewicz-Has
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Katarzyna Sielatycka
- Institute of Biology, Faculty of Exact and Natural Sciences, University of Szczecin, 71-415 Szczecin, Poland
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
20
|
Alimogullari E, Akcan G, Ari O, Cayli S. The determination of the relationship between p97/VCP, small VCP-interacting protein, two ERAD proteins and steroidogenesis in Leydig cell lines. Mol Biol Rep 2022; 49:9159-9170. [DOI: 10.1007/s11033-022-07740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/22/2022] [Indexed: 10/15/2022]
|
21
|
Hussain Y, Khan H, Efferth T, Alam W. Regulation of endoplasmic reticulum stress by hesperetin: Focus on antitumor and cytoprotective effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:153985. [PMID: 35358935 DOI: 10.1016/j.phymed.2022.153985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/14/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cancer is still an all-times issue due to a large and even increasing number of deaths. Impaired genes regulating cell proliferation and apoptosis are targets for the development of novel cancer treatments. HYPOTHESIS Increased transcription of NADPH oxidase activator (NOXA), Bcl2-like11 (BIM), BH3-only proteins and p53 unregulated apoptosis modulator (PUMA) is caused by the imbalance between pro- and anti-apoptotic Bcl-2 proteins due to endoplasmic reticulum (ER) stress. The membranous network of ER is present in all eukaryotic cells. ER stress facilitates the interaction between Bax and PUMA, triggering the release of cytochrome C. As a main intracellular organelle, ER is responsible for translocation as well as post-translation modification and protein folding. RESULTS Hesperetin is a cytoprotective flavonone, which acts against ER stress and protects from cell damage induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Hesperetin inhibits lipid peroxidation induced by Fe2+ and l-ascorbic acid in rat brain homogenates. CONCLUSION This review deals with the anticancer effects of hesperetin regarding the regulation of ER stress as a principal mechanism in the pathogenesis of tumors.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, 215123, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| |
Collapse
|
22
|
Karamali N, Ebrahimnezhad S, Khaleghi Moghadam R, Daneshfar N, Rezaiemanesh A. HRD1 in human malignant neoplasms: Molecular mechanisms and novel therapeutic strategy for cancer. Life Sci 2022; 301:120620. [PMID: 35533759 DOI: 10.1016/j.lfs.2022.120620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
In tumor cells, the endoplasmic reticulum (ER) plays an essential role in maintaining cellular proteostasis by stimulating unfolded protein response (UPR) underlying stress conditions. ER-associated degradation (ERAD) is a critical pathway of the UPR to protect cells from ER stress-induced apoptosis and the elimination of unfolded or misfolded proteins by the ubiquitin-proteasome system (UPS). 3-Hydroxy-3-methylglutaryl reductase degradation (HRD1) as an E3 ubiquitin ligase plays an essential role in the ubiquitination and dislocation of misfolded protein in ERAD. In addition, HRD1 can target other normal folded proteins. In various types of cancer, the expression of HRD1 is dysregulated, and it targets different molecules to develop cancer hallmarks or suppress the progression of the disease. Recent investigations have defined the role of HRD1 in drug resistance in types of cancer. This review focuses on the molecular mechanisms of HRD1 and its roles in cancer pathogenesis and discusses the worthiness of targeting HRD1 as a novel therapeutic strategy in cancer.
Collapse
Affiliation(s)
- Negin Karamali
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Samaneh Ebrahimnezhad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Reihaneh Khaleghi Moghadam
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Niloofar Daneshfar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
23
|
Ilhan R, Üner G, Yilmaz S, Atalay Sahar E, Cayli S, Erzurumlu Y, Gozen O, Ballar Kirmizibayrak P. Novel regulation mechanism of adrenal cortisol and DHEA biosynthesis via the endogen ERAD inhibitor small VCP-interacting protein. Sci Rep 2022; 12:869. [PMID: 35042898 PMCID: PMC8766438 DOI: 10.1038/s41598-022-04821-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a well-characterized mechanism of protein quality control by removal of misfolded or unfolded proteins. The tight regulation of ERAD is critical for protein homeostasis as well as lipid metabolism. Although the mechanism is complex, all ERAD branches converge on p97/VCP, a key protein in the retrotranslocation step. The multifunctionality of p97/VCP relies on its multiple binding partners, one of which is the endogenous ERAD inhibitor, SVIP (small VCP-interacting protein). As SVIP is a promising target for the regulation of ERAD, we aimed to assess its novel physiological roles. We revealed that SVIP is highly expressed in the rat adrenal gland, especially in the cortex region, at a consistently high level during postnatal development, unlike the gradual increase in expression seen in developing nerves. Steroidogenic stimulators caused a decrease in SVIP mRNA expression and increase in SVIP protein degradation in human adrenocortical H295R cells. Interestingly, silencing of SVIP diminished cortisol secretion along with downregulation of steroidogenic enzymes and proteins involved in cholesterol uptake and cholesterol biosynthesis. A certain degree of SVIP overexpression mainly increased the biosynthesis of cortisol as well as DHEA by enhancing the expression of key steroidogenic proteins, whereas exaggerated overexpression led to apoptosis, phosphorylation of eIF2α, and diminished adrenal steroid hormone biosynthesis. In conclusion, SVIP is a novel regulator of adrenal cortisol and DHEA biosynthesis, suggesting that alterations in SVIP expression levels may be involved in the deregulation of steroidogenic stimulator signaling and abnormal adrenal hormone secretion.
Collapse
Affiliation(s)
- Recep Ilhan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey
| | - Göklem Üner
- Department of Bioengineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Sinem Yilmaz
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey
- Department of Bioengineering, Faculty of Engineering, University of Alanya Aladdin Keykubat, Antalya, Turkey
| | - Esra Atalay Sahar
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey
| | - Sevil Cayli
- Department of Histology and Embryology, Medical Faculty, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey
- Suleyman Demirel University, Faculty of Pharmacy, Isparta, Turkey
| | - Oguz Gozen
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey
| | - Petek Ballar Kirmizibayrak
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey.
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey.
| |
Collapse
|
24
|
Li S, Kong J, Yu L, Liu Q. Abnormally decreased renal Klotho is linked to endoplasmic reticulum-associated degradation in mice. Int J Med Sci 2022; 19:321-330. [PMID: 35165517 PMCID: PMC8795804 DOI: 10.7150/ijms.68137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Aim: Endoplasmic reticulum-associated degradation (ERAD), which involves degradation of improperly folded proteins retained in the ER, is implicated in various diseases including chronic kidney disease. This study is aimed to determine the role of ERAD in Klotho deficiency of mice and human kidney tubular epithelial cells (HK-2) with renal interstitial fibrosis (RIF). Methods: Following establishment of a mouse RIF model by unilateral ureteral obstruction (UUO), a specific ERAD inhibitor, Eeyarestatin I (EerI), was administered to experimental animals by intraperitoneal injection. Serum and kidney samples were collected for analysis 10 days after operation. Soluble Klotho levels were measured by enzyme-linked immunosorbent assay, while the degree of kidney injury was assessed by renal histopathology. Renal Klotho expression was determined by quantitative real-time PCR, immunohistochemical and western blotting analyses. ERAD and unfolded protein response (UPR) were evaluated by detecting associated components such as Derlin-1, glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4) and protein disulfide isomerase (PDI). HK-2 cells were exposed to transforming growth factor (TGF)-β1 with or without EerI, and expressions of related proteins including Klotho, Derlin-1, GRP78, ATF4 and PDI were determined by western blotting analyses. Results: UUO induced severe kidney injuries and RIF. Klotho expression in both serum and kidney tissue was obviously downregulated, while Derlin-1 was notably upregulated, indicating that ERAD was activated to potentially degrade improperly folded Klotho protein in this model. Intriguingly, treatment with EerI led to significantly increased Klotho expression, especially soluble (functional) Klotho. Furthermore, specific inhibition of ERAD increased expression of GRP78, ATF4 and PDI compared with the UUO group. The consistent results in vitro were also obtained in TGF-β1-treated HK-2 cells exposed to EerI. These observations suggest that UPR was remarkably enhanced in the presence of ERAD inhibition and compensated for excess improperly folded proteins, subsequently contributing to the additional production of mature Klotho protein. Conclusion: ERAD is involved in Klotho deficiency in RIF and its specific inhibition significantly promoted Klotho expression, possibly through enhanced UPR. This may represent a novel regulatory mechanism and new therapeutic target for reversing Klotho deficiency.
Collapse
Affiliation(s)
- ShaSha Li
- Clinical Research & Lab Centre, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu, 215300, China
| | - JiaWei Kong
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu, 215300, China
| | - LiXia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu, 215300, China
| | - QiFeng Liu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, 91 Qianjin West Road, Kunshan, Jiangsu, 215300, China
| |
Collapse
|
25
|
Xie J, Kusnadi EP, Furic L, Selth LA. Regulation of mRNA Translation by Hormone Receptors in Breast and Prostate Cancer. Cancers (Basel) 2021; 13:3254. [PMID: 34209750 PMCID: PMC8268847 DOI: 10.3390/cancers13133254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Breast and prostate cancer are the second and third leading causes of death amongst all cancer types, respectively. Pathogenesis of these malignancies is characterised by dysregulation of sex hormone signalling pathways, mediated by the estrogen receptor-α (ER) in breast cancer and androgen receptor (AR) in prostate cancer. ER and AR are transcription factors whose aberrant function drives oncogenic transcriptional programs to promote cancer growth and progression. While ER/AR are known to stimulate cell growth and survival by modulating gene transcription, emerging findings indicate that their effects in neoplasia are also mediated by dysregulation of protein synthesis (i.e., mRNA translation). This suggests that ER/AR can coordinately perturb both transcriptional and translational programs, resulting in the establishment of proteomes that promote malignancy. In this review, we will discuss relatively understudied aspects of ER and AR activity in regulating protein synthesis as well as the potential of targeting mRNA translation in breast and prostate cancer.
Collapse
Affiliation(s)
- Jianling Xie
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Eric P Kusnadi
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luc Furic
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
26
|
Molecular Changes in Tissue Proteome during Prostate Cancer Development: Proof-of-Principle Investigation. Diagnostics (Basel) 2020; 10:diagnostics10090655. [PMID: 32878211 PMCID: PMC7554904 DOI: 10.3390/diagnostics10090655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023] Open
Abstract
(1) Background: Prostate cancer (PCa) is characterized by high heterogeneity. The aim of this study was to investigate molecular alterations underlying PCa development based on proteomics data. (2) Methods: Liquid chromatography coupled to tandem mass spectrometry was conducted for 22 fresh-frozen tissue specimens from patients with benign prostatic hyperplasia (BPH, n = 5) and PCa (n = 17). Mann Whitney test was used to define significant differences between the two groups. Association of protein abundance with PCa progression was evaluated using Spearman correlation, followed by verification through investigating the Prostate Cancer Transcriptome Atlas. Functional enrichment and interactome analysis were carried out using Metascape and String. (3) Results: Proteomics analysis identified 1433 proteins, including 145 proteins as differentially abundant between patients with PCa and BPH. In silico analysis revealed alterations in several pathways and hallmarks implicated in metabolism and signalling, represented by 67 proteins. Among the latter, 21 proteins were correlated with PCa progression at both the protein and mRNA levels. Interactome analysis of these 21 proteins predicted interactions between Myc proto-oncogene (MYC) targets, protein processing in the endoplasmic reticulum, and oxidative phosphorylation, with MYC targets having a central role. (4) Conclusions: Tissue proteomics allowed for characterization of proteins and pathways consistently affected during PCa development. Further validation of these findings is required.
Collapse
|
27
|
Naiki-Ito A, Naiki T, Kato H, Iida K, Etani T, Nagayasu Y, Suzuki S, Yamashita Y, Inaguma S, Onishi M, Tanaka Y, Yasui T, Takahashi S. Recruitment of miR-8080 by luteolin inhibits androgen receptor splice variant 7 expression in castration-resistant prostate cancer. Carcinogenesis 2020; 41:1145-1157. [PMID: 31805186 PMCID: PMC7422625 DOI: 10.1093/carcin/bgz193] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 10/28/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
A need exists for seeking effective treatments for castration-resistant prostate cancer (CRPC) in response to its emergence following androgen deprivation therapy as a major clinical problem. In the present study, we investigated the chemopreventive and chemotherapeutic potential of luteolin, a flavonoid with antioxidative properties, on prostate cancer, including CRPC. Luteolin inhibited the progression of rat prostate carcinogenesis by induction of apoptosis in a transgenic rat for adenocarcinoma of prostate (TRAP) model. Luteolin decreased cell proliferation in a dose-dependent manner and induced apoptosis with the activation of caspases 3 and 7 in both rat (PCai1, established from a TRAP prostate tumor) and human (22Rv1) CRPC cells. Dietary luteolin also suppressed tumor growth via an increase in apoptosis and inhibition of angiogenesis in PCai1 and 22Rv1 xenografts implanted in castrated nude mice. We also focused on androgen receptor splice variant 7 (AR-V7), which contributes to cell proliferation and therapeutic resistance in CRPC. Luteolin dramatically suppressed AR-V7 protein expression in 22Rv1 cells in vitro and ex vivo. Microarray analysis identified MiR-8080, which contains a possible target sequence for AR-V7 3'-UTR, as a gene upregulated by luteolin. MiR-8080 transfection decreased the AR-V7 expression level and the induction of apoptosis in 22Rv1 cells. Furthermore, miR-8080 knockdown canceled luteolin decreasing AR-V7 and the cell growth of 22Rv1. MiR-8080 induced by luteolin intake enhanced the therapeutic effect of enzalutamide on 22Rv1 xenografts under castration conditions. These results indicate luteolin inhibits CRPC by AR-V7 suppression through miR-8080, highlighting luteolin and miR-8080 as promising therapeutic agents for this disease.
Collapse
Affiliation(s)
- Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Pathology Division, Nagoya City East Medical Center, Nagoya, Japan
| | - Taku Naiki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Keitaro Iida
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshiki Etani
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuko Nagayasu
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoriko Yamashita
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Pathology Division, Nagoya City East Medical Center, Nagoya, Japan
| | - Masaya Onishi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
28
|
Akcan G, Alimogullari E, Abu-Issa R, Cayli S. Analysis of the developmental expression of small VCP-interacting protein and its interaction with steroidogenic acute regulatory protein in Leydig cells. Reprod Biol 2020; 20:88-96. [PMID: 32037270 DOI: 10.1016/j.repbio.2020.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 02/07/2023]
Abstract
Small VCP-interacting protein (SVIP) is a 9-kDa protein that is composed of 76 amino acids, and it plays a role in the endoplasmic reticulum-associated protein degradation (ERAD) pathway. Recent studies have shown that SVIP is an androgen-responsive protein and its expression is regulated by androgens. Because no data are available regarding the cellular localization and expression of SVIP in the mouse testis, where androgens are highly expressed, immunohistochemistry and western blotting were performed. In the fetal testis, we found that moderate but consistent staining of SVIP is present in the cytoplasm of Leydig cells. In prepubertal and adult life, SVIP remains present in Leydig cells as well as in the cytoplasm of some peritubular and Sertoli cells. From postnatal day 15 onward, SVIP is strongly expressed in the cytoplasm of Leydig cells. Furthermore, TM3, MA-10 Leydig and Sertoli cell lines were also used to evaluate the expression of SVIP. To identify the interacting partners, such as steroidogenic acute regulatory (STAR) protein, colocalization studies were performed by fluorescence microscopy, showing that STAR colocalized with SVIP in the adult mouse testis. The expression changes of STAR were studied by using SVIP siRNAs in Leydig cell line cultures. Depletion of SVIP resulted in decreased expression of STAR. Additionally, the number and size of lipid droplets were significantly increased in SVIP-depleted Leydig cells. Taken together, our data identify SVIP as a marker of Leydig cell lineage and as a regulator of STAR protein expression and lipid droplet status in Leydig cells.
Collapse
Affiliation(s)
- Gulben Akcan
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey
| | - Ebru Alimogullari
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey
| | - Radwan Abu-Issa
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey
| | - Sevil Cayli
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey.
| |
Collapse
|
29
|
Wang J, Yu Q, Qiu Z, Dai T, Wang S, Yang X, Evers BM, Wu Y. The combined effect of epigenetic inhibitors for LSD1 and BRD4 alters prostate cancer growth and invasion. Aging (Albany NY) 2020; 12:397-415. [PMID: 31901895 PMCID: PMC6977660 DOI: 10.18632/aging.102630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/18/2019] [Indexed: 02/03/2023]
Abstract
Epigenetic modifications play an important role in prostate tumor development and progression. Epigenetic drugs are emerging as effective modulators of gene expression that act on pathways potentially important in the control of cancer clinically. We investigated two different epigenetic modulating drugs, SP-2509 and JQ1, that target histone lysine demethylase 1 (LSD1), and bromodomain-containing protein (BRD), respectively and their combined effect in three different prostate cancer (PCa) types: 1) androgen receptor (AR)-positive and androgen-sensitive; 2) AR-positive but castration-resistant; and 3) androgen-nonresponsive. We found combined treatment provided a synergistic growth inhibition in castration-resistant PCa cells but knockdown of AR reduced sensitivity to both inhibitors in these cells. In the androgen-sensitive cell lines, AR knockdown attenuated sensitivity to the LSD1 inhibitor but not the JQ1 inhibitor. Strikingly, treatment with SP-2509 slightly, and JQ1 markedly increased invasion in PCa cells with high AR expression but decreased invasion in PCa cells with low/negative AR expression. Our results suggest that these two epigenetic drugs are novel and promising compounds for the development of PCa therapeutics, particularly for castration-resistant disease. However, due to the potential risks, including metastasis, caution must be exercised in the clinical setting.
Collapse
Affiliation(s)
- Jianlin Wang
- Department of Pharmacology and Nutrition Science, The University of Kentucky, Lexington, KY 40506, USA,Markey Cancer Center, College of Medicine, The University of Kentucky, Lexington, KY 40506, USA
| | - Qian Yu
- Department of Pharmacology and Nutrition Science, The University of Kentucky, Lexington, KY 40506, USA,Markey Cancer Center, College of Medicine, The University of Kentucky, Lexington, KY 40506, USA
| | - Zhaoping Qiu
- Department of Pharmacology and Nutrition Science, The University of Kentucky, Lexington, KY 40506, USA,Markey Cancer Center, College of Medicine, The University of Kentucky, Lexington, KY 40506, USA
| | - Tao Dai
- Department of Pharmacology and Nutrition Science, The University of Kentucky, Lexington, KY 40506, USA,Markey Cancer Center, College of Medicine, The University of Kentucky, Lexington, KY 40506, USA,Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shuxia Wang
- Department of Pharmacology and Nutrition Science, The University of Kentucky, Lexington, KY 40506, USA
| | - Xiuwei Yang
- Department of Pharmacology and Nutrition Science, The University of Kentucky, Lexington, KY 40506, USA
| | - B. Mark Evers
- Markey Cancer Center, College of Medicine, The University of Kentucky, Lexington, KY 40506, USA,Department of Surgery, The University of Kentucky, Lexington, KY 40506, USA
| | - Yadi Wu
- Department of Pharmacology and Nutrition Science, The University of Kentucky, Lexington, KY 40506, USA,Markey Cancer Center, College of Medicine, The University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
30
|
Ballar Kirmizibayrak P, Erbaykent-Tepedelen B, Gozen O, Erzurumlu Y. Divergent Modulation of Proteostasis in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:117-151. [PMID: 32274755 DOI: 10.1007/978-3-030-38266-7_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteostasis regulates key cellular processes such as cell proliferation, differentiation, transcription, and apoptosis. The mechanisms by which proteostasis is regulated are crucial and the deterioration of cellular proteostasis has been significantly associated with tumorigenesis since it specifically targets key oncoproteins and tumor suppressors. Prostate cancer (PCa) is the second most common cause of cancer death in men worldwide. Androgens mediate one of the most central signaling pathways in all stages of PCa via the androgen receptor (AR). In addition to their regulation by hormones, PCa cells are also known to be highly secretory and are particularly prone to ER stress as proper ER function is essential. Alterations in various complex signaling pathways and cellular processes including cell cycle control, transcription, DNA repair, apoptosis, cell adhesion, epithelial-mesenchymal transition (EMT), and angiogenesis are critical factors influencing PCa development through key molecular changes mainly by posttranslational modifications in PCa-related proteins, including AR, NKX3.1, PTEN, p53, cyclin D1, and p27. Several ubiquitin ligases like MDM2, Siah2, RNF6, CHIP, and substrate-binding adaptor SPOP; deubiquitinases such as USP7, USP10, USP26, and USP12 are just some of the modifiers involved in the regulation of these key proteins via ubiquitin-proteasome system (UPS). Some ubiquitin-like modifiers, especially SUMOs, have been also closely associated with PCa. On the other hand, the proteotoxicity resulting from misfolded proteins and failure of ER adaptive capacity induce unfolded protein response (UPR) that is an indispensable signaling mechanism for PCa development. Lastly, ER-associated degradation (ERAD) also plays a crucial role in prostate tumorigenesis. In this section, the relationship between prostate cancer and proteostasis will be discussed in terms of UPS, UPR, SUMOylation, ERAD, and autophagy.
Collapse
Affiliation(s)
| | | | - Oguz Gozen
- Faculty of Medicine, Department of Physiology, Ege University, Izmir, Turkey
| | - Yalcin Erzurumlu
- Faculty of Pharmacy, Department of Biochemistry, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
31
|
Hilliard AT, Xie D, Ma Z, Snyder MP, Fernald RD. Genome-wide effects of social status on DNA methylation in the brain of a cichlid fish, Astatotilapia burtoni. BMC Genomics 2019; 20:699. [PMID: 31506062 PMCID: PMC6737626 DOI: 10.1186/s12864-019-6047-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Successful social behavior requires real-time integration of information about the environment, internal physiology, and past experience. The molecular substrates of this integration are poorly understood, but likely modulate neural plasticity and gene regulation. In the cichlid fish species Astatotilapia burtoni, male social status can shift rapidly depending on the environment, causing fast behavioral modifications and a cascade of changes in gene transcription, the brain, and the reproductive system. These changes can be permanent but are also reversible, implying the involvement of a robust but flexible mechanism that regulates plasticity based on internal and external conditions. One candidate mechanism is DNA methylation, which has been linked to social behavior in many species, including A. burtoni. But, the extent of its effects after A. burtoni social change were previously unknown. RESULTS We performed the first genome-wide search for DNA methylation patterns associated with social status in the brains of male A. burtoni, identifying hundreds of Differentially Methylated genomic Regions (DMRs) in dominant versus non-dominant fish. Most DMRs were inside genes supporting neural development, synapse function, and other processes relevant to neural plasticity, and DMRs could affect gene expression in multiple ways. DMR genes were more likely to be transcription factors, have a duplicate elsewhere in the genome, have an anti-sense lncRNA, and have more splice variants than other genes. Dozens of genes had multiple DMRs that were often seemingly positioned to regulate specific splice variants. CONCLUSIONS Our results revealed genome-wide effects of A. burtoni social status on DNA methylation in the brain and strongly suggest a role for methylation in modulating plasticity across multiple biological levels. They also suggest many novel hypotheses to address in mechanistic follow-up studies, and will be a rich resource for identifying the relationships between behavioral, neural, and transcriptional plasticity in the context of social status.
Collapse
Affiliation(s)
| | - Dan Xie
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Zhihai Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | | |
Collapse
|
32
|
Majera D, Skrott Z, Bouchal J, Bartkova J, Simkova D, Gachechiladze M, Steigerova J, Kurfurstova D, Gursky J, Korinkova G, Cwiertka K, Hodny Z, Mistrik M, Bartek J. Targeting genotoxic and proteotoxic stress-response pathways in human prostate cancer by clinically available PARP inhibitors, vorinostat and disulfiram. Prostate 2019; 79:352-362. [PMID: 30499118 DOI: 10.1002/pros.23741] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Castration-resistant prostate cancer (PCa) represents a serious health challenge. Based on mechanistically-supported rationale we explored new therapeutic options based on clinically available drugs with anticancer effects, including inhibitors of PARP1 enzyme (PARPi), and histone deacetylases (vorinostat), respectively, and disulfiram (DSF, known as alcohol-abuse drug Antabuse) and its copper-chelating metabolite CuET that inhibit protein turnover. METHODS Drugs and their combination with ionizing radiation (IR) were tested in various cytotoxicity assays in three human PCa cell lines including radio-resistant stem-cell like derived cells. Mechanistically, DNA damage repair, heat shock and unfolded protein response (UPR) pathways were assessed by immunofluorescence and immunoblotting. RESULTS We observed enhanced sensitivity to PARPi/IR in PC3 cells consistent with lower homologous recombination (HR) repair. Vorinostat sensitized DU145 cells to PARPi/IR and decreased mutant p53. Vorinostat also impaired HR-mediated DNA repair, as determined by Rad51 foci formation and downregulation of TOPBP1 protein, and overcame radio-resistance of stem-cell like DU145-derived cells. All PCa models responded well to CuET or DSF combined with copper. We demonstrated that DSF interacts with copper in the culture media and forms adequate levels of CuET indicating that DSF/copper and CuET may be considered as comparable treatments. Both DSF/copper and CuET evoked hallmarks of UPR in PCa cells, documented by upregulation of ATF4, CHOP and phospho-eIF2α, with ensuing heat shock response encompassing activation of HSF1 and HSP70. Further enhancing the cytotoxicity of CuET, combination with an inhibitor of the anti-apoptotic protein survivin (YM155, currently undergoing clinical trials) promoted the UPR-induced toxicity, yielding synergistic effects of CuET and YM155. CONCLUSIONS We propose that targeting genotoxic and proteotoxic stress responses by combinations of available drugs could inspire innovative strategies to treat castration-resistant PCa.
Collapse
Affiliation(s)
- Dusana Majera
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Zdenek Skrott
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jirina Bartkova
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Dana Simkova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Mariam Gachechiladze
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jana Steigerova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Daniela Kurfurstova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jan Gursky
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Gabriela Korinkova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Karel Cwiertka
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, University Hospital, Olomouc, Czech Republic
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i., Prague, Czech Republic
| | - Martin Mistrik
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i., Prague, Czech Republic
| |
Collapse
|
33
|
Ballar Kırmızıbayrak P, Erbaykent Tepedelen B. Endoplazmik retikulum-aracılı protein yıkım yolağında görev yapan p97/VCP ve Ufd1-Npl4 adlı proteinlerin NF-κB yolağına etkisinin prostat kanser hücre hattında incelenmesi. EGE TIP DERGISI 2019. [DOI: 10.19161/etd.418150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Sannino S, Guerriero CJ, Sabnis AJ, Stolz DB, Wallace CT, Wipf P, Watkins SC, Bivona TG, Brodsky JL. Compensatory increases of select proteostasis networks after Hsp70 inhibition in cancer cells. J Cell Sci 2018; 131:jcs217760. [PMID: 30131440 PMCID: PMC6140321 DOI: 10.1242/jcs.217760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer cells thrive when challenged with proteotoxic stress by inducing components of the protein folding, proteasome, autophagy and unfolded protein response (UPR) pathways. Consequently, specific molecular chaperones have been validated as targets for anti-cancer therapies. For example, inhibition of Hsp70 family proteins (hereafter Hsp70) in rhabdomyosarcoma triggers UPR induction and apoptosis. To define how these cancer cells respond to compromised proteostasis, we compared rhabdomyosarcoma cells that were sensitive (RMS13) or resistant (RMS13-R) to the Hsp70 inhibitor MAL3-101. We discovered that endoplasmic reticulum-associated degradation (ERAD) and autophagy were activated in RMS13-R cells, suggesting that resistant cells overcome Hsp70 ablation by increasing misfolded protein degradation. Indeed, RMS13-R cells degraded ERAD substrates more rapidly than RMS cells and induced the autophagy pathway. Surprisingly, inhibition of the proteasome or ERAD had no effect on RMS13-R cell survival, but silencing of select autophagy components or treatment with autophagy inhibitors restored MAL3-101 sensitivity and led to apoptosis. These data indicate a route through which cancer cells overcome a chaperone-based therapy, define how cells can adapt to Hsp70 inhibition, and demonstrate the value of combined chaperone and autophagy-based therapies.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sara Sannino
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Amit J Sabnis
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Donna Beer Stolz
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Callen T Wallace
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Peter Wipf
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Simon C Watkins
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Trever G Bivona
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
35
|
Awad D, Pulliam TL, Lin C, Wilkenfeld SR, Frigo DE. Delineation of the androgen-regulated signaling pathways in prostate cancer facilitates the development of novel therapeutic approaches. Curr Opin Pharmacol 2018; 41:1-11. [PMID: 29609138 DOI: 10.1016/j.coph.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 02/08/2023]
Abstract
Although androgen deprivation therapy (ADT) is initially effective for the treatment of progressive prostate cancer, it inevitably fails due to the onset of diverse resistance mechanisms that restore androgen receptor (AR) signaling. Thus, AR remains a desired therapeutic target even in the relapsed stages of the disease. Given the difficulties in stopping all AR reactivation mechanisms, we propose that the identification of the driver signaling events downstream of the receptor offer viable, alternative therapeutic targets. Here, we summarize recently described, AR-regulated processes that have been demonstrated to promote prostate cancer. By highlighting these signaling events and describing some of the ongoing efforts to pharmacologically modulate these pathways, our goal is to advocate potential new therapeutic targets that would represent an alternative approach for blocking AR actions.
Collapse
Affiliation(s)
- Dominik Awad
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Thomas L Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Chenchu Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sandi R Wilkenfeld
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Molecular Medicine Program, The Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
36
|
Urbanucci A, Barfeld SJ, Kytölä V, Itkonen HM, Coleman IM, Vodák D, Sjöblom L, Sheng X, Tolonen T, Minner S, Burdelski C, Kivinummi KK, Kohvakka A, Kregel S, Takhar M, Alshalalfa M, Davicioni E, Erho N, Lloyd P, Karnes RJ, Ross AE, Schaeffer EM, Vander Griend DJ, Knapp S, Corey E, Feng FY, Nelson PS, Saatcioglu F, Knudsen KE, Tammela TLJ, Sauter G, Schlomm T, Nykter M, Visakorpi T, Mills IG. Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer. Cell Rep 2018; 19:2045-2059. [PMID: 28591577 DOI: 10.1016/j.celrep.2017.05.049] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 04/01/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
Global changes in chromatin accessibility may drive cancer progression by reprogramming transcription factor (TF) binding. In addition, histone acetylation readers such as bromodomain-containing protein 4 (BRD4) have been shown to associate with these TFs and contribute to aggressive cancers including prostate cancer (PC). Here, we show that chromatin accessibility defines castration-resistant prostate cancer (CRPC). We show that the deregulation of androgen receptor (AR) expression is a driver of chromatin relaxation and that AR/androgen-regulated bromodomain-containing proteins (BRDs) mediate this effect. We also report that BRDs are overexpressed in CRPCs and that ATAD2 and BRD2 have prognostic value. Finally, we developed gene stratification signature (BROMO-10) for bromodomain response and PC prognostication, to inform current and future trials with drugs targeting these processes. Our findings provide a compelling rational for combination therapy targeting bromodomains in selected patients in which BRD-mediated TF binding is enhanced or modified as cancer progresses.
Collapse
Affiliation(s)
- Alfonso Urbanucci
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, 21 0349 Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Stefan J Barfeld
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, 21 0349 Oslo, Norway
| | - Ville Kytölä
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere and Tampere University of Technology, 33520 Tampere, Finland
| | - Harri M Itkonen
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, 21 0349 Oslo, Norway
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Daniel Vodák
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway
| | - Liisa Sjöblom
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere and Fimlab Laboratories, Tampere University Hospital, 33520 Tampere, Finland
| | - Xia Sheng
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Teemu Tolonen
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, 33520 Tampere, Finland
| | - Sarah Minner
- University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christoph Burdelski
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kati K Kivinummi
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere and Tampere University of Technology, 33520 Tampere, Finland
| | - Annika Kohvakka
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere and Fimlab Laboratories, Tampere University Hospital, 33520 Tampere, Finland
| | - Steven Kregel
- Department of Surgery - Section of Urology, University of Chicago, Chicago, IL 60637, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109-0940, USA
| | - Mandeep Takhar
- Research and Development, GenomeDx Biosciences, Vancouver, BC V6B 1B8, Canada
| | - Mohammed Alshalalfa
- Research and Development, GenomeDx Biosciences, Vancouver, BC V6B 1B8, Canada
| | - Elai Davicioni
- Research and Development, GenomeDx Biosciences, Vancouver, BC V6B 1B8, Canada
| | - Nicholas Erho
- Research and Development, GenomeDx Biosciences, Vancouver, BC V6B 1B8, Canada
| | - Paul Lloyd
- Department of Medicine, University of California at San Francisco, San Francisco, CA 94143-0410, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94143-0981, USA
| | | | - Ashley E Ross
- Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD 21287, USA
| | - Edward M Schaeffer
- Department of Urology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Tarry 16-703, Chicago, IL 60611-3008, USA
| | - Donald J Vander Griend
- Department of Surgery - Section of Urology, University of Chicago, Chicago, IL 60637, USA
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK; Institute for Pharmaceutical Chemistry, Goethe-University Frankfurt, Campus Riedberg, Max-von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Felix Y Feng
- Department of Medicine, University of California at San Francisco, San Francisco, CA 94143-0410, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94143-0981, USA; Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Urology, University of Washington, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0424 Oslo, Norway
| | - Karen E Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Teuvo L J Tammela
- Prostate Cancer Research Center and Department of Urology, University of Tampere and Tampere University Hospital, 33014 Tampere, Finland
| | - Guido Sauter
- University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20095, Germany
| | - Matti Nykter
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere and Tampere University of Technology, 33520 Tampere, Finland
| | - Tapio Visakorpi
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere and Fimlab Laboratories, Tampere University Hospital, 33520 Tampere, Finland
| | - Ian G Mills
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, 21 0349 Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; PCUK Movember Centre of Excellence, CCRCB, Queen's University, Belfast BT7 1NN, Northern Ireland, UK.
| |
Collapse
|