1
|
Leventoğlu E, Bakkaloğlu SA. A new era in the treatment of kidney diseases: NLRP3 inflammasome and cytokine-targeted therapies. Pediatr Nephrol 2025; 40:1515-1521. [PMID: 39485496 DOI: 10.1007/s00467-024-06578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024]
Abstract
The kidneys are crucial for filtering blood, managing overall body water, electrolyte, and acid-base balance, and regulating blood pressure. They remove metabolic waste products, toxins, and drugs. In addition, they limit inflammation by clearing cytokines and reduce immune cell activation by removing bacterial components. Dendritic cells (DCs) in the kidney maintain peripheral tolerance. About 85% of filtered water is reabsorbed by the proximal tubule, exposing distal nephron cells to high concentrations of low molecular weight antigens. These antigens are captured by DCs, helping to inactivate potentially autoreactive T cells and maintain tolerance to circulating antigens. In kidney failure, immune function is severely compromised due to the retention of toxins and cytokines, which activate immune cells and increase systemic inflammation. The kidneys are also vulnerable to immune-mediated diseases. Loss of immune homeostasis, characterized by over- or under-activity of the immune response, can adversely affect kidney function. With advances in immunology and cellular biology, biologic therapies targeting various pathways involved in the pathophysiology of kidney diseases are being developed. In this review, the immunologic aspects of kidney diseases and focus on cytokine-based therapies that may hold promise for the treatment of kidney diseases in the future will be presented.
Collapse
Affiliation(s)
- Emre Leventoğlu
- Department of Pediatric Nephrology, Konya City Hospital, Konya, Turkey.
| | - Sevcan A Bakkaloğlu
- Faculty of Medicine, Department of Pediatric Nephrology, Gazi University, Ankara, Turkey
| |
Collapse
|
2
|
Zhang Y, Shi S, Lin C, Zeng Q, Che L, Li Y, Lin W. Thiolutin, a novel NLRP3 inflammasome inhibitor, mitigates IgA nephropathy in mice. Int Immunopharmacol 2025; 152:114440. [PMID: 40086055 DOI: 10.1016/j.intimp.2025.114440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
NLRP3 inflammasome plays a key role in IgA Nephropathy (IgAN) pathogenesis. Thiolutin (THL) is an NLRP3 inflammasome inhibitor with anti-inflammatory effects, but its role in IgAN is unclear. This study aimed to evaluate the protective efficacy of THL in IgAN mice, alongside assessing its inhibitory mechanisms. IgAN was induced by administration of bovine serum albumin combined with Staphylococcal Enterotoxin B in mice, followed by THL treatment. Kidney injury biomarkers, inflammatory cytokines, histological changes and the NLRP3 inflammasome pathway were assessed. The effect of THL on pyroptosis and action site on inflammasome was examined in J774A.1 cells, and co-immunoprecipitation was used to study specific protein interactions. In IgAN mice, THL treatment significantly reduced renal dysfunctional markers and histological injury without affecting hepatic function, accompanied by decreased serum IgA levels, renal IgA deposition and pro-inflammatory cytokine accumulation via regulating the mRNA and protein expression of key inflammasome components. It also attenuated pyroptosis and NLRP3 inflammasome activation instead of priming in macrophages, via disturbing the combination of NLRP3 with apoptosis-associated speck-like protein and NIMA-Related Kinase 7. THL has significant anti-inflammatory and renal protective effects in IgAN via inhibiting the NLRP3 inflammasome pathway. Its selective impact on the activation and assembly of the inflammasome, without affecting priming, highlights its potential as a targeted therapeutic agent in IgAN management.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Shuhan Shi
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Changda Lin
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Quanzuan Zeng
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Lishuang Che
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yuangen Li
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Weiyuan Lin
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China.
| |
Collapse
|
3
|
Wang Y, You YK, Guo J, Wang J, Shao B, Li H, Meng X, Lan HY, Chen H. C-reactive protein promotes diabetic kidney disease via Smad3-mediated NLRP3 inflammasome activation. Mol Ther 2025; 33:263-278. [PMID: 39539016 PMCID: PMC11764780 DOI: 10.1016/j.ymthe.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney diseases resulting in enormous socio-economic burden. Accumulated evidence has indicated that C-reactive protein (CRP) exacerbates DKD by enhancing renal inflammation and fibrosis through TGF-β/Smad3 signaling. NLRP3 inflammasome is the key sensor contributing to renal inflammation. However, whether CRP enhances inflammation in DKD via NLRP3 inflammasome-related pathway remains unknown. In this study, we demonstrate that CRP promotes DKD via Smad3-mediated NLRP3 inflammasome activation as mice overexpressing human CRP gene exhibits accelerated renal inflammation in diabetic kidneys, which is associated with the activation of Smad3 and NLRP3 inflammasomes. In contrast, blockade of CPR signaling with a neutralizing anti-CD32 antibody attenuates CRP-induced activation of Smad3 and NLRP3 in vitro. Importantly, genetic deletion or pharmacological inhibition of Smad3 also mitigates CRP-induced activation of NLRP3 in diabetic kidneys or in high glucose-treated cells. Mechanistically, we reveal that Smad3 binds to the NLRP3 gene promoter, which is enhanced by CRP. Taken together, we conclude that CRP induces renal inflammation in DKD via a Smad3-NLRP3 inflammasome-dependent mechanism. Thus, targeting CRP or Smad3-NLRP3 pathways may be a new therapeutic potential for DKD.
Collapse
Affiliation(s)
- Yifan Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yong-Ke You
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Jianbo Guo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianan Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Baoyi Shao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haidi Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hui-Yao Lan
- Department of Nephrology and Pathology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China; Department of Medicine & Therapeutics, Chinese University of Hong Kong, Hong Kong, China.
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
4
|
Mosti F, Hoye ML, Escobar-Tomlienovich CF, Silver DL. Multi-modal investigation reveals pathogenic features of diverse DDX3X missense mutations. PLoS Genet 2025; 21:e1011555. [PMID: 39836689 PMCID: PMC11771946 DOI: 10.1371/journal.pgen.1011555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/27/2025] [Accepted: 12/27/2024] [Indexed: 01/23/2025] Open
Abstract
De novo mutations in the RNA binding protein DDX3X cause neurodevelopmental disorders including DDX3X syndrome and autism spectrum disorder. Amongst ~200 mutations identified to date, half are missense. While DDX3X loss of function is known to impair neural cell fate, how the landscape of missense mutations impacts neurodevelopment is almost entirely unknown. Here, we integrate transcriptomics, proteomics, and live imaging to demonstrate clinically diverse DDX3X missense mutations perturb neural development via distinct cellular and molecular mechanisms. Using mouse primary neural progenitors, we investigate four recurrently mutated DDX3X missense variants, spanning clinically severe (2) to mild (2). While clinically severe mutations impair neurogenesis, mild mutations have only a modest impact on cell fate. Moreover, expression of severe mutations leads to profound neuronal death. Using a proximity labeling screen in neural progenitors, we discover DDX3X missense variants have unique protein interactors. We observe notable overlap amongst severe mutations, suggesting common mechanisms underlying altered cell fate and survival. Transcriptomic analysis and subsequent cellular investigation highlights new pathways associated with DDX3X missense variants, including upregulated DNA Damage Response. Notably, clinically severe mutations exhibit excessive DNA damage in neurons, associated with increased cytoplasmic DNA:RNA hybrids and formation of stress granules. These findings highlight aberrant RNA metabolism and DNA damage in DDX3X-mediated neuronal cell death. In sum our findings reveal new mechanisms by which clinically distinct DDX3X missense mutations differentially impair neurodevelopment.
Collapse
Affiliation(s)
- Federica Mosti
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Mariah L. Hoye
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Carla F. Escobar-Tomlienovich
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Debra L. Silver
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
5
|
Liu Y, Wu Q, Huang Z, Zhou D, Cai C, Luo W, Feng P. TLR4 Inhibitor TAK-242 Protected Henoch-Schonlein Purpura Nephritis in Rats by Regulating Inflammatory Response and Immune Competence via NF- κB/NLRP3 Signalling. Clin Exp Pharmacol Physiol 2025; 52:e70008. [PMID: 39564921 DOI: 10.1111/1440-1681.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/21/2024]
Abstract
This study aimed to explore the effect of toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) signalling on Henoch-Schonlein purpura nephritis (HSPN). We established a HSPN rat model in a high-altitude hypoxic (HH) environment. Renal tissue lesions were observed by haematoxylin and Eosin (H&E) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL), CD20-postive B cells and CD68-postive macrophage cells were detected by immunohistochemistry, T-cell activation was detected by flow cytometry and toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor thermal protein domain associated protein 3 (NLRP3) signalling was detected by western blot. TAK-242 inhibited the expression of TLR4/NF-κB/NLRP3 signalling related-proteins, decreased the levels of 24 h urinary protein, serum creatinine, circular immune complex (CIC) and kidney immunoglobulin A (IgA), and improved renal histopathological damage in HH-HSPN rats. Furthermore, TAK-242 attenuated the infiltration of CD20 and CD68 into the kidney and increased the percentage of CD3+, CD4+ and CD4+/CD8+ cells in the blood of HH-HSPN rats. The study revealed that suppressing TLR4/NF-κB/NLRP3 signalling improved renal function and histopathological damage, and this improvement was related to inhibiting the inflammatory response and enhancing immune competence.
Collapse
Affiliation(s)
- Yirong Liu
- Department of Nephrology, First People's Hospital of Xining City, Xining, China
| | - Qiong Wu
- Department of Pathophysiology, Qinghai University Medical College, Xining, China
| | - Zhenxing Huang
- Department of Nephrology, First People's Hospital of Xining City, Xining, China
| | - Dongmei Zhou
- Department of Endocrinology, First People's Hospital of Xining City, Xining, China
| | - Chao Cai
- Department of Pathophysiology, Qinghai University Medical College, Xining, China
| | - Wenliang Luo
- Department of Pathophysiology, Qinghai University Medical College, Xining, China
| | - Ping Feng
- Department of Endocrinology, First People's Hospital of Xining City, Xining, China
| |
Collapse
|
6
|
Li Y, Sun Y, Xie D, Chen H, Zhang Q, Zhang S, Wen F, Ou JS, Zhang M, Su L, Li X, Wen WP, Chi W. AIP1 Regulates Ocular Angiogenesis Via NLRP12-ASC-Caspase-8 Inflammasome-Mediated Endothelial Pyroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405834. [PMID: 39527457 DOI: 10.1002/advs.202405834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Pathological ocular angiogenesis is a significant cause of irreversible vision loss and blindness worldwide. Currently, most studies have focused on the angiogenesis factors in ocular vascular diseases, and very few endogenous anti-angiogenic compounds have been found. Moreover, although inflammation is closely related to the predominant processes involved in angiogenesis, the mechanisms by which inflammation regulates pathological ocular angiogenesis remain obscure. In this study, a vascular endothelial cells (VECs)-specific anti-angiogenic factor is identified, apoptosis signal-regulating kinase 1(ASK1)-interacting protein-1 (AIP1) as a key pathogenic regulator in a typical ocular angiogenesis model, oxygen-induced retinopathy (OIR), using single-cell RNA sequencing. It is demonstrated that AIP1 inhibited pathological angiogenesis by preventing a particular inflammatory death pathway, namely pyroptosis, in retinal VECs. The assembly of a noncanonical inflammasome is further uncovered, the NLRP12-ASC-caspase-8 inflammasome, which is promoted by decreased AIP1 in OIR. This inflammasome elicited gasdermin D (GSDMD)-dependent endothelial pyroptosis, which in turn promoted the release of vascular endothelial growth factor (VEGF) and interleukin (IL)-1β. Suppression of NLRP12-CASP8-GSDMD axis and AIP1 upregulation reduced VEGF signaling, limiting new vessel formation. These findings reveal a previously uncharacterized inflammatory angiogenic process involving VECs pyroptosis-inducing retinal neovascularization, paving the way for promising therapeutic avenues targeting angiogenesis via AIP1 or pyroptosis.
Collapse
Affiliation(s)
- Yonghao Li
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Jinan University, Shenzhen, Guangdong, 518043, China
| | - Yimeng Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Dasen Xie
- Xiamen Key Laboratory of Ophthalmology, Xiamen Eye Center and Eye Institute of Xiamen University, Xiamen, Fujian, 361003, China
| | - Hui Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Jinan University, Shenzhen, Guangdong, 518043, China
| | - Feng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Min Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Lishi Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Wei-Ping Wen
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Wei Chi
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Jinan University, Shenzhen, Guangdong, 518043, China
| |
Collapse
|
7
|
Ji Y, Hua H, Jia Z, Zhang A, Ding G. Therapy Targeted to the NLRP3 Inflammasome in Chronic Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:369-383. [PMID: 39430292 PMCID: PMC11488838 DOI: 10.1159/000539496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/07/2024] [Indexed: 10/22/2024]
Abstract
Background The NLRP3 inflammasome is a cytoplasmic polymeric protein complex composed of the cytoplasmic sensor NLRP3, the apoptosis-related spot-like protein ASC, and the inflammatory protease caspase-1. NLRP3 activates and releases IL-1β through classical pathways, and IL-18 mediates inflammation and activates gasdermin-D protein to induce cellular pyroptosis. Numerous studies have also emphasized the non-classical pathway activated by the NLRP3 inflammasome in chronic kidney disease (CKD) and the inflammasome-independent function of NLRP3. Summary The NLRP3-targeting inflammasome and its associated pathways have thus been widely studied in models of CKD treatment, but no drug that targets NLRP3 has thus far been approved for the treatment of CKD. Key Messages We herein reviewed the current interventional methods for targeting the NLRP3 inflammasome in various CKD models, analyzed their underlying mechanisms of action, classified and compared them, and discussed the advantages and follow-up directions of various interventional methods. This review therefore provides novel ideas and a reference for the development of targeted NLRP3-inflammasome therapy in CKD.
Collapse
Affiliation(s)
- Yong Ji
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Hua
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Zhu W, Chen Y, Xiao J, Cheng C, Ma G, Wang Y, Zhang Y, Chen M. Ferroptosis-Related Genes in IgA Nephropathy: Screening for Potential Targets of the Mechanism. Int J Genomics 2024; 2024:8851124. [PMID: 39171207 PMCID: PMC11338665 DOI: 10.1155/2024/8851124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/04/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
Aims: Exploring key genes and potential molecular pathways of ferroptosis in immunoglobulin A nephropathy (IgAN). Methods: The IgAN datasets and ferroptosis-related genes (FRGs) were obtained in the Gene Expression Omnibus (GEO) and FerrDb database. Differentially expressed genes (DEGs) were identified using R software and intersected with FRGs to obtain differentially expressed FRGs (DE-FRGs). After that, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis (PEA) and Gene Ontology (GO) functional annotation were performed on DE-FRGs. In the Search Tool for the Retrieval of Interacting Genes (STRING) website, we construct a protein-protein interaction (PPI) network. The PPI network was further investigated with screening hub genes with Cytoscape software. The core genes were then subjected to gene set enrichment analysis (GSEA). Finally, the samples were analyzed for immune infiltration in R, and the correlation between hub genes and immune cells was analyzed. Results: A total of 347 DEGs were identified. CD44, CDO1, CYBB, IL1B, RRM2, AKR1C1, activated transcription factor-3 (ATF3), CDKN1A, GDF15, JUN, MGST1, MIOX, MT1G, NR4A1, PDK4, TNFAIP3, and ZFP36 were determined as DE-FRGs. JUN, IL1B, and ATF3 were then screened as hub genes. GSEA and immune infiltration analysis revealed that the hub genes were closely associated with immune inflammatory responses such as NOD-like receptor signaling, IL-17 signaling, and TNF signaling. Conclusions: Our results show that JUN and ATF3 are possibly critical genes in the process of IgAN ferroptosis and may be related with immune cell infiltration.
Collapse
Affiliation(s)
- Wenhui Zhu
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
- College of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun, China
| | - Yao Chen
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jing Xiao
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chuchu Cheng
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Guijie Ma
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yang Wang
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yonggang Zhang
- Department of Renal DivisionFirst People's Hospital of Qiqihar City, Qiqihar, China
| | - Ming Chen
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| |
Collapse
|
9
|
Islamuddin M, Qin X. Renal macrophages and NLRP3 inflammasomes in kidney diseases and therapeutics. Cell Death Discov 2024; 10:229. [PMID: 38740765 PMCID: PMC11091222 DOI: 10.1038/s41420-024-01996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1β and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3-ASC-caspase-1-IL-1β-IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
10
|
Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther 2024; 9:10. [PMID: 38177104 PMCID: PMC10766654 DOI: 10.1038/s41392-023-01687-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammasomes are large protein complexes that play a major role in sensing inflammatory signals and triggering the innate immune response. Each inflammasome complex has three major components: an upstream sensor molecule that is connected to a downstream effector protein such as caspase-1 through the adapter protein ASC. Inflammasome formation typically occurs in response to infectious agents or cellular damage. The active inflammasome then triggers caspase-1 activation, followed by the secretion of pro-inflammatory cytokines and pyroptotic cell death. Aberrant inflammasome activation and activity contribute to the development of diabetes, cancer, and several cardiovascular and neurodegenerative disorders. As a result, recent research has increasingly focused on investigating the mechanisms that regulate inflammasome assembly and activation, as well as the potential of targeting inflammasomes to treat various diseases. Multiple clinical trials are currently underway to evaluate the therapeutic potential of several distinct inflammasome-targeting therapies. Therefore, understanding how different inflammasomes contribute to disease pathology may have significant implications for developing novel therapeutic strategies. In this article, we provide a summary of the biological and pathological roles of inflammasomes in health and disease. We also highlight key evidence that suggests targeting inflammasomes could be a novel strategy for developing new disease-modifying therapies that may be effective in several conditions.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
11
|
Hu B, Ma K, Wang W, Han Z, Chi M, Nasser MI, Liu C. Research Progress of Pyroptosis in Renal Diseases. Curr Med Chem 2024; 31:6656-6671. [PMID: 37861024 DOI: 10.2174/0109298673255656231003111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 10/21/2023]
Abstract
Kidney diseases, particularly Acute Kidney Injury (AKI) and Chronic Kidney Disease (CKD), are identified as global public health issues affecting millions of individuals. In addition, the frequency of renal diseases in the population has increased dramatically and rapidly in recent years. Renal disorders have become a significant public health burden. The pathophysiology of renal diseases is significantly connected with renal cell death, including apoptosis, necrosis, necroptosis, ferroptosis, pyroptosis, and autophagy, as is now recognized. Unlike other forms of cell death, pyroptosis is a unique planned cell death (PCD). Scientists have proven that pyroptosis is crucial in developing various disorders, and this phenomenon is gaining increasing attention. It is considered a novel method of inflammatory cell death. Intriguingly, inflammation is among the most significant pathological characteristics of renal disease. This study investigates the effects of pyroptosis on Acute Kidney Injury (AKI), Chronic Kidney Disease (CKD), Diabetic Nephropathy (DN), Immunoglobulin A (IgA) Nephropathy, and Lupus Nephritis (LN) to identify novel therapeutic targets for kidney diseases.
Collapse
Affiliation(s)
- Boyan Hu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Wei Wang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Moussa Ide Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
12
|
Meng W, Shen JJ, Liang TY, Wu Q, Wang LB, Huang D, Xu FP, Bai JY, Yang XJ, Shen PC. Gubentongluo decoction alleviates NLRP3 inflammasome in IgAN cell model. ALL LIFE 2023. [DOI: 10.1080/26895293.2022.2138560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Wei Meng
- Department of Clinical Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jiao-Jiao Shen
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Ting-Yu Liang
- Department of Pathology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Qing Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Luo-Bing Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Di Huang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Fei-Peng Xu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jia-Yuan Bai
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xue-Jun Yang
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Pei-Cheng Shen
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (20DZ2272200), Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Hegazy MT, Fayed A, Nuzzolese R, Sota J, Ragab G. Autoinflammatory diseases and the kidney. Immunol Res 2023; 71:578-587. [PMID: 36991303 PMCID: PMC10425501 DOI: 10.1007/s12026-023-09375-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
The kidney represents an important target of systemic inflammation. Its involvement in monogenic and multifactorial autoinflammatory diseases (AIDs) vary from peculiar and relatively frequent manifestations to some rare but severe features that may end up requiring transplantation. The pathogenetic background is also very heterogeneous ranging from amyloidosis to non-amyloid related damage rooted in inflammasome activation. Kidney involvement in monogenic and polygenic AIDs may present as renal amyloidosis, IgA nephropathy, and more rarely as various forms of glomerulonephritis (GN), namely segmental glomerulosclerosis, collapsing glomerulopathy, fibrillar, or membranoproliferative GN. Vascular disorders such as thrombosis or renal aneurysms and pseudoaneurysms may be encountered in patients with Behcet's disease. Patients with AIDs should be routinely assessed for renal involvement. Screening with urinalysis, serum creatinine, 24-h urinary protein, microhematuria, and imaging studies should be carried out for early diagnosis. Awareness of drug-induced nephrotoxicity, drug-drug interactions as well as addressing the issue of proper renal adjustment of drug doses deserve a special mention and should always be considered when dealing with patients affected by AIDs. Finally, we will explore the role of IL-1 inhibitors in AIDs patients with renal involvement. Targeting IL-1 may indeed have the potential to successfully manage kidney disease and improve long-term prognosis of AIDs patients.
Collapse
Affiliation(s)
- Mohamed Tharwat Hegazy
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | - Ahmed Fayed
- Nephrology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt
| | - Rossana Nuzzolese
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Jurgen Sota
- Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Gaafar Ragab
- Rheumatology and Clinical Immunology Unit, Internal Medicine Department, Cairo University, Cairo, Egypt.
- School of Medicine, Newgiza University (NGU), Giza, Egypt.
| |
Collapse
|
14
|
Ma S, Zhao M, Chang M, Shi X, Shi Y, Zhang Y. Effects and mechanisms of Chinese herbal medicine on IgA nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154913. [PMID: 37307737 DOI: 10.1016/j.phymed.2023.154913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN), is the main cause of end-stage renal disease, that causes serious physical and psychological burden to patients worldwide. Some traditional treatment measures, such as blocking the renin-angiotensin-aldosterone system, controlling blood pressure, and following a low-protein diet, may not achieve satisfactory results. Therefore, more effective and safe therapies for IgAN are urgently needed. PURPOSE The aim of this review is to summarize the clinical efficacy of Chinese herbal medicines (CHMs) and their active ingredients in the treatment and management of IgAN based on the results of clinical trials, systematic reviews, and meta-analyses, to fully understand the advantages and perspectives of CHMs in the treatment of IgAN. STUDY DESIGN AND METHODS For this review, the following electronic databases were consulted: PubMed, ResearchGate, Science Direct, Web of Science, Chinese National Knowledge Infrastructure and Wanfang Data, "IgA nephropathy," "traditional Chinese medicine," "Chinese herbal medicine," "herb," "mechanism," "Meta-analysis," "systematic review," "RCT" and their combinations were the keywords to search the relevant literature. Data were collected from 1990 to 2022. RESULTS This review found that the active ingredients of CHMs commonly act on multiple signaling pathways in the clinical treatment of IgAN, mainly with antioxidant, anti-inflammatory and anti-fibrosis effects, and regulation of autophagy. CONCLUSION Compared with the single-target therapy of modern medicine, CHMs can regulate the corresponding pathways from the aspects of anti-inflammation, anti-oxidation, anti-fibrosis and autophagy to play a multi-target treatment of IgAN through syndrome differentiation and treatment, which has good clinical efficacy and can be used as the first choice or alternative therapy for IgAN treatment. This review provides evidence and research direction for a comprehensive clinical understanding of the protective effect of Chinese herbal medicine on IgAN.
Collapse
Affiliation(s)
- Sijia Ma
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yue Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
15
|
Cao S, Wang Q, Sun Z, Zhang Y, Liu Q, Huang Q, Ding G, Jia Z. Role of cuproptosis in understanding diseases. Hum Cell 2023:10.1007/s13577-023-00914-6. [PMID: 37154876 PMCID: PMC10165592 DOI: 10.1007/s13577-023-00914-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Cell death is involved in a wide range of physiological and pathological processes. Recently, the term "cuproptosis" was coined to describe a novel type of cell death. This type of cell death, characterized by copper accumulation and proteotoxic stress, is a copper-dependent manner of death. Despite the progress achieved toward a better understanding of cuproptosis, mechanisms and related signaling pathways in physiology and pathology across various diseases remain to be proved. This mini review summarizes current research on cuproptosis and diseases, providing insights into prospective clinical therapies via targeting cuproptosis.
Collapse
Affiliation(s)
- Shihan Cao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Qian Wang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Zhenzhen Sun
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Qianqi Liu
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qun Huang
- Department of Otorhinolaryngology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
16
|
Nakamichi R, Hishikawa A, Chikuma S, Yoshimura A, Sasaki T, Hashiguchi A, Abe T, Tokuhara T, Yoshimoto N, Nishimura ES, Hama EY, Azegami T, Nakayama T, Hayashi K, Itoh H. DNA-damaged podocyte-CD8 T cell crosstalk exacerbates kidney injury by altering DNA methylation. Cell Rep 2023; 42:112302. [PMID: 36989112 DOI: 10.1016/j.celrep.2023.112302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Recent epigenome-wide studies suggest an association between blood DNA methylation and kidney function. However, the pathological importance remains unclear. Here, we show that the homing endonuclease I-PpoI-induced DNA double-strand breaks in kidney glomerular podocytes cause proteinuria, glomerulosclerosis, and tubulointerstitial fibrosis with DNA methylation changes in blood cells as well as in podocytes. Single-cell RNA-sequencing analysis reveals an increase in cytotoxic CD8+ T cells with the activating/costimulatory receptor NKG2D in the kidneys, which exhibit a memory precursor effector cell phenotype, and the CD44high memory CD8+ T cells are also increased in the peripheral circulation. NKG2D blockade attenuates the renal phenotype caused by podocyte DNA damage. Blood methylome shows increased DNA methylation in binding sites for STAT1, a transcription factor contributing to CD8+ T cell homeostasis. Collectively, podocyte DNA damage alters the blood methylome, leading to changes in CD8+ T cells, which contribute to sustained renal injury in chronic kidney disease.
Collapse
Affiliation(s)
- Ran Nakamichi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akihito Hishikawa
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shunsuke Chikuma
- Department of Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akihiko Yoshimura
- Department of Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akinori Hashiguchi
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Tomoko Tokuhara
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Norifumi Yoshimoto
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Erina Sugita Nishimura
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eriko Yoshida Hama
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tatsuhiko Azegami
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takashin Nakayama
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kaori Hayashi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Hiroshi Itoh
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
17
|
The Role of NLRP3 Inflammasome in IgA Nephropathy. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010082. [PMID: 36676706 PMCID: PMC9866943 DOI: 10.3390/medicina59010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease worldwide today. The NLRP3 inflammasome is a polyprotein complex and an important participant in inflammation. Accumulating studies have shown that the NLRP3 inflammasome participates in a variety of kidney diseases, including IgAN. This review focuses on the role of the NLRP3 inflammasome in IgAN and summarizes multiple involved pathways, which may provide novel treatments for IgAN treatment.
Collapse
|
18
|
Lin H, Wu D, Xiao J. Identification of key cuproptosis-related genes and their targets in patients with IgAN. BMC Nephrol 2022; 23:354. [PMID: 36329405 PMCID: PMC9635123 DOI: 10.1186/s12882-022-02991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is one of the most common forms of chronic glomerulonephritis, but the aetiology and pathogenesis remain unclear. Cuproptosis is a newly identified form of cell death that plays an important role in many diseases. Researchers have not clearly determined whether the expression of cuproptosis-related genes (CRGs) is involved in the pathogenesis of IgAN. METHODS The GSE93798, GSE50469 and GSE37460 datasets containing microarray data from patients with IgAN (63) and healthy controls (31) were downloaded from the GEO database. Immune cells and immune-related functions were analysed in patients with IgAN and controls, and genes were identified that may be related to cuproptosis. A logistic regression model was established according to the results, and then GO and KEGG enrichment analyses were performed. Finally, possible drugs were selected using the DSigDB database. RESULTS The subjects in the different groups showed significantly different fractions of immune cells and immune-related functions, and 11 genes related to cuproptosis may be involved in these processes. Based on these 11 genes, the ROC curve was plotted, and the AUC value was calculated (0.898, 95% CI: 0.839-0.958). The result revealed good predictability. Then, genes with P < 0.05 (lipoyltransferase 1, LIPT1) were selected to plot an ROC curve, and the AUC value was calculated (0.729, 95% CI: 0.636-0.821). Enrichment analyses showed that the TCA cycle and multiple metabolic pathways may also be involved in the occurrence of IgAN. Finally, 293 potential drugs that may be used to treat IgAN were identified based on these genes. CONCLUSION In this study, we identified some novel CRGs that may be involved in IgAN, among which LIPT1 was significantly differentially expressed. It may predict the risk of IgAN and provides a possible target for the treatment of IgAN. Further experimental studies are needed to explore how these CRGs mediate the occurrence and development of IgAN.
Collapse
Affiliation(s)
- Huagang Lin
- grid.413597.d0000 0004 1757 8802Department of Nephrology, Huadong Hospital Affiliated to Fudan University, 200040 Shanghai, P.R. China ,grid.8547.e0000 0001 0125 2443Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, P.R. China
| | - Deping Wu
- grid.413597.d0000 0004 1757 8802Department of Nephrology, Huadong Hospital Affiliated to Fudan University, 200040 Shanghai, P.R. China ,grid.8547.e0000 0001 0125 2443Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, P.R. China
| | - Jing Xiao
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, 200040, Shanghai, P.R. China. .,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
19
|
Hu Y, Wu Q, Wang Y, Zhang H, Liu X, Zhou H, Yang T. The molecular pathogenesis of triptolide-induced hepatotoxicity. Front Pharmacol 2022; 13:979307. [PMID: 36091841 PMCID: PMC9449346 DOI: 10.3389/fphar.2022.979307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Triptolide (TP) is the major pharmacologically active ingredient and toxic component of Tripterygium wilfordii Hook. f. However, its clinical potential is limited by a narrow therapeutic window and multiple organ toxicity, especially hepatotoxicity. Furthermore, TP-induced hepatotoxicity shows significant inter-individual variability. Over the past few decades, research has been devoted to the study of TP-induced hepatotoxicity and its mechanism. In this review, we summarized the mechanism of TP-induced hepatotoxicity. Studies have demonstrated that TP-induced hepatotoxicity is associated with CYP450s, P-glycoprotein (P-gp), oxidative stress, excessive autophagy, apoptosis, metabolic disorders, immunity, and the gut microbiota. These new findings provide a comprehensive understanding of TP-induced hepatotoxicity and detoxification.
Collapse
Affiliation(s)
- Yeqing Hu
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Qiguo Wu
- Department of Pharmacy, Anqing Medical College, Anqing, China
| | - Yulin Wang
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Haibo Zhang
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Xueying Liu
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
- *Correspondence: Tao Yang, ; Hua Zhou,
| | - Tao Yang
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- *Correspondence: Tao Yang, ; Hua Zhou,
| |
Collapse
|
20
|
Liu YT, Hu YQ, Wang YL, Huang K, Chen GF, Zhou H, Liu CH, Yang T. Antibiotic pretreatment promotes orally-administered triptolide absorption and aggravates hepatotoxicity and intestinal injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115224. [PMID: 35351577 DOI: 10.1016/j.jep.2022.115224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Triptolide (TP) exhibits extensive pharmacological activity, but its hepatotoxicity and intestinal injury are significant and limit its clinical use. AIM OF THE STUDY To investigate the effect of gut microbiota disturbance after antibiotic pretreatment on TP-induced hepatotoxicity, intestinal injury and their mechanism. MATERIALS AND METHODS We compared the characteristics of TP-induced hepatotoxicity and intestinal injury in mice with or without antibiotic pretreatment. The levels of cytokines in the serum, immunohistochemistry, and the pharmacokinetics of TP were determined. RESULT Antibiotic pretreatment aggravates TP-induced hepatotoxicity and ileum/colon injury. TP induces hepatotoxicity in a dose-dependent manner after antibiotic pretreatment. Serum IL-1β and IL-6 levels were increased in mice given oral TP after antibiotic pretreatment. TP can increase the expression of NLRP3 inflammasome in hepatocytes, and Oral TP after antibiotic pretreatment can significantly enhance its expression, but NLRP3 inflammasome no significant change in colon and ileum. The pharmacokinetic characteristics of TP are altered significantly by antibiotic pretreatment, as shown by a 145.87% increase in Cmax, a 155.11% increase in AUC0-t, a 155.1% increase in relative bioavailability, and a 15.44% delay in MRT. Moreover, TP causes hepatotoxicity in a time-dependent manner. CONCLUSIONS Antibiotic pretreatment aggravates triptolide-induced hepatotoxicity and intestinal injury through elevated inflammatory response and promoted triptolide absorption.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Institute of Cardiovascular Disease, Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ye-Qing Hu
- Institute of Cardiovascular Disease, Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Lin Wang
- Institute of Cardiovascular Disease, Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kai Huang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Gao-Feng Chen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Hua Zhou
- Institute of Cardiovascular Disease, Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Cheng-Hai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Tao Yang
- Institute of Cardiovascular Disease, Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China.
| |
Collapse
|
21
|
Anton-Pampols P, Diaz-Requena C, Martinez-Valenzuela L, Gomez-Preciado F, Fulladosa X, Vidal-Alabro A, Torras J, Lloberas N, Draibe J. The Role of Inflammasomes in Glomerulonephritis. Int J Mol Sci 2022; 23:ijms23084208. [PMID: 35457026 PMCID: PMC9029880 DOI: 10.3390/ijms23084208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
The inflammasome is an immune multiprotein complex that activates pro-caspase 1 in response to inflammation-inducing stimuli and it leads to IL-1β and IL-18 proinflammatory cytokine production. NLRP1 and NLRP3 inflammasomes are the best characterized and they have been related to several autoimmune diseases. It is well known that the kidney expresses inflammasome genes, which can influence the development of some glomerulonephritis, such as lupus nephritis, ANCA glomerulonephritis, IgA nephropathy and anti-GBM nephropathy. Polymorphisms of these genes have also been described to play a role in autoimmune and kidney diseases. In this review, we describe the main characteristics, activation mechanisms, regulation and functions of the different inflammasomes. Moreover, we discuss the latest findings about the role of the inflammasome in several glomerulonephritis from three different points of view: in vitro, animal and human studies.
Collapse
Affiliation(s)
- Paula Anton-Pampols
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Clara Diaz-Requena
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Laura Martinez-Valenzuela
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Francisco Gomez-Preciado
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
| | - Xavier Fulladosa
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Clinical Sciences Department, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Anna Vidal-Alabro
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Joan Torras
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Clinical Sciences Department, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Correspondence:
| | - Núria Lloberas
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Department of Physiological Sciences, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Juliana Draibe
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| |
Collapse
|
22
|
Jin J, Zhou TJ, Ren GL, Cai L, Meng XM. Novel insights into NOD-like receptors in renal diseases. Acta Pharmacol Sin 2022; 43:2789-2806. [PMID: 35365780 PMCID: PMC8972670 DOI: 10.1038/s41401-022-00886-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/09/2022]
Abstract
Nucleotide-binding oligomerization domain-like receptors (NLRs), including NLRAs, NLRBs (also known as NAIPs), NLRCs, and NLRPs, are a major subfamily of pattern recognition receptors (PRRs). Owing to a recent surge in research, NLRs have gained considerable attention due to their involvement in mediating the innate immune response and perpetuating inflammatory pathways, which is a central phenomenon in the pathogenesis of multiple diseases, including renal diseases. NLRs are expressed in different renal tissues during pathological conditions, which suggest that these receptors play roles in acute kidney injury, obstructive nephropathy, diabetic nephropathy, IgA nephropathy, lupus nephritis, crystal nephropathy, uric acid nephropathy, and renal cell carcinoma, among others. This review summarises recent progress on the functions of NLRs and their mechanisms in the pathophysiological processes of different types of renal diseases to help us better understand the role of NLRs in the kidney and provide a theoretical basis for NLR-targeted therapy for renal diseases.
Collapse
|
23
|
Aranda-Rivera AK, Srivastava A, Cruz-Gregorio A, Pedraza-Chaverri J, Mulay SR, Scholze A. Involvement of Inflammasome Components in Kidney Disease. Antioxidants (Basel) 2022; 11:246. [PMID: 35204131 PMCID: PMC8868482 DOI: 10.3390/antiox11020246] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammasomes are multiprotein complexes with an important role in the innate immune response. Canonical activation of inflammasomes results in caspase-1 activation and maturation of cytokines interleukin-1β and -18. These cytokines can elicit their effects through receptor activation, both locally within a certain tissue and systemically. Animal models of kidney diseases have shown inflammasome involvement in inflammation, pyroptosis and fibrosis. In particular, the inflammasome component nucleotide-binding domain-like receptor family pyrin domain containing 3 (NLRP3) and related canonical mechanisms have been investigated. However, it has become increasingly clear that other inflammasome components are also of importance in kidney disease. Moreover, it is becoming obvious that the range of molecular interaction partners of inflammasome components in kidney diseases is wide. This review provides insights into these current areas of research, with special emphasis on the interaction of inflammasome components and redox signalling, endoplasmic reticulum stress, and mitochondrial function. We present our findings separately for acute kidney injury and chronic kidney disease. As we strictly divided the results into preclinical and clinical data, this review enables comparison of results from those complementary research specialities. However, it also reveals that knowledge gaps exist, especially in clinical acute kidney injury inflammasome research. Furthermore, patient comorbidities and treatments seem important drivers of inflammasome component alterations in human kidney disease.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Anjali Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; (A.S.); (S.R.M.)
| | - Alfredo Cruz-Gregorio
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Shrikant R. Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; (A.S.); (S.R.M.)
| | - Alexandra Scholze
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
24
|
Shen J, Wu Q, Liang T, Zhang J, Bai J, Yuan M, Shen P. TRIM40 inhibits IgA1-induced proliferation of glomerular mesangial cells by inactivating NLRP3 inflammasome through ubiquitination. Mol Immunol 2021; 140:225-232. [PMID: 34763147 DOI: 10.1016/j.molimm.2021.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 12/16/2022]
Abstract
IgA nephropathy, as the most common type of glomerulonephritis, causes chronic renal disease and progresses into kidney failure. Aberrant IgA deposition in the glomerular mesangium induces NLRP3 inflammasome activation for massive local inflammation, and is recognized as the primary pathogenesis in IgA nephropathy. Tripartite motif (TRIM)-containing proteins are E3 ubiquitin ligases that possess crucial regulatory functions in innate immunity, but their functional roles in IgA nephropathy are still unclear. Here, we aimed to identify TRIM-containing proteins that regulate IgA nephropathy and their underlying mechanisms. An in vitro IgA1-induction model was established in glomerular mesangial cells (GMCs) and showed that IgA1 could promote GMC proliferation by activating NLRP3 inflammasome. TRIM40, which was downregulated by IgA1 and interacted with NLRP3, was recognized as a promising candidate. In addition, TRIM40 could suppress IgA1-induced GMC proliferation by inhibiting the activation of NLRP3 inflammasome. Based on coimmunoprecipitation and ubiquitination assays, we confirmed that TRIM40 could mediate the ubiquitination of NLRP3, which explained its regulatory effects on NLRP3 inflammasome and GMC proliferation. More importantly, a dominant-negative mutant of TRIM40 lacking the RING domain (ΔRING) did not affect NLRP3 ubiquitination, and had no effects on IgA1-induced GMC proliferation or NLRP3 inflammasome activation. This study revealed the biological functions of TRIM40 in IgA nephropathy, facilitating its application as therapeutic target for IgA nephropathy and other NLRP3 inflammasome-relevant diseases.
Collapse
Affiliation(s)
- Jiaojiao Shen
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Qing Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China
| | - Tingyu Liang
- Department of Pathology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Jian Zhang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Jiayuan Bai
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Meijie Yuan
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Peicheng Shen
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China; TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, China; Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (20DZ2272200), China.
| |
Collapse
|
25
|
Shen M, Pan X, Gao Y, Ye H, Zhang J, Chen Y, Pan M, Huang W, Xu X, Zhao Y, Jin L. LncRNA CRNDE Exacerbates IgA Nephropathy Progression by Promoting NLRP3 Inflammasome Activation in Macrophages. Immunol Invest 2021; 51:1515-1527. [PMID: 34747317 DOI: 10.1080/08820139.2021.1989461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Activation of NLRP3 inflammasome in macrophages contributes greatly to IgA nephropathy (IgAN) progression. This study intended to investigate the underlying mechanism of NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in the development of IgAN. METHODS We examined the expression levels of colorectal neoplasia differentially expressed (CRNDE), NLRP3 inflammasome-related proteins in peripheral blood mononuclear cells (PBMCs) and J774A.1 cells and detected inflammatory cytokine levels in the serum of IgAN patients and cell supernatants of in vitro IgAN model. RNA pull-down and RNA immunoprecipitation (RIP) experiments were conducted to evaluate the interaction between CRNDE and NLRP3. Then, the ubiquitin level of NLRP3 and its binding ability to TRIM family member 31 (TRIM31) were determined. RESULTS Compared with the control group, the expressions of CRNDE and NLRP3 inflammasome-related proteins in PBMCs and J774A.1 cells and levels of IL-1β, TNF-α and IL-12 in serum of IgAN patients and cell supernatants of IgA-IC-induced J774A.1 cells were all increased. CRNDE silencing down-regulated NLRP3 inflammasome-related proteins and the levels of IL-1β, TNF-α and IL-12 in cell supernatants, while NLRP3 overexpression reversed these effects. Additionally, CRNDE could interact with NLRP3 and promote NLRP3 expression. Furthermore, inhibition of CRNDE reduced NLRP3 protein level and promoted TRIM31-mediated NLRP3 ubiquitination and degradation. CONCLUSION CRNDE exacerbates IgA nephropathy progression through restraining ubiquitination and degradation of NLRP3 and facilitating NLRP3 inflammasome activation in macrophages.
Collapse
Affiliation(s)
- Meng Shen
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Xinyue Pan
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Yingjie Gao
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Hanyang Ye
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Jing Zhang
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Yan Chen
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Min Pan
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Wenwen Huang
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Xiaoyan Xu
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Yanling Zhao
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| | - Lingwei Jin
- Department of Nephropathy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R China
| |
Collapse
|
26
|
Verma V, Kumar P, Gupta S, Yadav S, Dhanda RS, Yadav M. NLRP3‐mediated dysfunction of mitochondria leads to cell death in CFT073‐stimulated macrophages. Scand J Immunol 2021. [DOI: 10.1111/sji.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research University of Delhi Delhi India
| | - Parveen Kumar
- Department of Urology University of Alabama at Birmingham Birmingham Alabama USA
| | - Surbhi Gupta
- Dr. B. R. Ambedkar Center for Biomedical Research University of Delhi Delhi India
| | - Sonal Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research University of Delhi Delhi India
| | | | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research University of Delhi Delhi India
| |
Collapse
|
27
|
Huang X, Xu G. An Update on Targeted Treatment of IgA Nephropathy: An Autoimmune Perspective. Front Pharmacol 2021; 12:715253. [PMID: 34497518 PMCID: PMC8419281 DOI: 10.3389/fphar.2021.715253] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulin (Ig) A nephropathy (IgAN) is the commonest form of primary glomerulonephritis worldwide and is, considered a significant cause of end-stage renal disease in young adults. The precise pathogenesis of IgAN is unclear. The clinical and pathological features vary significantly between individuals and races, which makes treating IgAN difficult. Currently, the therapeutic strategies in IgAN are still optimal blood pressure control and proteinuria remission to improve the renal function in most cases. Immunosuppressive drugs such as corticosteroids can be considered in patients with persistent proteinuria and a high risk of renal function decline; however, they include a high toxicity profile. Therefore, the safety and selectivity of medications are critical concerns in the treatment of IgAN. Various pharmacological therapeutic targets have emerged based on the evolving understanding of the autoimmune pathogenesis of IgAN, which involves the immune response, mucosal immunity, renal inflammation, complement activation, and autophagy; treatments based on these mechanisms have been explored in preclinical and clinical studies. This review summarizes the progress concerning targeted therapeutic strategies and the relevant autoimmune pathogenesis in IgAN.
Collapse
Affiliation(s)
- Xin Huang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
28
|
Yang SR, Hua KF, Yang CY, Chen A, Weng JC, Tsai YL, Wan CJ, Wu CY, Lee CC, Chan JF, Hsieh CY, Hsu YJ, Wu CC, Mukhopadhyay D, Huang HS, Liu FC, Ka SM. Cf-02, a novel benzamide-linked small molecule, blunts NF-κB activation and NLRP3 inflammasome assembly and improves acute onset of accelerated and severe lupus nephritis in mice. FASEB J 2021; 35:e21785. [PMID: 34314075 PMCID: PMC10083056 DOI: 10.1096/fj.202100047r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
In the present study, acute onset of severe lupus nephritis was successfully treated in mice using a new, benzamide-linked, small molecule that targets immune modulation and the NLRP3 inflammasome. Specifically, 6-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenyl)-2H-benzo[e][1,3]oxazine-2,4(3H)-dione (Cf-02) (a) reduced serum levels of IgG anti-dsDNA, IL-1β, IL-6, and TNF-α, (b) inhibited activation of dendritic cells and differentially regulated T cell functions, and (c) suppressed the NF-κB/NLRP3 inflammasome axis, targeting priming and activating signals of the inflammasome. Moreover, treatment with Cf-02 significantly inhibited secretion of IL-1β in lipopolysaccharide-stimulated macrophages, but this effect was abolished by autophagy induction. These results recommend Cf-02 as a promising drug candidate for the serious renal conditions associated with systemic lupus erythematosus. Future investigations should examine whether Cf-02 may also be therapeutic in other types of chronic kidney disease involving NLRP3 inflammasome-driven signaling.
Collapse
Affiliation(s)
- Shin-Ruen Yang
- Department of Medicine, Graduate Institute of Aerospace and Undersea Medicine, Academy of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jui-Chun Weng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Jun Wan
- Department of Medicine, Graduate Institute of Aerospace and Undersea Medicine, Academy of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Yao Wu
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chung Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jia-Feng Chan
- Division of Nephrology, Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Chih-Yu Hsieh
- Division of Nephrology, Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
- College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | - Hsu-Shan Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Cheng Liu
- Department of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
29
|
Li Y, Xia M, Peng L, Liu H, Chen G, Wang C, Yuan D, Liu Y, Liu H. Downregulation of miR‑214-3p attenuates mesangial hypercellularity by targeting PTEN‑mediated JNK/c-Jun signaling in IgA nephropathy. Int J Biol Sci 2021; 17:3343-3355. [PMID: 34512151 PMCID: PMC8416718 DOI: 10.7150/ijbs.61274] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/21/2021] [Indexed: 01/05/2023] Open
Abstract
Mesangial cell (MC) proliferation and matrix expansion are basic pathological characteristics of IgA nephropathy (IgAN). However, the stepwise mechanism of MC proliferation and the exact set of related signaling molecules remain largely unclear. In this study, we found a significant upregulation of miR-214-3p in the renal cortex of IgAN mice by miRNA sequencing. In situ hybridization analysis showed that miR-214-3p expression was obviously elevated in MCs in the renal cortex in IgAN. Functionally, knockdown of miR-214-3p alleviated mesangial hypercellularity and renal lesions in IgAN mice. In vitro, the inhibition of miR-214-3p suppressed MC proliferation and arrested G1-S cell cycle pSrogression in IgAN. Mechanistically, a luciferase reporter assay verified PTEN as a direct target of miR-214-3p. Downregulation of miR-214-3p increased PTEN expression and reduced p-JNK and p-c-Jun levels, thereby inhibiting MC proliferation and ameliorating renal lesions in IgAN. Moreover, these changes could be attenuated by co-transfection with PTEN siRNA. Collectively, these results illustrated that miR-214-3p accelerated MC proliferation in IgAN by directly targeting PTEN to modulate JNK/c-Jun signaling. Therefore, miR-214-3p may represent a novel therapeutic target for IgAN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
30
|
Pan Q, Chen Y, Wang S, Xu YZ, Liu HF. Commentary on "The Role of Mitochondria in Systemic Lupus Erythematosus: A Glimpse of Various Pathogenetic Mechanisms" by Prof. Yang et al., Department of Nephrology and Rheumatology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China, Curr. Med. Chem., 2020, 27(20), 3346-3361. Curr Med Chem 2021; 28:2077-2079. [PMID: 34011253 DOI: 10.2174/092986732810210416082734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Yanse Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Shujun Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Yong-Zhi Xu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
31
|
Zhang KJ, Wu Q, Jiang SM, Ding L, Liu CX, Xu M, Wang Y, Zhou Y, Li L. Pyroptosis: A New Frontier in Kidney Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6686617. [PMID: 34007404 PMCID: PMC8102120 DOI: 10.1155/2021/6686617] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
Pyroptosis is a pattern of programmed cell death that significantly differs from apoptosis and autophagy in terms of cell morphology and function. The process of pyroptosis is characterized predominantly by the formation of gasdermin protein family-mediated membrane perforation, cell collapse, and the release of inflammatory factors, including IL-1β and IL-18. In recent years, with the rise of pyroptosis research, scholars have devoted time to study the mechanism of pyroptosis in kidney-related diseases. Pyroptosis is probably involved in kidney diseases through two pathways: the caspase-1-mediated canonical pathway and the caspase-4/5/11-mediated noncanonical pathway. In addition, some scholars have identified targets for the treatment of kidney-related diseases from the viewpoint of pyroptosis and developed corresponding medicines, which may become a recommendation for prognosis, targeted treatment, and clinical diagnosis of kidney diseases. This paper focuses on the up-to-date advances in the field of pyroptosis, especially on the key pathogenic role of pyroptosis in the development and progression of kidney diseases. It presents a more in-depth understanding of the pathogenesis of kidney diseases and introduces novel therapeutic targets for the prevention and clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- Ke-jia Zhang
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221009, China
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221009, China
| | - Qi Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou 221009, China
| | - Shi-min Jiang
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221009, China
| | - Lei Ding
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221009, China
| | - Chao-xia Liu
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221009, China
| | - Ming Xu
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221009, China
| | - Ying Wang
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221009, China
| | - Yao Zhou
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221009, China
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221009, China
| | - Li Li
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou 221009, China
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou 221009, China
| |
Collapse
|
32
|
Yang SR, Hua KF, Takahata A, Wu CY, Hsieh CY, Chiu HW, Chen CH, Mukhopadhyay D, Suzuki Y, Ka SM, Huang HS, Chen A. LCC18, a benzamide-linked small molecule, ameliorates IgA nephropathy in mice. J Pathol 2021; 253:427-441. [PMID: 33373038 DOI: 10.1002/path.5609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
IgA nephropathy (IgAN), an immune complex-mediated process and the most common primary glomerulonephritis, can progress to end-stage renal disease in up to 40% of patients. Accordingly, a therapeutic strategy targeting a specific molecular pathway is urgently warranted. Aided by structure characterisation and target identification, we predicted that a novel ring-fused 6-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenyl)-2H-benzo[e][1,3]oxazine-2,4(3H)-dione (LCC18) targets the NLRP3 inflammasome, which participates in IgAN pathogenesis. We further developed biomarkers for the disease. We used two complementary IgAN models in C57BL/6 mice, involving TEPC-15 hybridoma-derived IgA, and in gddY mice. Moreover, we created specific cell models to validate therapeutic effects of LCC18 on IgAN and to explain its underlying mechanisms. IgAN mice benefited significantly from treatment with LCC18, showing dramatically improved renal function, including greatly reduced proteinuria and renal pathology. Mechanistic studies showed that the mode of action specifically involved: (1) blocking of the MAPKs/COX-2 axis-mediated priming of the NLRP3 inflammasome; (2) inhibition of ASC oligomerisation and NLRP3 inflammasome assembly by inhibiting NLRP3 binding to PKR, NEK7 and ASC; and (3) activation of autophagy. LCC18 exerts therapeutic effects on murine IgAN by differentially regulating NLRP3 inflammasome activation and autophagy induction, suggesting this new compound as a promising drug candidate to treat IgAN. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shin-Ruen Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Akiko Takahata
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Chung-Yao Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yu Hsieh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Wen Chiu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Ann Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
33
|
Wu CH, Gan CH, Li LH, Chang JC, Chen ST, Menon MP, Cheng SM, Yang SP, Ho CL, Chernikov OV, Lin CH, Lam Y, Hua KF. A Synthetic Small Molecule F240B Decreases NLRP3 Inflammasome Activation by Autophagy Induction. Front Immunol 2020; 11:607564. [PMID: 33424855 PMCID: PMC7793731 DOI: 10.3389/fimmu.2020.607564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/18/2020] [Indexed: 11/28/2022] Open
Abstract
Conjugated polyenes are a class of widely occurring natural products with various biological functions. We previously identified 4-hydroxy auxarconjugatin B (4-HAB) as anti‐inflammatory agent with an IC50 of ~20 µM. In this study, we synthesized a new anti‐inflammatory 4-HAB analogue, F240B, which has an IC50 of less than 1 µM. F240B dose-dependently induced autophagy by increasing autophagic flux, LC3 speck formation and acidic vesicular organelle formation. F240B inhibited NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome activation through autophagy induction. In a mechanistic study, F240B inhibited interleukin (IL)-1β (IL-1β) precursor expression, promoted degradation of NLRP3 and IL-1β, and reduced mitochondrial membrane integrity loss in an autophagy-dependent manner. Additionally, F240B inhibited apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization and speck formation without affecting the interaction between NLRP3 and ASC or NIMA-related kinase 7 (NEK7) and double-stranded RNA-dependent kinase (PKR). Furthermore, F240B exerted in vivo anti-inflammatory activity by reducing the intraperitoneal influx of neutrophils and the levels of IL-1β, active caspase-1, IL-6 and monocyte chemoattractant protein-1 (MCP-1) in lavage fluids in a mouse model of uric acid crystal-induced peritonitis. In conclusion, F240B attenuated the NLRP3 inflammasome through autophagy induction and can be developed as an anti-inflammatory agent in the future.
Collapse
Affiliation(s)
- Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chin Heng Gan
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Che Chang
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Shin-Tai Chen
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Mridula P Menon
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ping Yang
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Oleg V Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, Russia
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Department of Biological Science & Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yulin Lam
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Kuo-Feng Hua
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
34
|
Gan W, Li X, Cui Y, Xiao T, Liu R, Wang M, Wei Y, Cui M, Ren S, Helian K, Ning W, Zhou H, Yang C. Pinocembrin relieves lipopolysaccharide and bleomycin induced lung inflammation via inhibiting TLR4-NF-κB-NLRP3 inflammasome signaling pathway. Int Immunopharmacol 2020; 90:107230. [PMID: 33290968 DOI: 10.1016/j.intimp.2020.107230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is a defense response of the body to stimuli. Lung injury caused by external stimuli can stimulate inflammatory cells to accumulate at the site of injury and secrete cytokines. Pinocembrin is a flavonoid with anti-inflammatory effects. Based on previous studies, we further explored the anti-inflammatory mechanisms of pinocembrin in vitro and in vivo. In vitro studies indicated that pinocembrin inhibited lipopolysaccharide (LPS)-stimulated inflammatory response in macrophages. In vivo studies also showed that pinocembrin could reduce LPS and bleomycin (BLM) induced lung inflammatory response in mice. Further mechanistic studies indicated that pinocembrin could regulate the TLR4-NF-κB signaling pathway and suppressed the activation and assembly of NLRP3 inflammasomes. In summary, pinocembrin could relieve pulmonary inflammatory response induced by LPS and BLM mainly via inhibiting TLR4-NF-κB-NLRP3 inflammasome axis. These results contribute to the understanding of the anti-inflammatory mechanisms of pinocembrin and serve as reference for future research on pinocembrin.
Collapse
Affiliation(s)
- Wenhua Gan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Yunyao Cui
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Ting Xiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Ming Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Yiying Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Mengqi Cui
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Shanfa Ren
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Kaiyue Helian
- College of Health and Medicine and College of Science, Australian National University, Canberra, ACT, Australia
| | - Wen Ning
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China; Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin 300457, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China; Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin 300457, China.
| |
Collapse
|
35
|
Wu C, Hua K, Yang S, Tsai Y, Yang S, Hsieh C, Wu C, Chang J, Arbiser JL, Chang C, Chen A, Ka S. Tris DBA ameliorates IgA nephropathy by blunting the activating signal of NLRP3 inflammasome through SIRT1- and SIRT3-mediated autophagy induction. J Cell Mol Med 2020; 24:13609-13622. [PMID: 33135320 PMCID: PMC7753881 DOI: 10.1111/jcmm.15663] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 11/28/2022] Open
Abstract
Tris (dibenzylideneacetone) dipalladium (Tris DBA), a small-molecule palladium complex, can inhibit cell growth and proliferation in pancreatic cancer, lymphocytic leukaemia and multiple myeloma. Given that this compound is particularly active against B-cell malignancies, we have been suggested that it can alleviate immune complexes (ICs)-mediated conditions, especially IgA nephropathy (IgAN). The therapeutic effects of Tris DBA on glomerular cell proliferation and renal inflammation and mechanism of action were examined in a mouse model of IgAN. Treatment of IgAN mice with Tris DBA resulted in markedly improved renal function, albuminuria and renal pathology, including glomerular cell proliferation, neutrophil infiltration, sclerosis and periglomerular inflammation in the renal interstitium, together with (Clin J Am Soc Nephrol. 2011, 6, 1301-1307) reduced mitochondrial ROS generation; (Am J Physiol-Renal Physiol. 2011. 301, F1218-F1230) differentially regulated autophagy and NLRP3 inflammasome; (Clin J Am Soc Nephrol. 2012, 7, 427-436) inhibited phosphorylation of JNK, ERK and p38 MAPK signalling pathways, and priming signal of the NLRP3 inflammasome; and (Free Radic Biol Med. 2013, 61, 285-297) blunted NLRP3 inflammasome activation through SIRT1- and SIRT3-mediated autophagy induction, in renal tissues or cultured macrophages. In conclusion, Tris DBA effectively ameliorated the mouse IgAN model and targeted signalling pathways downstream of ICs-mediated interaction, which is a novel immunomodulatory strategy. Further development of Tris DBA as a therapeutic candidate for IgAN is warranted.
Collapse
Affiliation(s)
- Chung‐Yao Wu
- Graduate Institute of Life SciencesNational Defense Medical CenterTaipeiTaiwan
| | - Kuo‐Feng Hua
- Department of Biotechnology and Animal ScienceNational Ilan UniversityIlanTaiwan
| | - Shin‐Ruen Yang
- Graduate Institute of Life SciencesNational Defense Medical CenterTaipeiTaiwan
| | - Yi‐Shan Tsai
- Graduate Institute of Life SciencesNational Defense Medical CenterTaipeiTaiwan
| | - Shun‐Min Yang
- Department of PathologyTri‐Service General HospitalNational Defense Medical CenterTaipeiTaiwan
| | - Chih‐Yu Hsieh
- Department of Internal MedicineEn Chu Kong HospitalNew Taipei CityTaiwan
- Renal Care Joint FoundationNew Taipei CityTaiwan
| | - Chia‐Chao Wu
- Division of NephrologyDepartment of Internal MedicineTri‐Service General HospitalNational Defense Medical CenterTaipeiTaiwan
| | - Jia‐Feng Chang
- Department of Internal MedicineEn Chu Kong HospitalNew Taipei CityTaiwan
- Renal Care Joint FoundationNew Taipei CityTaiwan
| | - Jack L. Arbiser
- Department of DermatologyEmory School of Medicineand Winship Cancer InstituteAtlantaGAUSA
- Atlanta Veterans Administration Medical CenterDecaturGAUSA
| | - Chiz‐Tzung Chang
- Division of NephrologyDepartment of Internal MedicineChina Medical University HospitalTaichungTaiwan
| | - Ann Chen
- Graduate Institute of Life SciencesNational Defense Medical CenterTaipeiTaiwan
- Department of PathologyTri‐Service General HospitalNational Defense Medical CenterTaipeiTaiwan
| | - Shuk‐Man Ka
- Graduate Institute of Aerospace and Undersea MedicineDepartment of MedicineNational Defense Medical CenterTaipeiTaiwan
| |
Collapse
|
36
|
Hsu WH, Hua KF, Tuan LH, Tsai YL, Chu LJ, Lee YC, Wong WT, Lee SL, Lai JH, Chu CL, Ho LJ, Chiu HW, Hsu YJ, Chen CH, Ka SM, Chen A. Compound K inhibits priming and mitochondria-associated activating signals of NLRP3 inflammasome in renal tubulointerstitial lesions. Nephrol Dial Transplant 2020; 35:74-85. [PMID: 31065699 DOI: 10.1093/ndt/gfz073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Renal tubulointerstitial lesions (TILs), a key pathological hallmark for chronic kidney disease to progress to end-stage renal disease, feature renal tubular atrophy, interstitial mononuclear leukocyte infiltration and fibrosis in the kidney. Our study tested the renoprotective and therapeutic effects of compound K (CK), as described in our US patent (US7932057B2), on renal TILs using a mouse unilateral ureteral obstruction (UUO) model. METHODS Renal pathology was performed and renal draining lymph nodes were subjected to flow cytometry analysis. Mechanism-based experiments included the analysis of mitochondrial dysfunction, a model of tubular epithelial cells (TECs) under mechanically induced constant pressure (MICP) and tandem mass tags (TMT)-based proteomics analysis. RESULTS Administration of CK ameliorated renal TILs by reducing urine levels of proinflammatory cytokines, and preventing mononuclear leukocyte infiltration and fibrosis in the kidney. The beneficial effects clearly correlated with its inhibition of: (i) NF-κB-associated priming and the mitochondria-associated activating signals of the NLRP3 inflammasome; (ii) STAT3 signalling, which in part prevents NLRP3 inflammasome activation; and (iii) the TGF-β-dependent Smad2/Smad3 fibrotic pathway, in renal tissues, renal TECs under MICP and/or activated macrophages, the latter as a major inflammatory player contributing to renal TILs. Meanwhile, TMT-based proteomics analysis revealed downregulated renal NLRP3 inflammasome activation-associated signalling pathways in CK-treated UUO mice. CONCLUSIONS The present study, for the first time, presents the potent renoprotective and therapeutic effects of CK on renal TILs by targeting the NLRP3 inflammasome and STAT3 signalling.
Collapse
Affiliation(s)
- Wan-Han Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Li-Heng Tuan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chieh Lee
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wei-Ting Wong
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sheau-Long Lee
- Department of Chemistry, R.O.C. Military Academy, Kaohsiung, Taiwan
| | - Jenn-Haung Lai
- Department of Internal Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Hsiao-Wen Chiu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Life Science, Tunghai University, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ann Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
37
|
Li H, Lu R, Pang Y, Li J, Cao Y, Fu H, Fang G, Chen Q, Liu B, Wu J, Zhou Y, Zhou J. Zhen-Wu-Tang Protects IgA Nephropathy in Rats by Regulating Exosomes to Inhibit NF-κB/NLRP3 Pathway. Front Pharmacol 2020; 11:1080. [PMID: 32765277 PMCID: PMC7381112 DOI: 10.3389/fphar.2020.01080] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is one of the most frequent kinds of primary glomerulonephritis characterized by IgA immune complexes deposition and glomerular proliferation. Zhen-wu-tang (ZWT), a well-known traditional Chinese formula has been reported to ameliorate various kidney diseases. However, its pharmacological mechanism remains unclear. Exosomes have been described in diverse renal diseases by mediating cellular communication but rarely in the IgAN. The purpose of the present study is to explore whether the underlying mechanisms of the effect of ZWT on IgAN is correlated to exosomes. Our results demonstrated that in human renal tubular epithelial cells (HK-2) stimulated by lipopolysaccharide, exosomes are obviously released after ZWT-containing serum treatment especially with 10% ZWT. In addition, once released, HK-2-derived exosomes were uptaked by human mesangial cells (HMC), which impeded the activation of NF-κB/NLRP3 signaling pathway to exert anti-inflammatory effects in a lipopolysaccharide induced proliferation model. Moreover, IgAN rat model was established by bovine serum albumin, CCL4 mixed solution and LPS. We found that 10% ZWT could significantly promote the release of exosomes from HK-2 and inhibit HMC proliferation to improve inflammation. Thus HK-2-derived exosomes treated with 10% ZWT (ZWT-EXO) were administered to the rats by tail vein injection. Our results showed that ZWT-EXO decreased the levels of 24 h proteinuria, urinary erythrocyte, IgA deposition in glomerulus and renal pathological injury which ameliorated the kidney damage. In addition, ZWT was able to dramatically promote secretion of exosomes in renal tissues while blocked NF-κB nuclear translocation as well as activation of NLRP3 inflammasome, leading to the inhibition of IL-1β and caspase-1. In conclusion, our study reveal that ZWT has protective effects on IgAN by regulating exosomes secretion to inhibit the activation of NF-κB/NLRP3 pathway, thereby attenuating the renal dysfunction. These findings may provide a new therapeutic target for the treatment of IgAN.
Collapse
Affiliation(s)
- Honglian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruirui Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Pang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jicheng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiwen Cao
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongxin Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoxing Fang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuhe Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bihao Liu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, China
| | - Junbiao Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
38
|
Lee H, Fessler MB, Qu P, Heymann J, Kopp JB. Macrophage polarization in innate immune responses contributing to pathogenesis of chronic kidney disease. BMC Nephrol 2020; 21:270. [PMID: 32660446 PMCID: PMC7358194 DOI: 10.1186/s12882-020-01921-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by inflammation, injury and fibrosis. Dysregulated innate immune responses mediated by macrophages play critical roles in progressive renal injury. The differentiation and polarization of macrophages into pro-inflammatory 'M1' and anti-inflammatory 'M2' states represent the two extreme maturation programs of macrophages during tissue injury. However, the effects of macrophage polarization on the pathogenesis of CKD are not fully understood. In this review, we discuss the innate immune mechanisms underlying macrophage polarization and the role of macrophage polarization in the initiation, progression, resolution and recurrence of CKD. Macrophage activation and polarization are initiated through recognition of conserved endogenous and exogenous molecular motifs by pattern recognition receptors, chiefly, Toll-like receptors (TLRs), which are located on the cell surface and in endosomes, and NLR inflammasomes, which are positioned in the cytosol. Recent data suggest that genetic variants of the innate immune molecule apolipoprotein L1 (APOL1) that are associated with increased CKD prevalence in people of African descent, mediate an atypical M1 macrophage polarization. Manipulation of macrophage polarization may offer novel strategies to address dysregulated immunometabolism and may provide a complementary approach along with current podocentric treatment for glomerular diseases.
Collapse
Affiliation(s)
- Hewang Lee
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute of Heart and Vessel Diseases, Affiliated Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Peng Qu
- Institute of Heart and Vessel Diseases, Affiliated Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jurgen Heymann
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
39
|
Wu CY, Hua KF, Hsu WH, Suzuki Y, Chu LJ, Lee YC, Takahata A, Lee SL, Wu CC, Nikolic-Paterson DJ, Ka SM, Chen A. IgA Nephropathy Benefits from Compound K Treatment by Inhibiting NF-κB/NLRP3 Inflammasome and Enhancing Autophagy and SIRT1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:202-212. [PMID: 32482710 DOI: 10.4049/jimmunol.1900284] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
IgA nephropathy (IgAN), the most common primary glomerular disorder, has a relatively poor prognosis yet lacks a pathogenesis-based treatment. Compound K (CK) is a major absorbable intestinal bacterial metabolite of ginsenosides, which are bioactive components of ginseng. The present study revealed promising therapeutic effects of CK in two complementary IgAN models: a passively induced one developed by repeated injections of IgA immune complexes and a spontaneously occurring model of spontaneous grouped ddY mice. The potential mechanism for CK includes 1) inhibiting the activation of NLRP3 inflammasome in renal tissues, macrophages and bone marrow-derived dendritic cells, 2) enhancing the induction of autophagy through increased SIRT1 expression, and 3) eliciting autophagy-mediated NLRP3 inflammasome inhibition. The results support CK as a drug candidate for IgAN.
Collapse
Affiliation(s)
- Chung-Yao Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan
| | - Wan-Han Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan 333, Taiwan
| | - Yu-Chieh Lee
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan
| | - Akiko Takahata
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Sheau-Long Lee
- Department of Chemistry, R.O.C. Military Academy, Kaohsiung 830, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - David J Nikolic-Paterson
- Department of Nephrology and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei 114, Taiwan; and
| | - Ann Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
40
|
Li LH, Chen TL, Chiu HW, Hsu CH, Wang CC, Tai TT, Ju TC, Chen FH, Chernikov OV, Tsai WC, Hua KF. Critical Role for the NLRP3 Inflammasome in Mediating IL-1β Production in Shigella sonnei-Infected Macrophages. Front Immunol 2020; 11:1115. [PMID: 32582195 PMCID: PMC7283925 DOI: 10.3389/fimmu.2020.01115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
Shigella is one of the leading bacterial causes of diarrhea worldwide, affecting more than 165 million people annually. Among the serotypes of Shigella, Shigella sonnei is physiologically unique and endemic in human immunodeficiency virus-infected men who have sex with men. The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, a protein complex composed of NLRP3, apoptosis-associated speck-like protein, and caspase-1, recognizes, and responds to pathogen infection and diverse sterile host-derived or environmental danger signals to induce IL-1β and IL-18 production. Although the Shigella flexneri-mediated activation of the NLRP3 inflammasome has been reported, the effect of S. sonnei on NLRP3 inflammasome activation remains unclear. We found that S. sonnei induced IL-1β production through NLRP3-dependent pathways in lipopolysaccharide-primed macrophages. A mechanistic study revealed that S. sonnei induced IL-1β production through P2X7 receptor-mediated potassium efflux, reactive oxygen species generation, lysosomal acidification, and mitochondrial damage. In addition, the phagocytosis of viable S. sonnei was important for IL-1β production. Furthermore, we demonstrated that NLRP3 negatively regulated phagocytosis and the bactericidal activity of macrophages against S. sonnei. These findings provide mechanistic insight into the activation of the NLRP3 inflammasome by S. sonnei in macrophages.
Collapse
Affiliation(s)
- Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tzu-Ling Chen
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Wen Chiu
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Chung-Hua Hsu
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.,Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Chun Wang
- Infectious Disease Division, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Tzu-Ting Tai
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Tz-Chuen Ju
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Oleg V Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, Russia
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
41
|
Xiong W, Meng XF, Zhang C. Inflammasome activation in podocytes: a new mechanism of glomerular diseases. Inflamm Res 2020; 69:731-743. [PMID: 32448973 DOI: 10.1007/s00011-020-01354-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/22/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Inflammasome is a multi-protein complex which is an important constituent of innate immunity. It mainly consists of three parts, apoptosis-associated speck-like protein containing caspase recruitment domain (ASC), caspase protease, and a NOD-like receptor (NLR) family protein (such as NLRP1) or an HIN200 family protein (such as AIM2). Inflammasome is widely studied in many autoimmune diseases and chronic inflammatory reactions, such as familial periodic autoinflammatory response, type 2 diabetes, Alzheimer's disease, and atherosclerosis. Activation of inflammasome in the kidney has been widely reported in glomerular and tubular-interstitial diseases. Podocytes play a critical role in maintaining the normal structure and function of glomerular filtration barrier. Recently, it has been demonstrated that podocytes, as a group of renal residential cells, can express all necessary components of NLRP3 inflammasome, which is activated and contribute to inflammatory response in the local kidney. METHODS Literature review was conducted to further summarize current evidence of podocyte NLRP3 inflammasome activation and related molecular mechanisms under different disease conditions. RESULTS Podocytes are a key component of the glomerular filtration barrier, and the loss of podocyte regeneration is a major limiting factor in the recovery of proteinuria. Through a more comprehensive study of inflammasome in podocytes, it will provide new targets and possibilities for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xian-Fang Meng
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
42
|
Jiang Z, Feng A, Tao LI. Inherited Autoinflammatory Disease with Immunodeficiency Combined with IgA Nephropathy. AKTUEL RHEUMATOL 2020. [DOI: 10.1055/a-1135-8602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractThe etiology of unexplained periodic fever is often complex, and hereditary factors play an important role. This article describes a 26-year-old chinese women with intermittent fever for 9 years, with 10-year history of IgA nephropathy. Her fever is relieved during pregnancy, but after a baby is born, fever reappears, accompanied by headache, gasping after activity, chest pain, abdominal pain, blood in the stool, ataxia, intermittent back erythema, skin biopsy suggests amyloidosis, the autoinflammatory PLCG2 associated antibody deficiency and immune dysregulation was diagnosed by genetic testing. The fever was gradually relieved after treatment with rilonacept.
Collapse
Affiliation(s)
- Zhifeng Jiang
- Nephrology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China
| | - Aiqiao Feng
- Nephrology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China
| | - L I Tao
- Nephrology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China
| |
Collapse
|
43
|
Expression of miRNA-223 and NLRP3 gene in IgA patients and intervention of traditional Chinese medicine. Saudi J Biol Sci 2020; 27:1521-1526. [PMID: 32489289 PMCID: PMC7254046 DOI: 10.1016/j.sjbs.2020.04.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 11/20/2022] Open
Abstract
Objective The purpose of this study was to investigate the expression of miRNA-223 and NLRP3 in IgA patients and the intervention of traditional Chinese medicine (TCM), so as to realize the basic pathological changes of IgA patients, the expression of miRNA-223 and NLRP3 in IgA patients and the changes of patients' body indexes before and after the treatment of TCM. Methods Firstly, according to the clinical data, patients with IgA nephropathy were divided into different groups according to their pathological changes. After that, the chemical sections and staining steps of the immune kidney were carried out. Immunohistochemical pv-9000 two-step method was used to stain it. By this method, miRNA-223 and NLRP3 genes in kidney were determined. After that, the image analysis method was used for semi quantitative experiment. Finally, the intervention of TCM was used to study the changes of indicators before and after treatment. Results miRNA-223 and NLRP3 genes could be found mainly in the cytoplasm of renal tubular epithelial cells and the interstitium of monocyte in renal tissue, and there were significant differences between miRNA-223 and NLRP3 genes in the expression levels of proteinuria alone, hematuria albuminuria alone and hematuria alone. There was a positive correlation between miRNA-223 and NLRP3 expression and 24-hour urinary protein in IgA nephropathy. In addition, it also had positive correlation with MCP-1 and IL-18. Conclusion This study could provide some direction and guidance for clinical diagnosis and treatment of IgA nephropathy.
Collapse
|
44
|
Xiang H, Zhu F, Xu Z, Xiong J. Role of Inflammasomes in Kidney Diseases via Both Canonical and Non-canonical Pathways. Front Cell Dev Biol 2020; 8:106. [PMID: 32175320 PMCID: PMC7056742 DOI: 10.3389/fcell.2020.00106] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/10/2020] [Indexed: 12/22/2022] Open
Abstract
Inflammasomes, multiprotein complex induced by harmful factors in the body, play a crucial role in innate immunity. Activation of inflammasomes lead to the activation of casepase-1 and then the secretion of inflammatory cytokines, including IL-1β and IL-18, subsequently leading to a type of cell death called pyroptosis. There are two types of signaling pathways involved in the process of inflammasome activation: the canonical and the non-canonical signaling pathway. The canonical signaling pathway is mainly dependent on casepase-1; the non-canonical signal pathway, which was recently discovered, is mainly dependent on caspase-11, but is also meditated by caspase-4, caspase-5, and caspase-8. Kidney inflammation is basically associated with inflammatory factor exudation and inflammatory cell infiltration. Several studies have showed that inflammasomes are closely related to kidney diseases, especially the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome, which play a role in regulating kidney inflammation and fibrosis. In this review, we focus on the relationship between inflammasomes and kidney diseases, especially the role of the NLRP3 inflammasome in different kinds of kidney disease via both canonical and non-canonical signal pathways.
Collapse
Affiliation(s)
- Huiling Xiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhifeng Xu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
IL-20 in Acute Kidney Injury: Role in Pathogenesis and Potential as a Therapeutic Target. Int J Mol Sci 2020; 21:ijms21031009. [PMID: 32028746 PMCID: PMC7037658 DOI: 10.3390/ijms21031009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) causes over 1 million deaths worldwide every year. AKI is now recognized as a major risk factor in the development and progression of chronic kidney disease (CKD). Diabetes is the main cause of CKD as well. Renal fibrosis and inflammation are hallmarks in kidney diseases. Various cytokines contribute to the progression of renal diseases; thus, many drugs that specifically block cytokine function are designed for disease amelioration. Numerous studies showed IL-20 functions as a pro-inflammatory mediator to regulate cytokine expression in several inflammation-mediated diseases. In this review, we will outline the effects of pro-inflammatory cytokines in the pathogenesis of AKI and CKD. We also discuss the role of IL-20 in kidney diseases and provide a potential therapeutic approach of IL-20 blockade for treating renal diseases.
Collapse
|
46
|
Kim YG, Kim SM, Kim KP, Lee SH, Moon JY. The Role of Inflammasome-Dependent and Inflammasome-Independent NLRP3 in the Kidney. Cells 2019; 8:cells8111389. [PMID: 31694192 PMCID: PMC6912448 DOI: 10.3390/cells8111389] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 01/27/2023] Open
Abstract
Cytoplasmic nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) forms an inflammasome with apoptosis-associated speck-like protein containing a CARD (ASC) and pro-caspase-1, which is followed by the cleavage of pro-caspase-1 to active caspase-1 and ultimately the activation of IL-1β and IL-18 and induction of pyroptosis in immune cells. NLRP3 activation in kidney diseases aggravates inflammation and subsequent fibrosis, and this effect is abrogated by genetic or pharmacologic deletion of NLRP3. Inflammasome-dependent NLRP3 mediates the progression of kidney diseases by escalating the inflammatory response in immune cells and the cross-talk between immune cells and renal nonimmune cells. However, recent studies have suggested that NLRP3 has several inflammasome-independent functions in the kidney. Inflammasome-independent NLRP3 regulates apoptosis in tubular epithelial cells by interacting with mitochondria and mediating mitochondrial reactive oxygen species production and mitophagy. This review will summarize the mechanisms by which NLRP3 functions in the kidney in both inflammasome-dependent and inflammasome-independent ways and the role of NLRP3 and NLRP3 inhibitors in kidney diseases.
Collapse
Affiliation(s)
- Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Medical School, Seoul 02447, Korea; (Y.G.K.); (S.-M.K.); (S.-H.L.)
| | - Su-Mi Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Medical School, Seoul 02447, Korea; (Y.G.K.); (S.-M.K.); (S.-H.L.)
| | - Ki-Pyo Kim
- Division of Nephrology and Hypertension, Department of Internal Medicine, Inha University of Medicine, Incheon 22212, Korea;
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Medical School, Seoul 02447, Korea; (Y.G.K.); (S.-M.K.); (S.-H.L.)
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University Medical School, Seoul 02447, Korea; (Y.G.K.); (S.-M.K.); (S.-H.L.)
- Correspondence: ; Tel.: +82-2-440-6262
| |
Collapse
|
47
|
Lin TJ, Wu CY, Tsai PY, Hsu WH, Hua KF, Chu CL, Lee YC, Chen A, Lee SL, Lin YJ, Hsieh CY, Yang SR, Liu FC, Ka SM. Accelerated and Severe Lupus Nephritis Benefits From M1, an Active Metabolite of Ginsenoside, by Regulating NLRP3 Inflammasome and T Cell Functions in Mice. Front Immunol 2019; 10:1951. [PMID: 31475012 PMCID: PMC6702666 DOI: 10.3389/fimmu.2019.01951] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Chinese herbal medicines used in combination have long-term been shown to be mild remedies with “integrated effects.” However, our study provides the first demonstration that M1, an active metabolite of ginsenoside, exerted its dramatic therapeutic effects on accelerated and severe lupus nephritis (ASLN) mice, featuring acute renal function impairment, heavy proteinuria, high serum levels of anti-dsDNA, and high-grade, diffuse proliferative renal lesions. In the present study, NZB/WF1 mice were given injections of lipopolysaccharide to induce the ASLN model. M1 (30 mg/kg) was then administered to the mice by gavage daily, and the mice were sacrificed on week 3 and week 5 after the induction of disease. To identify the potential mechanism of action for the pure compound, levels of NLRP3 inflammasome activation in bone marrow-derived dendritic cells (BMDCs), podocytes and macrophages, and antigen-specific T cell activation in BMDCs were determined in addition to mechanistic experiments in vivo. Treatment with M1 dramatically improved renal function, albuminuria and renal lesions and reduced serum levels of anti-dsDNA in the ASLN mice. These beneficial effects with M1 treatment involved the following cellular and molecular mechanistic events: [1] inhibition of NLRP3 inflammasome associated with autophagy induction, [2] modulation of T help cell activation, and [3] induction of regulatory T cell differentiation. M1 improved the ASLN mice by blunting NLRP3 inflammasome activation and differentially regulating T cell functions, and the results support M1 as a new therapeutic candidate for LN patients with a status of abrupt transformation of lower-grade (mesangial) to higher-grade (diffuse proliferative) nephritis.
Collapse
Affiliation(s)
- Tsai-Jung Lin
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Chung-Yao Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Yi Tsai
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Wan-Han Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chieh Lee
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Ann Chen
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Sheau-Long Lee
- Department of Chemistry, R.O.C. Military Academy, Kaohsiung, Taiwan
| | - Yi-Jin Lin
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Chih-Yu Hsieh
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan.,Renal Care Joint Foundation, New Taipei City, Taiwan
| | - Shin-Ruen Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
48
|
Li L, Tang W, Yi F. Role of Inflammasome in Chronic Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:407-421. [DOI: 10.1007/978-981-13-8871-2_19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Dong M, Zhao M, Cui M, Sun J, Meng X, Sun W, Wang L, Du P. Interleukin-18 binding protein attenuates renal injury of adriamycin-induced mouse nephropathy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3005-3012. [PMID: 31934138 PMCID: PMC6949725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Nephrotic syndrome is one of the most common kidney diseases in children, most of which were caused by minimal change disease, which could be typically reversible with the use of corticosteroid therapy in steroid-sensitive nephrotic syndrome. At the same time, there still exist some side effects caused by drugs and steroid-resistant nephrotic syndrome. It's urgent to investigate more accurate treatment to improve the situation. In this study, we chose mice model by adriamycin to observe the effect of IL-18BP intervention. It was shown that (1) weak general conditions appeared after adriamycin administration; (2) Proteinuria showed up after adriamycin-administration and then decreased with IL-18 binding protein intervention; (3) the level of triglyceride, cholesterol, IL-18, IFN-γ, and TNF-α in the IL-18 binding protein intervening group were significantly lower than those in the adriamycin-minimal change disease MCD group (all P < 0.01), and the levels of serum total protein, albumin, and IL-4 were significantly higher than those in the adriamycin-minimal change disease MCD group (P < 0.05, P < 0.01, P < 0.05); (4) ultramicrostructural examination demonstrated wide fusion of foot processes of glomerular epithelial cells in adriamycin-minimal change disease MCD mice, while only focal fusion occurred in IL-18 binding protein intervening mice. In conclusion, IL-18BP repaired the proteinurine, histopathological injury of kidney, and the induction of serum cytokines in mice models of minimal change disease induced by adriamycin.
Collapse
Affiliation(s)
- Menghua Dong
- School of Basic Medical Sciences, Binzhou Medical UniversityYantai, Shandong, China
| | - Mingfeng Zhao
- School of Basic Medical Sciences, Binzhou Medical UniversityYantai, Shandong, China
| | - Min Cui
- Department of Pediatrics, Binzhou People’s HospitalBinzhou, Shandong, China
| | - Jiuzheng Sun
- Jinan Central Hospital Affiliated to Shandong UniversityJinan, Shandong, China
| | - Xianghui Meng
- Central Hospital of Zibo (Gaoqing Branch Courts)Zibo, Shandong, China
| | - Wangnan Sun
- School of Basic Medical Sciences, Binzhou Medical UniversityYantai, Shandong, China
| | - Lin Wang
- The Second Hospital of Shandong UniversityJinan, Shandong, China
| | - Pengchao Du
- School of Basic Medical Sciences, Binzhou Medical UniversityYantai, Shandong, China
| |
Collapse
|
50
|
Roles of Inflammasomes in Inflammatory Kidney Diseases. Mediators Inflamm 2019; 2019:2923072. [PMID: 31427885 PMCID: PMC6679869 DOI: 10.1155/2019/2923072] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
The immune system has a central role in eliminating detrimental factors, by frequently launching inflammatory responses towards pathogen infection and inner danger signal outbreak. Acute and chronic inflammatory responses are critical determinants for consequences of kidney diseases, in which inflammasomes were inevitably involved. Inflammasomes are closely linked to many kidney diseases such as acute kidney injury and chronic kidney diseases. Inflammasomes are macromolecules consisting of multiple proteins, and their formation initiates the cleavage of procaspase-1, resulting in the activation of gasdermin D as well as the maturation and release of interleukin-1β and IL-18, leading to pyroptosis. Here, we discuss the mechanism in which inflammasomes occur, as well as their roles in inflammatory kidney diseases, in order to shed light for discovering new therapeutical targets for the prevention and treatment of inflammatory kidney diseases and consequent end-stage renal disease.
Collapse
|