1
|
Mishra AK, Dixit S, Singh A, Shukla T, Rizvi SI. Molecular Determinants of A9 Dopaminergic Neurons. Neuromolecular Med 2025; 27:43. [PMID: 40397062 DOI: 10.1007/s12017-025-08861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/02/2025] [Indexed: 05/22/2025]
Abstract
In the human brain, the nigrostriatal pathway regulates motor functions, and its selective deterioration leads to the onset of Parkinson's disease (PD), a neurodegenerative disorder characterized by motor dysfunction and significant disability. The A9 neurons, a subgroup of ventral mesencephalic dopaminergic (DA) neurons, form the nigrostriatal pathway that emerges from the nigral region and innervates into the striatum. These DA neurons exhibit extensive and arborized axonal terminals projecting into the dorsal striatum. This review examines the distinct molecular determinants underlying the development, projection pattern, survival, maintenance, and vulnerability of A9 neurons, distinguishing them from other ventral midbrain DA subgroups such as A8 and A10. Key transcription factors (e.g., Lmx1a/b, FoxA2, Pitx3), signaling cascade pathways (e.g., Sonic Hedgehog, Wnt/β-catenin), and molecular markers (e.g., Aldh1a1, GIRK2, ANT2) are discussed in detail. A comparative assessment of the electrophysiology, cytoarchitecture, energy demand, and antioxidant reserves of A9 DA neurons versus the neighboring ventral mesencephalic DA subgroups elucidates the role of intrinsic determinants in susceptibility and selective degeneration in PD. The unique susceptibility of A9 cells to redox imbalance, neuronal inflammation, and mitochondrial dysfunction is also explored. Furthermore, recent advancements in stem cell-based approaches for generating A9-like neurons and their application in cell transplantation therapies for PD are discussed. Current challenges, including integration and long-term survival of transplanted neurons, are highlighted alongside prospects of cell replacement therapy. By evaluating the molecular biology of A9 neurons, this review aims to understand PD pathology and develop strategies for novel therapeutic approaches.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Department of Zoology, Government Shaheed Gendsingh College, Charama, Uttar Bastar Kanker, Chhattisgarh, 494 337, India.
| | - Shreya Dixit
- Department of Neurology, University of California, Irvine, USA
| | - Akanksha Singh
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Toyaj Shukla
- Government Rani Durgawati College, Wadrafnagar, Balrampur, Chhattisgarh, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
2
|
Bhardwaj K, Jha A, Roy A, Kumar H. The crucial role of VPS35 and SHH in Parkinson's disease: Understanding the mechanisms behind the neurodegenerative disorder. Brain Res 2024; 1845:149204. [PMID: 39197569 DOI: 10.1016/j.brainres.2024.149204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Parkinson's disease (PD) is indeed a complex neurodegenerative disorder recognized by the progressive depletion of dopaminergic neurons in the brain, particularly in the substantia nigra region, leading to motor impairments and other symptoms. But at the molecular level, the study about PD still lacks. As the number of cases worldwide continues to increase, it is critical to focus on the cellular and molecular mechanisms of the disease's presentation and neurodegeneration to develop novel therapeutic approaches. At the molecular level, the complexity is more due to the involvement of vacuolar protein sorting 35 (VPS35) and sonic hedgehog (SHH) signaling in PD (directly or indirectly), leading to one of the most prominent hallmarks of the disease, which is an accumulation of α-synuclein. This elevated pathogenesis may result from impaired autophagy due to mutation in the case of VPS35 and impairment in SHH signaling at the molecular level. The traditional understanding of PD is marked by the disruption of dopaminergic neurons and dopaminergic signaling, which exacerbates symptoms of motor function deficits. However, the changes at the molecular level that are being disregarded also impact the overall health of the dopaminergic system. Gaining insight into these two unique mechanisms is essential to determine whether they give neuroprotection or have no effect on the health of neurons. Hence, here we tried to simplify the understanding of the role of VPS35 and SHH signaling to comprehend it in one direction.
Collapse
Affiliation(s)
- Kritika Bhardwaj
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Akanksha Jha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
3
|
Dai Z, Zhan Z, Chen Y, Li J. MiRNA-210 is involved in cigarette smoke extract-induced apoptosis of MLE-12 via the Shh signaling pathway. Tob Induc Dis 2024; 22:TID-22-92. [PMID: 38813585 PMCID: PMC11135024 DOI: 10.18332/tid/186643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/19/2023] [Accepted: 03/29/2024] [Indexed: 05/31/2024] Open
Abstract
INTRODUCTION The aim of the study is the regulatory effect of MicroRNA-210 (MiR-210) on cigarette smoke extract (CSE)-induced mouse lung epithelial type II cells (MLE-12) apoptosis and determine whether the MiR-210 is involved in cigarette smoke extract-induced apoptosis of MLE-12 via Shh signaling pathway. METHODS Expression of MiR-210 in CSE-induced MLE-12 was assessed by qRT-PCR. The emphysema mouse model and MiR-210 knockdown mice were each established by inhaling cigarette smoke or intratracheal lentiviral vector instillation. The Sonic hedgehog (Shh), Ptch1, Gli1, B-cell lymphoma-2 (Bcl-2), and Caspase 3 protein expressions were detected by Western blotting. mRNA expressions of MiR-210, Shh, Ptch1, and Gli1 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Apoptotic ratios in mice and CSE-induced HPVEC were assessed using TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assays and flow cytometry. RESULTS Our results showed that MiR-210 mRNA levels were significantly down-regulated in the CSE-induced MLE 12. MLE 12 apoptosis with down-regulated Shh, Ptch1, Gli1, and Bcl-2 expression, increased Caspase 3 expression in the emphysema mouse model and CSE-induced MLE 12. Knockdown MiR-210 can facilitate cell apoptosis and emphysema via the Shh signaling pathway in mice. In vitro, MiR-210 can attenuate the apoptosis of CSE-exposed MLE 12. Moreover, MiR-210 regulated the Shh pathway and promoted its expression. CONCLUSIONS MiRNA-210 is involved in cigarette smoke extract-induced apoptosis of MLE-12 via the Shh signaling pathway. The present study reveals that MiRNA-210 may be a key regulator of cellular apoptosis and could be explored as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Zhongshang Dai
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zijie Zhan
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Jinhua Li
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
4
|
Chen KY, Cheng CJ, Chen YJ, Chiu CH, Wang LC. Protective effect of benzaldehyde combined with albendazole against brain injury induced by Angiostrongylus cantonensis infection in mice. Int J Antimicrob Agents 2023; 62:106963. [PMID: 37666435 DOI: 10.1016/j.ijantimicag.2023.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Angiostrongylus cantonensis, also known as rat lungworm, is an important food-borne zoonotic parasite that causes severe neuropathological damage and symptoms, including eosinophilic meningitis and eosinophilic meningoencephalitis, in humans. At present, the therapeutic strategy for cerebral angiostrongyliasis remains controversial. Benzaldehyde, an important bioactive constituent of Gastrodia elata (Tianma), reduces oxidative stress by inhibiting the production of reactive oxygen species. This study aimed to evaluate the therapeutic effect of benzaldehyde in combination with albendazole on angiostrongyliasis in animal models. First, the data from body weight monitoring and behavioural analyses demonstrated that benzaldehyde improved body weight and cognitive function changes after A. cantonensis infection. Next, blood‒brain barrier breakdown and pathological changes were reduced after benzaldehyde and albendazole treatment in BALB/c mice infected with A. cantonensis. Subsequently, four RNA-seq datasets were established from mouse brains that had undergone different treatments: normal, infection, infection + albendazole, and infection + albendazole + 3-hydroxybenzaldehyde groups. Ultimately, benzaldehyde was found to regulate cell apoptosis, oxidative stress and Sonic Hedgehog signalling in mouse brains infected with A. cantonensis. This study evaluated the therapeutic effect of benzaldehyde on angiostrongyliasis, and provided a potential therapeutic strategy for human angiostrongyliasis in the clinical setting. Moreover, the molecular mechanism of benzaldehyde in mouse brains infected with A. cantonensis was elucidated.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Parasitology, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ju Chen
- Department of Parasitology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Wang B, Zhao Y, Qu Y, Lu J, Yan H, Gu J, Jiang Q, Xu Y, Xia W. Neuroprotective effect of chitosan oligosaccharide on alcohol-induced hippocampal injury using proteomic analysis. J Food Sci 2023; 88:4718-4730. [PMID: 37799098 DOI: 10.1111/1750-3841.16778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
Alcoholism is a serious public health problem, and the abuse of drinking seriously damages the health of people. Chitosan oligosaccharides (COSs) are small-molecule oligosaccharides with amino groups that have many unique properties. The neuroprotective effect of COS on alcohol-induced hippocampal injury in Sprague-Dawley (SD) rats was investigated. The discrimination ratio of the COS group in the Y-maze experiment was 59.3% higher than that of the ETOH group. Meanwhile, the discrimination index was less than 0 in the ETOH group but greater than 0 in the COS group during the object recognition test. The cells in the COS group were more tightly arranged than those in the ETOH group. Proteomics was used to identify differentially expressed proteins in the hippocampus. There were 27 differentially expressed proteins in the COS and ETOH group for further bioinformatic analysis. There are three enriched pathway categories, namely, primary immunodeficiency, hedgehog signaling, and sulfur relay system. Next, sonic hedgehog signaling pathway-related proteins were verified through western blotting. The protein expression level of β-arrestin-2 in the COS group was 2.85 times higher than that in the ETOH group. This work may contribute to understanding the underlying mechanism of the neuroprotective effect of COS against alcohol-induced hippocampal injury in SD rats.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuke Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yufei Qu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Jingyu Lu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Hua Yan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Juan Gu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiqing Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Mohan M, Mannan A, Singh TG. Therapeutic implication of Sonic Hedgehog as a potential modulator in ischemic injury. Pharmacol Rep 2023:10.1007/s43440-023-00505-0. [PMID: 37347388 DOI: 10.1007/s43440-023-00505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Sonic Hedgehog (SHh) is a homology protein that is involved in the modeling and development of embryonic tissues. As SHh plays both protective and harmful roles in ischemia, any disruption in the transduction and regulation of the SHh signaling pathway causes ischemia to worsen. The SHh signal activation occurs when SHh binds to the receptor complex of Ptc-mediated Smoothened (Smo) (Ptc-smo), which initiates the downstream signaling cascade. This article will shed light on how pharmacological modifications to the SHh signaling pathway transduction mechanism alter ischemic conditions via canonical and non-canonical pathways by activating certain downstream signaling cascades with respect to protein kinase pathways, angiogenic cytokines, inflammatory mediators, oxidative parameters, and apoptotic pathways. The canonical pathway includes direct activation of interleukins (ILs), angiogenic cytokines like hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and hypoxia-inducible factor alpha (HIF-), which modulate ischemia. The non-canonical pathway includes indirect activation of certain pathways like mTOR, PI3K/Akt, MAPK, RhoA/ROCK, Wnt/-catenin, NOTCH, Forkhead box protein (FOXF), Toll-like receptors (TLR), oxidative parameters such as GSH, SOD, and CAT, and some apoptotic parameters such as Bcl2. This review provides comprehensive insights that contribute to our knowledge of how SHh impacts the progression and outcomes of ischemic injuries.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
7
|
Prajapati A, Mehan S, Khan Z. The role of Smo-Shh/Gli signaling activation in the prevention of neurological and ageing disorders. Biogerontology 2023:10.1007/s10522-023-10034-1. [PMID: 37097427 DOI: 10.1007/s10522-023-10034-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Sonic hedgehog (Shh) signaling is an essential central nervous system (CNS) pathway involved during embryonic development and later life stages. Further, it regulates cell division, cellular differentiation, and neuronal integrity. During CNS development, Smo-Shh signaling is significant in the proliferation of neuronal cells such as oligodendrocytes and glial cells. The initiation of the downstream signalling cascade through the 7-transmembrane protein Smoothened (Smo) promotes neuroprotection and restoration during neurological disorders. The dysregulation of Smo-Shh is linked to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which suppresses target gene expression, leading to the disruption of cell growth processes. Smo-Shh aberrant signalling is responsible for several neurological complications contributing to physiological alterations like increased oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis. Moreover, activating Shh receptors in the brain promotes axonal elongation and increases neurotransmitters released from presynaptic terminals, thereby exerting neurogenesis, anti-oxidation, anti-inflammatory, and autophagy responses. Smo-Shh activators have been shown in preclinical and clinical studies to help prevent various neurodegenerative and neuropsychiatric disorders. Redox signalling has been found to play a critical role in regulating the activity of the Smo-Shh pathway and influencing downstream signalling events. In the current study ROS, a signalling molecule, was also essential in modulating the SMO-SHH gli signaling pathway in neurodegeneration. As a result of this investigation, dysregulation of the pathway contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).Thus, Smo-Shh signalling activators could be a potential therapeutic intervention to treat neurocomplications of brain disorders.
Collapse
Affiliation(s)
- Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
8
|
Verma AK, Singh S, Rizvi SI. Therapeutic potential of melatonin and its derivatives in aging and neurodegenerative diseases. Biogerontology 2023; 24:183-206. [PMID: 36550377 DOI: 10.1007/s10522-022-10006-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Aging is associated with increasing impairments in brain homeostasis and represents the main risk factor across most neurodegenerative disorders. Melatonin, a neuroendocrine hormone that regulates mammalian chronobiology and endocrine functions is well known for its antioxidant potential, exhibiting both cytoprotective and chronobiotic abilities. Age-related decline of melatonin disrupting mitochondrial homeostasis and cytosolic DNA-mediated inflammatory reactions in neurons is a major contributory factor in the emergence of neurological abnormalities. There is scattered literature on the possible use of melatonin against neurodegenerative mechanisms in the aging process and its associated diseases. We have searched PUBMED with many combinations of key words for available literature spanning two decades. Based on the vast number of experimental papers, we hereby review recent advancements concerning the potential impact of melatonin on cellular redox balance and mitochondrial dynamics in the context of neurodegeneration. Next, we discuss a broader explanation of the involvement of disrupted redox homeostasis in the pathophysiology of age-related diseases and its connection to circadian mechanisms. Our effort may result in the discovery of novel therapeutic approaches. Finally, we summarize the current knowledge on molecular and circadian regulatory mechanisms of melatonin to overcome neurodegenerative diseases (NDDs) such as Alzheimer's, Parkinson's, Huntington's disease, and amyotrophic lateral sclerosis, however, these findings need to be confirmed by larger, well-designed clinical trials. This review is also expected to uncover the associated molecular alterations in the aging brain and explain how melatonin-mediated circadian restoration of neuronal homeodynamics may increase healthy lifespan in age-related NDDs.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Sandeep Singh
- Biological Psychiatry Laboratory, Hadassah Medical Center - Hebrew University, Jerusalem, Israel
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
9
|
Cheng B, Sharma DR, Kumar A, Sheth H, Agyemang A, Aschner M, Zhang X, Ballabh P. Shh activation restores interneurons and cognitive function in newborns with intraventricular haemorrhage. Brain 2023; 146:629-644. [PMID: 35867870 PMCID: PMC10169407 DOI: 10.1093/brain/awac271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
Premature infants with germinal matrix haemorrhage-intraventricular haemorrhage (GMH-IVH) suffer from neurobehavioural deficits as they enter childhood and adolescence. Yet the underlying mechanisms remain unclear. Impaired development and function of interneurons contribute to neuropsychiatric disorders. Therefore, we hypothesized that the occurrence of IVH would reduce interneuron neurogenesis in the medial ganglionic eminence and diminish the population of parvalbumin+ and somatostatin+ cortical interneurons. Because Sonic Hedgehog promotes the production of cortical interneurons, we also postulated that the activation of Sonic Hedgehog signalling might restore neurogenesis, cortical interneuron population, and neurobehavioural function in premature newborns with IVH. These hypotheses were tested in a preterm rabbit model of IVH and autopsy samples from human preterm infants. We compared premature newborns with and without IVH for intraneuronal progenitors, cortical interneurons, transcription factors regulating neurogenesis, single-cell transcriptome of medial ganglionic eminence and neurobehavioural functions. We treated premature rabbit kits with adenovirus expressing Sonic Hedgehog (Ad-Shh) or green fluorescence protein gene to determine the effect of Sonic Hedgehog activation on the interneuron production, cortical interneuron population and neurobehaviour. We discovered that IVH reduced the number of Nkx2.1+ and Dlx2+ progenitors in the medial ganglionic eminence of both humans and rabbits by attenuating their proliferation and inducing apoptosis. Moreover, IVH decreased the population of parvalbumin+ and somatostatin+ neurons in the frontal cortex of both preterm infants and kits relative to controls. Sonic Hedgehog expression and the downstream transcription factors, including Nkx2.1, Mash1, Lhx6 and Sox6, were also reduced in kits with IVH. Consistent with these findings, single-cell transcriptomic analyses of medial ganglionic eminence identified a distinct subpopulation of cells exhibiting perturbation in genes regulating neurogenesis, ciliogenesis, mitochondrial function and MAPK signalling in rabbits with IVH. More importantly, restoration of Sonic Hedgehog level by Ad-Shh treatment ameliorated neurogenesis, cortical interneuron population and neurobehavioural function in kits with IVH. Additionally, Sonic Hedgehog activation alleviated IVH-induced inflammation and several transcriptomic changes in the medial ganglionic eminence. Taken together, IVH reduced intraneuronal production and cortical interneuron population by downregulating Sonic Hedgehog signalling in both preterm rabbits and humans. Notably, activation of Sonic Hedgehog signalling restored interneuron neurogenesis, cortical interneurons and cognitive function in rabbit kits with IVH. These findings highlight disruption in cortical interneurons in IVH and identify a novel therapeutic strategy to restore cortical interneurons and cognitive function in infants with IVH. These studies can accelerate the development of new therapies to enhance the neurodevelopmental outcome of survivors with IVH.
Collapse
Affiliation(s)
- Bokun Cheng
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deep R Sharma
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ajeet Kumar
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hardik Sheth
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alex Agyemang
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Aschner
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xusheng Zhang
- Computational Genomics Core, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Praveen Ballabh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
10
|
Jhan KY, Cheng CJ, Chou CJ, Jung SM, Lai GJ, Chen KY, Wang LC. Improvements of cognitive functions in mice heavily infected by Angiostrongylus cantonensis after treatment with albendazole, dexamethasone, or co-therapy. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:935-945. [PMID: 35484079 DOI: 10.1016/j.jmii.2022.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/25/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Angiostrongylus cantonensis, the causative agent of human eosinophilic meningitis and eosinophilic meningoencepalitis, has been reported to cause cognitive impairments in the host. To determine whether drug treatment improves the cognitive functions, BALB/c mice infected with 50 third-stage larvae were treated with albendazole, dexamethasone, or co-therapy since day 7 or 14 post-infection for one or two weeks. Abilities of spatial memory and learning of these animals were assessed with the Morris water maze. Our results showed that body weight was significant higher then infected group in the albendazole and combined therapy groups. Significantly lower worm recovery rates were found in mice treated with the same groups. The mice treated with dexamethasone since day 7 for 14 day had significant longer time in the remaining groups were found in forced swimming test. The animals treated with albendazole and combined therapy since day 7 for 14 days was demonstrated to have significantly shorter latencies to the platform in learning memory on day 3 and 4. Mice in these two groups were demonstrated to have significantly higher sores in spatial memory tests. These results indicate that treatment with albendazole or combined therapy may be more efficient in preventing brain damages and depression as well as preserving their capabilities in learning and memory. Therefore, administration of albendazole alone or combined with dexamethasone should have higher efficacies than dexamethasone alone in treatment of BALB/c mice infected with a heavy dose of 50 third-stage larvae of A. cantonensis.
Collapse
Affiliation(s)
- Kai-Yuan Jhan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Jen Chou
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Chang-Gung Memorial Hospital, Chang-Gung Children Hospital at Linkou and Chang-Gung University, Taoyuan 333, Taiwan
| | - Guan-Jhih Lai
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Lian-Chen Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| |
Collapse
|
11
|
El-Kishky AHM, Moussa N, Helmy MW, Haroun M. GANT61/BI-847325 combination: a new hope in lung cancer treatment. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:144. [PMID: 35834029 PMCID: PMC9283175 DOI: 10.1007/s12032-022-01738-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Despite the huge efforts employed to implement novel chemotherapeutic paradigms for lung cancer, the disease still remains a major concern worldwide. Targeting molecular pathways as Hedgehog (Hh) and Mitogen-activated protein kinase (MAPK) represent a new hope in lung cancer treatment. This work was undertaken to evaluate the antitumor effects of GANT61 (5 μM), BI-847325(30 μM), and GANT61 (5 μM)/BI-847325(30 μM) combination on A549 adenocarcinoma lung cancer cell line. The growth inhibition 50 (GI50) for both drugs was performed using MTT. The protein levels of Caspase-3, Bcl-2-associated X protein (Bax), Myeloid cell leukemia sequence 1 (MCL-1), cyclin D1, vascular endothelial growth factor (VEGF), extracellular signal-regulated kinases (ERK), p-Akt, and phosphohistone H3 (pHH3) were measured using ELISA. Glioma-associated oncogene homolog 1(Gli1) gene expression was assessed by quantitative real-time PCR. The GI50 for GANT61 and BI-8473255 were 5 µM and 30 µM, respectively. Caspase-3 and Bax protein levels were significantly elevated while MCL-1, cyclin D1, VEGF, ERK 1/2, p-Akt, and pHH3 levels were significantly reduced by both drugs and their combination relative to the control group. Gli1 gene expression was down-regulated in all groups relative to the control group. GANT61, BI-847325 and their combination inhibited proliferation and angiogenesis but activated the apoptotic pathway. Both drugs conferred a profound negative impact on the crosstalk between each of Hh and MAPK pathways and Phosphoinositide 3 -kinases (PI3K)/Akt/Mammalian target of Rapamycin (mTOR). To the best of our knowledge, the antitumor effects of BI-847325/GANT61 combination have not been tested before. Further in-vitro and in-vivo studies are warranted to support the findings.
Collapse
Affiliation(s)
- Abdel Halim M El-Kishky
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Nermine Moussa
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Maged W Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhur University, Damanhur, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Jhan KY, Chang PK, Cheng CJ, Jung SM, Wang LC. Synaptic loss and progression in mice infected with Angiostrongylus cantonensis in the early stage. J Neuroinflammation 2022; 19:85. [PMID: 35414007 PMCID: PMC9006624 DOI: 10.1186/s12974-022-02436-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/23/2022] [Indexed: 11/14/2022] Open
Abstract
Background Angiostrongylus cantonensis is also known as rat lungworm. Infection with this parasite is a zoonosis that can cause eosinophilic meningitis and/or eosinophilic meningoencephalitis in humans and may lead to fatal outcomes in severe cases. In this study, we explored the mechanisms of the impairments in the cognitive functions of mice infected with A. cantonensis. Methods In infected mice with different infective intensities at different timepoint postinfection, loss and recovery of cognitive functions such as learning and memory abilities were determined. Neuronal death and damage to synaptic structures were analyzed by Western blotting and IHC in infected mice with different infection intensities at different timepoint postinfection. Results The results of behavioral tests, pathological examinations, and Golgi staining showed that nerve damage caused by infection in mice occurred earlier than pathological changes of the brain. BDNF was expressed on 14 day post-infection. Cleaved caspase-3 increased significantly in the late stage of infection. However, IHC on NeuN indicated that no significant changes in the number of neurons were found between the infected and uninfected groups. Conclusions The synaptic loss caused by the infection of A. cantonensis provides a possible explanation for the impairment of cognitive functions in mice. The loss of cognitive functions may occur before severe immunological and pathological changes in the infected host. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02436-8.
Collapse
Affiliation(s)
- Kai-Yuan Jhan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Pi-Kai Chang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Chang-Gung Memorial Hospital, Chang-Gung Children Hospital at Linkou and Chang-Gung University, Taoyuan, 333, Taiwan
| | - Lian-Chen Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
13
|
Sun WW, Yan XM, Qiao AJ, Zhang YJ, Yang L, Huang HC, Shi HF, Yan BL. Upregulated galectin-1 in Angiostrongylus cantonensis L5 reduces body fat and increases oxidative stress tolerance. Parasit Vectors 2022; 15:46. [PMID: 35123560 PMCID: PMC8817484 DOI: 10.1186/s13071-022-05171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Angiostrongylus cantonensis L5, parasitizing human cerebrospinal fluid, causes eosinophilic meningitis, which is attributed to tissue inflammatory responses caused primarily by the high percentage of eosinophils. Eosinophils are also involved in killing helminths, using the peroxidative oxidation and hydrogen peroxide (H2O2) generated by dismutation of superoxide produced during respiratory burst. In contrast, helminthic worms have evolved to attenuate eosinophil-mediated tissue inflammatory responses for their survival. In previous study, we demonstrated the extracellular function of Acan-Gal-1 in inducing the apoptosis of macrophages. Here, the intracellular functions of Acan-Gal-1 were investigated, aiming to further reveal the mechanism involved in A. cantonensis L5 worms surviving inflammatory responses in the human central nervous system. Methods In this study, a model organism, Caenorhabditis elegans, was used as a surrogate to investigate the intracellular functions of Acan-Gal-1 in protecting the worm from its host’s immune attacks. First, structural characterization of Acan-Gal-1 was analyzed using bioinformatics; second, qRT-PCR was used to monitor the stage specificity of Acan-gal-1 expression in A. cantonensis. Microinjections were performed to detect the tissue specificity of lec-1 expression, the homolog of Acan-gal-1 in C. elegans. Third, microinjection was performed to develop Acan-gal-1::rfp transgenic worms. Then, oxidative stress assay and Oil Red O fat staining were used to determine the functions of Acan-Gal-1 in C. elegans. Results The results of detecting the stage specificity of Acan-gal-1 expression showed that Acan-Gal-1 was upregulated in both L5 and adult worms. Detection of the tissue specificity showed that the homolog of Acan-gal-1 in C. elegans, lec-1 was expressed ubiquitously and mainly localized in cuticle. Investigating the intracellular functions of Acan-Gal-1 in the surrogate C. elegans showed that N2 worms expressing pCe-lec-1::Acan-gal-1::rfp, with lipid deposition reduced, were significantly resistant to oxidative stress; lec-1 mutant worms, where lipid deposition increased, showed susceptible to oxidative stress, and this phenotype could be rescued by expressing pCe-lec-1::Acan-gal-1::rfp. Expressing pCe-lec-1::Acan-gal-1::rfp or lec-1 RNAi in fat-6;fat-7 double-mutant worms, where fat stores were reduced, had no significant effect on the oxidative stress tolerance. Conclusion In C. elegans worms, upregulated Acan-Gal-1 plays a defensive role against damage due to oxidative stress for worm survival by reducing fat deposition. This might indicate the mechanism by which A. cantonensis L5 worms, with upregulated Acan-Gal-1, survive the immune attack of eosinophils in the human central nervous system. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05171-4.
Collapse
|
14
|
Thauvin M, de Sousa RM, Alves M, Volovitch M, Vriz S, Rampon C. An early Shh-H2O2 reciprocal regulatory interaction controls the regenerative program during zebrafish fin regeneration. J Cell Sci 2022; 135:274206. [PMID: 35107164 DOI: 10.1242/jcs.259664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS), originally classified as toxic molecules, have attracted increasing interest given their actions in cell signaling. Hydrogen peroxide (H2O2), the major ROS produced by cells, acts as a second messenger to modify redox-sensitive proteins or lipids. After caudal fin amputation, tight spatiotemporal regulation of ROS is required first for wound healing and later to initiate the regenerative program. However, the mechanisms carrying out this sustained ROS production and their integration with signaling pathways are still poorly understood. We focused on the early dialog between H2O2 and Sonic Hedgehog (Shh) during fin regeneration. We demonstrate that H2O2 controls Shh expression and that Shh in turn regulates the H2O2 level via a canonical pathway. Moreover, the means of this tight reciprocal control change during the successive phases of the regenerative program. Dysregulation of the Hedgehog pathway has been implicated in several developmental syndromes, diabetes and cancer. These data support the existence of an early positive crosstalk between Shh and H2O2 that might be more generally involved in various processes paving the way to improve regenerative processes, particularly in vertebrates.
Collapse
Affiliation(s)
- Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Rodolphe Matias de Sousa
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Marine Alves
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Université de Paris, Faculty of Sciences, Paris, France
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,École Normale Supérieure, PSL Research University, Department of Biology, Paris, France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Université de Paris, Faculty of Sciences, Paris, France
| | - Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Université de Paris, Faculty of Sciences, Paris, France
| |
Collapse
|
15
|
Benzaldehyde Attenuates the Fifth Stage Larval Excretory–Secretory Product of Angiostrongylus cantonensis-Induced Injury in Mouse Astrocytes via Regulation of Endoplasmic Reticulum Stress and Oxidative Stress. Biomolecules 2022; 12:biom12020177. [PMID: 35204678 PMCID: PMC8961544 DOI: 10.3390/biom12020177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Excretory–secretory products (ESPs) are the main research targets for investigating the hosts and helminths interaction. Parasitic worms can migrate to parasitic sites and avoid the host immune response by secreting this product. Angiostrongylus cantonensis is an important food-borne zoonotic parasite that causes severe neuropathological damage and symptoms, including eosinophilic meningitis or meningoencephalitis in humans. Benzaldehydes are organic compounds composed of a benzene ring and formyl substituents. This compound has anti-inflammatory and antioxidation properties. Previous studies showed that 3-hydroxybenzaldehyde (3-HBA) and 4-hydroxybenzaldehyde (4-HBA) can reduce apoptosis in A. cantonensis ESP-treated astrocytes. These results on the protective effect underlying benzaldehyde have primarily focused on cell survival. The study was designed to investigate the molecular mechanisms of endoplasmic reticulum stress (ER stress) and oxidative stress in astrocytes in A. cantonensis ESP-treated astrocytes and to evaluate the therapeutic consequent of 3-HBA and 4-HBA. First, we initially established the RNA-seq dataset in each group, including normal, ESPs, ESPs + 3-HBA, and ESPs + 4-HBA. We also found that benzaldehyde (3-HBA and 4-HBA) can stimulate astrocytes to express ER stress-related molecules after ESP treatment. The level of oxidative stress could also be decreased in astrocytes by elevating antioxidant activity and reducing ROS generation. These results suggested that benzaldehyde may be a potential therapeutic compound for human angiostrongyliasis to support brain cell survival by inducing the expression levels of ER stress- and oxidative stress-related pathways.
Collapse
|
16
|
Wang R, Shen L, Li H, Peng H. Eriodictyol attenuates dextran sodium sulphate-induced colitis in mice by regulating the sonic hedgehog signalling pathway. PHARMACEUTICAL BIOLOGY 2021; 59:974-985. [PMID: 34348563 PMCID: PMC8344262 DOI: 10.1080/13880209.2021.1948066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CONTEXT Eriodictyol (EDT) is a flavonoid with strong anti-inflammatory, anti-apoptotic, and antioxidant properties. OBJECTIVE To investigate the protective effect and mechanism of EDT in ulcerative colitis (UC). MATERIALS AND METHODS UC model was induced by 3% dextran sulphate sodium (DSS) solution for 7 days, meanwhile, EDT and Smoothened (Smo) inhibitor cyclopamine (Cyc) were intraperitoneally injected. In the first experiment, C57BL/6 mice divided into blank control, DSS, DSS + EDT (20 or 40 mg/kg) groups. In second experiment, added Cyc (5 mg/kg) and EDT + Cyc groups. All mice were sacrificed on day 8. Disease activity index (DAI), colon length and colon histology as well as MDA levels, SOD, and GSH-Px activities were measured. The expression of Sonic hedgehog (Shh), Patched, Smo, glioblastoma-1, zonula occludens-1 (ZO-1), occludin, cleaved caspase 3, Bax and Bcl-2 in colon was detected using RT-PCR and Western blotting. RESULTS After EDT treatment, compared with the DSS group, DAI (2.33 ± 0.516 vs. 3.67 ± 0.516), colon shortening (5.27 ± 0.476 vs. 4.53 ± 0.528 cm) and histological score (6.67 ± 1.211 vs. 12 ± 1.265) was significantly decreased. EDT also reduced inflammation, oxidative stress and apoptosis in colon. Additionally, EDT increased the expression of the tight junction proteins ZO-1 (35%) and occludin (66.3%). Mechanistically, EDT upregulated the Shh signalling pathway. However, Cyc-mediated inhibition of the Shh pathway partially abolished the effects of EDT. DISCUSSION AND CONCLUSIONS These results indicate EDT attenuates DSS-induced colitis by activating the Shh pathway. Further clinical trials are needed to demonstrate its efficacy on UC.
Collapse
Affiliation(s)
- Ru Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System Diseases, Wuhan, P.R. China
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System Diseases, Wuhan, P.R. China
- CONTACT Lei Shen Department of Gastroenterology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, Hubei430060, P.R. China
| | - Huimin Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Hao Peng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|
17
|
Co-Therapy of Albendazole and Dexamethasone Reduces Pathological Changes in the Cerebral Parenchyma of Th-1 and Th-2 Dominant Mice Heavily Infected with Angiostrongylus cantonensis: Histopathological and RNA-seq Analyses. Biomolecules 2021; 11:biom11040536. [PMID: 33917604 PMCID: PMC8067505 DOI: 10.3390/biom11040536] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/24/2022] Open
Abstract
Administration of albendazole alone was not very suitable for the treatment of cerebral angiostrongyliasis. This study was designed to evaluate the effects of the co-therapy of this drug and dexamethasone in Th-1 and Th-2 dominant mice infected with Angiostrongylus cantonensis. Each of BALB/c and C57BL/6 mice infected with 50 A. cantonensis third-stage larvae were administered albendazole (10 mg/kg/day) alone, dexamethasone (0.5 mg/kg/day) alone, or co-therapy of the two drugs from day 7 or 14 post-infection for 7 or 14 days. After sacrifice, coronal slices were prepared from five brain regions and stained with hematoxylin and eosin. Eight pathological changes were employed to determine the therapeutic effectiveness using a scoring system. RNA-seq analysis was performed to confirm the histopathological findings. The infected BALB/c and C57BL/6 mice had similar patterns in the pathological changes. Meningitis, hemorrhage, size of worms, and encephalitis in the cerebral parenchyma were slighter in the mice treated with co-therapy than the remaining groups. Mice treated from day 14 had more severe changes than those from day 7. The histopathological findings were found to be consistent to immune responses determined by RNA-seq analysis. Co-therapy was determined to reduce pathological changes after administration to mice infected with A. cantonensis.
Collapse
|
18
|
Sun WW, Yan XM, Shi Q, Zhang YJ, Huang JT, Huang HC, Shi HF, Yan BL. Downregulated RPS-30 in Angiostrongylus cantonensis L5 plays a defensive role against damage due to oxidative stress. Parasit Vectors 2020; 13:617. [PMID: 33298148 PMCID: PMC7724845 DOI: 10.1186/s13071-020-04495-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/19/2020] [Indexed: 01/21/2023] Open
Abstract
Background Eosinophilic meningitis, caused by fifth-stage larvae of the nematode (roundworm) Angiostrongylus cantonensis, is mainly attributed to the contribution of eosinophils to tissue inflammatory responses in helminthic infections. Eosinophils are associated with the killing of helminths via peroxidative oxidation and hydrogen peroxide generated by the dismutation of superoxide produced during respiratory bursts. In contrast, when residing in the host with high level of eosinophils, helminthic worms have evolved to attenuate eosinophil-mediated tissue inflammatory responses for their survival in the hosts. In a previous study we demonstrated that the expression of the A. cantonensis RPS 30 gene (Acan-rps-30) was significantly downregulated in A. cantonensis L5 roundworms residing in cerebrospinal fluid with a high level of eosinophils. Acan-RPS-30 is a protein homologous to the human Fau protein that plays a pro-apoptotic regulatory role and may function in protecting worms from oxidative stress. Methods The isolation and structural characterization of Acan-RPS-30 were performed using rapid amplification of cDNA ends (RACE), genome walking and bioinformatics. Quantitative real-time-PCR and microinjection were used to detect the expression patterns of Acan-rps-30. Feeding RNA interference (RNAi) was used to knockdown the apoptosis gene ced-3. Microinjection was performed to construct transgenic worms. An oxidative stress assay was used to determine the functions of Acan-RPS-30. Results Our results showed that Acan-RPS-30 consisted of 130 amino acids. It was grouped into clade V with C. elegans in the phylogenetic analysis. It was expressed ubiquitously in worms and was downregulated in both L5 larvae and adult A. cantonensis. Worms expressing pCe-rps30::Acan-rps-30::rfp, with the refractile “button-like” apoptotic corpses, were susceptible to oxidative stress. Apoptosis genes ced-3 and ced-4 were both upregulated in the transgenic worms. The phenotype susceptible to oxidative stress could be converted with a ced-3 defective mutation and RNAi. rps-30−/− mutant worms were resistant to oxidative stress, with ced-3 and ced-4 both downregulated. The oxidative stress-resistant phenotype could be rescued and inhibited by through the expression of pCe-rps30::Acan-rps-30::rfp in rps-3−/− mutant worms. Conclusion In C. elegans worms, downregulated RPS-30 plays a defensive role against damage due to oxidative stress, facilitating worm survival by regulating downregulated ced-3. This observation may indicate the mechanism by which A. cantonensis L5 worms, with downregulated Acan-RPS-30, survive in the central nervous system of humans from the immune response of eosinophils. Graphic abstract ![]()
Collapse
Affiliation(s)
- Wei-Wei Sun
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China
| | - Xiu-Mei Yan
- Department of Pediatric Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qing Shi
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China
| | - Yuan-Jiao Zhang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China
| | - Jun-Ting Huang
- School of First Clinic Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China
| | - Hui-Cong Huang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China.
| | - Hong-Fei Shi
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061, PR China.
| | - Bao-Long Yan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, PR China.
| |
Collapse
|
19
|
Functional crosstalk between myeloid Foxo1-β-catenin axis and Hedgehog/Gli1 signaling in oxidative stress response. Cell Death Differ 2020; 28:1705-1719. [PMID: 33288903 PMCID: PMC8167164 DOI: 10.1038/s41418-020-00695-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Foxo1 transcription factor is an evolutionarily conserved regulator of cell metabolism, oxidative stress, inflammation, and apoptosis. Activation of Hedgehog/Gli signaling is known to regulate cell growth, differentiation, and immune function. However, the molecular mechanisms by which interactive cell signaling networks restrain oxidative stress response and necroptosis are still poorly understood. Here, we report that myeloid-specific Foxo1 knockout (Foxo1M-KO) mice were resistant to oxidative stress-induced hepatocellular damage with reduced macrophage/neutrophil infiltration, and proinflammatory mediators in liver ischemia/reperfusion injury (IRI). Foxo1M-KO enhanced β-catenin-mediated Gli1/Snail activity, and reduced receptor-interacting protein kinase 3 (RIPK3) and NIMA-related kinase 7 (NEK7)/NLRP3 expression in IR-stressed livers. Disruption of Gli1 in Foxo1M-KO livers deteriorated liver function, diminished Snail, and augmented RIPK3 and NEK7/NLRP3. Mechanistically, macrophage Foxo1 and β-catenin colocalized in the nucleus, whereby the Foxo1 competed with T-cell factor (TCF) for interaction with β-catenin under inflammatory conditions. Disruption of the Foxo1–β-catenin axis by Foxo1 deletion enhanced β-catenin/TCF binding, activated Gli1/Snail signaling, leading to inhibited RIPK3 and NEK7/NLRP3. Furthermore, macrophage Gli1 or Snail knockout activated RIPK3 and increased hepatocyte necroptosis, while macrophage RIPK3 ablation diminished NEK7/NLRP3-driven inflammatory response. Our findings underscore a novel molecular mechanism of the myeloid Foxo1–β-catenin axis in regulating Hedgehog/Gli1 function that is key in oxidative stress-induced liver inflammation and necroptosis.
Collapse
|
20
|
Félix LM, Luzio A, Santos A, Antunes LM, Coimbra AM, Valentim AM. MS-222 induces biochemical and transcriptional changes related to oxidative stress, cell proliferation and apoptosis in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108834. [PMID: 32585370 DOI: 10.1016/j.cbpc.2020.108834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/23/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
MS-222, the most widely used anaesthetic in fish, has been shown to induce embryotoxic effects in zebrafish. However, the underlying molecular effects are still elusive. This study aimed to investigate the effects of MS-222 exposure during early developmental stages by evaluating biochemical and molecular changes. Embryos were exposed to 50, 100 or 150 mg L-1 MS-222 for 20 min at one of three developmental stages (256-cell, 50% epiboly, or 1-4 somite stage) and oxidative-stress, cell proliferation and apoptosis-related parameters were determined at two time-points (8 and 26 hpf). Following exposure during the 256-cell stage, the biochemical redox balance was not affected. The genes associated with glutathione homeostasis (gstpi and gclc) were affected at 8 hpf, while genes associated with apoptosis (casp3a and casp6) and cellular proliferation (pcna) were found affected at 26 hpf. An inverted U-shaped response was observed at 8 hpf for catalase activity. After exposure at the 50% epiboly stage, the gclc gene associated with oxidative stress was found upregulated at 8 hpf, while gstpi was downregulated and casp6 was upregulated later on, coinciding with a decrease in glutathione peroxidase (GPx) activity and a non-monotonic elevation of protein carbonyls and casp3a. Additionally, MS-222 treated embryos showed a decrease in DCF-staining at 26 hpf. When exposure was performed at the 1-4 somite stage, a similar DCF-staining pattern was observed. The activity of GPx was also affected whereas RT-qPCR showed that caspase transcripts were dose-dependently increased (casp3a, casp6 and casp9). The pcna mRNA levels were also found to be upregulated while gclc was changed by MS-222. These results highlight the impact of MS-222 on zebrafish embryo development and its interference with the antioxidant, cell proliferation and cellular death systems by mechanisms still to be explained; however, the outcomes point to the Erk/Nrf2 signalling pathway as a target candidate.
Collapse
Affiliation(s)
- Luís M Félix
- Instituto de Investigação e Inovação em Saúde (i3S), Laboratory Animal Science (LAS), Instituto de Biologia Molecular Celular (IBMC), Universidade of Porto (UP), Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana Santos
- School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Valentim
- Instituto de Investigação e Inovação em Saúde (i3S), Laboratory Animal Science (LAS), Instituto de Biologia Molecular Celular (IBMC), Universidade of Porto (UP), Porto, Portugal
| |
Collapse
|
21
|
Chen KY, Chen YJ, Cheng CJ, Jhan KY, Chiu CH, Wang LC. 3-Hydroxybenzaldehyde and 4-Hydroxybenzaldehyde enhance survival of mouse astrocytes treated with Angiostrongylus cantonensis young adults excretory/secretory products. Biomed J 2020; 44:S258-S266. [PMID: 35300947 PMCID: PMC9068576 DOI: 10.1016/j.bj.2020.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 01/15/2023] Open
Abstract
Background Methods Results Conclusions
Collapse
|
22
|
The Role of BRG1 in Antioxidant and Redox Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6095673. [PMID: 33014273 PMCID: PMC7512085 DOI: 10.1155/2020/6095673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Redox homeostasis is regulated by critical molecules that modulate antioxidant and redox signaling (ARS) within the cell. Imbalances among these molecules can lead to oxidative stress and damage to cell functions, causing a variety of diseases. Brahma-related gene 1 (BRG1), also known as SMARCA4, is the central ATPase catalytic subunit of the switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, which plays a core role in DNA replication, repair, recombination, and transcriptional regulation. Numerous recent studies show that BRG1 is involved in the regulation of various cellular processes associated with ARS. BRG1, as a major factor in chromatin remodeling, is essential for the repair of oxidative stress-induced DNA damage and the activation of antioxidant genes under oxidative stress. Consequently, a comprehensive understanding of the roles of BRG1 in redox homeostasis is crucial to understand the normal functioning as well as pathological mechanisms. In this review, we summarized and discussed the role of BRG1 in the regulation of ARS.
Collapse
|
23
|
Jhan KY, Lai GJ, Chang PK, Tang RY, Cheng CJ, Chen KY, Wang LC. Angiostrongylus cantonensis causes cognitive impairments in heavily infected BALB/c and C57BL/6 mice. Parasit Vectors 2020; 13:405. [PMID: 32778140 PMCID: PMC7418207 DOI: 10.1186/s13071-020-04230-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Parasitic infections may cause significant effects on behavior, learning, and memory of the host. In the brain of mice heavily infected with Angiostrongylus cantonensis, severe damage has been observed in the hippocampus. This component has been considered to have associations with spatial learning and memory in humans and vertebrates. This study was designed to determine the impairments in behavior, learning, and memory in BALB/c and C57BL/6 mice heavily infected with the parasite. Methods Each mouse was inoculated with 50 third-stage larvae of A. cantonensis. After infection, daily changes in weight and dietary consumption, worm recoveries and survival rates were determined. The forced swimming test, open field test, and Morris water maze test were employed to evaluate depression- and anxiety-like behavior as well as impairments in spatial learning and memory, respectively. Results The worm recovery rate in the BALB/c mice was significantly lower than that of C57BL/6 mice from day 14 post-infection. The survival rate in infected BALB/c mice decreased to 0% by day 25 whereas those with swim-training survived three more days. On day 42, the C57BL/6 mice had a survival rate of 85.7% in the swimming group and 70% in the non-swimming group. Significant differences were found in weight between infected and non-infected BALB/c and C57BL/6 mice from day 13 and day 12, respectively with corresponding changes in their dietary consumption. Depression-like behavior was found in the infected BALB/c mice but not in C57BL/6 mice. However, anxiety-like behavior was found to occur only in C57BL/6 mice. Impaired spatial learning and memory were also found in the two strains of mice which occurred from day 14 post-infection. Conclusions Results of this study indicate that A. cantonensis causes depression, anxiety, and impairments in spatial learning and memory in heavily infected mice. Moreover, significantly higher severity was observed in the Th-2 dominant BALB/c mice.![]()
Collapse
Affiliation(s)
- Kai-Yuan Jhan
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Guan-Jhih Lai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Pi-Kai Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ren-Yu Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chien-Ju Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Kuang-Yao Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
24
|
Chen KY, Chen YJ, Cheng CJ, Jhan KY, Wang LC. Excretory/secretory products of Angiostrongylus cantonensis fifth-stage larvae induce endoplasmic reticulum stress via the Sonic hedgehog pathway in mouse astrocytes. Parasit Vectors 2020; 13:317. [PMID: 32552877 PMCID: PMC7301976 DOI: 10.1186/s13071-020-04189-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Angiostrongylus cantonensis is an important food-borne zoonotic parasite. Humans are non-permissive hosts, and this parasite develops into fifth-stage larvae (L5) in the brain and subarachnoid cavity and then induces eosinophilic meningitis and eosinophilic meningoencephalitis. Excretory/secretory products (ESPs) are valuable targets for the investigation of host-parasite interactions. These products contain a wide range of molecules for penetrating defensive barriers and avoiding the immune response of the host. Endoplasmic reticulum (ER) stress has been found to be associated with a wide range of parasitic infections and inflammation. ER stress can increase cell survival via the activation of downstream signalling. However, the mechanisms of ER stress in A. cantonensis infection have not yet been clarified. This study was designed to investigate the molecular mechanisms of ER stress in astrocytes after treatment with the ESPs of A. cantonensis L5. RESULTS The results demonstrated that A. cantonensis infection activated astrocytes in the mouse hippocampus and induced the expression of ER stress-related molecules. Next, the data showed that the expression of ER stress-related molecules and the Ca2+ concentration were significantly increased in activated astrocytes after treatment with the ESPs of L5 of A. cantonensis. Ultimately, we found that ESPs induced GRP78 expression via the Sonic hedgehog (Shh) signalling pathway. CONCLUSIONS These findings suggest that in astrocytes, the ESPs of A. cantonensis L5 induce ER stress and that the Shh signalling pathway plays an important role in this process.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, School of Medicine, China Medical University, Taichung, 404, Taiwan.
| | - Yi-Ju Chen
- Department of Parasitology, School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Kai-Yuan Jhan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
25
|
Martin-Hurtado A, Lastres-Becker I, Cuadrado A, Garcia-Gonzalo FR. NRF2 and Primary Cilia: An Emerging Partnership. Antioxidants (Basel) 2020; 9:antiox9060475. [PMID: 32498260 PMCID: PMC7346227 DOI: 10.3390/antiox9060475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023] Open
Abstract
When not dividing, many cell types target their centrosome to the plasma membrane, where it nucleates assembly of a primary cilium, an antenna-like signaling structure consisting of nine concentric microtubule pairs surrounded by membrane. Primary cilia play important pathophysiological roles in many tissues, their dysfunction being associated with cancer and ciliopathies, a diverse group of congenital human diseases. Several recent studies have unveiled functional connections between primary cilia and NRF2 (nuclear factor erythroid 2-related factor 2), the master transcription factor orchestrating cytoprotective responses to oxidative and other cellular stresses. These NRF2-cilia relationships are reciprocal: primary cilia, by promoting autophagy, downregulate NRF2 activity. In turn, NRF2 transcriptionally regulates genes involved in ciliogenesis and Hedgehog (Hh) signaling, a cilia-dependent pathway with major roles in embryogenesis, stem cell function and tumorigenesis. Nevertheless, while we found that NRF2 stimulates ciliogenesis and Hh signaling, a more recent study reported that NRF2 negatively affects these processes. Herein, we review the available evidence linking NRF2 to primary cilia, suggest possible explanations to reconcile seemingly contradictory data, and discuss what the emerging interplay between primary cilia and NRF2 may mean for human health and disease.
Collapse
Affiliation(s)
- Ana Martin-Hurtado
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28013 Madrid, Spain
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28013 Madrid, Spain
| | - Francesc R. Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Correspondence:
| |
Collapse
|
26
|
Chen KY, Cheng CJ, Cheng CC, Jhan KY, Chen YJ, Wang LC. The excretory/secretory products of fifth-stage larval Angiostrongylus cantonensis induces autophagy via the Sonic hedgehog pathway in mouse brain astrocytes. PLoS Negl Trop Dis 2020; 14:e0008290. [PMID: 32479527 PMCID: PMC7289448 DOI: 10.1371/journal.pntd.0008290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/11/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022] Open
Abstract
Angiostrongyliasis is induced by the nematode Angiostrongylus cantonensis and leads to eosinophilic meningitis and meningoencephalitis in humans. Excretory-secretory products (ESPs) are important investigation targets for studying the relationship between hosts and nematodes. These products assist worms in penetrating the blood-brain barrier and avoiding the host immune response. Autophagy is a catabolic process that is responsible for digesting cytoplasmic organelles, proteins, and lipids and removing them through lysosomes. This process is essential to cell survival and homeostasis during nutritional deficiency, cell injury and stress. In this study, we investigated autophagy induction upon treatment with the ESPs of the fifth-stage larvae (L5) of A. cantonensis and observed the relationship between autophagy and the Shh pathway. First, the results showed that A. cantonensis infection induced blood-brain barrier dysfunction and pathological changes in the brain. Moreover, A. cantonensis L5 ESPs stimulated autophagosome formation and the expression of autophagy molecules, such as LC3B, Beclin, and p62. The data showed that upon ESPs treatment, rapamycin elevated cell viability through the activation of the autophagy mechanism in astrocytes. Finally, we found that ESPs induced the activation of the Sonic hedgehog (Shh) signaling pathway and that the expression of autophagy molecules was increased through the Shh signaling pathway. Collectively, these results suggest that A. cantonensis L5 ESPs stimulate autophagy through the Shh signaling pathway and that autophagy has a protective effect in astrocytes. In helminthes, Excretory-secretory products (ESPs) contains a wide range of molecules, including proteins, lipids, glycans, and nucleic acids, that assist in the penetration of host defensive barriers, reduction of oxidative stress, and avoid the host immune attack. It has been known as a key factor for parasite development, including feeding, invasion and molting. Therefore, ESPs is a valuable target for the investigation of the host-parasite relationships. However, only a few researches about the function of Angiostrongyliasis cantonensis ESPs have been verified to date. Angiostrongyliasis cantonensis, a blood-feeding nematode, and it is an important causative agent of eosinophilic meningitis and meningoencephalitis in human. Recent our studies have demonstrated that the A. cantonensis ESPs can induce oxidative stress, apoptosis, and immune response. In this study, we will use a mouse astrocytes as a model to investigate the signaling mechanisms of autophagy induction by ESPs treatment. First, the Microarray, Western blotting, and Transmission electron microscopy data demonstrated that A. cantonensis ESPs can induce autophagy generation in astrocytes. Next, ESPs-induced autophagy was activated via Sonic hedgehog (Shh) signaling, and it has a protective potential for astrocytes. These finding will provide new insights into the mechanisms and effects of the A. cantonensis ESPs.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chieh Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Yuan Jhan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ju Chen
- Department of Parasitology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Shi X, Xiao M, Xie Z, Shi Q, Zhang Y, Leavenworth JW, Yan B, Huang H. Angiostrongylus cantonensis Galectin-1 interacts with Annexin A2 to impair the viability of macrophages via activating JNK pathway. Parasit Vectors 2020; 13:183. [PMID: 32268913 PMCID: PMC7140382 DOI: 10.1186/s13071-020-04038-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Angiostrongylus cantonensis can cause severe symptoms of central nervous system infections. In the host, this parasite localizes in the blood and cerebrospinal fluid, and its secreted components can impact immune responses. Our previous study demonstrated that immune responses were inhibited in A. cantonensis-infected mice immunized with Ac-Galectin-1 (AcGal-1). However, the mechanisms by which AcGal-1 regulates the immune responses remain unclear. Macrophages are innate immune cells that rapidly respond to infection. The direct impact of AcGal-1 on macrophages may affect the immune responses. METHODS AcGal-1 protein was purified by nickel ion affinity chromatography. The effect of AcGal-1 on the apoptosis of macrophages was detected using CCK-8 assay, flow cytometry and western blot. Macrophage membrane proteins bound to AcGal-1 were obtained using the His-tag-based pull-down assay and identified via mass spectrometry. Co-localization of AcGal-1 and the macrophage membrane protein Annexin A2 was observed by immunofluorescence microscopy, and their interaction was validated by co-immunoprecipitation experiments. SiRNA-mediated knockdown of Annexin A2 was used to determine if AcGal-1-induced macrophage apoptosis required interaction with Annexin A2. The phosphorylation level of apoptotic signal pathway protein was detected by phospho-antibody microarray and western blot. RESULTS Our study showed that AcGal-1 caused apoptosis of the macrophages. AcGal-1 increased the expression of apoptosis proteins caspase-3, caspase-9, Bax, but reduced the expression of anti-apoptosis protein Bcl-2. AcGal-1 interacted with the membrane protein Annexin A2, and knockdown of Annexin A2 expression increased Bcl-2 but decreased Bax levels in AcGal-1-treated cells. Moreover, AcGal-1 increased JNK phosphorylation and the inhibition of JNK phosphorylation in AcGal-1-treated cells decreased the expression of caspase-3, -9, Bax and almost restored Bcl-2 to the level observed in control cells. CONCLUSIONS AcGal-1 can induce the apoptosis of macrophages by binding to Annexin A2 and activating JNK downstream the apoptotic signaling pathway.
Collapse
Affiliation(s)
- Xiaomeng Shi
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang People’s Republic of China
- The First Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325035 Zhejiang People’s Republic of China
| | - Mengran Xiao
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang People’s Republic of China
| | - Zhiyue Xie
- The First Clinical College, Southern Medical University, Guangzhou, 510515 Guangdong People’s Republic of China
| | - Qing Shi
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang People’s Republic of China
| | - Yuanjiao Zhang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang People’s Republic of China
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Baolong Yan
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang People’s Republic of China
| | - Huicong Huang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang People’s Republic of China
| |
Collapse
|
28
|
Chidamide Inhibits Glioma Cells by Increasing Oxidative Stress via the miRNA-338-5p Regulation of Hedgehog Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7126976. [PMID: 32256960 PMCID: PMC7086450 DOI: 10.1155/2020/7126976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Objective Chidamide has a broad spectrum of antitumor activity but its function on glioma remains unknown. The increase of reactive oxygen species (ROS) and reactive nitrogen species (RNS) may control glioma risk by promoting its apoptosis and necrosis. Hedgehog pathway is crucial to glioma cell proliferation and controls ROS production. We aimed to explore the effects of chidamide on the levels of miR-338-5p (glioma cell inhibitor), which may regulate Hedgehog signaling, resulting in the changes of RNS. Materials and Methods. Migration and invasion activities of glioma cells were measured by using the Transwell chamber assay. The expression levels of Sonic Hedgehog (Shh), Indian Hedgehog (Ihh), Desert Hedgehog (Dhh), miR-338-5p, and related molecules were detected by using real-time PCR (RT-PCR) and or Western Blot in U87 and HS683 glioma cells. The effects of chidamide on these molecules were measured by using the miR-338-5p inhibitor or mimics in U87 and HS683 glioma cell lines. ROS and RNS were measured by DCF DA and DAF-FM DA fluorescence. Biomarkers of oxidative stress were measured by using a corresponding kit. Apoptosis and necrosis rates were measured by using flow cytometry. Results Chidamide inhibited the growth rate, migration, and invasion of human malignant glioma cells and increased the level of miR-338-5p. miR-338-5p inhibitor or mimics increased or inhibited the growth rate of U87 and HS683 glioma cells. Chidamide inhibited the levels of Shh, Ihh, migration protein E-cadherin, and invading protein MMP-2. The increase in the level of Shh and Ihh led to the reduction in the ROS and RNS levels. miR-338-5p inhibitor or mimics also showed a promoting or inhibitory function for the levels of Shh and Ihh. Furthermore, miR-338-5p mimics and inhibitor inhibited or promoted the migration and invasion of the glioma cells (P < 0.05). Evaluated levels of miR-338-5p increased oxidative stress level and apoptosis and necrosis rate by regulating the levels of biomarkers of oxidative stress (P < 0.05). Evaluated levels of miR-338-5p increased oxidative stress level and apoptosis and necrosis rate by regulating the levels of biomarkers of oxidative stress ( Conclusion Chidamide inhibits glioma cells by increasing oxidative stress via the miRNA-338-5p regulation of Hedgehog signaling. Chidamide may be a potential drug in the prevention of glioma development.
Collapse
|
29
|
Martin-Hurtado A, Martin-Morales R, Robledinos-Antón N, Blanco R, Palacios-Blanco I, Lastres-Becker I, Cuadrado A, Garcia-Gonzalo FR. NRF2-dependent gene expression promotes ciliogenesis and Hedgehog signaling. Sci Rep 2019; 9:13896. [PMID: 31554934 PMCID: PMC6761261 DOI: 10.1038/s41598-019-50356-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022] Open
Abstract
The transcription factor NRF2 is a master regulator of cellular antioxidant and detoxification responses, but it also regulates other processes such as autophagy and pluripotency. In human embryonic stem cells (hESCs), NRF2 antagonizes neuroectoderm differentiation, which only occurs after NRF2 is repressed via a Primary Cilia-Autophagy-NRF2 (PAN) axis. However, the functional connections between NRF2 and primary cilia, microtubule-based plasma membrane protrusions that function as cellular antennae, remain poorly understood. For instance, nothing is known about whether NRF2 affects cilia, or whether cilia regulation of NRF2 extends beyond hESCs. Here, we show that NRF2 and primary cilia reciprocally regulate each other. First, we demonstrate that fibroblasts lacking primary cilia have higher NRF2 activity, which is rescued by autophagy-activating mTOR inhibitors, indicating that the PAN axis also operates in differentiated cells. Furthermore, NRF2 controls cilia formation and function. NRF2-null cells grow fewer and shorter cilia and display impaired Hedgehog signaling, a cilia-dependent pathway. These defects are not due to increased oxidative stress or ciliophagy, but rather to NRF2 promoting expression of multiple ciliogenic and Hedgehog pathway genes. Among these, we focused on GLI2 and GLI3, the transcription factors controlling Hh pathway output. Both their mRNA and protein levels are reduced in NRF2-null cells, consistent with their gene promoters containing consensus ARE sequences predicted to bind NRF2. Moreover, GLI2 and GLI3 fail to accumulate at the ciliary tip of NRF2-null cells upon Hh pathway activation. Given the importance of NRF2 and ciliary signaling in human disease, our data may have important biomedical implications.
Collapse
Affiliation(s)
- Ana Martin-Hurtado
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Raquel Martin-Morales
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Natalia Robledinos-Antón
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Ruth Blanco
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Ines Palacios-Blanco
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Isabel Lastres-Becker
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Antonio Cuadrado
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Francesc R Garcia-Gonzalo
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain. .,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.
| |
Collapse
|
30
|
Li J, Zong D, Chen Y, Chen P. Anti-apoptotic effect of the Shh signaling pathway in cigarette smoke extract induced MLE 12 apoptosis. Tob Induc Dis 2019; 17:49. [PMID: 31516492 PMCID: PMC6662799 DOI: 10.18332/tid/109753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/07/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Many studies have shown that COPD is associated with apoptosis of bronchial or alveolar epithelial cells. Alveolar type II epithelial cells (AECII) play an important role in the pathogenetic process. Cigarette smoke extract (CSE) can induce apoptosis of AECII. The Sonic hedgehog (Shh) pathway is involved in many adult lung diseases. We aimed to verify the anti-apoptotic effect of Shh in the AECII apoptosis induced by CSE. METHODS Mouse lung epithelial type II cells, MLE 12, were treated by 5% CSE for 24 hours. Apoptosis was measured using flow cytometry and expression of the anti-apoptotic factor BCL-2. The role of the hedgehog pathway in cell apoptosis was assessed by real-time RT-PCT and western blotting to measure the expression of Sonic hedgehog, Patched 1, and Gli1. Recombinant mouse Sonic hedgehog was used to overexpress the Shh pathway. RESULTS CSE could induce MLE 12 apoptosis. Sonic hedgehog, Patched 1 and the Gli1 were decreased in the CSE induced MLE 12 apoptosis. Overexpression Shh could partially reverse the CSE induced apoptosis. CONCLUSIONS Activation of the Shh pathway may relieve the CSE induced MLE 12 apoptosis.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Dandan Zong
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Disease, Central South University, Changsha, China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
31
|
Chen KY, Lu PJ, Cheng CJ, Jhan KY, Yeh SC, Wang LC. Proteomic analysis of excretory-secretory products from young adults of Angiostrongylus cantonensis. Mem Inst Oswaldo Cruz 2019; 114:e180556. [PMID: 31241649 PMCID: PMC6594673 DOI: 10.1590/0074-02760180556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Angiostrongyliasis is caused by the nematode Angiostrongylus
cantonensis and can lead to eosinophilic meningitis and
meningoencephalitis in humans. The young adult worms play central pathogenic
roles in the central nervous system (CNS); however, the underlying mechanism
is unclear. Excretory-secretory products (ESPs) are good investigation
targets for studying the relationship between a host and its parasite. OBJECTIVES We aimed to profile, identify, and characterise the proteins in the ESPs of
A. cantonensis young adults. METHODS The ESPs of young adult worms were collected from culture medium after
incubation ranging from 24 to 96 h. Proteomic and bioinformatics analyses
were performed to characterise the ESPs. FINDINGS A total of 51 spots were identified, and the highly expressed proteins
included two protein disulphide isomerases, one calreticulin, and three
uncharacterised proteins. Subsequently, approximately 254 proteins were
identified in the ESPs of A. cantonensis young adults via
liquid chromatography-mass spectrometry (LC-MS/MS) analysis, and these were
further classified according to their characteristics and biological
functions. Finally, we identified the immunoreactive proteins from a
reference map of ESPs from A. cantonensis young adults.
Approximately eight proteins were identified, including a protein disulphide
isomerase, a putative aspartic protease, annexin, and five uncharacterised
proteins. The study established and identified protein reference maps for
the ESPs of A. cantonensis young adults. MAIN CONCLUSIONS The identified proteins may be potential targets for the development of
diagnostic or therapeutic agents for human angiostrongyliasis.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- China Medical University, School of Medicine, Department of Parasitology, Taichung, Taiwan.,Chang Gung University, College of Medicine, Department of Parasitology, Taoyuan, Taiwan
| | - Pei-Jhen Lu
- Chang Gung University, College of Medicine, Department of Parasitology, Taoyuan, Taiwan
| | - Chien-Ju Cheng
- Chang Gung University, College of Medicine, Department of Parasitology, Taoyuan, Taiwan
| | - Kai-Yuan Jhan
- Chang Gung University, College of Medicine, Graduate Institute of Biomedical Sciences, Taoyuan, Taiwan
| | - Shih-Chien Yeh
- Chang Gung University, College of Medicine, Department of Parasitology, Taoyuan, Taiwan
| | - Lian-Chen Wang
- Chang Gung University, College of Medicine, Department of Parasitology, Taoyuan, Taiwan.,Chang Gung University, College of Medicine, Graduate Institute of Biomedical Sciences, Taoyuan, Taiwan.,Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
32
|
Russo DP, Strickland J, Karmaus AL, Wang W, Shende S, Hartung T, Aleksunes LM, Zhu H. Nonanimal Models for Acute Toxicity Evaluations: Applying Data-Driven Profiling and Read-Across. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:47001. [PMID: 30933541 PMCID: PMC6785238 DOI: 10.1289/ehp3614] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Low-cost, high-throughput in vitro bioassays have potential as alternatives to animal models for toxicity testing. However, incorporating in vitro bioassays into chemical toxicity evaluations such as read-across requires significant data curation and analysis based on knowledge of relevant toxicity mechanisms, lowering the enthusiasm of using the massive amount of unstructured public data. OBJECTIVE We aimed to develop a computational method to automatically extract useful bioassay data from a public repository (i.e., PubChem) and assess its ability to predict animal toxicity using a novel bioprofile-based read-across approach. METHODS A training database containing 7,385 compounds with diverse rat acute oral toxicity data was searched against PubChem to establish in vitro bioprofiles. Using a novel subspace clustering algorithm, bioassay groups that may inform on relevant toxicity mechanisms underlying acute oral toxicity were identified. These bioassays groups were used to predict animal acute oral toxicity using read-across through a cross-validation process. Finally, an external test set of over 600 new compounds was used to validate the resulting model predictivity. RESULTS Several bioassay clusters showed high predictivity for acute oral toxicity (positive prediction rates range from 62-100%) through cross-validation. After incorporating individual clusters into an ensemble model, chemical toxicants in the external test set were evaluated for putative acute toxicity (positive prediction rate equal to 76%). Additionally, chemical fragment -in vitro-in vivo relationships were identified to illustrate new animal toxicity mechanisms. CONCLUSIONS The in vitro bioassay data-driven profiling strategy developed in this study meets the urgent needs of computational toxicology in the current big data era and can be extended to develop predictive models for other complex toxicity end points. https://doi.org/10.1289/EHP3614.
Collapse
Affiliation(s)
- Daniel P. Russo
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
| | - Judy Strickland
- Integrated Laboratory Systems (ILS), Research Triangle Park, North Carolina, USA
| | - Agnes L. Karmaus
- Integrated Laboratory Systems (ILS), Research Triangle Park, North Carolina, USA
| | - Wenyi Wang
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
| | - Sunil Shende
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
- Department of Computer Science, Rutgers University, Camden, New Jersey, USA
| | - Thomas Hartung
- Johns Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, Maryland, USA
- University of Konstanz, CAAT-Europe, Konstanz, Germany
| | - Lauren M. Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Hao Zhu
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, USA
- Department of Chemistry, Rutgers University, Camden, New Jersey, USA
| |
Collapse
|
33
|
Tsai HC, Chen YH, Yen CM, Lee SSJ, Chen YS. Increased 14-3-3β and γ protein isoform expressions in parasitic eosinophilic meningitis caused by Angiostrongylus cantonensis infection in mice. PLoS One 2019; 14:e0213244. [PMID: 30845271 PMCID: PMC6405114 DOI: 10.1371/journal.pone.0213244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 02/19/2019] [Indexed: 11/28/2022] Open
Abstract
The 14-3-3 proteins are cerebrospinal fluid (CSF) markers of neuronal damage during infectious meningitis and Creutzfeldt-Jakob disease. Little is known about dynamic changes in the individual isoforms in response to parasitic eosinophilic meningitis. The purposes of this study were to determine the 14-3-3 protein isoform patterns, examine the kinetics and correlate the severity of blood brain barrier (BBB) damage with the expressions of these markers in mice with eosinophilic meningitis. Mice were orally infected with 50 A. cantonensis L3 via an oro-gastric tube and sacrificed every week for 3 consecutive weeks after infection. The Evans blue method and BBB junctional protein expressions were used to measure changes in the BBB. Hematoxylin and eosin staining was used to analyze pathological changes in the mice brains following 1–3 weeks of infection with A. cantonensis. The levels of 14-3-3 protein isoforms in serum/CSF and brain homogenates were analyzed by Western blot, and immunohistochemistry (IHC) was used to explore the different isoform distributions of 14-3-3 proteins and changes in BBB junctional proteins in the mice brain meninges. Dexamethasone was injected intraperitoneally from the seventh day post infection (dpi) until the end of the study (21 dpi) to study the changes in BBB junctional proteins. The amounts of Evans blue, tight junction and 14-3-3 protein isoforms in the different groups of mice were compared using the nonparametric Kruskal-Wallis test. There were significant increases in 14-3-3 protein isoforms β and γ in the CSF in the second and third weeks after infection compared to the controls and first week of infection, which were correlated with the severity of BBB damage in brain histology, and Evans blue extravasation. Using IHC to assess the distribution of 14-3-3 protein isoforms and changes in BBB junctional proteins in the mice brain meninges, the expressions of isoforms β, γ, ε, and θ and junctional proteins occludin and claudin-5 in the brain meninges increased over a 3-week period after infection compared to the controls and 1 week after infection. The administration of dexamethasone decreased the expressions of BBB junctional proteins occludin and claudin-5 in the mice brain meninges. Our findings support that 14-3-3 proteins β and γ can potentially be used as a CSF marker of neuronal damage in parasitic eosinophilic meningitis caused by A. cantonensis.
Collapse
Affiliation(s)
- Hung-Chin Tsai
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan, R.O.C.
- Department of Parasitology and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C.
- * E-mail:
| | - Yu-Hsin Chen
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Chuan-Min Yen
- Department of Parasitology and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, R.O.C.
| | - Susan Shin-Jung Lee
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Yao-Shen Chen
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan, R.O.C.
| |
Collapse
|
34
|
Orchard P, White JS, Thomas PE, Mychalowych A, Kiseleva A, Hensley J, Allen B, Parker SCJ, Keegan CE. Genome-wide chromatin accessibility and transcriptome profiling show minimal epigenome changes and coordinated transcriptional dysregulation of hedgehog signaling in Danforth's short tail mice. Hum Mol Genet 2019; 28:736-750. [PMID: 30380057 PMCID: PMC6381317 DOI: 10.1093/hmg/ddy378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022] Open
Abstract
Danforth's short tail (Sd) mice provide an excellent model for investigating the underlying etiology of human caudal birth defects, which affect 1 in 10 000 live births. Sd animals exhibit aberrant axial skeleton, urogenital and gastrointestinal development similar to human caudal malformation syndromes including urorectal septum malformation, caudal regression, vertebral-anal-cardiac-tracheo-esophageal fistula-renal-limb (VACTERL) association and persistent cloaca. Previous studies have shown that the Sd mutation results from an endogenous retroviral (ERV) insertion upstream of the Ptf1a gene resulting in its ectopic expression at E9.5. Though the genetic lesion has been determined, the resulting epigenomic and transcriptomic changes driving the phenotype have not been investigated. Here, we performed ATAC-seq experiments on isolated E9.5 tailbud tissue, which revealed minimal changes in chromatin accessibility in Sd/Sd mutant embryos. Interestingly, chromatin changes were localized to a small interval adjacent to the Sd ERV insertion overlapping a known Ptf1a enhancer region, which is conserved in mice and humans. Furthermore, mRNA-seq experiments revealed increased transcription of Ptf1a target genes and, importantly, downregulation of hedgehog pathway genes. Reduced sonic hedgehog (SHH) signaling was confirmed by in situ hybridization and immunofluorescence suggesting that the Sd phenotype results, in part, from downregulated SHH signaling. Taken together, these data demonstrate substantial transcriptome changes in the Sd mouse, and indicate that the effect of the ERV insertion on Ptf1a expression may be mediated by increased chromatin accessibility at a conserved Ptf1a enhancer. We propose that human caudal dysgenesis disorders may result from dysregulation of hedgehog signaling pathways.
Collapse
Affiliation(s)
- Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - James S White
- Department of Pediatrics, Division of Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Peedikayil E Thomas
- Department of Pediatrics, Division of Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Anna Mychalowych
- Department of Pediatrics, Division of Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Anya Kiseleva
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - John Hensley
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Catherine E Keegan
- Department of Pediatrics, Division of Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Shukla M, Chinchalongporn V, Govitrapong P, Reiter RJ. The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann N Y Acad Sci 2019; 1443:75-96. [PMID: 30756405 DOI: 10.1111/nyas.14005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are typified by neuronal loss associated with progressive dysfunction and clinical presentation. Neurodegenerative diseases are characterized by the intra- and extracellular conglomeration of misfolded proteins that occur because of abnormal protein dynamics and genetic manipulations; these trigger processes of cell death in these disorders. The disrupted signaling mechanisms involved are oxidative stress-mediated mitochondrial and calcium signaling deregulation, alterations in immune and inflammatory signaling, disruption of autophagic integrity, proteostasis dysfunction, and anomalies in the insulin, Notch, and Wnt/β-catenin signaling pathways. Herein, we accentuate some of the contemporary translational approaches made in characterizing the underlying mechanisms of neurodegeneration. Melatonin-induced cognitive enhancement and inhibition of oxidative signaling substantiates the efficacy of melatonin in combating neurodegenerative processes. Our review considers in detail the possible roles of melatonin in understanding the synergistic pathogenic mechanisms between aggregated proteins and in regulating, modulating, and preventing the altered signaling mechanisms discovered in cellular and animal models along with clinical evaluations pertaining to neurodegeneration. Furthermore, this review showcases the therapeutic potential of melatonin in preventing and treating neurodegenerative diseases with optimum prognosis.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Vorapin Chinchalongporn
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| |
Collapse
|
36
|
Kaushal JB, Popli P, Sankhwar P, Shukla V, Dwivedi A. Sonic hedgehog protects endometrial hyperplasial cells against oxidative stress via suppressing mitochondrial fission protein dynamin-like GTPase (Drp1). Free Radic Biol Med 2018; 129:582-599. [PMID: 30347228 DOI: 10.1016/j.freeradbiomed.2018.10.427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023]
Abstract
Hh/Gli1 cascade as well as Gsk3β-Gli1 crosstalk play crucial role in estrogen-dependent progression of endometrial hyperplasia (EH). However, the underlying mechanisms involved in progression of disease still remain unclear. In the present study, we explored the role of Hh signaling in protection of endometrial hyperplasial cells against oxidative stress and the underlying mechanism involved therein. EH cells were found to be more resistant towards H2O2-induced oxidative stress (IC50: ~ 3×) as compared with normal endometrial cells. Estrogen (E2) pre-treatment followed by cytotoxic dose of H2O2, almost rescued the EH cells from apoptosis and caused the increased expression of downstream Shh signaling molecules i.e., Smo, Ptch and Gli1. Whereas pretreatment with cyclopamine was not able to curtail H2O2-induced effects indicating that estrogen protects these cells via activation of Shh pathway. Further, H2O2-induced ROS and lipid peroxidation alongwith decreased activities of antioxidant enzymes glutathione peroxidase and superoxide dismutase were found to be reversed in EH cells pre-exposed to E2 or rShh. The rShh suppressed H2O2-induced cell death and caused attenuation of mitochondrial apoptotic mediators and prevented disruption in mitochondrial morphology and mitochondrial membrane potential in EH cells. The functional blockage of signaling by Shh siRNA or Gli1siRNA led to significantly increased expression of mitochondrial fission protein dynamin-like GTPase (Drp1). The H2O2-treated EH cells showed diminished Gli1 and increased Drp1 expression, concurrent with reduced p-Drp1-(serine637). Whereas rShh pre-treated EH cells presented normal mitochondrial dynamics with dense, long networks of mitochondria alongwith nuclear accumulation of Gli1 and the decreased expression of Drp1. Overall, our results implicated that Shh signaling modulates antioxidant defense system and stabilizes mitochondrial dynamics by suppressing Drp1 protein which maintains survival of EH cells against oxidative stress.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India
| | - Pooja Popli
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pushplata Sankhwar
- Department of Obstetrics & Gynaecology, King George's Medical University, Lucknow 226003, U.P., India
| | - Vinay Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India.
| |
Collapse
|
37
|
Wang TY, Chen KY, Jhan KY, Li CH, Jung SM, Wang LC. Temporal-spatial expressions of interleukin-4, interleukin-10, and interleukin-13 in the brains of C57BL/6 and BALB/c mice infected with Angiostrongylus cantonensis: An immunohistochemical study. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 53:592-603. [PMID: 30600200 DOI: 10.1016/j.jmii.2018.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/21/2018] [Accepted: 10/23/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Angiostrongylus cantonensis is an important etiologic agent of eosinophilic meningitis and/or eosinophilic meningoencephalitis in humans. Th2 responses have been considered to be predominant in non-permissive hosts. However, changes of cytokines in the central nervous system of the host remain unclear. The present study was conducted to determine the temporal-spatial expressions of IL-4, IL-10, and IL-13 in the brains of infected C57BL/6 and BALB/c mice by immunohistochemistry. METHODS After infecting each mouse with 25 third-stage larvae (L3), brain specimens were collected on day 7 and day 28 post-infection. Each specimen was cut into five sections and stained with corresponding antibodies of the three cytokines. RESULTS In infected C57BL/6 mice, high IL-4 expressions were found in the isocortex, IL-10 in the isocortex, olfactory area, hippocampus, cerebral nuclei, hypothalamus, cerebellum nuclei, and medulla, and IL-13 in the isocortex and cerebellum. In infected BALB/c mice, IL-4 and IL-10 were highly expressed in the isocortex, olfactory areas, cerebral nuclei, hypothalamus, and cerebellum nuclei and IL-13 in the thalamus and hypothalamus. High levels of the cytokines were usually detected in on day 7 in BALB/c mice and day 28 in C57BL/6 mice. CONCLUSION The special temporal-spatial expression changes of these three cytokines in the infected mouse brain may explain the differences in the survival and the time of occurrence of immune responses in the hosts after A. cantonensis infection.
Collapse
Affiliation(s)
- Tzu-Yi Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kai-Yuan Jhan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chung-Han Li
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Chang-Gung Memorial Hospital, Chang-Gung Children Hospital at Linkou and Chang-Gung University, Taoyuan 333, Taiwan.
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
38
|
Ahn JH, Noh Y, Shin BN, Kim SS, Park JH, Lee TK, Song M, Kim H, Lee JC, Yong JH, Kang IJ, Lee YL, Won MH, Kim JD. Intermittent fasting increases SOD2 and catalase immunoreactivities in the hippocampus but does not protect from neuronal death following transient ischemia in gerbils. Mol Med Rep 2018; 18:4802-4812. [PMID: 30272360 PMCID: PMC6236287 DOI: 10.3892/mmr.2018.9503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022] Open
Abstract
Intermittent fasting has been shown to have neuroprotective effects against transient focal cerebral ischemic insults. However, the effects of intermittent fasting on transient global ischemic insult has not been studied much yet. The present study examined effects of intermittent fasting on endogenous antioxidant enzyme expression levels in the hippocampus and investigated whether the fasting protects neurons 5 days after 5 min of transient global cerebral ischemia. Gerbils were randomly subjected to either ad libitum or alternate-day intermittent fasting for two months and assigned to sham surgery or transient ischemia. Changes of antioxidant enzymes were examined using immunohistochemistry for cytoplasmic superoxide dismutase 1 (SOD1), mitochondrial (SOD2), catalase (CAT), and glutathione peroxidase (GPX). The effects of intermittent fasting on ischemia-induced antioxidant changes, neuronal damage/degeneration and glial activation were examined. The weight of fasting gerbils was not different from that of control gerbils. In controls, SOD1 and GPX immunoreactivities were strong in pyramidal neurons of filed cornu ammonis 1 (CA1). Transient ischemia in controls significantly decreased expressions of SOD1 and GPX in CA1 pyramidal neurons. Intermittent fasting resulted in increased expressions of SOD2 and CAT, not of SOD1 and GPX, in CA1 pyramidal neurons. Nevertheless, CA1 pyramidal neurons were not protected in gerbils subjected to fasting after transient ischemia, and inhibition of glial-cell activation was not observed in the gerbils. In summary, intermittent fasting for two months increased SOD2 and CAT immunoreactivities in hippocampal CA1 pyramidal neurons. However, fasting did not protect the CA1 pyramidal neurons from transient cerebral ischemia. The results of the present study indicate that intermittent fasting may increase certain antioxidants, but not protect neurons from transient global ischemic insult.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Yoohun Noh
- Famenity Company, Gwacheon, Geyonggi 13837, Republic of Korea
| | - Bich Na Shin
- Danchunok Company, Chuncheon, Gangwon 24210, Republic of Korea
| | - Sung-Su Kim
- Famenity Company, Gwacheon, Geyonggi 13837, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Minah Song
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyunjung Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun-Hwan Yong
- Department of Occupational Therapy, Dongnam Health University, Suwon, Gyeonggi 16238, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Yun Lyul Lee
- Department of Physiology and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jong Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
39
|
Polydatin ameliorates dextran sulfate sodium-induced colitis by decreasing oxidative stress and apoptosis partially via Sonic hedgehog signaling pathway. Int Immunopharmacol 2018; 64:256-263. [PMID: 30218952 DOI: 10.1016/j.intimp.2018.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 08/11/2018] [Accepted: 09/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inflammation, oxidative stress and epithelial barrier dysfunction have been implicated in inflammatory bowel disease (IBD) pathology. The targeted inhibition of these features may represent a promising therapeutic strategy for IBD. Polydatin is an effective natural antioxidant that possesses strong antioxidant and anti-apoptotic properties. Thus, we studied the protective effects of polydatin treatments on a mouse model of experimental colitis. METHODS Acute colitis was experimentally induced by adding 3% dextran sulfate sodium (DSS) to the drinking water provided to mice for 7 days and by administering different doses of polydatin (15, 30, or 45 mg/kg) during the same period. Mice were also treated with the Sonic hedgehog (Shh) pathway inhibitor cyclopamine to estimate the efficacy of polydatin and Shh inhibitors on colitis. The disease activity index (DAI), colon length, histology, levels of oxidative and apoptotic mediators and levels of Shh pathway components were evaluated. RESULTS The polydatin treatment significantly attenuated the DAI, colon shortening and histological damage. In addition, polydatin administration effectively decreased malondialdehyde (MDA) levels and increased the activities of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Polydatin also inhibited apoptosis in mice with colitis by downregulating the expression of the pro-apoptotic proteins Bax, caspase 3 and cleaved caspase 3 and increasing the expression of the anti-apoptotic protein Bcl-2. Furthermore, polydatin modulated Shh signaling pathway activation. After polydatin treatment, the main components of the Shh pathway, including Shh, Patched (Ptc), Smoothened (Smo), and glioblastoma-1 (Gli1), were upregulated at the mRNA and protein levels. Blockade of the Shh pathway using cyclopamine abolished the effects of polydatin on mice with colitis. CONCLUSION Based on these observations, polydatin may suppress experimental colitis at least partially by regulating the Shh signaling pathway.
Collapse
|
40
|
Chen SD, Yang JL, Hwang WC, Yang DI. Emerging Roles of Sonic Hedgehog in Adult Neurological Diseases: Neurogenesis and Beyond. Int J Mol Sci 2018; 19:ijms19082423. [PMID: 30115884 PMCID: PMC6121355 DOI: 10.3390/ijms19082423] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Sonic hedgehog (Shh), a member of the hedgehog (Hh) family, was originally recognized as a morphogen possessing critical characters for neural development during embryogenesis. Recently, however, Shh has emerged as an important modulator in adult neural tissues through different mechanisms such as neurogenesis, anti-oxidation, anti-inflammation, and autophagy. Therefore, Shh may potentially have clinical application in neurodegenerative diseases and brain injuries. In this article, we present some examples, including ours, to show different aspects of Shh signaling and how Shh agonists or mimetics are used to alter the neuronal fates in various disease models, both in vitro and in vivo. Other potential mechanisms that are discussed include alteration of mitochondrial function and anti-aging effect; both are critical for age-related neurodegenerative diseases. A thorough understanding of the protective mechanisms elicited by Shh may provide a rationale to design innovative therapeutic regimens for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan.
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
| | - Wei-Chao Hwang
- Department of Neurology, Taipei City Hospital, Taipei 11556, Taiwan.
| | - Ding-I Yang
- Institute of Brain Science, National Yang-Ming University, Taipei 11221, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| |
Collapse
|
41
|
Wang B, Zhang Y, Dong H, Gong S, Wei B, Luo M, Wang H, Wu X, Liu W, Xu X, Zheng Y, Sun M. Loss of Tctn3 causes neuronal apoptosis and neural tube defects in mice. Cell Death Dis 2018; 9:520. [PMID: 29725084 PMCID: PMC5938703 DOI: 10.1038/s41419-018-0563-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
Tctn3 belongs to the Tectonic (Tctn) family and is a single-pass membrane protein localized at the transition zone of primary cilia as an important component of ciliopathy-related protein complexes. Previous studies showed that mutations in Tctn1 and Tctn2, two members of the tectonic family, have been reported to disrupt neural tube development in humans and mice, but the functions of Tctn3 in brain development remain elusive. In this study, Tctn3 knockout (KO) mice were generated by utilizing the piggyBac (PB) transposon system. We found that Tctn3 KO mice exhibited abnormal global development, including prenatal lethality, microphthalmia, polysyndactyly, and abnormal head, sternum, and neural tube, whereas Tctn3 heterozygous KO mice did not show abnormal development or behaviors. Further, we found that the mRNA levels of Gli1 and Ptch1, downstream signaling components of the Shh pathway, were significantly reduced. Likewise, neural tube patterning-related proteins, such as Shh, Foxa2, and Nkx2.2, were altered in their distribution. Interestingly, Tctn3 KO led to significant changes in apoptosis-related proteins, including Bcl-2, Bax, and cleaved PARP1, resulting in reduced numbers of neuronal cells in embryonic brains. Tctn3 KO inhibited the PI3K/Akt signaling pathway but not the mTOR-dependent pathway. The small molecule SC79, a specific Akt activator, blocked apoptotic cell death in primary mouse embryonic fibroblasts from Tctn3 KO mice. Finally, NPHP1, a protein with anti-apoptotic ability, was found to form a complex with Tctn3, and its levels were decreased in Tctn3 KO mice. In conclusion, our results show that Tctn3 KO disrupts the Shh signaling pathway and neural tube patterning, resulting in abnormal embryonic development, cellular apoptosis, and prenatal death in mice.
Collapse
Affiliation(s)
- Bin Wang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.,Institute of Neuroscience, Soochow University, Suzhou City, 215123, Jiangsu, China
| | - Yingying Zhang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Hongli Dong
- Department of Neurology, Suzhou Hospital of Traditional Chinese Medicine, Suzhou City, 215123, Jiangsu, China
| | - Siyi Gong
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.,Institute of Neuroscience, Soochow University, Suzhou City, 215123, Jiangsu, China
| | - Bin Wei
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Man Luo
- Institute of Neuroscience, Soochow University, Suzhou City, 215123, Jiangsu, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital Research Center, Institute of Reproduction and Development, Fudan University, Shanghai, 200433, China.,State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, 200433, China
| | - Wei Liu
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Xingshun Xu
- Institute of Neuroscience, Soochow University, Suzhou City, 215123, Jiangsu, China.
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital Research Center, Institute of Reproduction and Development, Fudan University, Shanghai, 200433, China. .,State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, 200433, China.
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
| |
Collapse
|
42
|
Hai B, Zhao Q, Deveau MA, Liu F. Delivery of Sonic Hedgehog Gene Repressed Irradiation-induced Cellular Senescence in Salivary Glands by Promoting DNA Repair and Reducing Oxidative Stress. Theranostics 2018; 8:1159-1167. [PMID: 29464006 PMCID: PMC5817117 DOI: 10.7150/thno.23373] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/01/2017] [Indexed: 01/15/2023] Open
Abstract
Rationale: Irreversible hypofunction of salivary glands or xerostomia is common in head and neck cancer survivors treated with radiotherapy even when various new techniques are applied to minimize the irradiation (IR) damage. This condition severely impairs the quality of life of patients and can only be temporarily relieved with current treatments. We found recently that transient expression of Sonic Hedgehog (Shh) in salivary glands after IR rescued salivary function, but the underlying mechanisms are not totally clear. Methods: We generated a mouse model of IR-induced hyposalivation, and delivered adenoviral vectors carrying Shh or control GFP gene into submandibular glands (SMGs) via retrograde ductal instillation 3 days after IR. The cellular senescence was evaluated by senescence-associated beta-galactosidase assay and the expression of senescence markers. The underlying mechanisms were explored by examining DNA damage, oxidative stress, and the expression of related genes by qRT-PCR, Western blot and immunofluorescent staining. Results: Shh gene transfer repressed IR-induced cellular senescence by promoting DNA repair and decreasing oxidative stress, which is mediated through upregulating expression of genes related to DNA repair such as survivin and miR-21 and repressing expression of pro-senescence gene Gdf15 likely downstream of miR-21. Conclusion: Repressing cellular senescence contributes to the rescue of IR-induced hyposalivation by transient activation of Hh signaling, which is related to enhanced DNA repair and decreased oxidative stress in SMGs.
Collapse
|
43
|
Chen KY, Wang LC. Stimulation of IL-1β and IL-6 through NF-κB and sonic hedgehog-dependent pathways in mouse astrocytes by excretory/secretory products of fifth-stage larval Angiostrongylus cantonensis. Parasit Vectors 2017; 10:445. [PMID: 28950910 PMCID: PMC5615811 DOI: 10.1186/s13071-017-2385-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/17/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Angiostrongylus cantonensis is an important causative agent of eosinophilic meningitis and eosinophilic meningoencephalitis in humans. Previous studies have shown that the Sonic hedgehog (Shh) signaling pathway may reduce cell apoptosis by inhibiting oxidative stress in A. cantonensis infection. In this study, we investigated the relationship between cytokine secretion and Shh pathway activation after treatment with excretory/secretory products (ESP) of fifth-stage larval A. cantonensis (L5). RESULTS The results showed that IL-1β and IL-6 levels in mouse astrocytes were increased. Moreover, ESP stimulated the protein expression of Shh pathway molecules, including Shh, Ptch, Smo and Gli-1, and induced IL-1β and IL-6 secretion. The transcription factor nuclear factor-κB (NF-κB) plays an important role in inflammation, and it regulates the expression of proinflammatory genes, including cytokines and chemokines, such as IL-1β and TNF-α. After ESP treatment, NF-κB induced IL-1β and IL-6 secretion in astrocytes by activating the Shh signaling pathway. CONCLUSIONS Overall, the data presented in this study showed that ESP of fifth-stage larval A. cantonensis stimulates astrocyte activation and cytokine generation through NF-κB and the Shh signaling pathway.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|