1
|
Yang M, Xiao J, Zhong Q. Modeling of parameters affecting the removal of chromium using polysulfone/graphene oxide membrane via response surface methodology. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:180. [PMID: 39841272 DOI: 10.1007/s10661-025-13616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
In this study, an efficient membrane composed of polysulfone and graphene oxide was developed and evaluated for its efficacy in chromium adsorption. Characterization of the synthesized membrane involved comprehensive analyses including scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) to assess its structural properties. Subsequently, the membrane's performance in removing chromium from aqueous solutions was scrutinized, considering key operational parameters. Response surface methodology (RSM) based on central composite design (CCD) was employed to optimize parameters. Additionally, the pH parameter revealed the most significant (F-value = 184.25) on the amount of chromium removal by the membrane process. The interaction between pH and contact time is the most significant among all interactions, with an F-value of 40.99. Moreover, the high R2 (97.58%) and adjusted R2 (95.41%) indicate the model effectively explains variance with minimal overfitting, confirming its strong predictive capability. Under optimized conditions (pH 5, initial concentration of 30 mg/L, and contact time of 40 min), the polysulfone/graphene oxide membrane exhibited an impressive removal efficiency of 81.1%. This study highlights the potential of polysulfone/graphene oxide membranes in effectively separating chromium from aqueous mediums, thereby suggesting a promising avenue for future research in addressing heavy metal pollution.√.
Collapse
Affiliation(s)
- Minge Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China
- Department of Science and Technology, Hunan Automotive Engineering Vocational University, Zhuzhou, 412001, Hunan, China
| | - Jin Xiao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China
| | - Qifan Zhong
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
2
|
Khalil A, Maschietti M, Muff J. Influence of graphene oxide additives on the NF separation of triazine-based H 2S scavenging compounds using advanced membrane technology. CHEMOSPHERE 2024; 360:142439. [PMID: 38797201 DOI: 10.1016/j.chemosphere.2024.142439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
This work proposes an innovative approach for the membrane separation of spent and unspent H2S scavengers (SUS) derived from the application of MEA-triazine in offshore oil and gas production. Modified nanofiltration membranes were fabricated by incorporating graphene oxide (GO) and polyvinyl alcohol (PVA) into a thin film composite (TFC) to obtain a thin film nanocomposite (TFN) with enhanced permeability. In addition, various immobilization strategies for GO were investigated. The performance of the membranes and the effect of the GO loading were evaluated in terms of permeability, fouling propensity, and rejection of key components of the SUS, i.e., MEA-triazine (unspent scavenger), dithiazine (spent scavenger), and monoethanolamine, operating on a sample of SUS wastewater obtained from an offshore oil and gas platform. Various characterization techniques, such as contact angle, FTIR, XRD, SEM, TGA, and AFM, were employed to evaluate the structure, composition, and hydrophilicity of the membrane. The results show a remarkable increase in permeability (from 0.22 Lm-2 h-1 bar-1 for the TFC to 5.8 Lm-2 h-1 bar-1 for the TFN membranes), due to the enhanced hydrophilicity from GO incorporation. The strong interfacial interaction between GO and PVA within the TFN membrane results in negligible nanofiller leaching. The incorporation of GO moderately increases the rejection of the unspent scavenger (63%-73%, 62%-79%, 62%-80%, and 68%-76%), while drastically increasing the rejection of the spent scavenger, which is approximately null for the TFC membrane without GO and increases up to 58% in the TFN membrane with GO. Therefore, while the proposed membranes cannot be used for the selective separation of the unspent form the spent scavenger, they can achieve substantial recovery of all the key components contained in the SUS to avoid their discharge into the sea.
Collapse
Affiliation(s)
- Alaa Khalil
- Section of Chemical Science and Engineering, Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark; Center for Membrane Technology, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg Ø, Denmark.
| | - Marco Maschietti
- Section of Chemical Science and Engineering, Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Jens Muff
- Section of Chemical Science and Engineering, Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark; Center for Membrane Technology, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg Ø, Denmark
| |
Collapse
|
3
|
Hussain Mana T, Alam J, Shukla AK, Alkhudhiri A, Mohammed AN, Alhoshan M. Performance investigation of poly(vinylidene fluoride-cohexafluoropropylene) membranes containing SiO 2 nanoparticles in a newly designed single vacuum membrane distillation system. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10980. [PMID: 38267391 DOI: 10.1002/wer.10980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/19/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The current study focuses on the development of a superhydrophobic poly(vinylidene fluoride-cohexafluoropropylene) nanocomposite membrane suitable for vacuum membrane distillation by incorporating SiO2 nanoparticles. At loading hydrophobic nano-SiO2 particle concentration (0.50-1.50 wt.%), the developed nanocomposite membranes are optimized in terms of vacuum membrane distillation performance. The influence of temperature, vacuum pressure, and feed water flow is studied for desalinating high-salinity brine. The results show that the developed vacuum distillation membrane is capable of 95% salt rejection during the treatment of a highly saline feed (65,000 ppm) at fixed flow rates of 120 L/h saline feed and different operating conditions consisting of feed inlet temperatures ranging from 40°C to 70°C and distillate inlet temperatures of 7-15°C. The vacuum membrane distillation process achieves 0.38-1.66% water recovery with increasing concentration factor, meaning that recovery is increased, and shows a specific electrical energy consumption of 5.16-23.90 kWh/m3 for product water. Overall, the newly designed membrane demonstrates suitability for a vacuum membrane distillation system. PRACTITIONER POINTS: Desalinate high-salinity brine (TDS > 35,000 ppm) using a vacuum membrane distillation system. A hydrophobic PVDF-HFP/SiO2 nanocomposite membrane development for vacuum membrane distillation. A newly designed single vacuum membrane distillation system for RO brine treatment.
Collapse
Affiliation(s)
- Turki Hussain Mana
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
- Desalination Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alkhudhiri
- Desalination Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Abdullah Najib Mohammed
- Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Mansour Alhoshan
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Gao H, Zhong S, Dangayach R, Chen Y. Understanding and Designing a High-Performance Ultrafiltration Membrane Using Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17831-17840. [PMID: 36790106 PMCID: PMC10666290 DOI: 10.1021/acs.est.2c05404] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Ultrafiltration (UF) as one of the mainstream membrane-based technologies has been widely used in water and wastewater treatment. Increasing demand for clean and safe water requires the rational design of UF membranes with antifouling potential, while maintaining high water permeability and removal efficiency. This work employed a machine learning (ML) method to establish and understand the correlation of five membrane performance indices as well as three major performance-determining membrane properties with membrane fabrication conditions. The loading of additives, specifically nanomaterials (A_wt %), at loading amounts of >1.0 wt % was found to be the most significant feature affecting all of the membrane performance indices. The polymer content (P_wt %), molecular weight of the pore maker (M_Da), and pore maker content (M_wt %) also made considerable contributions to predicting membrane performance. Notably, M_Da was more important than M_wt % for predicting membrane performance. The feature analysis of ML models in terms of membrane properties (i.e., mean pore size, overall porosity, and contact angle) provided an unequivocal explanation of the effects of fabrication conditions on membrane performance. Our approach can provide practical aid in guiding the design of fit-for-purpose separation membranes through data-driven virtual experiments.
Collapse
Affiliation(s)
- Haiping Gao
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Shandong
Provincial Key Laboratory of Water Pollution Control and Resource
Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shifa Zhong
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Raghav Dangayach
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongsheng Chen
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Siddiqa A, Majid A, Saira F, Farooq S, Qureshi R, Qaisar S. Nanodiamond embedded polyaniline/polyvinylidene fluoride nanocomposites as microfiltration membranes for removal of industrial pollution. RSC Adv 2023; 13:29206-29214. [PMID: 37809025 PMCID: PMC10552077 DOI: 10.1039/d3ra05351b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023] Open
Abstract
Membrane fouling remains a challenge to the membrane technology. Herein, we report the fabrication of composite membranes of polyaniline/polyvinylidene fluoride (PANI/PVDF) blended with nanodiamond (ND) with improved antifouling properties. The designed membranes were characterized by XRD, FTIR and SEM techniques. Characterization analysis revealed that addition of ND has maintained the structural integrity and porosity of composite membranes. The membrane permeation and antifouling performances were tested for hydrophilicity, porosity, pure water flux, shrinkage ratio, salt rejection of zinc acetate and copper acetate, and their fouling recovery ratio (FRR) measurements. A high solvent content ratio of 0.55 and a low shrinkage ratio of <12% due to enhanced hydrophilicity and porosity of the composite membrane with fouling-recovery of membranes to 88% were achieved. Separation of copper and zinc ions from aqueous solution was achieved. These findings imply that ND-based PANI/PVDF composite membranes can effectively serve as microfiltration membranes in industrial and municipal wastewater treatment.
Collapse
Affiliation(s)
- Asima Siddiqa
- Nanoscience and Technology Division, National Centre for Physics Islamabad Pakistan
| | - Abdul Majid
- Department of Chemistry, Quaid-i-Azam University Islamabad Pakistan
| | - Farhat Saira
- Nanoscience and Technology Division, National Centre for Physics Islamabad Pakistan
| | - Saima Farooq
- Department of Biological Sciences &Chemistry, College of Arts and Science, University of Nizwa Nizwa-616 Oman
| | - Rumana Qureshi
- Department of Chemistry, Quaid-i-Azam University Islamabad Pakistan
| | - Sara Qaisar
- Nanoscience and Technology Division, National Centre for Physics Islamabad Pakistan
| |
Collapse
|
6
|
Naji MA, Salimi-Kenari H, Alsalhy QF, Al-Juboori RA, Huynh N, Rashid KT, Salih IK. Novel MXene-Modified Polyphenyl Sulfone Membranes for Functional Nanofiltration of Heavy Metals-Containing Wastewater. MEMBRANES 2023; 13:357. [PMID: 36984744 PMCID: PMC10052984 DOI: 10.3390/membranes13030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
In this work, MXene as a hydrophilic 2D nanosheet has been suggested to tailor the polyphenylsulfone (PPSU) flat sheet membrane characteristics via bulk modification. The amount of MXene varied in the PPSU casting solution from 0-1.5 wt.%, while a series of characterization tools have been employed to detect the surface characteristics changes. This included atomic force microscopy (AFM), scanning electron microscopy (SEM), contact angle, pore size and porosity, and Fourier-transform infrared spectroscopy (FTIR). Results disclosed that the MXene content could significantly influence some of the membranes' surface characteristics while no effect was seen on others. The optimal MXene content was found to be 0.6 wt.%, as revealed by the experimental work. The roughness parameters of the 0.6 wt.% nanocomposite membrane were notably enhanced, while greater hydrophilicity has been imparted compared to the nascent PPSU membrane. This witnessed enhancement in the surface characteristics of the nanocomposite was indeed reflected in their performance. A triple enhancement in the pure water flux was witnessed without compromising the retention of the membranes against the Cu2+, Cd2+ and Pd2+ feed. In parallel, high, and comparable separation rates (>92%) were achieved by all membranes regardless of the MXene content. In addition, promising antifouling features were observed with the nanocomposite membranes, disclosing that these nanocomposite membranes could offer a promising potential to treat heavy metals-containing wastewater for various applications.
Collapse
Affiliation(s)
- Mohammed Azeez Naji
- Faculty of Engineering and Technology, University of Mazandaran, Babolsar 4741613534, Iran
| | - Hamed Salimi-Kenari
- Faculty of Engineering and Technology, University of Mazandaran, Babolsar 4741613534, Iran
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Raed A. Al-Juboori
- NYUAD Water Research Centre, New York University Abu Dhabi Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Ngoc Huynh
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 11000, Aalto, FI-00076 Espoo, Finland
| | - Khalid T. Rashid
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Issam K. Salih
- Department of Chemical Engineering and Petroleum Industries, AlMustaqbal University College, Babylon 51001, Iraq
| |
Collapse
|
7
|
Haddad Irani-Nezhad M, Khataee A, Vatanpoor V, Arefi-Oskoui S, Orooji Y. Incorporation of 2D-biotene to polyethersulfone ultrafiltration membrane with superhydrophilicity and antifouling properties for removal of organic pollutants. CHEMOSPHERE 2023; 318:137952. [PMID: 36709847 DOI: 10.1016/j.chemosphere.2023.137952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/08/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Here, for the first time, one or few-layer exfoliated 2D-Biotene (E-BIT) was prepared by a cost-effective liquid-phase exfoliation of economical and accessible bulk biotite (B-BIT). The successful preparation of E-BIT was further verified by different characterization methods. XRD pattern demonstrated that B-BIT's basal spacing was increased from 10.07 Å to 11.02 Å. Also, the transparency of the E-BIT to the electron beam showed its small thickness after exfoliation, which was confirmed by AFM results, too. This natural material was utilized as an efficient nano-additive to improve the properties of polyethersulfone (PES) polymeric membrane. E-BIT blended membranes with various quantities (0-2 wt%) were prepared via the non-solvent induced phase inversion method. Small holes at the up layer, coarse finger-like holes and macro-voids at the sublayer were seen in asymmetric prepared membranes. Modification caused the improvement of the membranes' hydrophilicity, which the contact angle was reduced from 69.3 to 53.4 for bare PES and 1 wt% E-BIT blended membranes, respectively. 1 wt% E-BIT blended membrane illustrated flux enhancement of 198.8 L/m2 h, and high elimination efficiency of bovine serum albumin (99%), reactive red 195 (97.8%), reactive green 9 (93.5%), and reactive blue 19 (88.4%), with improved flux recovery ratio of 73%.
Collapse
Affiliation(s)
- Mahsa Haddad Irani-Nezhad
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
| | - Vahid Vatanpoor
- Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Chemical Industry, Technical and Vocational University (TVU), Tehran, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
8
|
Effect of SiO2 on PSF/PF127 nanocomposite mixed matrix membrane for the separation of oil–water emulsion. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Tshindane P, Mamba BB, Motsa MM, Nkambule TTI. Delayed Solvent-Nonsolvent Demixing Preparation and Performance of a Highly Permeable Polyethersulfone Ultrafiltration Membrane. MEMBRANES 2022; 13:39. [PMID: 36676846 PMCID: PMC9866341 DOI: 10.3390/membranes13010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Membrane performance optimization is a critical preparation step that ensures optimum separation and fouling resistance. Several studies have employed additives such as carbon and inorganic nanomaterials to optimize membrane performance. These particles provide excellent results but are rather costly, unstable and toxic to several biological organs. This study demonstrated that performance enhancement can also be achieved through delayed solvent−nonsolvent demixing during phase inversion membrane preparation. The rate of solvent−nonsolvent demixing was delayed by increasing the concentration of the solvent in the coagulation bath. This study employed synthetic and real water samples and several analytical techniques to compare optimized performances and properties of membranes prepared in this study with that of nanoparticle-embedded membranes in the literature. Pure water flux and BSA rejection of the membranes prepared in this study were comparable to those of nanoparticle embedded membranes. This study also shows the influence of delayed solvent−nonsolvent demixing on membrane properties such as morphology, wettability, surface roughness and porosity, thereby showing the suitability of the technique in membrane optimization. Furthermore, fouling studies showed that membranes prepared in this study have high flux recovery when fouled by humic acid feed water (>95%) and above 50% flux recovery with real water samples.
Collapse
|
10
|
Fabrication of Ti 2SnC-MAX Phase Blended PES Membranes with Improved Hydrophilicity and Antifouling Properties for Oil/Water Separation. Molecules 2022; 27:molecules27248914. [PMID: 36558045 PMCID: PMC9788415 DOI: 10.3390/molecules27248914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
In this research work, the Ti2SnC MAX phase (MP) was synthesized via the reactive sintering procedure. The layered and crystalline structure of this MP was verified by SEM, HRTEM, and XRD analyses. This nano-additive was used for improvement of different features of the polyethersulfone (PES) polymeric membranes. The blended membranes containing diverse quantities of the MP (0-1 wt%) were fabricated by a non-solvent-induced phase inversion method. The asymmetric structure of the membranes with small holes in the top layer and coarse finger-like holes and macro-voids in the sublayer was observed by applying SEM analysis. The improvement of the membrane's hydrophilicity was verified via reducing the contact angle of the membranes from 63.38° to 49.77° (for bare and optimum membranes, respectively). Additionally, in the presence of 0.5 wt% MP, the pure water flux increased from 286 h to 355 L/m2 h. The average roughness of this membrane increased in comparison with the bare membrane, which shows the increase in the filtration-available area. The high separation efficiency of the oil/water emulsion (80%) with an improved flux recovery ratio of 65% was illustrated by the optimum blended membrane.
Collapse
|
11
|
Parveen K, Rafique U, Akhtar MJ. Fabrication of polysulfone mixed matrix membrane for wastewater treatment. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:757-774. [PMID: 36406616 PMCID: PMC9672251 DOI: 10.1007/s40201-022-00817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/27/2022] [Indexed: 06/16/2023]
Abstract
Recent development in separation technologies has envisioned a green and sustainable future that encouraged energy preservation and waste minimization. The concept of a clean future emphasizes on retrieval and reutilization of valuable products from waste streams to improve the water quality. Membrane-based separations are currently explored as an auspicious substitution over traditional separation processes. The present study is designed to purify water using aluminum and gallium mixed matrix membranes from toxic metals (Lead and Mercury) and dyes (Rhodamine B, and Reactive Blue-4). Facile protocol i.e., immersion precipitation phase inversion method was used for the fabrication of mixed matrix membrane. The aluminium and gallium hybrids act as a filler and create heterogeneity and hydrophilicity within the membrane, affirming better water permeability and mechanical strength. The performance of fabricated mixed matrix membranes is evaluated using a lab-based dead-end membrane filtration unit. The result showed 30-71% rejection of Mercury, 24-65% rejection of Lead, 12-66% rejection of Reactive Blue-4, and 15-80% rejection of Rhodamine B.
Collapse
Affiliation(s)
- Kousar Parveen
- Department of Environmental Science, University of Baltistan Skardu, Skardu, Pakistan
| | - Uzaira Rafique
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000 Pakistan
| | | |
Collapse
|
12
|
Kim KC, Lin X, Li C. Structural design of the electrospun nanofibrous membrane for membrane distillation application: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82632-82659. [PMID: 36219296 PMCID: PMC9552148 DOI: 10.1007/s11356-022-23066-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/13/2022] [Indexed: 06/12/2023]
Abstract
Although membrane distillation (MD) is a promising technology for water desalination and industrial wastewater treatment, the MD process is not widely applied in the global water industry due to the lack of a suitable membrane for the MD process. The design and appropriate manufacture are the most important factors for MD membrane optimization. The well-designed porous structure, superhydrophobic surface, and pore-wetting prevention of the membrane are vital properties of the MD membrane. Nowadays, electrospinning that is capable of manufacturing membranes with superhydrophobic or omni phobic properties is considered a promising technology. Electrospun nanofibrous membranes (ENMs) possess the characteristics of cylindrical morphology, re-entrant structure, and easy-shaping for a specific purpose, benefiting the membrane design and modification. Based on that, this review investigates the current state and future progress of the superhydrophobic, multi-layer, and omniphobic ENMs manufactured with various structural designs for seawater desalination and wastewater purification. We expect that this paper will provide some recommendations and guidance for further fabrication research and the configuration design of ENMs in the MD process for seawater desalination and wastewater purification.
Collapse
Affiliation(s)
- Kuk Chol Kim
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Metallurgical Faculty, Kim Chaek University of Science and Technology, Kyogu dong 60, Central District, Pyongyang, Democratic People's Republic of Korea
| | - Xiaoqiu Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
13
|
Behboudi A, Mohammadi T, Ulbricht M. High performance antibiofouling hollow fiber polyethersulfone nanocomposite membranes incorporated with novel surface-modified silver nanoparticles suitable for membrane bioreactor application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Chukwuati CN, Moutloali RM. Antibacterial studies of Ag@HPEI@GO nanocomposites and their effects on fouling and dye rejection in PES UF membranes. Heliyon 2022; 8:e11825. [PMID: 36468096 PMCID: PMC9712571 DOI: 10.1016/j.heliyon.2022.e11825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
A series of polyethersulfone membranes containing Ag@HPEI@GO composite was fabricated using non-solvent induced phase separations (NIPS) to mitigate against biofilm causing bacteria and modulate solute rejection. All materials produced and used were fully characterised using a combination of appropriate physicochemical techniques including FTIR, XRD, BET, SEM, AFM. The GO-based fillers exhibited bactericidal activities. The bactericidal activities of GO, HPEI@GO against Escherichia Coli (E. coli) were observed at 8 mg mL-1 whilst Ag@HPEI@GO composites exhibit bactericidal activities against E. coli at 4 mg mL-1. Against Klebsiella pneumonia (K. pneumonia), GO bactericidal activities were observed at 8 mg mL-1, whilst HPEI@GO and Ag@HPEI@GO bactericidal activities on K. pneumonia were observed at 4 mg mL-1. Against Staphylococcus aureus (S. aureus), GO exhibit bactericidal activities at 8 mg mL-1, HPEI@GO and Ag@HPEI@GO composites exhibit bactericidal activities on S. aureus at 4 mg mL-1. The aforementioned microorganisms are among the microorganism that causes biofilm formation on surfaces. The membrane performance was assessed by measuring pure water flux, solute rejections and fouling propensity with three different organic dye molecules and bovine serum albumin (BSA). All composite membranes (GO/PES, HPEI@GO/PES, and Ag@HPEI@GO/PES) exhibited increased hydrophilicity and higher pure water flux compared to the baseline PES membranes with concomitant increase in fouling resistance, The observed flux recovery ratios (FRR) were 80% (GO/PES), 70% (HPEI@GO/PES) and 69% (Ag@HPEI@GO/PES) respectively compared to the 45% FRR observed for the baseline PES membrane after BSA fouling. Congo red (CR) used as an indicator for molecular cut-off of UF membranes was rejected above 95% by all nanocomposite membranes. Furthermore, the nanocomposite membranes-maintained rejection for the positively charged methylene blue (MB) of above 90% whilst rejection observed for amaranth (AR) dye decreased from 80 to 58% with increasing filler content in the PES matrix. The results demonstrate the positive influence of GO, HPEI@GO and Ag/HPEI@GO nanofillers on flux, fouling and solute rejection performance of resultant PES nanocomposite membranes.
Collapse
Affiliation(s)
- Christopher N. Chukwuati
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
- DSI/MINTEK Nanotechnology Innovation Centre – Water Research Node, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - Richard M. Moutloali
- DSI/MINTEK Nanotechnology Innovation Centre – Water Research Node, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, Johannesburg, South Africa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1790, Johannesburg, South Africa
| |
Collapse
|
15
|
Modified sulfonated polyphenylsulfone proton exchange membrane with enhanced fuel cell performance: A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Shukla AK, Alam J, Alhoshan M. Recent Advancements in Polyphenylsulfone Membrane Modification Methods for Separation Applications. MEMBRANES 2022; 12:247. [PMID: 35207168 PMCID: PMC8876851 DOI: 10.3390/membranes12020247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023]
Abstract
Polyphenylsulfone (PPSU) membranes are of fundamental importance for many applications such as water treatment, gas separation, energy, electronics, and biomedicine, due to their low cost, controlled crystallinity, chemical, thermal, and mechanical stability. Numerous research studies have shown that modifying surface properties of PPSU membranes influences their stability and functionality. Therefore, the modification of the PPSU membrane surface is a pressing issue for both research and industrial communities. In this review, various surface modification methods and processes along with their mechanisms and performance are considered starting from 2002. There are three main approaches to the modification of PPSU membranes. The first one is bulk modifications, and it includes functional groups inclusion via sulfonation, amination, and chloromethylation. The second is blending with polymer (for instance, blending nanomaterials and biopolymers). Finally, the third one deals with physical and chemical surface modifications. Obviously, each method has its own limitations and advantages that are outlined below. Generally speaking, modified PPSU membranes demonstrate improved physical and chemical properties and enhanced performance. The advancements in PPSU modification have opened the door for the advance of membrane technology and multiple prospective applications.
Collapse
Affiliation(s)
- Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mansour Alhoshan
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center at Riyadh, P.O. Box 2022, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Photocatalytic Filtration of Zinc Oxide-Based Membrane with Enhanced Visible Light Responsiveness for Ibuprofen Removal. Catalysts 2022. [DOI: 10.3390/catal12020209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The growing interest in mixed matrix membranes (MMMs) for developing photocatalytic membranes has provided a new direction in the search for efficient methods to concurrently separate and degrade contaminants. In this study, a visible light-responsive photocatalyst was blended into a polyvinylidene fluoride (PVDF) membrane casting solution to prepare PVDF-ZnO/Ag2CO3/Ag2O MMMs using the wet phase inversion method. The potential of ZnO/Ag2CO3/Ag2O as a photocatalytic component that is incorporated into the membrane was explored in detail under various loadings (0.5–2.91 wt%). The membranes were tested under ibuprofen (IBF) aqueous solution to analyze the membrane behavior in the synergistic combination of membrane filtration and photodegradation. The resulting PVDF-ZnO/Ag2CO3/Ag2O membrane with a rougher membrane surface area and excellent light harvesting capability showed higher photocatalytic filtration activity in removing IBF under visible light irradiations. The MMM fluxes demonstrated higher IBF fluxes than their initial fluxes at certain durations. This indicates that the membrane actively responds to light irradiation. The increase in the positive flux could be attributed to the photoinduced hydrophilicity generated by the ZnO/Ag2CO3/Ag2O photocatalyst, resulting in easier water layer formation and rapid transport through membranes. The highest IBF removal was demonstrated by the PVDF‑ZAA2 membrane (1.96 wt% loading), with 49.96% of IBF removal within 180 min upon visible light irradiation. The reason for this lower IBF removal is that the UF membrane pores exceed the size of IBF molecules, thereby preventing the size exclusion mechanism. Thus, charge repulsion, hydrophobic adsorption, and photocatalytic activity were considered along with the IBF removal of the photocatalytic membranes. However, the recyclability of the PVDF‑ZAA2 photocatalytic membrane showed a great improvement, with 99.01% of IBF removal recovery after three cycles. These results highlight the potential of such hybrid membranes in mitigating membrane fouling by providing a platform for photocatalysts to continuously degrade pollutants present in such wastewaters. Therefore, the hybridization of a photocatalyst and membrane provides insight that could be utilized to improve and retrofit current water effluent treatment methods.
Collapse
|
18
|
Mohamed A, Yousef S, Tonkonogovas A, Makarevicius V, Stankevičius A. High performance of PES-GNs MMMs for gas separation and selectivity. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
19
|
Srivastava AK, Kaundal B, Sardoiwala MN, Choudhury SR, Karmakar S. Coupled catalytic dephosphorylation and complex phosphate ion-exchange in networked hierarchical lanthanum carbonate grafted asymmetric bio-composite membrane. J Colloid Interface Sci 2022; 606:2024-2037. [PMID: 34749449 DOI: 10.1016/j.jcis.2021.09.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
The remediation of non-reactive phosphate pollutants in the aquatic system is essential for protecting the ecological niche. In this work, a highly robust protein nanoparticles networked rare-earth metal carbonate-grafted bio-composite membrane (abbreviated as REMC) was fabricated via chemical crosslinking of three-dimensional (3D) hierarchical lanthanum carbonate (mREM) and casein nanoparticles (CsNPs) for selective rejection of non-reactive phosphates. The main components of the REMC membrane are mREM and CsNPs, which were prepared via SDS/CTAB templated homogeneous precipitation and the coacervation/desolvation hybrid method, respectively. The active lanthanum ion (La3+) on the 3D spherulitic surface of mREM exhibited excellent phosphate adsorption capacity (maximum adsorption capacity was 358 mg.g-1) across a wide pH range and in a multi-ionic environment. A series of batch testing and characterizations revealed that the active La3+ and dominating phosphate centers in the REMC membrane framework enable non-enzymatic phosphatase-like activity, cleaving the phosphate ester bond of organic phosphates and releasing free phosphate anions. These released phosphate ions are retained in the REMC membrane via an ion exchange mechanism, where they contribute to improved phosphate removal capacities. Furthermore, CsNPs have a dual function in the membrane, acting as a matrix in the REMC membrane framework and contributing to phosphate ion sequestrations in a synergistic manner. The catalysis of para-nitrophenyl phosphates (pNPP) to paranitrophenol (pNP) in a sequential dephosphorylation by REMC offers an estimate of reaction kinetics and elucidates the underlying mechanism of improved phosphate selectivity in a multi-ionic environment. Furthermore, phosphate specificity, homogeneous binding capacity, reusability, and visual observation of REMC membrane saturation binding direct it's useful economic, industrial applications in aqueous phosphate contaminant removal, which could be beneficial for the active recovery of the aquatic ecosystem.
Collapse
Affiliation(s)
- Anup K Srivastava
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Babita Kaundal
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Mohammed Nadim Sardoiwala
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Subhasree Roy Choudhury
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Surajit Karmakar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India.
| |
Collapse
|
20
|
Development of MoS2/O-MWCNTs/PES blended membrane for efficient removal of dyes, antibiotic, and protein. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119822] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Fabrication of Polysulfone-Surface Functionalized Mesoporous Silica Nanocomposite Membranes for Removal of Heavy Metal Ions from Wastewater. MEMBRANES 2021; 11:membranes11120935. [PMID: 34940436 PMCID: PMC8706919 DOI: 10.3390/membranes11120935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022]
Abstract
Membranes are an efficient way to treat emulsified heavy metal-based wastewater, but they generally come with a trade-off between permeability and selectivity. In this research, the amine and sulphonic groups on the inner and outer surface of mesoporous silica nanoparticles (MSNs) were first modified by a chemical approach. Then, MSNs with amine and sulphonic groups were utilized as new inorganic nanofiller to fabricate mixed matrix polysulfone (PSU) nanocomposite membranes using the classical phase inversion approach. The resultant nanoparticles and membranes were characterized by their physico-chemical characteristics as well as determination of pure water permeability along with cadmium and zinc ion removal. Embedding nanoparticles resulted in a significant rise in the water permeability as a result of changes in the surface properties and porosity of the membrane. Furthermore, the efficiency of developed membranes to remove cadmium and zinc was significantly improved by more than 90% due to the presence of functional groups on nanoparticles. The functionalized-MSNs/PSU nanocomposite membrane has the potential to be an effective industrial effluent removal membrane.
Collapse
|
22
|
Razmgar K, Nasiraee M. Polyvinyl alcohol
‐based membranes for filtration of aqueous solutions: A comprehensive review. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kourosh Razmgar
- College of Science, Health, Engineering and Education Murdoch University Perth Western Australia Australia
| | - Mohammad Nasiraee
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
23
|
Birsan IG, Pintilie SC, Pintilie LG, Lazar AL, Circiumaru A, Balta S. New Understanding of the Difference in Filtration Performance between Anatase and Rutile TiO 2 Nanoparticles through Blending into Ultrafiltration PSF Membranes. MEMBRANES 2021; 11:membranes11110841. [PMID: 34832069 PMCID: PMC8625676 DOI: 10.3390/membranes11110841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/04/2022]
Abstract
The blending of nanomaterials into a polymeric matrix is a method known for its ability, under certain circumstances, to lead to an improvement in membrane properties. TiO2 nanoparticles have been used in membrane research for the last 20 years and have continuously shown promise in this field of research. Polysulfone (PSf) membranes were obtained through the phase inversion method, with different TiO2 nanoparticle concentrations (0, 0.1, 0.5, and 1 wt.%) and two types of TiO2 crystalline structure (anatase and rutile), via the addition of commercially available nanopowders. Research showed improvement in all studied properties. In particular, the 0.5 wt.% TiO2 rutile membrane recorded an increase in permeability of 139.7% compared to the control membrane. In terms of overall performance, the best nanocomposite membrane demonstrated a performance index increase of 71.1% compared with the control membrane.
Collapse
Affiliation(s)
- Iulian-Gabriel Birsan
- Department of Applied Sciences, Cross-Border Faculty, Dunarea de Jos University of Galati, 111th Domneasca Street, 800201 Galati, Romania; (I.-G.B.); (A.C.)
| | - Stefan Catalin Pintilie
- Department of Applied Sciences, Cross-Border Faculty, Dunarea de Jos University of Galati, 111th Domneasca Street, 800201 Galati, Romania; (I.-G.B.); (A.C.)
- Correspondence: or (S.C.P.); (S.B.)
| | - Laurentia Geanina Pintilie
- Department of Materials and Environmental Engineering, Faculty of Engineering, Dunarea de Jos University of Galati, 111th Domneasca Street, 800201 Galati, Romania or (L.G.P.); (A.L.L.)
| | - Andreea Liliana Lazar
- Department of Materials and Environmental Engineering, Faculty of Engineering, Dunarea de Jos University of Galati, 111th Domneasca Street, 800201 Galati, Romania or (L.G.P.); (A.L.L.)
| | - Adrian Circiumaru
- Department of Applied Sciences, Cross-Border Faculty, Dunarea de Jos University of Galati, 111th Domneasca Street, 800201 Galati, Romania; (I.-G.B.); (A.C.)
| | - Stefan Balta
- Department of Materials and Environmental Engineering, Faculty of Engineering, Dunarea de Jos University of Galati, 111th Domneasca Street, 800201 Galati, Romania or (L.G.P.); (A.L.L.)
- Correspondence: or (S.C.P.); (S.B.)
| |
Collapse
|
24
|
Ali AM, Rashid KT, Yahya AA, Majdi HS, Salih IK, Yusoh K, Alsalhy QF, AbdulRazak AA, Figoli A. Fabrication of Gum Arabic-Graphene (GGA) Modified Polyphenylsulfone (PPSU) Mixed Matrix Membranes: A Systematic Evaluation Study for Ultrafiltration (UF) Applications. MEMBRANES 2021; 11:membranes11070542. [PMID: 34357192 PMCID: PMC8305004 DOI: 10.3390/membranes11070542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 12/07/2022]
Abstract
In the current work, a Gum, Arabic-modified Graphene (GGA), has been synthesized via a facile green method and employed for the first time as an additive for enhancement of the PPSU ultrafiltration membrane properties. A series of PPSU membranes containing very low (0–0.25) wt.% GGA were prepared, and their chemical structure and morphology were comprehensively investigated through atomic force microscopy (AFM), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). Besides, thermogravimetric analysis (TGA) was harnessed to measure thermal characteristics, while surface hydrophilicity was determined by the contact angle. The PPSU-GGA membrane performance was assessed through volumetric flux, solute flux, and retention of sodium alginate solution as an organic polysaccharide model. Results demonstrated that GGA structure had been successfully synthesized as confirmed XRD patterns. Besides, all membranes prepared using low GGA content could impart enhanced hydrophilic nature and permeation characteristics compared to pristine PPSU membranes. Moreover, greater thermal stability, surface roughness, and a noticeable decline in the mean pore size of the membrane were obtained.
Collapse
Affiliation(s)
- Alaa Mashjel Ali
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq; (A.M.A.); (K.T.R.); (A.A.Y.); (A.A.A.)
| | - Khalid T. Rashid
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq; (A.M.A.); (K.T.R.); (A.A.Y.); (A.A.A.)
| | - Ali Amer Yahya
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq; (A.M.A.); (K.T.R.); (A.A.Y.); (A.A.A.)
| | - Hasan Sh. Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq; (H.S.M.); (I.K.S.)
| | - Issam K. Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq; (H.S.M.); (I.K.S.)
| | - Kamal Yusoh
- Department of Chemical Engineering, College of Engineering, University Malaysia Pahang, Pahang 26300, Malaysia;
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq; (A.M.A.); (K.T.R.); (A.A.Y.); (A.A.A.)
- Correspondence: or ; Tel.: +964-790-173-0181
| | - Adnan A. AbdulRazak
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq; (A.M.A.); (K.T.R.); (A.A.Y.); (A.A.A.)
| | - Alberto Figoli
- Institute on Membrane Technology, National Research Council (ITM-CNR), 87030 Rende (CS), Italy;
| |
Collapse
|
25
|
Sherugar P, Naik NS, Padaki M, Nayak V, Gangadharan A, Nadig AR, Déon S. Fabrication of zinc doped aluminium oxide/polysulfone mixed matrix membranes for enhanced antifouling property and heavy metal removal. CHEMOSPHERE 2021; 275:130024. [PMID: 33662734 DOI: 10.1016/j.chemosphere.2021.130024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Heavy metal removal from water resources is essential for environmental protection and the production of safe drinking water. In this direction, Zinc doped Aluminium Oxide (Zn:Al2O3) nanoparticles were incorporated into Polysulfone (PSf) to prepare mixed matrix membranes for the efficient removal of heavy metals from water. These Zn:Al2O3 nanoparticles prepared by the solution combustion method have a very high surface area (261.44 m2/g) with an approximate size of 50 nm. X-ray Photoelectron Spectroscopy analysis showed that the Al and Zn were in +3 and + 2 oxidation states, respectively. Cross-sectional Scanning Electron Microscopy images revealed the finger-like morphology and porous nature of the membranes. In this study, the optimum loading amount of Zn:Al2O3 nanoparticles was determined. Synthesized membranes showed enhanced hydrophilicity, surface charge, and porosity, which enabled the removal of arsenic and lead with efficiencies of 87% and 98%, respectively. A study of the antifouling properties carried out at various pressures with a feed solution containing Bovine Serum Albumin (BSA) showed 98.4% of flux recovery ratio and reusability up to three continuous cycles. Moreover, this work demonstrates a rational design of novel mixed matrix membranes exhibiting characteristics of hydrophilicity, surface charge, and porosity adequate to realize the efficient removal of heavy metals.
Collapse
Affiliation(s)
- Prajwal Sherugar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore, 562112, India
| | - Nagaraj S Naik
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore, 562112, India
| | - Mahesh Padaki
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore, 562112, India.
| | - Vignesh Nayak
- National University of Science and Technology «MISIS», Moscow, 119049, Russia
| | - Athulya Gangadharan
- Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, Belthangady, Dakshina Kannada, Karnataka, 574214, India
| | - Akshatha R Nadig
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore, 562112, India
| | - Sébastien Déon
- Institut UTINAM (UMR CNRS 6213), Université de Bourgogne-Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| |
Collapse
|
26
|
G.N. M, M. HK. Performance studies of GO/PF127 incorporated Polyetherimide Ultrafiltration membranes for the rejection of oil from oil wastewater. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Zaman SU, Saif-Ur-Rehman, Zaman MKU, Arshad A, Rafiq S, Muhammad N, Saqib S, Jamal M, Wajeeh S, Imtiaz S, Sadiq MT. Biocompatibility performance evaluation of high flux hydrophilic CO3Ap/HAP/PSF composite membranes for hemodialysis application. Artif Organs 2021; 45:E265-E279. [PMID: 33559192 DOI: 10.1111/aor.13937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
Carbonate apatite/hydroxyapatite (CO3Ap/HAP) additive was obtained by calcination of wasted chicken bones at 900°C. Intermolecular attraction exists between CO3Ap/HAP additive and blended polysulfone (PSF) polymer. Electron dispersive X-ray (EDX) and FTIR analysis were carried out to check the elemental composition and bonding chemistry of prepared additive. The instantaneous demixing process generated consistent finger-like networks in CO3Ap/HAP/PSF-based composite membranes while sponge-like structure was shown by PSF as revealed by SEM images. The increase in weight % of additive loading is also confirmed by EDX analysis. Furthermore, the interaction mechanism of CO3Ap/HAP additive with polysulfone medium was analyzed by FTIR exploration. The water absorption experiment defined a 93% expansion in hydrophilic performance. Change in porosity occurs with additive loading and pure water permeation flux improved up to 11 times. Approximately, antifouling results revealed that 87% of water flux was recovered after treating with a protein solution, whereas a 30% improvement in antifouling capability in case of bovine serum albumin solution occurred. In vitro cytotoxicity, and clotting times study was carried out to evaluate virulent behavior and anticoagulation activity of formulated membranes.
Collapse
Affiliation(s)
- Shafiq Uz Zaman
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore campus, Pakistan
| | - Saif-Ur-Rehman
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore campus, Pakistan
| | | | - Amber Arshad
- Department of Community Medicine, King Edward Medical University, Lahore, Pakistan
| | - Sikander Rafiq
- Department of Chemical Polymer and Composite Materials Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Sidra Saqib
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore campus, Pakistan
| | - Muddasar Jamal
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore campus, Pakistan
| | - Salman Wajeeh
- Department of Chemistry, University of Gujrat, Punjab, Pakistan
| | - Sania Imtiaz
- Department of Chemistry, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
28
|
Zaman SU, Zaman MKU, Irfan M, Rafiq S, Irfan M, Muhammad N, Saif-Ur-Rehman, Wajeeh S, Naz G. Biocompatible chicken bone extracted dahllite/hydroxyapatite/collagen filler based polysulfone membrane for dialysis. Int J Artif Organs 2021; 45:14-26. [PMID: 33706595 DOI: 10.1177/0391398821994119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the current study, dahllite/hydroxyapatite/collagen filler extracted via calcination of wasted chicken bone was blended with PSf polymer to obtain highly biocompatible, and antifoulant hemodialysis membranes. FTIR and Raman spectroscopic analysis was done to obtain information about the bonding chemistry of the obtained filler. The intermolecular interaction that existed between dahllite/hydroxyapatite/collagen filler and pristine PSf was confirmed by Raman spectroscopic study. The PSf polymer exhibited a sponge-like structure owing to its high thickness and slow exchange with non-solvent in coagulation bath whilst the instantaneous de-mixing course produced finger-like capillaries in dahllite/hydroxyapatite/collagen filler based PSf membranes as exposed by SEM photographs. The presence of different wt. % of filler composition in the PSf matrix improved the mechanical strength as revealed by fatigue analysis. The hydrophilic character improved by 78% while leaching consistency adjusted to 0%-4%. Pure water permeation (PWP) flux improved by nine times. The pore profile improved with the addition of filler as revealed by hydrophilicity experiment, PWP flux, and SEM micrographs. Fouling evaluation results disclosed that filler based membranes showed 36% less adsorption of protein (BSA) solution together with more than 84% flux recovery ratio. The biocompatibility valuation analysis unveiled that membranes composed of filler showed extended prothrombin and thrombin coagulation times, reduced activation of fibrinogen mass, and less adhesion of plasma proteins in comparison with pristine PSf membrane. The adsorption capacity of fabricated membranes for urea and creatinine improved by 31% (in the case of urea) and 34% (in the case of creatinine) in contrast with pristine PSf membrane. The overall results showed that the M-3 membrane was optimized in terms of surface properties, protein adhesion, anticoagulation activity, and adsorption amount of urea and creatinine.
Collapse
Affiliation(s)
- Shafiq Uz Zaman
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | | | - Muhammad Irfan
- Interdisciplinary Research Center in Biomedical materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Sikander Rafiq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Masooma Irfan
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Nawshad Muhammad
- Interdisciplinary Research Center in Biomedical materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Saif-Ur-Rehman
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Salman Wajeeh
- Department of Chemistry, University of Gujrat, Punjab, Pakistan
| | - Gul Naz
- Department of Physics, Baghdad-ul-Jadeed Campus, University of Bahawalpur, Pakistan
| |
Collapse
|
29
|
|
30
|
Synthesis-structure-performance relationships of nanocomposite polymeric ultrafiltration membranes: A comparative study of two carbon nanofillers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Alam J, Shukla AK, Ansari MA, Ali FAA, Alhoshan M. Dye Separation and Antibacterial Activities of Polyaniline Thin Film-Coated Poly(phenyl sulfone) Membranes. MEMBRANES 2020; 11:25. [PMID: 33383729 PMCID: PMC7823579 DOI: 10.3390/membranes11010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022]
Abstract
We fabricated a nanofiltration membrane consisting of a polyaniline (PANI) film on a polyphenylsulfone (PPSU) substrate membrane. The PANI film acted as a potent separation enhancer and antimicrobial coating. The membrane was analyzed via scanning electron microscopy and atomic force microscopy to examine its morphology, topography, contact angle, and zeta potential. We aimed to investigate the impact of the PANI film on the surface properties of the membrane. Membrane performance was then evaluated in terms of water permeation and rejection of methylene blue (MB), an organic dye. Coating the PPSU membrane with a PANI film imparted significant advantages, including finely tuned nanometer-scale membrane pores and tailored surface properties, including increased hydrophilicity and zeta potential. The PANI film also significantly enhanced separation of the MB dye. The PANI-coated membrane rejected over 90% of MB with little compromise in membrane permeability. The PANI film also enhanced the antimicrobial activity of the membrane. The bacteriostasis (B R) values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Escherichia coli were 63.5% and 95.2%, respectively. The B R values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Staphylococcus aureus were 70.6% and 88.0%, respectively.
Collapse
Affiliation(s)
- Javed Alam
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (A.K.S.); (M.A.)
| | - Arun Kumar Shukla
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (A.K.S.); (M.A.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute of Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Fekri Abdulraqeb Ahmed Ali
- Chemical Engineering Department, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mansour Alhoshan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (A.K.S.); (M.A.)
- Chemical Engineering Department, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia;
- K. A. CARE Energy Research and Innovation Center at Riyadh, Riyadh 11451, Saudi Arabia
| |
Collapse
|
32
|
Idris SNA, Jullok N, Lau WJ, Ong HL, Dong CD. Graphene Oxide Incorporated Polysulfone Substrate for Flat Sheet Thin Film Nanocomposite Pressure Retarded Osmosis Membrane. MEMBRANES 2020; 10:membranes10120416. [PMID: 33322393 PMCID: PMC7763650 DOI: 10.3390/membranes10120416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/30/2022]
Abstract
This study focuses on the development of flat sheet thin film nanocomposite (TFN) pressure retarded osmosis (PRO) membranes for the enhancement of osmotic power generation by the incorporation of laboratory-synthesised graphene oxide (GO) into the polysulfone (PSf) polymer matrix. A series of membranes containing different weight percent of GO (0, 0.1, 0.25, 0.5 and 1.0 wt%) were fabricated via a phase inversion method with polyethylene glycol (PEG) as the pore forming agent. The results show that the TFN-0.25GO membrane has excellent water flux, salt reverse flux, high porosity and an enhanced microvoids morphology compared to the control membrane. The highest power density was achieved when TFN-0.25GO was used is 8.36 Wm−2 at pressure >15 bar. It was found that the incorporation of GO into the polymer matrix has significantly improved the intrinsic and mechanical properties of the membrane.
Collapse
Affiliation(s)
- Siti Nur Amirah Idris
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, Arau 02600, Malaysia; (S.N.A.I.); (H.L.O.)
| | - Nora Jullok
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, Arau 02600, Malaysia; (S.N.A.I.); (H.L.O.)
- Centre of Excellence for Biomass Utilization & Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Center), Universiti Malaysia Perlis, Lot 17, Kompleks Pusat Pengajian Jejawi 2, Jejawi, Arau 02600, Malaysia
- Correspondence:
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, UTM, Skudai Johor 81310, Malaysia;
| | - Hui Lin Ong
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Kawasan Perindustrian Jejawi, Arau 02600, Malaysia; (S.N.A.I.); (H.L.O.)
- Centre of Excellence for Biomass Utilization & Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Center), Universiti Malaysia Perlis, Lot 17, Kompleks Pusat Pengajian Jejawi 2, Jejawi, Arau 02600, Malaysia
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, 142, Hai-Chuan Road, Nan-Tzu District, Kaohsiung 81157, Taiwan;
| |
Collapse
|
33
|
Besharat F, Manteghian M, Russo F, Galiano F, Figoli A, Abdollahi M, Lazzeri A. Investigation of electric field‐aligned edge‐oxidized graphene oxide nanoplatelets in polyethersulfone matrix in terms of pure water permeation and dye rejection. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Farzaneh Besharat
- Nanotechnology Group, Engineering Faculty Tarbiat Modares University Tehran Iran
| | | | | | | | | | - Mahdi Abdollahi
- Polymer Reactions Engineering Department, Chemical Engineering Faculty Tarbiat Modares University Tehran Iran
| | - Andrea Lazzeri
- Civil Engineering and Industrial Department University of Pisa Pisa Italy
| |
Collapse
|
34
|
Karimi R, Homayoonfal M. The supplement role of iron oxide and zirconium oxide nanoparticles as an advanced composite compound for enhancing the efficiency of thin‐film nanocomposite membranes. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rezvan Karimi
- Department of Chemical Engineering College of Engineering, University of Isfahan Isfahan Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering College of Engineering, University of Isfahan Isfahan Iran
| |
Collapse
|
35
|
Ayyaru S, Ahn YH. Fabrication of a Novel Nanocomposite Ultrafiltration Membrane with Improved Antifouling Properties Using Functionalized HfO2 and Polyvinylidene Fluoride for Organic Foulant Mitigation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sivasankaran Ayyaru
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
36
|
Kanagaraj P, Huang W, Liu C. Noncovalently Functionalized Sulfated Castor Oil-Graphene Oxide-Strengthened Polyetherimide Composite Membranes for Superior Separation of Organic Pollutants and Their Fouling Mitigation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37054-37066. [PMID: 32691583 DOI: 10.1021/acsami.0c07670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel sulfated castor oil (SCO)-graphene oxide (GO)-strengthened polyetherimide (PEI) membrane was prepared for the first time via phase inversion process for the efficient separation of multiple organic pollutants with superior long-term antifouling stability. X-ray diffraction, attenuated total reflectance-Fourier transfer infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and mechanical strength studies revealed that the SCO and GO were successfully incorporated into the PEI membrane with enhanced mechanical strength. The water flux of the PEI/SCO@GO membrane (410.6 L m-2 h-1) was about 50 times that of bare PEI (7.8 L m-2 h-1) and about 6 times that of PEI/SCO (64.5 L m-2 h-1) membranes. The surface hydrophilicity of the PEI/SCO@GO membrane was significantly increased in terms of the decrease of the water contact angle from 98.5° (bare PEI) to 40.4°. The PEI/SCO@GO membrane separation efficiency was found to be greater than 99.0%, particularly for both the oil-in-water emulsion and the humic acid solution, respectively. Because of the higher flux recovery ratio and the lower total fouling rate of the PEI/SCO@GO membrane, a comprehensive antifouling performance was observed during the long-term foulant filtration cycle analyses. Hence, the incorporation of both SCO and GO into the PEI matrix would render the highly hydrophobic PEI material as the suitable and desirable antifouling membrane toward the treatment of various organic foulants in wastewater.
Collapse
Affiliation(s)
- Palsamy Kanagaraj
- College of Chemistry and Environmental Engineering, Shenzhen University, Xili Campus, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518071, People's Republic of China
| | - Wei Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Xili Campus, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518071, People's Republic of China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Xili Campus, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518071, People's Republic of China
| |
Collapse
|
37
|
Sokhandan F, Homayoonfal M, Davar F. Application of zinc oxide and sodium alginate for biofouling mitigation in a membrane bioreactor treating urban wastewater. BIOFOULING 2020; 36:660-678. [PMID: 32752888 DOI: 10.1080/08927014.2020.1798934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
This research aimed to mitigate fouling in membrane bioreactors (MBR) through concurrent usage of zinc oxide as an antibacterial agent (A) and sodium alginate as a hydrophilic agent (H) within a polyacrylonitrile membrane (PM) structure. The antibacterial polymeric membranes (APM) and antibacterial hydrophilic polymeric membranes (AHPM) synthesized showed a higher porosity, mechanical strength and bacterial inhibition zone, and a lower contact angle in comparison with PM membranes. EDS, SEM and AFM analyses were used to characterize the chemical, structural, and morphological properties of PM, APM, and AHPM. The flux of PM, APM, and AHPM in MBR was 37, 48, and 51 l m-2 h-1 and COD removal was 81, 93.5, and 96.7%, respectively. After MBR operation for 35 days in an urban wastewater treatment, only 50% of the flux of PM was recovered, while the antibacterial and hydrophilic agents yielded a flux recovery of 72.7 and 100% for APM and AHPM, respectively.
Collapse
Affiliation(s)
- Fatemeh Sokhandan
- Department of Chemical Engineering, College of Engineering, University of Isfahan, Isfahan, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, Isfahan, Iran
| | - Fatemeh Davar
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
38
|
Insight on Extraction and Characterisation of Biopolymers as the Green Coagulants for Microalgae Harvesting. WATER 2020. [DOI: 10.3390/w12051388] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review presents the extractions, characterisations, applications and economic analyses of natural coagulant in separating pollutants and microalgae from water medium, known as microalgae harvesting. The promising future of microalgae as a next-generation energy source is reviewed and the significant drawbacks of conventional microalgae harvesting using alum are evaluated. The performances of natural coagulant in microalgae harvesting are studied and proven to exceed the alum. In addition, the details of each processing stage in the extraction of natural coagulant (plant, microbial and animal) are comprehensively discussed with justifications. This information could contribute to future exploration of novel natural coagulants by providing description of optimised extraction steps for a number of natural coagulants. Besides, the characterisations of natural coagulants have garnered a great deal of attention, and the strategies to enhance the flocculating activity based on their characteristics are discussed. Several important characterisations have been tabulated in this review such as physical aspects, including surface morphology and surface charges; chemical aspects, including molecular weight, functional group and elemental properties; and thermal stability parameters including thermogravimetry analysis and differential scanning calorimetry. Furthermore, various applications of natural coagulant in the industries other than microalgae harvesting are revealed. The cost analysis of natural coagulant application in mass harvesting of microalgae is allowed to evaluate its feasibility towards commercialisation in the industrial. Last, the potentially new natural coagulants, which are yet to be exploited and applied, are listed as the additional information for future study.
Collapse
|
39
|
Alammar A, Park SH, Williams CJ, Derby B, Szekely G. Oil-in-water separation with graphene-based nanocomposite membranes for produced water treatment. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118007] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Besharat F, Manteghian M, Gallone G, Lazzeri A. Electric field induced alignment of graphene oxide nanoplatelets in polyethersulfone matrix. NANOTECHNOLOGY 2020; 31:155701. [PMID: 31860895 DOI: 10.1088/1361-6528/ab646b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years, in order to obtain improved mechanical, thermal, electrical and barrier/transport properties, aligned carbonaceous nanomaterials/polymer nanocomposite films have been receiving growing attention. Correspondingly, the edge oxidized graphene oxide (EOGO) nanoplatelets alignment influence on the structure of the polyethersulfone (PES) membrane films for potential applications in water treatment field has been investigated. Aligned GO/PES nanocomposite membrane films were prepared by non-solvent phase inversion technique after the starting sol phase was preliminarily exposed to high electric fields (50 kV m-1). Either AC (100, 1000 Hz) or DC mode electric fields were alternatively employed, and the results from both vertical and horizontal field configurations were investigated for structural and morphological comparison. Both XRD, FTIR-ATR, EIS, SEM, TEM and tensile strength analyses were applied in order to characterize the films. The microscopic analyses results have demonstrated successful GO/PES nanocomposite formation and alignment of GO nanoplatelets with the field direction in the matrix at low to moderate (0.02-0.1% wt) GO loadings where the flakes were dispersed and exfoliated sufficiently. However, at higher loading levels (1 and 2% wt) the nanoplateles were mostly agglomerated and the big flakes consisting of irregular plates could not orient their axis parallel to the electric field at the employed field strengths. The results suggest a more effective role of higher frequencies (1000 Hz versus 100 Hz) electric field for alignment of GO nanoplatelets. Simple tensile tests have also similarly confirmed GO alignment under the electric fields at both low (0.1% wt) and moderately high (0.5% wt) GO contents. The tensile strength improvement of the horizontal field processed PES/GO nanocomposite up to 24% compared to its vertical field processed counterpart could be accounted as a proof of the successful alignment of the nanoplatelets. However, EIS results unveiled that non-solvent phase inversion casting method, in its general form, may not be a suitable method for producing materials with tailored properties, due to its random and uncontrollable pore forming mechanism.
Collapse
Affiliation(s)
- Farzaneh Besharat
- Nanotechnology group, Engineering Department, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
41
|
Kong S, Lim MY, Shin H, Baik JH, Lee JC. High-flux and antifouling polyethersulfone nanocomposite membranes incorporated with zwitterion-functionalized graphene oxide for ultrafiltration applications. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
42
|
Enfrin M, Lee J, Le-Clech P, Dumée LF. Kinetic and mechanistic aspects of ultrafiltration membrane fouling by nano- and microplastics. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117890] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Wu Y, Xia Y, Jing X, Cai P, Igalavithana AD, Tang C, Tsang DCW, Ok YS. Recent advances in mitigating membrane biofouling using carbon-based materials. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:120976. [PMID: 31454608 DOI: 10.1016/j.jhazmat.2019.120976] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/07/2019] [Accepted: 08/06/2019] [Indexed: 05/26/2023]
Abstract
Biofouling is the Achilles Heel of membrane processes. The accumulation of organic foulants and growth of microorganisms on the membrane surface reduce the permeability, shorten the membrane life, and increase the energy consumption. Advancements in novel carbon-based materials (CBMs) present significant opportunities in mitigating biofouling of membrane processes. This article provides a comprehensive review of the recent progress in the application of CBMs in antibiofouling membrane. It starts with a detailed summary of the different antibiofouling mechanisms of CBM-containing membrane systems. Next, developments in membrane modification using CBMs, especially carbon nanotubes and graphene family materials, are critically reviewed. Further, the antibiofouling potential of next-generation carbon-based membranes is surveyed. Finally, the current problems and future opportunities of applying CBMs for antibiofouling membranes are discussed.
Collapse
Affiliation(s)
- Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yinfeng Xia
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; College of Water Conservancy & Environmental Engineering, Zhejiang University of Water Resources & Electric Power, Hangzhou, China
| | - Xinxin Jing
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Chuyang Tang
- Department of Civil Engineering, the University of Hong Kong, Pokfulam, Hong Kong, China; School of Chemical Engineering, University of New South Wales, Kensington, Sydney, NSW, 2033, Australia; School of Civil and Environmental Engineering, University of New South Wales, Kensington, Sydney, NSW, 2033, Australia
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
44
|
Lavanya C, Geetha Balakrishna R. Naturally derived polysaccharides-modified PSF membranes: A potency in enriching the antifouling nature of membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115887] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
|
46
|
Ahmed Ali FA, Alam J, Kumar Shukla A, Alhoshan M, Khaled JM, Al-Masry WA, Alharbi NS, Alam M. Graphene oxide-silver nanosheet-incorporated polyamide thin-film composite membranes for antifouling and antibacterial action against Escherichia coli and bovine serum albumin. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Dai J, Li S, Liu J, He J, Li J, Wang L, Lei J. Fabrication and characterization of a defect-free mixed matrix membrane by facile mixing PPSU with ZIF-8 core–shell microspheres for solvent-resistant nanofiltration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117261] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Evaluation of antibacterial and antifouling properties of silver-loaded GO polysulfone nanocomposite membrane against Escherichia coli, Staphylococcus aureus, and BSA protein. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.04.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
49
|
Lin Y, Wu HC, Yasui T, Yoshioka T, Matsuyama H. Development of an HKUST-1 Nanofiller-Templated Poly(ether sulfone) Mixed Matrix Membrane for a Highly Efficient Ultrafiltration Process. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18782-18796. [PMID: 31059228 DOI: 10.1021/acsami.9b04961] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mixed-matrix membranes (MMMs) have been drawing increasing attention due to the high permeability and high rejection capabilities for highly efficient wastewater treatment applications. Nonetheless, improving the water permeance while maintaining the high rejection capability is still an ongoing challenge for the practically state-of-the-art MMMs. Herein, a new class of poly(ether sulfone) (PES) based MMM containing metal-organic framework (MOF) nanofillers of HKUST-1 and blending with poly(methyl methacrylate- co-methacrylic acid) (PMMA- co-MAA) copolymer, designated as HKUST-1@mPES MMM, were developed for the highly efficient ultrafiltration (UF) process. In this study, the nanosized HKUST-1 nanofillers were removed by water dissolution as sacrificial templating materials, so that the additional nanovoids were deliberately generated throughout the dense polymer matrix. The introduction of PMMA- co-MAA copolymer facilitated the even dispersion of HKUST-1 nanofillers in a polymer matrix, by constructing the bridge connection between inorganic nanofillers and organic matrix. The resultant HKUST-1@mPES MMM exhibited a high pure water permeability (PWP) up to 490 L·m-2·h-1·bar-1, substantially reaching nearly 3 times higher than that of the mPES membrane without HKUST-1 nanofillers loading and maintaining a relatively high BSA rejection rate of 96% without obvious deterioration. The newly developed HKUST-1@mPES MMM thereby exhibited a comparable separation efficiency compared to the cutting-edge UF membranes reported so far. Overall, the nanovoid-generated approach provides new insight into developing advanced MMMs used for highly efficient water treatment applications.
Collapse
Affiliation(s)
- Yuqing Lin
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering , Kobe University , 1-1 Rokkodai , Nada, Kobe 657-8501 , Japan
| | - Hao-Chen Wu
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering , Kobe University , 1-1 Rokkodai , Nada, Kobe 657-8501 , Japan
| | - Tomoki Yasui
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering , Kobe University , 1-1 Rokkodai , Nada, Kobe 657-8501 , Japan
| | - Tomohisa Yoshioka
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering , Kobe University , 1-1 Rokkodai , Nada, Kobe 657-8501 , Japan
| | - Hideto Matsuyama
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering , Kobe University , 1-1 Rokkodai , Nada, Kobe 657-8501 , Japan
| |
Collapse
|
50
|
Kumar M, RaoT. S, Isloor AM, Ibrahim GS, Inamuddin, Ismail N, Ismail AF, Asiri AM. Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water. Int J Biol Macromol 2019; 129:715-727. [DOI: 10.1016/j.ijbiomac.2019.02.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/11/2019] [Accepted: 02/03/2019] [Indexed: 12/07/2022]
|