1
|
Martin-Gutierrez L, Waddington KE, Maggio A, Coelewij L, Oppong AE, Yang N, Adriani M, Nytrova P, Farrell R, Pineda-Torra I, Jury EC. Dysregulated lipid metabolism networks modulate T-cell function in people with relapsing-remitting multiple sclerosis. Clin Exp Immunol 2024; 217:204-218. [PMID: 38625017 PMCID: PMC11239565 DOI: 10.1093/cei/uxae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024] Open
Abstract
Altered cholesterol, oxysterol, sphingolipid, and fatty acid concentrations are reported in blood, cerebrospinal fluid, and brain tissue of people with relapsing-remitting multiple sclerosis (RRMS) and are linked to disease progression and treatment responses. CD4 + T cells are pathogenic in RRMS, and defective T-cell function could be mediated in part by liver X receptors (LXRs)-nuclear receptors that regulate lipid homeostasis and immunity. RNA-sequencing and pathway analysis identified that genes within the 'lipid metabolism' and 'signalling of nuclear receptors' pathways were dysregulated in CD4 + T cells isolated from RRMS patients compared with healthy donors. While LXRB and genes associated with cholesterol metabolism were upregulated, other T-cell LXR-target genes, including genes involved in cellular lipid uptake (inducible degrader of the LDL receptor, IDOL), and the rate-limiting enzyme for glycosphingolipid biosynthesis (UDP-glucosylceramide synthase, UGCG) were downregulated in T cells from patients with RRMS compared to healthy donors. Correspondingly, plasma membrane glycosphingolipids were reduced, and cholesterol levels increased in RRMS CD4 + T cells, an effect partially recapitulated in healthy T cells by in vitro culture with T-cell receptor stimulation in the presence of serum from RRMS patients. Notably, stimulation with LXR-agonist GW3965 normalized membrane cholesterol levels, and reduced proliferation and IL17 cytokine production in RRMS CD4 + T-cells. Thus, LXR-mediated lipid metabolism pathways were dysregulated in T cells from patients with RRMS and could contribute to RRMS pathogenesis. Therapies that modify lipid metabolism could help restore immune cell function.
Collapse
Affiliation(s)
| | - Kirsty E Waddington
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Annalisa Maggio
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Leda Coelewij
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Alexandra E Oppong
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Nina Yang
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Marsilio Adriani
- Centre for Rheumatology, Division of Medicine, University College London, UK
| | - Petra Nytrova
- Department of Neurology and Centre of Clinical, Neuroscience, First Faculty of Medicine, General University Hospital and First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Rachel Farrell
- Department of Neuroinflammation, University College London and Institute of Neurology and National Hospital of Neurology and Neurosurgery, UK
| | - Inés Pineda-Torra
- Centre for Experimental & Translational Medicine, Division of Medicine, University College London, UK
| | - Elizabeth C Jury
- Centre for Rheumatology, Division of Medicine, University College London, UK
| |
Collapse
|
2
|
Fogel A, Olcer M, Goel A, Feng X, Reder AT. Novel biomarkers and interferon signature in secondary progressive multiple sclerosis. J Neuroimmunol 2024; 389:578328. [PMID: 38471284 DOI: 10.1016/j.jneuroim.2024.578328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Multiple sclerosis (MS) exhibits poor immune regulation and subnormal interferon (IFN-β) signaling. Secondary Progressive MS displays waning exacerbations, relentless neurodegeneration, and diminished benefit of therapy. We find dysregulated serum protein balance (Th1/Th2) and excessive gene expression in Relapsing-Remitting MS vs. healthy controls (8700 differentially-expressed genes, DEG) and intermediate levels in SPMS (3900 DEG). Olfactory receptor genes (chemosensing), and WNT/ß-catenin (anti-inflammatory, repair) and metallothionein (anti-oxidant) gene pathways, have less expression in SPMS than RRMS. IFN-β treatment decreased pro-inflammatory and increased metallothionein gene expression in SPMS. These gene expression biomarkers suggest new targets for immune regulation and brain repair in this neurodegenerative disease.
Collapse
Affiliation(s)
- Avital Fogel
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Maya Olcer
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Aika Goel
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Xuan Feng
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA.
| | - Anthony T Reder
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Sánchez-Sanz A, Muñoz-Viana R, Sabín-Muñoz J, Moreno-Torres I, Brea-Álvarez B, Rodríguez-De la Fuente O, García-Merino A, Sánchez-López AJ. Response to Fingolimod in Multiple Sclerosis Patients Is Associated with a Differential Transcriptomic Regulation. Int J Mol Sci 2024; 25:1372. [PMID: 38338652 PMCID: PMC10855583 DOI: 10.3390/ijms25031372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Fingolimod is an immunomodulatory sphingosine-1-phosphate (S1P) analogue approved for the treatment of relapsing-remitting multiple sclerosis (RRMS). The identification of biomarkers of clinical responses to fingolimod is a major necessity in MS to identify optimal responders and avoid the risk of disease progression in non-responders. With this aim, we used RNA sequencing to study the transcriptomic changes induced by fingolimod in peripheral blood mononuclear cells of MS-treated patients and their association with clinical response. Samples were obtained from 10 RRMS patients (five responders and five non-responders) at baseline and at 12 months of fingolimod therapy. Fingolimod exerted a vast impact at the transcriptional level, identifying 7155 differentially expressed genes (DEGs) compared to baseline that affected the regulation of numerous signaling pathways. These DEGs were predominantly immune related, including genes associated with S1P metabolism, cytokines, lymphocyte trafficking, master transcription factors of lymphocyte functions and the NF-kB pathway. Responder and non-responder patients exhibited a differential transcriptomic regulation during treatment, with responders presenting a higher number of DEGs (6405) compared to non-responders (2653). The S1P, NF-kB and TCR signaling pathways were differentially modulated in responder and non-responder patients. These transcriptomic differences offer the potential of being exploited as biomarkers of a clinical response to fingolimod.
Collapse
Affiliation(s)
- Alicia Sánchez-Sanz
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Madrid, Spain;
| | - Rafael Muñoz-Viana
- Bioinformatics Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Madrid, Spain;
| | - Julia Sabín-Muñoz
- Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (J.S.-M.); (O.R.-D.l.F.)
| | - Irene Moreno-Torres
- Demyelinating Diseases Unit, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain;
| | - Beatriz Brea-Álvarez
- Radiodiagnostic Division, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain;
| | - Ofir Rodríguez-De la Fuente
- Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (J.S.-M.); (O.R.-D.l.F.)
| | - Antonio García-Merino
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Madrid, Spain;
- Department of Neurology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain; (J.S.-M.); (O.R.-D.l.F.)
- Department of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM), 08028 Barcelona, Spain
| | - Antonio J. Sánchez-López
- Neuroimmunology Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Madrid, Spain;
- Red Española de Esclerosis Múltiple (REEM), 08028 Barcelona, Spain
- Biobank, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Madrid, Spain
| |
Collapse
|
4
|
Robichon K, Bibi R, Kiernan M, Denny L, Prisinzano TE, Kivell BM, La Flamme AC. Enhanced and complementary benefits of a nalfurafine and fingolimod combination to treat immune-driven demyelination. Clin Transl Immunology 2023; 12:e1480. [PMID: 38090669 PMCID: PMC10714663 DOI: 10.1002/cti2.1480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 04/20/2024] Open
Abstract
OBJECTIVES Multiple sclerosis (MS) is a neurodegenerative disease characterised by inflammation and damage to myelin sheaths. While all current disease-modifying treatments (DMTs) are very effective at reducing relapses, they do not slow the progression of the disease, and there is little evidence that these treatments are able to repair or remyelinate damaged axons. Recent evidence suggests that activating kappa opioid receptors (KORs) has a beneficial effect on the progression of MS, and this study investigates the effects of KOR agonists treatment in combination with two current DMTs. METHODS Using the well-established murine model for immune-driven demyelination of MS, experimental autoimmune encephalomyelitis, the effect of KOR agonists in combination with DMTs fingolimod or dimethyl fumarate on disease progression, immune cell infiltration and activation as well as myelination were analysed. RESULTS Fingolimod in combination with the KOR agonist, nalfurafine, significantly increased each individual beneficial effect as measured by increased recovery of mice and reduced relapses. These beneficial effects correlated with a reduction in immune cell infiltration into the CNS as well as peripheral immune cell alterations including a reduction in autoreactive CD4+ T-cell cytokine production as well as increased myelination in the spinal cords of co-treated animals. In contrast, while the use of dimethyl fumarate in combination with nalfurafine did not adversely affect the benefits of nalfurafine, the combination did not significantly enhance those benefits. CONCLUSION This study indicates that KOR agonists can be used in combination with fingolimod and dimethyl fumarate with the nalfurafine-fingolimod combination providing enhanced benefits.
Collapse
Affiliation(s)
- Katharina Robichon
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Rabia Bibi
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Mackenzie Kiernan
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Lisa Denny
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | | | - Bronwyn M Kivell
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Anne Camille La Flamme
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| |
Collapse
|
5
|
Mohammadinasr M, Montazersaheb S, Molavi O, Kahroba H, Talebi M, Ayromlou H, Hejazi MS. Multiplex Analysis of Cerebrospinal Fluid and Serum Exosomes MicroRNAs of Untreated Relapsing Remitting Multiple Sclerosis (RRMS) and Proposing Noninvasive Diagnostic Biomarkers. Neuromolecular Med 2023; 25:402-414. [PMID: 37020076 DOI: 10.1007/s12017-023-08744-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/19/2023] [Indexed: 04/07/2023]
Abstract
Exosomal microRNAs (miRNAs) are emerging diagnostic biomarkers for neurodegenerative diseases. In this study, we aimed to detect relapsing-remitting multiple sclerosis (RRMS)-specific miRNAs in cerebrospinal fluid (CSF) and serum exosomes with diagnostic potential. One ml of CSF and serum sample were collected from each of the 30 untreated RRMS patients and healthy controls (HCs). A panel of 18 miRNAs affecting inflammatory responses was applied, and qRT-PCR was conducted to detect differentially expressed exosomal miRNAs in CSF and serum of RRMS patients. We identified that 17 out of 18 miRNAs displayed different patterns in RRMS patients compared to HCs. Let-7 g-5p, miR-18a-5p, miR-145-5p, and miR-374a-5p with dual pro-inflammatory and anti-inflammatory actions and miR-150-5p and miR-342-3p with anti-inflammatory action were significantly upregulated in both CSF and serum-derived exosomes of RRMS patients compared to corresponding HCs. Additionally, anti-inflammatory miR-132-5p and pro-inflammatory miR-320a-5p were significantly downregulated in both CSF and serum-derived exosomes of RRMS patients compared to HCs. Ten of 18 miRNAs were differentially expressed in CSF and serum exosomes of the patients. Furthermore, miR-15a-5p, miR-19b-3p, and miR-432-5p were upregulated, and miR-17-5p was downregulated only in CSF exosomes. Interestingly, U6 housekeeping gene was differentially expressed in CSF and serum exosomes, in both RRMS and HCs. As the first report describing CSF exosomal miRNAs expression profile compared to that of serum exosomes in untreated RRMS patients, we showed that CSF and serum exosomes are not identical in terms of biological compounds and display different patterns in miRNAs and U6 expression.
Collapse
Affiliation(s)
- Mina Mohammadinasr
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Department of Toxicogenomics, GROW School of Oncology and Development Biology, Maastricht University, Maastricht, The Netherlands
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Mahnaz Talebi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hormoz Ayromlou
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Yin X, Rang X, Hong X, Zhou Y, Xu C, Fu J. Immune cells transcriptome-based drug repositioning for multiple sclerosis. Front Immunol 2022; 13:1020721. [PMID: 36341423 PMCID: PMC9630342 DOI: 10.3389/fimmu.2022.1020721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Finding target genes and target pathways of existing drugs for drug repositioning in multiple sclerosis (MS) based on transcriptomic changes in MS immune cells. Materials and Methods Based on transcriptome data from Gene Expression Omnibus (GEO) database, differentially expressed genes (DEGs) in MS patients without treatment were identified by bioinformatics analysis according to the type of immune cells, as well as DEGs in MS patients before and after drug administration. Hub target genes of the drug for MS were analyzed by constructing the protein-protein interaction network, and candidate drugs targeting 2 or more hub target genes were obtained through the connectivity map (CMap) database and Drugbank database. Then, the enriched pathways of MS patients without treatment and the enriched pathways of MS patients before and after drug administration were intersected to obtain the target pathways of the drug for MS, and the candidate drugs targeting 2 or more target pathways were obtained through Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results We obtained 50 hub target genes for CD4+ T cells in Fingolimod for MS, 15 hub target genes for Plasmacytoid dendritic cells (pDCs) and 7 hub target genes for Peripheral blood mononuclear cells (PBMC) in interferon-β (IFN-β) for MS. 6 candidate drugs targeting two or more hub targets (Fostamatinib, Copper, Artenimol, Phenethyl isothiocyanate, Aspirin and Zinc) were obtained. In addition, we obtained 4 target pathways for CD19+ B cells and 15 target pathways for CD4+ T cells in Fingolimod for MS, 7 target pathways for pDCs and 6 target pathways for PBMC in IFN-β for MS, most of which belong to the immune system and viral infectious disease pathways. We obtained 69 candidate drugs targeting two target pathways. Conclusion We found that applying candidate drugs that target both the “PI3K-Akt signaling pathway” and “Chemokine signaling pathway” (e.g., Nemiralisib and Umbralisib) or applying tyrosine kinase inhibitors (e.g., Fostamatinib) may be potential therapies for the treatment of MS.
Collapse
Affiliation(s)
- Xinyue Yin
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinming Rang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangxiang Hong
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yinglian Zhou
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- *Correspondence: Jin Fu, ; Chaohan Xu,
| | - Jin Fu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jin Fu, ; Chaohan Xu,
| |
Collapse
|
7
|
Korsen M, Pfeuffer S, Rolfes L, Meuth SG, Hartung HP. Neurological update: treatment escalation in multiple sclerosis patients refractory to fingolimod-potentials and risks of subsequent highly active agents. J Neurol 2022; 269:2806-2818. [PMID: 34999925 PMCID: PMC9021111 DOI: 10.1007/s00415-021-10956-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/30/2021] [Indexed: 12/01/2022]
Abstract
A critical issue in the management of relapsing MS (RMS) is the discontinuation of disease-modifying treatments (DMT) due to lack of efficacy, intolerability or impending risks. With new therapeutic agents introduced into the treatment of RMS, immediate- and long-term consequences of sequential drug use, as well as the effect of the sequence in which the drugs are given, are unclear but may affect efficacy, adverse events, and long-term immunocompetence. In the absence of clinical studies specifically addressing these concerns, observations from clinical practice are of particular value in guiding current management algorithms. Prompted by a study published by Ferraro et al. in this journal, we set out to provide an overview of the published real-world evidence on the effectiveness and safety of switching from fingolimod to another DMT in patients with active RMS. Seventeen publications reporting relevant information were identified. The literature suggests that immune cell depletion induced by alemtuzumab or ocrelizumab is associated with an increased risk of relapse and worsening disability in patients switching from fingolimod compared to patients switching from other therapeutic agents. However, the evidence reported for natalizumab and cladribine is inconclusive. While shortening of the washout period may limit early disease reactivation after fingolimod discontinuation, there is no strong evidence that the duration of the washout period or the absolute lymphocyte count at baseline are predictors of attenuated long-term efficacy. Further real-world studies are required to better understand outcomes among patients who are under-represented in controlled trials.
Collapse
Affiliation(s)
- Melanie Korsen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | | | - Leoni Rolfes
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
8
|
Brasanac J, Hetzer S, Asseyer S, Kuchling J, Bellmann-Strobl J, Ritter K, Gamradt S, Scheel M, Haynes JD, Brandt AU, Paul F, Gold SM, Weygandt M. Central stress processing, T cell responsivity to stress hormones, and disease severity in multiple sclerosis. Brain Commun 2022; 4:fcac086. [PMID: 35441135 PMCID: PMC9014535 DOI: 10.1093/braincomms/fcac086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/18/2021] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Epidemiological, clinical and neuroscientific studies support a link between psychobiological stress and multiple sclerosis. Neuroimaging suggests that blunted central stress processing goes along with higher multiple sclerosis severity, neuroendocrine studies suggest that blunted immune system sensitivity to stress hormones is linked to stronger neuroinflammation. Until now, however, no effort has been made to elucidate whether central stress processing and immune system sensitivity to stress hormones are related in a disease-specific fashion, and if so, whether this relation is clinically meaningful. Consequently, we conducted two functional MRI analyses based on a total of 39 persons with multiple sclerosis and 25 healthy persons. Motivated by findings of an altered interplay between neuroendocrine stress processing and T-cell glucocorticoid sensitivity in multiple sclerosis, we searched for neural networks whose stress task-evoked activity is differentially linked to peripheral T-cell glucocorticoid signalling in patients versus healthy persons as a potential indicator of disease-specific CNS–immune crosstalk. Subsequently, we tested whether this activity is simultaneously related to disease severity. We found that activity of a network comprising right anterior insula, right fusiform gyrus, left midcingulate and lingual gyrus was differentially coupled to T-cell glucocorticoid signalling across groups. This network’s activity was simultaneously linked to patients’ lesion volume, clinical disability and information-processing speed. Complementary analyses revealed that T-cell glucocorticoid signalling was not directly linked to disease severity. Our findings show that alterations in the coupling between central stress processing and T-cell stress hormone sensitivity are related to key severity measures of multiple sclerosis.
Collapse
Affiliation(s)
- Jelena Brasanac
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, 12203 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Stefan Hetzer
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, 10117 Berlin, Germany
| | - Susanna Asseyer
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joseph Kuchling
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Kristin Ritter
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Stefanie Gamradt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Michael Scheel
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuroradiology, 10117 Berlin, Germany
| | - John-Dylan Haynes
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, 10117 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Bernstein Center for Computational Neuroscience, 10117, Berlin, Germany
| | - Alexander U. Brandt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Neurology, University of California, Irvine, CA, USA
| | - Friedemann Paul
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, 10117 Berlin, Germany
| | - Stefan M. Gold
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, 12203 Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychosomatic Medicine, 10117 Berlin, Germany
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Martin Weygandt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117 Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
9
|
Nygaard GO, Torgauten H, Skattebøl L, Høgestøl EA, Sowa P, Myhr KM, Torkildsen Ø, Celius EG. Risk of fingolimod rebound after switching to cladribine or rituximab in multiple sclerosis. Mult Scler Relat Disord 2022; 62:103812. [DOI: 10.1016/j.msard.2022.103812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 11/29/2022]
|
10
|
Sferruzza G, Clarelli F, Mascia E, Ferrè L, Ottoboni L, Sorosina M, Santoro S, Filippi M, Provero P, Esposito F. Transcriptional effects of fingolimod treatment on peripheral T cells in relapsing remitting multiple sclerosis patients. Pharmacogenomics 2022; 23:161-171. [PMID: 35068175 DOI: 10.2217/pgs-2021-0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the transcriptional changes induced by Fingolimod (FTY) in T cells of relapsing remitting multiple sclerosis patients. Patients & methods: Transcriptomic changes after 6 months of FTY therapy were evaluated on T cells from 24 relapsing remitting multiple sclerosis patients through RNA-sequencing, followed by technical validation and pathway analysis. Results: Among differentially expressed genes, CX3CR1 and CCR7 resulted strongly up- and down-regulated, respectively. Two relevant genes were validated with quantitative PCR and we largely confirmed findings from two previous microarray-based studies with similar design. Pathway analysis pointed to an involvement of processes related to immune function and cell migration. Conclusion: Our data support the evidence that FTY induces major transcriptional changes in genes involved in immune response and cell trafficking in T lymphocytes.
Collapse
Affiliation(s)
- Giacomo Sferruzza
- Department of Neurology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Neuroimmunology Unit, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ferdinando Clarelli
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit & INSPE, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit & INSPE, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Laura Ferrè
- Department of Neurology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit & INSPE, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Linda Ottoboni
- Neuroimmunology Unit, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit & INSPE, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit & INSPE, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Massimo Filippi
- Department of Neurology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Paolo Provero
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Department of Neurosciences 'Rita Levi Montalcini,' University of Turin, Turin 10126, Italy
| | - Federica Esposito
- Department of Neurology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit & INSPE, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
11
|
Saliutina M. Opportunities of multi-omics approach for the search for new diagnostic and therapeutic targets in multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:57-62. [DOI: 10.17116/jnevro202212205157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
12
|
Pfeuffer S, Ruck T, Pul R, Rolfes L, Korsukewitz C, Pawlitzki M, Wildemann B, Klotz L, Kleinschnitz C, Scalfari A, Wiendl H, Meuth SG. Impact of previous disease-modifying treatment on effectiveness and safety outcomes, among patients with multiple sclerosis treated with alemtuzumab. J Neurol Neurosurg Psychiatry 2021; 92:1007-1013. [PMID: 33712515 PMCID: PMC8372391 DOI: 10.1136/jnnp-2020-325304] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Alemtuzumab is effective in patients with active multiple sclerosis but has a complex safety profile, including the development of secondary autoimmunity. Most of patients enrolled in randomised clinical trials with alemtuzumab were either treatment naïve or pretreated with injectable substances. Other previous disease-modifying treatments (DMTs) were not used in the study cohorts, and therefore, associated risks might yet remain unidentified. METHODS We retrospectively evaluated a prospective dual-centre alemtuzumab cohort of 170 patients. We examined the baseline characteristics as well as safety and effectiveness outcomes, including the time to first relapse, the time to 3 months confirmed disability worsening and the time to secondary autoimmunity. RESULTS The regression analysis showed that, among all previously used DMTs, the pretreatment with fingolimod (n=33 HRs for the time to first relapse (HR 5.420, 95% CI 2.520 to 11.660; p<0.001)) and for the time to worsening of disability (HR 7.676, 95% CI 2.870 to 20.534; p<0.001). Additionally, patients pretreated with fingolimod were more likely to experience spinal relapses (55% vs 10% among previously naïve patients; p<0.001) and had an increased risk of secondary autoimmunity (HR 5.875, 95% CI 2.126 to 16.27; p<0.001). CONCLUSION In the real-world setting, we demonstrated suboptimal disease control and increased risk of secondary autoimmunity following alemtuzumab, among patients previously treated with fingolimod. These data can provide guidance for improving MS therapeutic management.
Collapse
Affiliation(s)
- Steffen Pfeuffer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.,Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Refik Pul
- Department of Neurology, Universitat Duisburg-Essen, Duisburg, Germany
| | - Leoni Rolfes
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Catharina Korsukewitz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Marc Pawlitzki
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Brigitte Wildemann
- Division of Molecular Neuroimmunology, Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | | | - Antonio Scalfari
- Centre for Neuroscience, Division of Experimental Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.,Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
13
|
Transcriptomic Analysis of Peripheral Monocytes upon Fingolimod Treatment in Relapsing Remitting Multiple Sclerosis Patients. Mol Neurobiol 2021; 58:4816-4827. [PMID: 34181235 DOI: 10.1007/s12035-021-02465-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
Fingolimod (FTY), a second-line oral drug approved for relapsing remitting Multiple Sclerosis (RRMS) acts in preventing lymphocyte migration outside lymph nodes; moreover, several lines of evidence suggest that it also inhibits myeloid cell activation. In this study, we investigated the transcriptional changes induced by FTY in monocytes in order to better elucidate its mechanism of action. CD14+ monocytes were collected from 24 RRMS patients sampled at baseline and after 6 months of treatment and RNA profiles were obtained through next-generation sequencing. We conducted pathway and sub-paths analysis, followed by centrality analysis of cell-specific interactomes on differentially expressed genes (DEGs). We investigated also the predictive role of baseline monocyte transcription profile in influencing the response to FTY therapy. We observed a marked down-regulation effect (60 down-regulated vs. 0 up-regulated genes). Most of the down-regulated DEGs resulted related with monocyte activation and migration like IL7R, CCR7 and the Wnt signaling mediators LEF1 and TCF7. The involvement of Wnt signaling was also confirmed by subpaths analyses. Furthermore, pathway and network analyses showed an involvement of processes related to immune function and cell migration. Baseline transcriptional profile of the HLA class II gene HLA-DQA1 and HLA-DPA1 were associated with evidence of disease activity after 2 years of treatment. Our data support the evidence that FTY induces major transcriptional changes in monocytes, mainly regarding genes involved in cell trafficking and immune cell activation. The baseline transcriptional levels of genes associated with antigen presenting function were associated with disease activity after 2 years of FTY treatment.
Collapse
|
14
|
Yang J, Zhang D, Motojima M, Kume T, Hou Q, Pan Y, Duan A, Zhang M, Jiang S, Hou J, Shi J, Qin Z, Liu Z. Super-Enhancer-Associated Transcription Factors Maintain Transcriptional Regulation in Mature Podocytes. J Am Soc Nephrol 2021; 32:1323-1337. [PMID: 33771836 PMCID: PMC8259645 DOI: 10.1681/asn.2020081177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/30/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Transcriptional programs control cell fate, and identifying their components is critical for understanding diseases caused by cell lesion, such as podocytopathy. Although many transcription factors (TFs) are necessary for cell-state maintenance in glomeruli, their roles in transcriptional regulation are not well understood. METHODS The distribution of H3K27ac histones in human glomerulus cells was analyzed to identify superenhancer-associated TFs, and ChIP-seq and transcriptomics were performed to elucidate the regulatory roles of the TFs. Transgenic animal models of disease were further investigated to confirm the roles of specific TFs in podocyte maintenance. RESULTS Superenhancer distribution revealed a group of potential TFs in core regulatory circuits in human glomerulus cells, including FOXC1/2, WT1, and LMX1B. Integration of transcriptome and cistrome data of FOXC1/2 in mice resolved transcriptional regulation in podocyte maintenance. FOXC1/2 regulated differentiation-associated transcription in mature podocytes. In both humans and animal models, mature podocyte injury was accompanied by deregulation of FOXC1/2 expression, and FOXC1/2 overexpression could protect podocytes in zebrafish. CONCLUSIONS FOXC1/2 maintain podocyte differentiation through transcriptional stabilization. The genome-wide chromatin resources support further investigation of TFs' regulatory roles in glomeruli transcription programs.
Collapse
Affiliation(s)
- Jingping Yang
- Medical School of Nanjing University, Nanjing, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Difei Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Masaru Motojima
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara, Japan
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Qing Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu Pan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Aiping Duan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jinhua Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingsong Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Zhihong Liu
- Medical School of Nanjing University, Nanjing, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Huber JE, Chang Y, Meinl I, Kümpfel T, Meinl E, Baumjohann D. Fingolimod Profoundly Reduces Frequencies and Alters Subset Composition of Circulating T Follicular Helper Cells in Multiple Sclerosis Patients. THE JOURNAL OF IMMUNOLOGY 2020; 204:1101-1110. [PMID: 32034063 DOI: 10.4049/jimmunol.1900955] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
Fingolimod is an effective treatment for relapsing-remitting multiple sclerosis. It is well established that fingolimod, a modulator of the sphingosine-1-phosphate pathway, restrains the egress of CCR7+ lymphocytes from lymphatic tissues into the blood, thus resulting in reduced lymphocyte counts in peripheral blood. CXCR5+ T follicular helper (Tfh) cells provide help to B cells, are essential for the generation of potent Ab responses, and have been shown to be critically involved in the pathogenesis of several autoimmune diseases. Besides lymphoid tissue-resident Tfh cells, CXCR5+ circulating Tfh (cTfh) cells have been described in the blood, their numbers correlating with the magnitude of Tfh cells in lymphoid tissues. Although the effect of fingolimod on circulating lymphocyte subsets has been established, its effect on cTfh cells remains poorly understood. In this study, we found that although fingolimod strongly and disproportionally reduced cTfh cell frequencies, frequencies of activated cTfh cells were increased, and the composition of the cTfh cell pool was skewed toward a cTfh1 cell phenotype. The circulating T follicular regulatory cell subset and CXCR5+ CD8+ T cell frequencies were also strongly and disproportionally decreased after fingolimod treatment. In contrast, relative frequencies of CXCR5- memory Th cells as well as regulatory T and B cells were increased. In summary, these data provide new insights into fingolimod-induced compositional changes of lymphocyte populations in the blood, in particular cTfh cells, and thus contribute to a better understanding of the mechanism of action of fingolimod in multiple sclerosis patients.
Collapse
Affiliation(s)
- Johanna E Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried 82152, Germany; and
| | - Yinshui Chang
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried 82152, Germany; and
| | - Ingrid Meinl
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Dirk Baumjohann
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried 82152, Germany; and
| |
Collapse
|
16
|
Ehtesham N, Mosallaei M, Karimzadeh MR, Moradikazerouni H, Sharifi M. microRNAs: key modulators of disease-modifying therapies in multiple sclerosis. Int Rev Immunol 2020; 39:264-279. [PMID: 32552273 DOI: 10.1080/08830185.2020.1779712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a high level of heterogeneity in symptom manifestations and response to disease-modifying therapies (DMTs) in multiple sclerosis (MS), an immune-based neurodegenerative disease with ever-increasing prevalence in recent decades. Because of unknown aspects of the etiopathology of MS and mechanism of action of DMTs, the reason for this variability is undetermined, and much remains to be understood. Traditionally, physicians consider switching to other DMTs based on the exacerbation of symptoms and/or change in the results of magnetic resonance imaging and biochemical factors. Therefore, identifying biological treatment response markers that help us recognizing non-responders rapidly and subsequently choosing another DMTs is necessary. microRNAs (miRNAs) are micromanagers of gene expression which have been profiled in different samples of MS patients, highlighting their role in pathogenetic of MS. Recent studies have investigated expression profiling of miRNAs after treatment with DMTs to clarify possible DMTs-mediated mechanism and obtaining response to therapy biomarkers. In this review, we will discuss the modulation of miRNAs by DMTs in cells and pathways involved in MS.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Meysam Mosallaei
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Mazdeh M, Kordestani H, Komaki A, Eftekharian MM, Arsang-Jang S, Branicki W, Taheri M, Ghafouri-Fard S. Assessment of expression profile of microRNAs in multiple sclerosis patients treated with fingolimod. J Mol Neurosci 2020; 70:1274-1281. [PMID: 32215780 DOI: 10.1007/s12031-020-01537-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022]
Abstract
Fingolimod is an immunotherapeutic drug approved in certain countries as first-line therapy for relapsing-remitting multiple sclerosis (RRMS). The drug has been shown to alter the expression of several coding and non-coding genes. In the current study, we assessed the expression of miR-506-3p, miR-217, miR-381-3p, miR-1827, miR-449a and miR-655-3p in peripheral blood of patients with RRMS undergoing treatment with fingolimod compared with healthy controls. We also compared the expression of these miRNAs between fingolimod responders and non-responders to determine their relevance with regard to response to fingolimod. Expression of miR-381-3p was significantly higher in responders than in controls (RE difference = 3.903, P = 0.005), while expression of miR-655-3p was significantly lower in both responders and non-responders compared with controls (RE difference = -1.03, P = 0.014; RE difference = -1.41, P < 0.0001, respectively). No difference was found in the expression of other miRNAs between study subgroups. In addition, there was no significant difference in the expression of any miRNA between responders and non-responders. Although there were significant pairwise correlations between expression levels of all of the assessed miRNAs in controls, MS patients exhibited differences in correlation patterns. Expression of miR-381-3p was correlated with age in responders. However, expression of other miRNAs did not correlate with age in any study subgroup. The current study indicates a possible role for miR-655-3p and miR-381-3p in the pathogenesis of MS or possible effects of fingolimod on the expression of these miRNAs. Future studies are needed to verify these results in larger patient populations.
Collapse
Affiliation(s)
- Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamideh Kordestani
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Shahram Arsang-Jang
- Department of Epidemiology and Biostatistics, Cellular and Molecular Research Center, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Wu Q, Mills EA, Wang Q, Dowling CA, Fisher C, Kirch B, Lundy SK, Fox DA, Mao-Draayer Y. Siponimod enriches regulatory T and B lymphocytes in secondary progressive multiple sclerosis. JCI Insight 2020; 5:134251. [PMID: 31935197 DOI: 10.1172/jci.insight.134251] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUNDSiponimod (BAF312) is a selective sphingosine-1-phosphate receptor 1 and 5 (S1PR1, S1PR5) modulator recently approved for active secondary progressive multiple sclerosis (SPMS). The immunomodulatory effects of siponimod in SPMS have not been previously described.METHODSWe conducted a multicentered, randomized, double-blind, placebo-controlled AMS04 mechanistic study with 36 SPMS participants enrolled in the EXPAND trial. Gene expression profiles were analyzed using RNA derived from whole blood with Affymetrix Human Gene ST 2.1 microarray technology. We performed flow cytometry-based assays to analyze the immune cell composition and microarray gene expression analysis on peripheral blood from siponimod-treated participants with SPMS relative to baseline and placebo during the first-year randomization phase.RESULTSMicroarray analysis showed that immune-associated genes involved in T and B cell activation and receptor signaling were largely decreased by siponimod, which is consistent with the reduction in CD4+ T cells, CD8+ T cells, and B cells. Flow cytometric analysis showed that within the remaining lymphocyte subsets there was a reduction in the frequencies of CD4+ and CD8+ naive T cells and central memory cells, while T effector memory cells, antiinflammatory Th2, and T regulatory cells (Tregs) were enriched. Transitional regulatory B cells (CD24hiCD38hi) and B1 cell subsets (CD43+CD27+) were enriched, shifting the balance in favor of regulatory B cells over memory B cells. The proregulatory shift driven by siponimod treatment included a higher proliferative potential of Tregs compared with non-Tregs, and upregulated expression of PD-1 on Tregs. Additionally, a positive correlation was found between Tregs and regulatory B cells in siponimod-treated participants.CONCLUSIONThe shift toward an antiinflammatory and suppressive homeostatic immune system may contribute to the clinical efficacy of siponimod in SPMS.TRIAL REGISTRATIONNCT02330965.
Collapse
Affiliation(s)
- Qi Wu
- Department of Neurology. AMS04 study group.,Autoimmunity Center of Excellence. AMS04 study group
| | - Elizabeth A Mills
- Department of Neurology. AMS04 study group.,Autoimmunity Center of Excellence. AMS04 study group
| | - Qin Wang
- Department of Neurology. AMS04 study group.,Autoimmunity Center of Excellence. AMS04 study group
| | - Catherine A Dowling
- Department of Neurology. AMS04 study group.,Autoimmunity Center of Excellence. AMS04 study group
| | - Caitlyn Fisher
- Department of Neurology. AMS04 study group.,Autoimmunity Center of Excellence. AMS04 study group
| | - Britany Kirch
- Department of Neurology. AMS04 study group.,Autoimmunity Center of Excellence. AMS04 study group
| | - Steven K Lundy
- Autoimmunity Center of Excellence. AMS04 study group.,Department of Internal Medicine, Division of Rheumatology (AMS04 study group), and.,Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA. AMS04 study group
| | - David A Fox
- Autoimmunity Center of Excellence. AMS04 study group.,Department of Internal Medicine, Division of Rheumatology (AMS04 study group), and.,Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA. AMS04 study group
| | - Yang Mao-Draayer
- Department of Neurology. AMS04 study group.,Autoimmunity Center of Excellence. AMS04 study group.,Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA. AMS04 study group
| | | |
Collapse
|
19
|
Barry B, Erwin AA, Stevens J, Tornatore C. Fingolimod Rebound: A Review of the Clinical Experience and Management Considerations. Neurol Ther 2019; 8:241-250. [PMID: 31677060 PMCID: PMC6858914 DOI: 10.1007/s40120-019-00160-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 12/15/2022] Open
Abstract
Because the treatment of multiple sclerosis (MS) may span decades, the need often arises to make changes to the treatment plan in order to accommodate changing circumstances. Switching drugs, or the discontinuation of immunomodulatory agents altogether, may leave patients vulnerable to relapse or disease progression. In some cases, severe MS disease activity is noted clinically and on MRI after treatment withdrawal. When this disease activity is disproportionate to the pattern observed prior to treatment initiation, patients are said to have experienced rebound. Of the US Food and Drug Administration (FDA)-approved agents to treat MS, the drugs most commonly implicated in rebound are natalizumab and fingolimod. In this review based on the reported cases and data from clinical trials, we characterize disease rebound after fingolimod cessation. We also outline fingolimod rebound management considerations, summarizing what evidence is available to help clinicians mitigate the risk of rebound, switch therapies, and treat rebound events when they occur. The commonly encountered situation of fingolimod discontinuation prior to pregnancy is also discussed.
Collapse
Affiliation(s)
- Brian Barry
- Georgetown University Medical Center, Washington, DC, USA
| | | | | | | |
Collapse
|
20
|
Fingolimod reduces CXCR4-mediated B cell migration and induces regulatory B cells-mediated anti-inflammatory immune repertoire. Mult Scler Relat Disord 2019; 34:29-37. [DOI: 10.1016/j.msard.2019.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/24/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
|
21
|
Stur E, Aristizabal-Pachon AF, Peronni KC, Agostini LP, Waigel S, Chariker J, Miller DM, Thomas SD, Rezzoug F, Detogni RS, dos Reis RS, Silva Junior WA, Louro ID. Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS One 2019; 14:e0219610. [PMID: 31295307 PMCID: PMC6622539 DOI: 10.1371/journal.pone.0219610] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/27/2019] [Indexed: 12/29/2022] Open
Abstract
Glyphosate is a broad-spectrum herbicide that is used worldwide. It represents a potential harm to surface water, and when commercially mixed with surfactants, its uptake is greatly magnified. The most well-known glyphosate-based product is Roundup. This herbicide is potentially an endocrine disruptor and many studies have shown the cytotoxicity potential of glyphosate-based herbicides. In breast cancer (BC) cell lines it has been demonstrated that glyphosate can induce cellular proliferation via estrogen receptors. Therefore, we aimed to identify gene expression changes in ER+ and ER- BC cell lines treated with Roundup and AMPA, to address changes in canonical pathways that would be related or not with the ER pathway, which we believe could interfere with cell proliferation. Using the Human Transcriptome Arrays 2.0, we identified gene expression changes in MCF-7 and MDA-MB-468 exposed to low concentrations and short exposure time to Roundup Original and AMPA. The results showed that at low concentration (0.05% Roundup) and short exposure (48h), both cell lines suffered deregulation of 11 canonical pathways, the most important being cell cycle and DNA damage repair pathways. Enrichment analysis showed similar results, except that MDA-MB-468 altered mainly metabolic processes. In contrast, 48h 10mM AMPA showed fewer differentially expressed genes, but also mainly related with metabolic processes. Our findings suggest that Roundup affects survival due to cell cycle deregulation and metabolism changes that may alter mitochondrial oxygen consumption, increase ROS levels, induce hypoxia, damage DNA repair, cause mutation accumulation and ultimately cell death. To our knowledge, this is the first study to analyze the effects of Roundup and AMPA on gene expression in triple negative BC cells. Therefore, we conclude that both compounds can cause cellular damage at low doses in a relatively short period of time in these two models, mainly affecting cell cycle and DNA repair.
Collapse
Affiliation(s)
- Elaine Stur
- Programa de Pós-graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brasil
- Departamento de Ciências Biológicas-Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brasil
| | - Andrés Felipe Aristizabal-Pachon
- Department of Genetics at Ribeirão Preto Medical School, and Center for Medical Genomics - HCRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell-Based Therapy, Ribeirão Preto, São Paulo, Brazil
| | - Kamila Chagas Peronni
- Department of Genetics at Ribeirão Preto Medical School, and Center for Medical Genomics - HCRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell-Based Therapy, Ribeirão Preto, São Paulo, Brazil
| | - Lidiane Pignaton Agostini
- Programa de Pós-graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brasil
- Departamento de Ciências Biológicas-Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brasil
| | - Sabine Waigel
- Molecular Targets Program, JG Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Julia Chariker
- Department of Computer Engineering and Computer Science, Speed School of Engineering, University of Louisville, Kentucky, United States of America
| | - Donald M. Miller
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Shelia Dian Thomas
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Francine Rezzoug
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Raquel Spinassé Detogni
- Programa de Pós-graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brasil
- Departamento de Ciências Biológicas-Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brasil
| | - Raquel Silva dos Reis
- Programa de Pós-graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brasil
- Departamento de Ciências Biológicas-Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brasil
| | - Wilson Araujo Silva Junior
- Department of Genetics at Ribeirão Preto Medical School, and Center for Medical Genomics - HCRP, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell-Based Therapy, Ribeirão Preto, São Paulo, Brazil
| | - Iuri Drumond Louro
- Programa de Pós-graduação em Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brasil
- Departamento de Ciências Biológicas-Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brasil
| |
Collapse
|
22
|
Hecker M, Rüge A, Putscher E, Boxberger N, Rommer PS, Fitzner B, Zettl UK. Aberrant expression of alternative splicing variants in multiple sclerosis - A systematic review. Autoimmun Rev 2019; 18:721-732. [PMID: 31059848 DOI: 10.1016/j.autrev.2019.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Alternative splicing is an important form of RNA processing that affects nearly all human genes. The differential expression of specific transcript and protein isoforms holds the potential of novel biomarkers for complex diseases. In this systematic review, we compiled the existing literature on aberrant alternative splicing events in multiple sclerosis (MS). METHODS A systematic literature search in the PubMed database was carried out and supplemented by screening the reference lists of the identified articles. We selected only MS-related original research studies which compared the levels of different isoforms of human protein-coding genes. A narrative synthesis of the research findings was conducted. Additionally, we performed a case-control analysis using high-density transcriptome microarray data to reevaluate the genes that were examined in the reviewed studies. RESULTS A total of 160 records were screened. Of those, 36 studies from the last two decades were included. Most commonly, peripheral blood samples were analyzed (32 studies), and PCR-based techniques were usually employed (27 studies) for measuring the expression of selected genes. Two studies used an exploratory genome-wide approach. Overall, 27 alternatively spliced genes were investigated. Nine of these genes appeared in at least two studies (CD40, CFLAR, FOXP3, IFNAR2, IL7R, MOG, PTPRC, SP140 and TNFRSF1A). The microarray data analysis confirmed differential alternative pre-mRNA splicing for 19 genes. CONCLUSIONS An altered RNA processing of genes mediating immune signaling pathways has been repeatedly implicated in MS. The analysis of individual exon-level expression patterns is stimulated by the advancement of transcriptome profiling technologies. In particular, the examination of genes encoded in MS-associated genetic regions may provide important insights into the pathogenesis of the disease and help to identify new biomarkers.
Collapse
Affiliation(s)
- Michael Hecker
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany.
| | - Annelen Rüge
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Elena Putscher
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Nina Boxberger
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Paulus Stefan Rommer
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany; Medical University of Vienna, Department of Neurology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Brit Fitzner
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Uwe Klaus Zettl
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| |
Collapse
|
23
|
Eftekharian MM, Komaki A, Mazdeh M, Arsang-Jang S, Taheri M, Ghafouri-Fard S. Expression Profile of Selected MicroRNAs in the Peripheral Blood of Multiple Sclerosis Patients: a Multivariate Statistical Analysis with ROC Curve to Find New Biomarkers for Fingolimod. J Mol Neurosci 2019; 68:153-161. [PMID: 30895441 DOI: 10.1007/s12031-019-01294-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) as a chronic autoimmune disease of the central nervous system (CNS) has been associated with dysregulation of several genes including miRNAs. In the present study, we assessed transcript levels of seven miRNAs (miR-96-5p, miR-211-5p, miR-15a, miR-34a-5p, miR-204-5p, miR-501-5p, and miR-524-5p) in the peripheral blood of MS patients compared with healthy subjects in association with response to fingolimod treatment. Expression levels of miR-211-5p and miR-34a-5p were significantly decreased in MS patients compared with healthy subjects (P values of 0.002 and 0.47). While subgroup analysis showed downregulation of miR-211-5p in both fingolimod responders and non-responders, miR-34a-5p expression was only decreased in responders. Moreover, miR-204-5p was downregulated in non-responder male patients compared with male controls. The current study underscores the role of miRNAs in determination of response to fingolimod in MS patients.
Collapse
Affiliation(s)
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahram Arsang-Jang
- Clinical Research Development Center (CRDU), Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Álvarez-Sánchez N, Cruz-Chamorro I, Díaz-Sánchez M, Lardone PJ, Guerrero JM, Carrillo-Vico A. Peripheral CD39-expressing T regulatory cells are increased and associated with relapsing-remitting multiple sclerosis in relapsing patients. Sci Rep 2019; 9:2302. [PMID: 30783191 PMCID: PMC6381140 DOI: 10.1038/s41598-019-38897-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/09/2019] [Indexed: 12/02/2022] Open
Abstract
CD39, an ectonucleotidase that hydrolyses pro-inflammatory ATP, is a marker of highly active and suppressive T regulatory cells (Tregs). Although CD39 has a role in Treg suppression and might be important in the control of neuroinflammation in relapsing-remitting multiple sclerosis (RR-MS), to date, there are contradictory reports concerning the Tregs expression of CD39 in RR-MS patients. Thus, our objectives were to assess the activity and expression of CD39, especially in Tregs from peripheral blood mononuclear cells (PBMCs) of relapsing RR-MS patients compared with control subjects and to evaluate the association of CD39+ Tregs with disability and the odds of RR-MS. The activity and expression of CD39 and the CD39+ Treg frequency were measured in PBMCs from 55 relapsing RR-MS patients (19 untreated and 36 receiving immunomodulatory treatment) and 55 age- and sex-paired controls. Moreover, the association between CD39+ Tregs and RR-MS was assessed by multivariate logistic regression. CD39 activity and the frequency of CD39-expressing Tregs were elevated in relapsing RR-MS patients. Moreover, CD39+ Tregs were significantly correlated with the EDSS score and were independently associated with the odds of RR-MS. Our results highlight the relevance of CD39+ Treg subset in the clinical outcomes of RR-MS.
Collapse
Affiliation(s)
- Nuria Álvarez-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, Seville, Spain
| | - María Díaz-Sánchez
- Unidad de Gestión Clínica de Neurociencias, Servicio de Neurología del Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, Seville, Spain
| | - Juan Miguel Guerrero
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, Seville, Spain.,Department of Clinical Biochemistry, Virgen del Rocío University Hospital, Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain. .,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
25
|
Quirant‐Sánchez B, Hervás‐García JV, Teniente‐Serra A, Brieva L, Moral‐Torres E, Cano A, Munteis E, Mansilla MJ, Presas‐Rodriguez S, Navarro‐Barriuso J, Ramo‐Tello C, Martínez‐Cáceres EM. Predicting therapeutic response to fingolimod treatment in multiple sclerosis patients. CNS Neurosci Ther 2018; 24:1175-1184. [PMID: 29656444 PMCID: PMC6489963 DOI: 10.1111/cns.12851] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 12/20/2022] Open
Abstract
AIMS Fingolimod, an orally active immunomodulatory drug for relapsing-remitting multiple sclerosis (RRMS), sequesters T cells in lymph nodes through functional antagonism of the sphingosine-1-phosphate receptor, reducing the number of potential autoreactive cells that migrate to the central nervous system. However, not all RRMS patients respond to this therapy. Our aim was to test the hypothesis that by immune-monitoring RRMS patient's leukocyte subpopulations it is possible to find biomarkers associated with clinical response to fingolimod. METHODS Prospective study. Analysis of peripheral blood mononuclear cell subpopulations by multiparametric flow cytometry, at baseline and +1, +3, +6, +12 months of follow-up in 40 RRMS patients starting fingolimod therapy. RESULTS Fingolimod treatment induced a severe lymphopenia affecting mainly T and B cells. A relative increase in Treg (memory Treg : 3.8 ± 1.0% baseline vs 8.8 ± 4.4% month +1; activated Treg : 1.5 ± 0.7% baseline vs 3.7 ± 2.1% month +1, P < 0.001) as well as transitional B cells (10.5 ± 12.3% baseline vs 18.7 ± 14.6% month +1, P < 0.001) was observed. Interestingly, lymphocyte subpopulations were already at baseline significantly different in responder patients. The percentage of recent thymic emigrants (RTE) used to stratify fingolimod responder, and no responder patients was the best biomarker (4.0 ± 1.4% vs 7.4 ± 1.9%, respectively [P < 0.001]). CONCLUSION The results support that immune-monitoring of lymphocyte subpopulations in peripheral blood is a promising tool to select RRMS candidate for fingolimod treatment.
Collapse
Affiliation(s)
- Bibiana Quirant‐Sánchez
- Immunology DivisionGermans Trias i Pujol University Hospital and Research InstituteBarcelonaSpain
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - José V. Hervás‐García
- Multiple Sclerosis UnitDepartment of NeurosciencesGermans Trias i Pujol University HospitalBarcelonaSpain
| | - Aina Teniente‐Serra
- Immunology DivisionGermans Trias i Pujol University Hospital and Research InstituteBarcelonaSpain
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Luis Brieva
- Neurology Department of Hospital Arnau VilanovaLeridaSpain
| | - Ester Moral‐Torres
- Neurology Department of Hospital San Joan Despi Moises BroggiBarcelonaSpain
| | - Antonio Cano
- Neurology Department of Hospital de MataróBarcelonaSpain
| | | | - María J. Mansilla
- Immunology DivisionGermans Trias i Pujol University Hospital and Research InstituteBarcelonaSpain
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Silvia Presas‐Rodriguez
- Multiple Sclerosis UnitDepartment of NeurosciencesGermans Trias i Pujol University HospitalBarcelonaSpain
| | - Juan Navarro‐Barriuso
- Immunology DivisionGermans Trias i Pujol University Hospital and Research InstituteBarcelonaSpain
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Cristina Ramo‐Tello
- Multiple Sclerosis UnitDepartment of NeurosciencesGermans Trias i Pujol University HospitalBarcelonaSpain
| | - Eva M. Martínez‐Cáceres
- Immunology DivisionGermans Trias i Pujol University Hospital and Research InstituteBarcelonaSpain
- Department of Cell Biology, Physiology and ImmunologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| |
Collapse
|
26
|
Moreno-Torres I, González-García C, Marconi M, García-Grande A, Rodríguez-Esparragoza L, Elvira V, Ramil E, Campos-Ruíz L, García-Hernández R, Al-Shahrour F, Fustero-Torre C, Sánchez-Sanz A, García-Merino A, Sánchez López AJ. Immunophenotype and Transcriptome Profile of Patients With Multiple Sclerosis Treated With Fingolimod: Setting Up a Model for Prediction of Response in a 2-Year Translational Study. Front Immunol 2018; 9:1693. [PMID: 30090102 PMCID: PMC6068231 DOI: 10.3389/fimmu.2018.01693] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Fingolimod is a functional sphingosine-1-phosphate antagonist approved for the treatment of multiple sclerosis (MS). Fingolimod affects lymphocyte subpopulations and regulates gene expression in the lymphocyte transcriptome. Translational studies are necessary to identify cellular and molecular biomarkers that might be used to predict the clinical response to the drug. In MS patients, we aimed to clarify the differential effects of fingolimod on T, B, and natural killer (NK) cell subsets and to identify differentially expressed genes in responders and non-responders (NRs) to treatment. MATERIALS AND METHODS Samples were obtained from relapsing-remitting multiple sclerosis patients before and 6 months after starting fingolimod. Forty-eight lymphocyte subpopulations were measured by flow cytometry based on surface and intracellular marker analysis. Transcriptome sequencing by next-generation technologies was used to define the gene expression profiling in lymphocytes at the same time points. NEDA-3 (no evidence of disease activity) and NEDA-4 scores were measured for all patients at 1 and 2 years after beginning fingolimod treatment to investigate an association with cellular and molecular characteristics. RESULTS Fingolimod affects practically all lymphocyte subpopulations and exerts a strong effect on genetic transcription switching toward an anti-inflammatory and antioxidant response. Fingolimod induces a differential effect in lymphocyte subpopulations after 6 months of treatment in responder and NR patients. Patients who achieved a good response to the drug compared to NR patients exhibited higher percentages of NK bright cells and plasmablasts, higher levels of FOXP3, glucose phosphate isomerase, lower levels of FCRL1, and lower Expanded Disability Status Scale at baseline. The combination of these possible markers enabled us to build a probabilistic linear model to predict the clinical response to fingolimod. CONCLUSION MS patients responsive to fingolimod exhibit a recognizable distribution of lymphocyte subpopulations and a different pretreatment gene expression signature that might be useful as a biomarker.
Collapse
Affiliation(s)
- Irene Moreno-Torres
- Neuroimmunology Unit, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
- Autonomous University of Madrid, Madrid, Spain
| | - Coral González-García
- Neuroimmunology Unit, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
| | - Marco Marconi
- Centre for Plant Biotechnology and Genomics, Madrid, Spain
| | - Aranzazu García-Grande
- Flow Cytometry Core Facility, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
| | | | - Víctor Elvira
- IMT Lille Douai & CRIStAL, Univ. de Lille, Douai, France
| | - Elvira Ramil
- Sequencing Core Facility, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
| | - Lucía Campos-Ruíz
- Neuroimmunology Unit, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
| | - Ruth García-Hernández
- Neuroimmunology Unit, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
- Autonomous University of Madrid, Madrid, Spain
| | - Fátima Al-Shahrour
- Bioinformatics Unit of Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Coral Fustero-Torre
- Bioinformatics Unit of Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Alicia Sánchez-Sanz
- Neuroimmunology Unit, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
| | - Antonio García-Merino
- Neuroimmunology Unit, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
- Autonomous University of Madrid, Madrid, Spain
- Neurology Department, Puerta de Hierro University Hospital, Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | - Antonio José Sánchez López
- Neuroimmunology Unit, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
- Biobank, Puerta de Hierro University Hospital-IDIPHISA, Madrid, Spain
| |
Collapse
|
27
|
Koczan D, Fitzner B, Klaus Zettl U, Hecker M. Microarray data of transcriptome shifts in blood cell subsets during S1P receptor modulator therapy. Sci Data 2018; 5:180145. [PMID: 30040082 PMCID: PMC6057441 DOI: 10.1038/sdata.2018.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/21/2018] [Indexed: 12/29/2022] Open
Abstract
Treatment with fingolimod, a sphingosine-1-phosphate (S1P) receptor modulator, prevents the egress of immune cell subpopulations from lymphoid tissues into the blood. We obtained peripheral blood samples from patients with relapsing multiple sclerosis before the initiation of fingolimod therapy, after one day and after 3 months. To investigate the differential expression induced by the drug, five different cell populations were isolated. We then employed 150 Human Transcriptome Arrays (HTA 2.0) interrogating >245,000 protein-coding and >40,000 non-coding transcript isoforms. After 3 months of treatment, CD4+ and CD8+ T-cells showed huge transcriptome shifts, whereas the profiles of B-cells (CD19+) were slightly altered and those of monocytes (CD14+) and natural killer cells (CD56+) remained unaffected. With >6 million probes for exons and splice junctions, our large HTA 2.0 dataset provides a deep view into alternative splicing patterns in immune cell subsets. Our data may also be useful for comparing the effects on gene expression signatures of novel S1P receptor modulators, which are currently tested in clinical trials for other autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Dirk Koczan
- University of Rostock, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany
| | - Brit Fitzner
- Steinbeis Transfer Centre for Proteome Analysis, Schillingallee 70, 18057 Rostock, Germany
| | - Uwe Klaus Zettl
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - Michael Hecker
- University of Rostock, Department of Neurology, Division of Neuroimmunology, Gehlsheimer Str. 20, 18147 Rostock, Germany
| |
Collapse
|
28
|
Chen C, Zhou Y, Wang J, Yan Y, Peng L, Qiu W. Dysregulated MicroRNA Involvement in Multiple Sclerosis by Induction of T Helper 17 Cell Differentiation. Front Immunol 2018; 9:1256. [PMID: 29915595 PMCID: PMC5994557 DOI: 10.3389/fimmu.2018.01256] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. Growing evidence has proven that T helper 17 (Th17) cells are one of the regulators of neuroinflammation mechanisms in MS disease. Researchers have demonstrated that some microRNAs (miRNAs) are associated with disease activity and duration, even with different MS patterns. miRNAs regulate CD4+ T cells to differentiate toward various T cell subtypes including Th17 cells. In this review, we discuss the possible mechanisms of miRNAs in MS pathophysiology by regulating CD4+ T cell differentiation into Th17 cells, and potential miRNA targets for current disease-modifying treatments.
Collapse
Affiliation(s)
- Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yifan Zhou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingqi Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaping Yan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lisheng Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Immune-related miRNA expression patterns in peripheral blood mononuclear cells differ in multiple sclerosis relapse and remission. J Neuroimmunol 2018; 317:67-76. [DOI: 10.1016/j.jneuroim.2018.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 01/21/2023]
|
30
|
Angerer IC, Hecker M, Koczan D, Roch L, Friess J, Rüge A, Fitzner B, Boxberger N, Schröder I, Flechtner K, Thiesen HJ, Winkelmann A, Meister S, Zettl UK. Transcriptome profiling of peripheral blood immune cell populations in multiple sclerosis patients before and during treatment with a sphingosine-1-phosphate receptor modulator. CNS Neurosci Ther 2018; 24:193-201. [PMID: 29314605 DOI: 10.1111/cns.12793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
AIMS Fingolimod is a sphingosine-1-phosphate (S1P) receptor modulator approved for the treatment of the relapsing form of multiple sclerosis (MS). It prevents the egress of lymphocyte subpopulations from lymphoid tissues into the circulation. Here, we explored the broad effects of fingolimod on gene expression in different immune cell subsets. METHODS Utilizing 150 high-resolution microarrays from Affymetrix, we obtained the transcriptome profiles of 5 cell populations, which were separated from the peripheral blood of MS patients prior to and following oral administration of fingolimod. RESULTS After 3 months of treatment, significant transcriptome shifts were seen in CD4+ and CD8+ cells, which is mainly attributable to the selective homing of naive T cells and central memory T cells. Although the number of B cells was greatly reduced in the blood of fingolimod-treated MS patients, the analysis of differential expression in CD19+ cells identified only a small set of 42 genes, which indicated a slightly higher frequency of transitional B cells. The transcriptome signatures of CD14+ monocytes and CD56+ natural killer cells were not affected. CONCLUSION Our study corroborates changes in the composition of circulating immune cells in response to fingolimod and delineates the respective implications at the RNA level. Our data may be valuable for comparing the effects of novel S1P receptor modulating agents, which may be a therapeutic option for patients with secondary progressive MS as well.
Collapse
Affiliation(s)
- Ines C Angerer
- Department of Neurology, Division of Neuroimmunology, University of Rostock, Rostock, Germany
| | - Michael Hecker
- Department of Neurology, Division of Neuroimmunology, University of Rostock, Rostock, Germany.,Steinbeis Transfer Center for Proteome Analysis, Rostock, Germany
| | - Dirk Koczan
- Steinbeis Transfer Center for Proteome Analysis, Rostock, Germany.,Institute of Immunology, University of Rostock, Rostock, Germany
| | - Luisa Roch
- Department of Neurology, Division of Neuroimmunology, University of Rostock, Rostock, Germany
| | - Jörg Friess
- Department of Neurology, Division of Neuroimmunology, University of Rostock, Rostock, Germany
| | - Annelen Rüge
- Department of Neurology, Division of Neuroimmunology, University of Rostock, Rostock, Germany
| | - Brit Fitzner
- Department of Neurology, Division of Neuroimmunology, University of Rostock, Rostock, Germany.,Steinbeis Transfer Center for Proteome Analysis, Rostock, Germany
| | - Nina Boxberger
- Department of Neurology, Division of Neuroimmunology, University of Rostock, Rostock, Germany
| | - Ina Schröder
- Department of Neurology, Division of Neuroimmunology, University of Rostock, Rostock, Germany
| | | | - Hans-Jürgen Thiesen
- Steinbeis Transfer Center for Proteome Analysis, Rostock, Germany.,Institute of Immunology, University of Rostock, Rostock, Germany
| | - Alexander Winkelmann
- Department of Neurology, Division of Neuroimmunology, University of Rostock, Rostock, Germany
| | - Stefanie Meister
- Department of Neurology, Division of Neuroimmunology, University of Rostock, Rostock, Germany
| | - Uwe K Zettl
- Department of Neurology, Division of Neuroimmunology, University of Rostock, Rostock, Germany
| |
Collapse
|
31
|
Boral D, Vishnoi M, Liu HN, Yin W, Sprouse ML, Scamardo A, Hong DS, Tan TZ, Thiery JP, Chang JC, Marchetti D. Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat Commun 2017; 8:196. [PMID: 28775303 PMCID: PMC5543046 DOI: 10.1038/s41467-017-00196-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/09/2017] [Indexed: 12/30/2022] Open
Abstract
The enumeration of EpCAM-positive circulating tumor cells (CTCs) has allowed estimation of overall metastatic burden in breast cancer patients. However, a thorough understanding of CTCs associated with breast cancer brain metastasis (BCBM) is necessary for early identification and evaluation of treatment response to BCBM. Here we report that BCBM CTCs is enriched in a distinct sub-population of cells identifiable by their biomarker expression and mutational content. Deriving from a comprehensive analysis of CTC transcriptomes, we discovered a unique "circulating tumor cell gene signature" that is distinct from primary breast cancer tissues. Further dissection of the circulating tumor cell gene signature identified signaling pathways associated with BCBM CTCs that may have roles in potentiating BCBM. This study proposes CTC biomarkers and signaling pathways implicated in BCBM that may be used either as a screening tool for brain micro-metastasis detection or for making rational treatment decisions and monitoring therapeutic response in patients with BCBM.Characterization of CTCs derived from breast cancer patients with brain metastasis (BCBM) may allow for early diagnosis of brain metastasis and/or help for treatment choice and its efficacy. In this study, the authors identify a unique signature, based on patient-derived CTCs transcriptomes, for BCBM- CTCs that is different from primary tumors.
Collapse
Affiliation(s)
- Debasish Boral
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA
| | - Monika Vishnoi
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA
| | - Haowen N Liu
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA
| | - Wei Yin
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA
| | - Marc L Sprouse
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA
| | - Antonio Scamardo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston,, 77030, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston,, 77030, TX, USA
| | - Tuan Z Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Jean P Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Jenny C Chang
- Institute for Academic Medicine, Houston Methodist Hospital, Houston,, 77030, TX, USA
| | - Dario Marchetti
- Biomarker Research Program Center, Houston Methodist Research Institute, Houston,, 77030, TX, USA.
- Institute for Academic Medicine, Houston Methodist Hospital, Houston,, 77030, TX, USA.
| |
Collapse
|
32
|
Warnke C, Graf J, Hartung HP. Reconstitution of the peripheral immune repertoire following withdrawal of fingolimod. Mult Scler 2017; 23:1176-1178. [PMID: 28749310 DOI: 10.1177/1352458517720045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Clemens Warnke
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Jonas Graf
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|