1
|
Wan C, Liu XQ, Chen M, Ma HH, Wu GL, Qiao LJ, Cai YF, Zhang SJ. Tanshinone IIA ameliorates Aβ transendothelial transportation through SIRT1-mediated endoplasmic reticulum stress. J Transl Med 2023; 21:34. [PMID: 36670462 PMCID: PMC9854034 DOI: 10.1186/s12967-023-03889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The disruption of blood-brain barrier (BBB), predominantly made up by brain microvascular endothelial cells (BMECs), is one of the characteristics of Alzheimer's disease (AD). Thus, improving BMEC function may be beneficial for AD treatment. Tanshinone IIA (Tan IIA) has been proved to ameliorate the cognitive dysfunction of AD. Herein, we explored how Tan IIA affected the function of BMECs in AD. METHODS Aβ1-42-treated brain-derived endothelium cells.3 (bEnd.3 cells) was employed for in vitro experiments. And we performed molecular docking and qPCR to determine the targeting molecule of Tan IIA on Sirtuins family. The APPswe/PSdE9 (APP/PS1) mice were applied to perform the in vivo experiments. Following the behavioral tests, protein expression was determined through western blot and immunofluorescence. The activities of oxidative stress-related enzymes were analyzed by biochemically kits. Nissl staining and thioflavin T staining were conducted to reflect the neurodegeneration and Aβ deposition respectively. RESULTS Molecular docking and qPCR results showed that Tan IIA mainly acted on Sirtuin1 (SIRT1) in Sirtuins family. The inhibitor of SIRT1 (EX527) was employed to further substantiate that Tan IIA could attenuate SIRT1-mediated endoplasmic reticulum stress (ER stress) in BMECs. Behavioral tests suggested that Tan IIA could improve the cognitive deficits in APP/PS1 mice. Tan IIA administration increased SIRT1 expression and alleviated ER stress in APP/PS1 mice. In addition, LRP1 expression was increased and RAGE expression was decreased after Tan IIA administration in both animals and cells. CONCLUSION Tan IIA could promote Aβ transportation by alleviating SIRT1-mediated ER stress in BMECs, which ameliorated cognitive deficits in APP/PS1 mice.
Collapse
Affiliation(s)
- Can Wan
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China ,grid.9227.e0000000119573309Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Xiao-Qi Liu
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Mei Chen
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Hui-Han Ma
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Guang-Liang Wu
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Li-Jun Qiao
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Ye-Feng Cai
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| | - Shi-Jie Zhang
- grid.411866.c0000 0000 8848 7685Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405 Guangzhou, China ,grid.413402.00000 0004 6068 0570Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, 510120 Guangzhou, China
| |
Collapse
|
2
|
Al Madhoun A, Haddad D, Nizam R, Miranda L, Kochumon S, Thomas R, Thanaraj TA, Ahmad R, Bitar MS, Al-Mulla F. Caveolin-1 rs1997623 Single Nucleotide Polymorphism Creates a New Binding Site for the Early B-Cell Factor 1 That Instigates Adipose Tissue CAV1 Protein Overexpression. Cells 2022; 11:3937. [PMID: 36497195 PMCID: PMC9738758 DOI: 10.3390/cells11233937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Caveolin-1 (CAV1) is implicated in the pathophysiology of diabetes and obesity. Previously, we demonstrated an association between the CAV1 rs1997623 C > A variant and metabolic syndrome (MetS). Here, we decipher the functional role of rs1997623 in CAV1 gene regulation. A cohort of 38 patients participated in this study. The quantitative MetS scores (siMS) of the participants were computed. CAV1 transcript and protein expression were tested in subcutaneous adipose tissue using RT-PCR and immunohistochemistry. Chromatin immunoprecipitation assays were performed using primary preadipocytes isolated from individuals with different CAV1 rs1997623 genotypes (AA, AC, and CC). The regulatory region flanking the variant was cloned into a luciferase reporter plasmid and expressed in human preadipocytes. Additional knockdown and overexpression assays were carried out. We show a significant correlation between siMS and CAV1 transcript levels and protein levels in human adipose tissue collected from an Arab cohort. We found that the CAV1 rs1997623 A allele generates a transcriptionally active locus and a new transcription factor binding site for early B-cell factor 1 (EBF1), which enhanced CAV1 expression. Our in vivo and in vitro combined study implicates, for the first time, EBF1 in regulating CAV1 expression in individuals harboring the rs1997623 C > A variant.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Dania Haddad
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Lavina Miranda
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Shihab Kochumon
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Reeby Thomas
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | | | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Milad S. Bitar
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Jabriya 46300, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| |
Collapse
|
3
|
Radmehr V, Ahangarpour A, Mard SA, Khorsandi L. Crocin attenuates endoplasmic reticulum stress in methylglyoxal-induced diabetic nephropathy in male mice: MicroRNAs alterations and glyoxalase 1-Nrf2 signaling pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1341-1348. [PMID: 36474578 PMCID: PMC9699949 DOI: 10.22038/ijbms.2022.65824.14479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/26/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Accumulation of methylglyoxal (MGO) occurs in diabetes. MicroRNA-204 is an important intracellular marker in the diagnosis of endoplasmic reticulum stress. Crocin (Crn) has beneficial effects for diabetes, but the effect of Crn on MGO-induced diabetic nephropathy has not been investigated. The current research evaluated the effects of Crn and metformin (MET) on diabetic nephropathy induced by MGO in male mice. MATERIALS AND METHODS In this experimental study, 70 male NMRI mice were randomly divided into 7 groups: control, MGO (600 mg/Kg/d), MGO+Crn (15, 30, and 60 mg/kg/d), MGO+MET (150 mg/kg/d), and Crn60 (60 mg/kg/d). Methylglyoxal was gavaged for four weeks. After proving hyperglycemia, Cr and MET were administered orally in the last two weeks. Biochemical and antioxidant evaluations, microRNA expression, and histological evaluation were assessed. RESULTS The fasting blood glucose, urine albumin, blood urea nitrogen, plasma creatinine, malondialdehyde, Nrf2, miR-204, and miR-192 expression increased in the MGO group. These variables decreased in Crn-treated animals. The decreased levels of superoxide dismutase, catalase, glyoxalase 1, Glutathione, and miR-29a expression in the MGO group improved in the diabetic-treated mice. Histological alterations such as red blood cell accumulation, inflammation, glomerulus diameter changes, and proximal cell damage were also observed. CONCLUSION Our study indicated that Crn and MET attenuated renal damage by inhibiting endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Vahid Radmehr
- Student Research Committee, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Medical Basic Sciences Research Institute, Physiology research center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Corresponding author: Akram Ahangarpour. Medical Basic Sciences Research Institute, Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyyed Ali Mard
- Medical Basic Sciences Research Institute, Physiology research center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Alimentary tract research center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, School of Medicine, Medical Basic Sciences Research Institute, Cellular, and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Radmehr V, Ahangarpour A, Mard SA, Khorsandi L. Crocin ameliorates MicroRNAs-associated ER stress in type 2 diabetes induced by methylglyoxal. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:179-186. [PMID: 35655590 PMCID: PMC9124542 DOI: 10.22038/ijbms.2022.60493.13407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Methylglyoxal (MG) provokes endoplasmic reticulum (ER) stress in β-cells and triggers pancreatic β-cell dysfunction. Crocin has anti-diabetic properties. The present study investigated whether crocin prevented pancreas damages induced by MG. MATERIALS AND METHODS Diabetes was induced by MG administration (600 mg/kg/day, PO). On the fourteenth day, after proving hyperglycemia, crocin (15, 30, and 60 mg/kg) and metformin (MT) (150 mg/kg) were used for detoxification of MG until the end of the experiment. The animals were divided into 6 groups: 1) control, 2) diabetic by MG, 3) MG + crocin 15 mg/kg, 4) MG + crocin 30 mg/kg, 5) MG + crocin 60 mg/kg, and 6) MG + MT. The data were analyzed by one-way analysis of variance and significant differences were compared by Tukey and Bonferroni tests (P<0.05). Biochemical assays, antioxidant evaluation, and microRNAs expression associated with ER stress were assessed. RESULTS MG induced hyperglycemia, insulin resistance, and dyslipidemia (P<0.001). Crocin and MT significantly ameliorated β-cell function through reduction of fasting blood glucose, malondialdehyde levels (P<0.001), and significant elevation of anti-oxidant enzyme activity accompanied by regulation of glutathione and glyoxalase1-Nrf2 in MG induced diabetic mice. Crocin and MT significantly down-regulated microRNAs 204, 216b, 192, and 29a expression (P<0.001). Crocin (60 mg/kg) (P<0.01) and MT (P<0.001) could improve diameter of pancreatic islets in MG treated mice. CONCLUSION Crocin prevents the progression of diabetes through modulating ER stress-associated microRNAs and GLO1 activity with the helpful effects of glutathione and Nrf2.
Collapse
Affiliation(s)
- Vahid Radmehr
- Student Research Committee, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Medical Basic Sciences Research Institute, Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Corresponding author: Akram Ahangarpour. Medical Basic Sciences Research Institute, Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Tel: +98-61-357-15794;
| | - Seyyed Ali Mard
- Medical Basic Sciences Research Institute, Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, School of Medicine, Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Begum MK, Konja D, Singh S, Chlopicki S, Wang Y. Endothelial SIRT1 as a Target for the Prevention of Arterial Aging: Promises and Challenges. J Cardiovasc Pharmacol 2021; 78:S63-S77. [PMID: 34840264 DOI: 10.1097/fjc.0000000000001154] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT SIRT1, a member of the sirtuin family of longevity regulators, possesses potent activities preventing vascular aging. The expression and function of SIRT1 in endothelial cells are downregulated with age, in turn causing early vascular aging and predisposing various vascular abnormalities. Overexpression of SIRT1 in the vascular endothelium prevents aging-associated endothelial dysfunction and senescence, thus the development of hypertension and atherosclerosis. Numerous efforts have been directed to increase SIRT1 signaling as a potential strategy for different aging-associated diseases. However, the complex mechanisms underlying the regulation of SIRT1 have posed a significant challenge toward the design of specific and effective therapeutics. This review aimed to provide a summary on the regulation and function of SIRT1 in the vascular endothelium and to discuss the different approaches targeting this molecule for the prevention and treatment of age-related cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Musammat Kulsuma Begum
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Daniels Konja
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Sandeep Singh
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; and
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Schinzari F, Tesauro M, Cardillo C. Vasodilator Dysfunction in Human Obesity: Established and Emerging Mechanisms. J Cardiovasc Pharmacol 2021; 78:S40-S52. [PMID: 34840258 DOI: 10.1097/fjc.0000000000001108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/30/2021] [Indexed: 12/25/2022]
Abstract
ABSTRACT Human obesity is associated with insulin resistance and often results in a number of metabolic abnormalities and cardiovascular complications. Over the past decades, substantial advances in the understanding of the cellular and molecular pathophysiological pathways underlying the obesity-related vascular dysfunction have facilitated better identification of several players participating in this abnormality. However, the complex interplay between the disparate mechanisms involved has not yet been fully elucidated. Moreover, in medical practice, the clinical syndromes stemming from obesity-related vascular dysfunction still carry a substantial burden of morbidity and mortality; thus, early identification and personalized clinical management seem of the essence. Here, we will initially describe the alterations of intravascular homeostatic mechanisms occurring in arteries of obese patients. Then, we will briefly enumerate those recognized causative factors of obesity-related vasodilator dysfunction, such as vascular insulin resistance, lipotoxicity, visceral adipose tissue expansion, and perivascular adipose tissue abnormalities; next, we will discuss in greater detail some emerging pathophysiological mechanisms, including skeletal muscle inflammation, signals from gut microbiome, and the role of extracellular vesicles and microRNAs. Finally, it will touch on some gaps in knowledge, as well as some current acquisitions for specific treatment regimens, such as glucagon-like peptide-1 enhancers and sodium-glucose transporter2 inhibitors, that could arrest or slow the progression of this abnormality full of unwanted consequences.
Collapse
Affiliation(s)
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy; and
| | - Carmine Cardillo
- Department of Aging, Policlinico A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University, Rome, Italy
| |
Collapse
|
7
|
Kim T, Croce CM. MicroRNA and ER stress in cancer. Semin Cancer Biol 2021; 75:3-14. [PMID: 33422566 DOI: 10.1016/j.semcancer.2020.12.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The development of biological technologies in genomics, proteomics, and bioinformatics has led to the identification and characterization of the complete set of coding genes and their roles in various cellular pathways in cancer. Nevertheless, the cellular pathways have not been fully figured out like a jigsaw puzzle with missing pieces. The discovery of noncoding RNAs including microRNAs (miRNAs) has provided the missing pieces of the cellular pathways. Likewise, miRNAs have settled many questions of inexplicable patches in the endoplasmic reticulum (ER) stress pathways. The ER stress-caused pathways typified by the unfolded protein response (UPR) are pivotal processes for cellular homeostasis and survival, rectifying uncontrolled proteostasis and determining the cell fate. Although various factors and pathways have been studied and characterized, the understanding of the ER stress requires more wedges to fill the cracks of knowledge about the ER stress pathways. Moreover, the roles of the ER stress and UPR are still controversial in cancer despite their strong potential to promote cancer. The noncoding RNAs, in particular, miRNAs aid in a better understanding of the ER stress and its role in cancer. In this review, miRNAs that are the more-investigated subtype of noncoding RNAs are focused on the interpretation of the ER stress in cancer, following the introduction of miRNA and ER stress.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518055, China; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Abstract
Sirtuin1 is a nutrient-sensitive class III histone deacetylase which is a well-known regulator of organismal lifespan. It has been extensively studied for its role in metabolic regulation as well. Along with its involvement in ageing and metabolism, Sirtuin1 directly deacetylates many critical proteins controlling cardiovascular pathophysiology. Studies using conditional expression and deletion of Sirtuin1 have revealed that it functions in a highly tissue/organ-specific manner. In the vasculature, Sirtuin1 controls endothelial homoeostasis by governing the expression of inflammatory mediators, oxidants and essential transcription factors. Adding to this complexity, Sirtuin1 expression and/or function is also governed by some of these target proteins. Therefore, the importance of better understanding the organ and tissue specificity of Sirtuin1 is highly desirable. Considering the huge volume of research done in this field, this review focuses on Sirtuin1 targets regulating vascular endothelial function. Here, we summarize the discovery of Sirtuin1 as a transcription controller and the further identification of direct target proteins involved in the vascular physiology. Overall, this review presents a holistic picture of the complex cross-talk involved in the molecular regulation of vascular physiology by Sirtuin1.
Collapse
Affiliation(s)
- Jitendra Kumar
- François M. Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Santosh Kumar
- François M. Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
9
|
Zhang Y, Yuan H, Peng M, Hu Z, Fan Z, Xu J, He L, Wang Y, Wang W, Su Y, Liu C, Zhang H, Zhao K. Folic acid deficiency damages male reproduction via endoplasmic reticulum stress-associated PERK pathway induced by Caveolin-1 in mice. Syst Biol Reprod Med 2021; 67:383-394. [PMID: 34474604 DOI: 10.1080/19396368.2021.1954724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Folic acid is critical to maintaining normal male reproductive function. Endoplasmic reticulum (ER) stress plays a crucial role in folic acid deficiency. Studies have shown that Caveolin-1 (Cav-1) is involved in ER stress, but the specific mechanism in male reproduction is still unclear. This study aimed to investigate the effects of folic acid deficiency on spermatogenesis and elucidate the underlying mechanisms. C57BL/6 mice fed with folic acid deficiency induced diet(0.3 mg/kg) were used. A significant decrease in the sperm concentration in the folic acid deficiency group was observed. Meanwhile, folic acid deficiency decreased Cav-1 expression in the testis tissue and increased endoplasmic reticulum stress-related PERK, eIF2α, ATF4, CHOP gene expression. Our results suggest that folic acid deficiency can affect male reproduction through the Cav-1-PERK-eIFα-ATF4-CHOP pathway.Abbreviations: ATF4: activating transcription factor 4; Ca2+: calcium ion; Cav-1: Caveolin-1; CCK-8: cell counting kit-8; CHOP: CCAAT-enhancer-binding protein homologous protein; DNA: Deoxyribonucleic acid; DSB: double strand breakage; eIF2α: eukaryotic Initiation Factor 2 alpha; ER: endoplasmic reticulum; FD: folic acid deficiency; FITC: fluorescein isothiocyanate; HE: hematoxylin and eosin; H3K4me3: histone H3 lysine 4 trimethylation; PERK: protein kinase RNA-like endoplasmic reticulum kinase; PI: propidium iodide; RT-qPCR: quantitative reverse transcription PCR; TUNEL: TdT mediated dUTP Nick End Labeling.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfang Yuan
- Department of Obstetrics And Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meilin Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liting He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongfeng Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Liu J, Liu Y, Wang F, Liang M. miR-204: Molecular Regulation and Role in Cardiovascular and Renal Diseases. Hypertension 2021; 78:270-281. [PMID: 34176282 DOI: 10.1161/hypertensionaha.121.14536] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of microRNA research has evolved from studies aiming to gauge the importance of microRNAs to those focusing on understanding a subset of specific microRNAs that have emerged as potent regulators of molecular systems and pathophysiological conditions. In this article, we review the molecular features and regulation of miR-204 and the growing body of evidence for an important role of miR-204 in the regulation of cardiovascular and renal physiology and pathophysiological processes. miR-204 exhibits a highly tissue-specific expression pattern, and miR-204 abundance is regulated by several transcriptional and posttranscriptional mechanisms. Strong evidence supports a role for miR-204 in attenuating pulmonary arterial hypertension and hypertensive and diabetic renal injury while promoting hypertension and endothelial dysfunction in a wide range of model systems. miR-204 may influence these disease processes by targeting several biological pathways in a tissue-specific manner. miR-204 is dysregulated in patients with cardiovascular and renal diseases. The unequivocal functional roles and clear clinical relevance indicate that miR-204 is a high-value microRNA in cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Jing Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| | - Yong Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| | - Feng Wang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| | - Mingyu Liang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
11
|
Ait-Aissa K, Nguyen QM, Gabani M, Kassan A, Kumar S, Choi SK, Gonzalez AA, Khataei T, Sahyoun AM, Chen C, Kassan M. MicroRNAs and obesity-induced endothelial dysfunction: key paradigms in molecular therapy. Cardiovasc Diabetol 2020; 19:136. [PMID: 32907629 PMCID: PMC7488343 DOI: 10.1186/s12933-020-01107-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/28/2020] [Indexed: 01/17/2023] Open
Abstract
The endothelium plays a pivotal role in maintaining vascular health. Obesity is a global epidemic that has seen dramatic increases in both adult and pediatric populations. Obesity perturbs the integrity of normal endothelium, leading to endothelial dysfunction which predisposes the patient to cardiovascular diseases. MicroRNAs (miRNAs) are short, single-stranded, non-coding RNA molecules that play important roles in a variety of cellular processes such as differentiation, proliferation, apoptosis, and stress response; their alteration contributes to the development of many pathologies including obesity. Mediators of obesity-induced endothelial dysfunction include altered endothelial nitric oxide synthase (eNOS), Sirtuin 1 (SIRT1), oxidative stress, autophagy machinery and endoplasmic reticulum (ER) stress. All of these factors have been shown to be either directly or indirectly caused by gene regulatory mechanisms of miRNAs. In this review, we aim to provide a comprehensive description of the therapeutic potential of miRNAs to treat obesity-induced endothelial dysfunction. This may lead to the identification of new targets for interventions that may prevent or delay the development of obesity-related cardiovascular disease.
Collapse
Affiliation(s)
- Karima Ait-Aissa
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Quynh My Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, USA
| | - Mohanad Gabani
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Adam Kassan
- Department of Pharmaceutical Sciences, School of Pharmacy, West Coast University, Los Angeles, USA
| | - Santosh Kumar
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Soo-Kyoung Choi
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia, Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Tahsin Khataei
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Amal M Sahyoun
- Department of Food Science and Agriculture Chemistry, McGill University, Montreal, QC, Canada
| | - Cheng Chen
- Department of emergency and Critical Care, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Modar Kassan
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
12
|
Philips BJ, Kumar A, Burki S, Ryan JP, Noda K, D'Cunha J. Triptolide-induced apoptosis in non-small cell lung cancer via a novel miR204-5p/Caveolin-1/Akt-mediated pathway. Oncotarget 2020; 11:2793-2806. [PMID: 32733649 PMCID: PMC7367654 DOI: 10.18632/oncotarget.27672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most prevalent malignancies world-wide with non-small cell lung cancer (NSCLC) comprising nearly 80% of all cases. Unfortunately, many lung cancer patients are diagnosed at advanced stages of the disease with an associated poor prognosis. Recently, the Chinese herb root extract Triptolide/Minnelide (TL) has shown significant promise as a therapeutic agent for NSCLC treatment both in vitro and in vivo. The aim of this study was to investigate the underlying mechanism(s) of action regarding TL-induced cytotoxicity in NSCLC. We demonstrate that triptolide treatment of A549 and H460 NSCLC cells decreases Caveolin-1 (CAV-1) mRNA/protein expression, resulting in activation of the Akt/Bcl-2-mediated mitochondrial apoptosis pathway. CAV-1 down-regulation was triggered by Micro-RNA 204-5p (miR204-5p) up-regulation and could be significantly blocked by pre-treatment with both Sirt-1/Sirt-3 specific siRNA and SIRT-1/SIRT-3 enzyme inhibitors, EX-527 and nicotinamide. Overall, our results provide evidence for a novel mechanism by which TL exerts its cytotoxic effects on NSCLC via CAV-1 down-regulation. Furthermore, these findings demonstrate a pivotal role for TL induction of the Akt/Bax pathway in apoptosis of human lung cancer.
Collapse
Affiliation(s)
- Brian J Philips
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ajay Kumar
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Burki
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - John P Ryan
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kentaro Noda
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan D'Cunha
- Department of Cardiothoracic Surgery, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
13
|
Kang K, Niu B, Wu C, Hua J, Wu J. The construction and application of lentiviral overexpression vector of goat miR-204 in testis. Res Vet Sci 2020; 130:52-58. [PMID: 32145457 DOI: 10.1016/j.rvsc.2020.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 10/25/2022]
Abstract
The miRNA gene in DNA is first transcribed to Pri-miRNA, and then processed to Pre-miRNA, a stem-loop RNA segment (precursor) and further to miRNA which binds to mRNA by Dicer protein complex. It was confirmed that goat miR-204 could regulate the expressions of Sirt1 and the SSCs' (Spermatogonial Stem Cells) important genes Oct4 and Plzf, and inhibit the proliferation of dairy goat SSCs in vitro in our previous work. So, the research in vivo was needed next. In this study, the recombinant lentivirus vector pCDH-CMV-mir204-EF1-GreenPuro containing a goat chi-pri-mir-204 gene DNA segment was structured, and transfected into 293 T cells for packaged lentivirus, which then were injected into mouse seminiferous tubules. After 7 days, the goat miR-204 and the related genes such as Sirt1 and Plzf were detected in the mouse testis. This work laid a good foundation for further study of miR-204 biological function in vivo.
Collapse
Affiliation(s)
- Kai Kang
- College of Agriculture, Guangdong Ocean University, Zhanjiang, China
| | - Bowen Niu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Chongyang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jiang Wu
- College of Agriculture, Guangdong Ocean University, Zhanjiang, China; College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
14
|
Sirtuins family as a target in endothelial cell dysfunction: implications for vascular ageing. Biogerontology 2020; 21:495-516. [PMID: 32285331 DOI: 10.1007/s10522-020-09873-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
The vascular endothelium is a protective barrier between the bloodstream and the vasculature that may be disrupted by different factors such as the presence of diseased states. Diseases like diabetes and obesity pose a great risk toward endothelial cell inflammation and oxidative stress, leading to endothelial cell dysfunction and thereby cardiovascular complications such as atherosclerosis. Sirtuins are NAD+-dependent histone deacetylases that are implicated in the pathophysiology of cardiovascular diseases, and they have been identified to be important regulators of endothelial cell function. A handful of recent studies suggest that disbalance in the regulation of endothelial sirtuins, mainly sirtuin 1 (SIRT1), contributes to endothelial cell dysfunction. Herein, we summarize how SIRT1 and other sirtuins may contribute to endothelial cell function and how presence of diseased conditions may alter their expressions to cause endothelial dysfunction. Moreover, we discuss how the beneficial effects of exercise on the endothelium are dependent on SIRT1. These mainly include regulation of signaling pathways related to endothelial nitric oxide synthase phosphorylation and nitric oxide production, mitochondrial biogenesis and mitochondria-mediated apoptotic pathways, oxidative stress and inflammatory pathways. Sirtuins as modulators of the adverse conditions in the endothelium hold a promising therapeutic potential for health conditions related to endothelial dysfunction and vascular ageing.
Collapse
|
15
|
Yan W, Long P, Wei D, Yan W, Zheng X, Chen G, Wang J, Zhang Z, Chen T, Chen M. Protection of retinal function and morphology in MNU-induced retinitis pigmentosa rats by ALDH2: an in-vivo study. BMC Ophthalmol 2020; 20:55. [PMID: 32070320 PMCID: PMC7027227 DOI: 10.1186/s12886-020-1330-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 01/24/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is a kind of inherited retinal degenerative diseases characterized by the progressive loss of photoreceptors. RP has been a conundrum without satisfactory countermeasures in clinic until now. Acetaldehyde dehydrogenase 2 (ALDH2), a major enzyme involved in aldehyde detoxification, has been demonstrated to be beneficial for a growing number of human diseases, such as cardiovascular dysfunction, diabetes mellitus and neurodegeneration. However, its protective effect against RP remains unknown. Our study explored the impact of ALDH2 on retinal function and structure in N-methyl-N-nitrosourea (MNU)-induced RP rats. METHODS Rats were gavaged with 5 mg/kg Alda-1, an ALDH2 agonist, 5 days before and 3 days after MNU administration. Assessments of retinal function and morphology as well as measurement of specific proteins expression level were conducted. RESULTS Electroretinogram recordings showed that Alda-1 administration alleviated the decrease in amplitude caused by MNU, rendering protection of retinal function. Mitigation of photoreceptor degeneration in MNU-treated retinas was observed by optical coherence tomography and retinal histological examination. In addition, Western blotting results revealed that ALDH2 protein expression level was upregulatedwith increased expression of SIRT1 protein after the Alda-1 intervention. Besides, endoplasmic reticulum stress (ERS) was reduced according to the significant downregulation of GRP78 protein, while apoptosis was ameliorated as shown by the decreased expression of PARP1 protein. CONCLUSIONS Together, our data demonstrated that ALDH2 could provide preservation of retinal function and morphology against MNU-induced RP, with the underlying mechanism at least partly related to the modulation of SIRT1, ERS and apoptosis.
Collapse
Affiliation(s)
- Weiming Yan
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou, 350025, China
- Center of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Pan Long
- Department of Ophthalmology, The West General Hospital of Chinese PLA, Chendu, 610083, China
| | - Dongyu Wei
- Center of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Weihua Yan
- Tong'an No.1 High School of Fujian Province, Xiamen, 361100, China
| | - Xiangrong Zheng
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou, 350025, China
| | - Guocang Chen
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou, 350025, China
| | - Jiancong Wang
- BeiJing HealthOLight Technology Co. Ltd, Beijing, 10010, China
| | - Zuoming Zhang
- Center of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Tao Chen
- Center of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Meizhu Chen
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou, 350025, China.
| |
Collapse
|
16
|
Comparison of Cardiac miRNA Transcriptomes Induced by Diabetes and Rapamycin Treatment and Identification of a Rapamycin-Associated Cardiac MicroRNA Signature. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8364608. [PMID: 30647817 PMCID: PMC6311877 DOI: 10.1155/2018/8364608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/16/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023]
Abstract
Rapamycin (Rap), an inhibitor of mTORC1, reduces obesity and improves lifespan in mice. However, hyperglycemia and lipid disorders are adverse side effects in patients receiving Rap treatment. We previously reported that diabetes induces pansuppression of cardiac cytokines in Zucker obese rats (ZO-C). Rap treatment (750 μg/kg/day for 12 weeks) reduced their obesity and cardiac fibrosis significantly; however, it increased their hyperglycemia and did not improve their cardiac diastolic parameters. Moreover, Rap treatment of healthy Zucker lean rats (ZL-C) induced cardiac fibrosis. Rap-induced changes in ZL-C's cardiac cytokine profile shared similarities with that of diabetes-induced ZO-C. Therefore, we hypothesized that the cardiac microRNA transcriptome induced by diabetes and Rap treatment could share similarities. Here, we compared the cardiac miRNA transcriptome of ZL-C to ZO-C, Rap-treated ZL (ZL-Rap), and ZO (ZO-Rap). We report that 80% of diabetes-induced miRNA transcriptome (40 differentially expressed miRNAs by minimum 1.5-fold in ZO-C versus ZL-C; p ≤ 0.05) is similar to 47% of Rap-induced miRNA transcriptome in ZL (68 differentially expressed miRNAs by minimum 1.5-fold in ZL-Rap versus ZL-C; p ≤ 0.05). This remarkable similarity between diabetes-induced and Rap-induced cardiac microRNA transcriptome underscores the role of miRNAs in Rap-induced insulin resistance. We also show that Rap treatment altered the expression of the same 17 miRNAs in ZL and ZO hearts indicating that these 17 miRNAs comprise a unique Rap-induced cardiac miRNA signature. Interestingly, only four miRNAs were significantly differentially expressed between ZO-C and ZO-Rap, indicating that, unlike the nondiabetic heart, Rap did not substantially change the miRNA transcriptome in the diabetic heart. In silico analyses showed that (a) mRNA-miRNA interactions exist between differentially expressed cardiac cytokines and miRNAs, (b) human orthologs of rat miRNAs that are strongly correlated with cardiac fibrosis may modulate profibrotic TGF-β signaling, and (c) changes in miRNA transcriptome caused by diabetes or Rap treatment include cardioprotective miRNAs indicating a concurrent activation of an adaptive mechanism to protect the heart in conditions that exacerbate diabetes.
Collapse
|
17
|
Chen Z, Nie SD, Qu ML, Zhou D, Wu LY, Shi XJ, Ma LR, Li X, Zhou SL, Wang S, Wu J. The autophagic degradation of Cav-1 contributes to PA-induced apoptosis and inflammation of astrocytes. Cell Death Dis 2018; 9:771. [PMID: 29991726 PMCID: PMC6039485 DOI: 10.1038/s41419-018-0795-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/23/2022]
Abstract
The accumulation of palmitic acid (PA), implicated in obesity, can induce apoptotic cell death and inflammation of astrocytes. Caveolin-1 (Cav-1), an essential protein for astrocytes survival, can be degraded by autophagy, which is a double-edge sword that can either promote cell survival or cell death. The aim of this study was to delineate whether the autophagic degradation of Cav-1 is involved in PA-induced apoptosis and inflammation in hippocampal astrocytes. In this study we found that: (1) PA caused apoptotic death and inflammation by autophagic induction; (2) Cav-1 was degraded by PA-induced autophagy and PA induced autophagy in a Cav-1-independent manner; (3) the degradation of Cav-1 was responsible for PA-induced autophagy-dependent apoptotic cell death and inflammation; (4) chronic high-fat diet (HFD) induced Cav-1 degradation, apoptosis, autophagy, and inflammation in the hippocampal astrocytes of rats. Our results suggest that the autophagic degradation of Cav-1 contributes to PA-induced apoptosis and inflammation of astrocytes. Therefore, Cav-1 may be a potential therapeutic target for central nervous system injuries caused by PA accumulation.
Collapse
Affiliation(s)
- Zi Chen
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Sheng-Dan Nie
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Min-Li Qu
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Di Zhou
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Liang-Yan Wu
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Xia-Jie Shi
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Ling-Ran Ma
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xin Li
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Shan-Lei Zhou
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Shan Wang
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China.
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China.
| | - Jing Wu
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China.
| |
Collapse
|
18
|
Zhang SJ, Xu TT, Li L, Xu YM, Qu ZL, Wang XC, Huang SQ, Luo Y, Luo NC, Lu P, Shi YF, Yang X, Wang Q. Bushen-Yizhi formula ameliorates cognitive dysfunction through SIRT1/ER stress pathway in SAMP8 mice. Oncotarget 2018; 8:49338-49350. [PMID: 28521305 PMCID: PMC5564772 DOI: 10.18632/oncotarget.17638] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/25/2017] [Indexed: 12/22/2022] Open
Abstract
The Chinese formula Bushen-Yizhi (BSYZ) has been reported to ameliorate cognitive dysfunction. However the mechanism is still unclear. In this study, we employ an aging model, SAMP8 mice, to explore whether BSYZ could protect dementia through SIRT1/endoplasmic reticulum (ER) stress pathway. Morris water maze and the fearing condition test results show that oral administration of BSYZ (1.46 g/kg/d, 2.92 g/kg/d and 5.84 g/kg/d) and donepezil (3 mg/kg/d) shorten the escape latency, increase the crossing times of the original position of the platform and the time spent in the target quadrant, and increase the freezing time. BSYZ decreases the activity of acetylcholinesterase (AChE), and increases the activity of choline acetyltransferase (ChAT) and the concentration of acetylcholine (Ach) in both hippocampus and cortex. In addition, western blot results (Bcl-2, Bax and Caspase-3) and TUNEL staining show that BSYZ prevents neuron from apoptosis, and elevates the expression of neurotrophic factors, including nerve growth factor (NGF), postsynapticdensity 95 (PSD95) and synaptophysin (SYN), in both hippocampus and cortex. BSYZ also increases the protein expression of SIRT1 and alleviates ER stress-associated proteins (PERK, IRE-1α, eIF-2α, BIP, PDI and CHOP). These results indicate that the neuroprotective mechanism of BSYZ might be related with SIRT1/ER stress pathway.
Collapse
Affiliation(s)
- Shi-Jie Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ting-Ting Xu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lin Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu-Min Xu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zi-Ling Qu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xin-Chen Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shui-Qing Huang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yi Luo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Na-Chuan Luo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ping Lu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ya-Fei Shi
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xin Yang
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
19
|
Endoplasmic Reticulum Stress, a Driver or an Innocent Bystander in Endothelial Dysfunction Associated with Hypertension? Curr Hypertens Rep 2018; 19:64. [PMID: 28717886 DOI: 10.1007/s11906-017-0762-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Hypertension (htn) is a polygenic disorder that effects up to one third of the US population. The endoplasmic reticulum (ER) stress response is a homeostatic pathway that regulates membrane structure, protein folding, and secretory function. Emerging evidence suggests that ER stress may induce endothelial dysfunction; however, it is unclear whether ER stress-associated endothelial dysfunction modulates htn. RECENT FINDINGS Exogenous and endogenous molecules activate ER stress in the endothelium, and ER stress mediates some forms of neurogenic htn, such as angiotensin II-dependent htn. Human studies suggest that ER stress induces endothelial dysfunction, though direct evidence that ER stress augments blood pressure in humans is lacking. However, animal and cellular models demonstrate direct evidence that ER stress influences htn. ER stress is likely one of many players in a complex interplay among molecular pathways that influence the expression of htn. Targeted activation of specific ER stress pathways may provide novel therapeutic opportunities.
Collapse
|
20
|
Kassan M, Vikram A, Li Q, Kim YR, Kumar S, Gabani M, Liu J, Jacobs JS, Irani K. MicroRNA-204 promotes vascular endoplasmic reticulum stress and endothelial dysfunction by targeting Sirtuin1. Sci Rep 2017; 7:9308. [PMID: 28839162 PMCID: PMC5571183 DOI: 10.1038/s41598-017-06721-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/15/2017] [Indexed: 01/03/2023] Open
Abstract
Endoplasmic reticulum (ER) stress has been implicated in vascular endothelial dysfunction of obesity, diabetes, and hypertension. MicroRNAs play an important role in regulating ER stress. Here we show that microRNA-204 (miR-204) promotes vascular ER stress and endothelial dysfunction by targeting the Sirtuin1 (Sirt1) lysine deacetylase. Pharmacologic ER stress induced by tunicamycin upregulates miR-204 and downregulates Sirt1 in the vascular wall/endothelium in vivo and in endothelial cells in vitro. Inhibition of miR-204 protects against tunicamycin-induced vascular/endothelial ER stress, associated impairment of endothelium-dependent vasorelaxation, and preserves endothelial Sirt1. A miR-204 mimic leads to ER stress and downregulates Sirt1 in endothelial cells. Knockdown of Sirt1 in endothelial cells, and conditional deletion of endothelial Sirt1 in mice, promotes ER stress via upregulation of miR-204, whereas overexpression of Sirt1 in endothelial cells suppresses miR-204-induced ER stress. Furthermore, increase in vascular reactive oxygen species induced by ER stress is mitigated by by miR-204 inhibition. Finally, nutritional stress in the form of a Western diet promotes vascular ER stress through miR-204. These findings show that miR-204 is obligatory for vascular ER stress and ER stress-induced vascular endothelial dysfunction, and that miR-204 promotes vascular ER stress via downregulation of Sirt1.
Collapse
Affiliation(s)
- Modar Kassan
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, IA City, IA, 52242, USA.
| | - Ajit Vikram
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, IA City, IA, 52242, USA
| | - Qiuxia Li
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, IA City, IA, 52242, USA
| | - Young-Rae Kim
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, IA City, IA, 52242, USA
| | - Santosh Kumar
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, IA City, IA, 52242, USA
| | - Mohanad Gabani
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, IA City, IA, 52242, USA
| | - Jing Liu
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, IA City, IA, 52242, USA
| | - Julia S Jacobs
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, IA City, IA, 52242, USA
| | - Kaikobad Irani
- Cardiovascular Division, Department of Medicine, and Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, IA City, IA, 52242, USA.
| |
Collapse
|