1
|
Saggiomo SL, Peigneur S, Tytgat J, Daly NL, Wilson DT. Interrogating stonefish venom: small molecules present in envenomation caused by Synanceia spp. FEBS Open Bio 2025; 15:399-414. [PMID: 39563477 PMCID: PMC11891765 DOI: 10.1002/2211-5463.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
The stonefish Synanceia verrucosa and Synanceia horrida are arguably the most venomous fish species on earth and the culprits of severe stings in humans globally. Investigation into the venoms of these two species has mainly focused on protein composition, in an attempt to identify the most medically relevant proteins, such as the lethal verrucotoxin and stonustoxin components. This study, however, focused on medically relevant small molecules, and through nuclear magnetic resonance, mass spectroscopy, and fractionation techniques, we discovered and identified the presence of three molecules new to stonefish venom, namely γ-aminobutyric acid (GABA), choline and 0-acetylcholine, and provide the first report of GABA identified in a fish venom. Analysis of the crude venoms on human nicotinic acetylcholine receptors (nAChRs) and a GABAA receptor (GABAAR) showed S. horrida venom could activate neuronal (α7) and adult muscle-type (α1β1δε) nAChRs, while both crude S. horrida and S. verrucosa venoms activated the GABAAR (α1β2γ2). Cytotoxicity studies in immunologically relevant cells (human PBMCs) indicated the venoms possess cell-specific cytotoxicity and analysis of the venom fractions on Na+ channel subtypes involved in pain showed no activity. This work highlights the need to further investigate the small molecules found in venoms to help understand the mechanistic pathways of clinical symptoms for improved treatment of sting victims, in addition to the discovery of potential drug leads.
Collapse
Affiliation(s)
- Silvia Luiza Saggiomo
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
- Present address:
Hepatic Fibrosis GroupQIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Steve Peigneur
- Toxicology and PharmacologyKatholieke Universiteit (KU) LeuvenBelgium
| | - Jan Tytgat
- Toxicology and PharmacologyKatholieke Universiteit (KU) LeuvenBelgium
| | - Norelle L. Daly
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| | - David Thomas Wilson
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| |
Collapse
|
2
|
Li Y, Lyu J, Wang Y, Ye M, Wang H. Ligand Modification-Free Methods for the Profiling of Protein-Environmental Chemical Interactions. Chem Res Toxicol 2024; 37:1-15. [PMID: 38146056 DOI: 10.1021/acs.chemrestox.3c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Adverse health outcomes caused by environmental chemicals are often initiated via their interactions with proteins. Essentially, one environmental chemical may interact with a number of proteins and/or a protein may interact with a multitude of environmental chemicals, forming an intricate interaction network. Omics-wide protein-environmental chemical interaction profiling (PECI) is of prominent importance for comprehensive understanding of these interaction networks, including the toxicity mechanisms of action (MoA), and for providing systematic chemical safety assessment. However, such information remains unknown for most environmental chemicals, partly due to their vast chemical diversity. In recent years, with the continuous efforts afforded, especially in mass spectrometry (MS) based omics technologies, several ligand modification-free methods have been developed, and new attention for systematic PECI profiling was gained. In this Review, we provide a comprehensive overview on these methodologies for the identification of ligand-protein interactions, including affinity interaction-based methods of affinity-driven purification, covalent modification profiling, and activity-based protein profiling (ABPP) in a competitive mode, physicochemical property changes assessment methods of ligand-directed nuclear magnetic resonance (ligand-directed NMR), MS integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS), thermal proteome profiling (TPP), limited proteolysis-coupled mass spectrometry (LiP-MS), stability of proteins from rates of oxidation (SPROX), and several intracellular downstream response characterization methods. We expect that the applications of these ligand modification-free technologies will drive a considerable increase in the number of PECI identified, facilitate unveiling the toxicological mechanisms, and ultimately contribute to systematic health risk assessment of environmental chemicals.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiawen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- State Key Laboratory of Medical Proteomics, Beijing, 102206, China
| | - Hailin Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
3
|
Marotta NJ, Weinert EE. Insights into the metabolism, signaling, and physiological effects of 2',3'-cyclic nucleotide monophosphates in bacteria. Crit Rev Biochem Mol Biol 2023; 58:118-131. [PMID: 38064689 PMCID: PMC10877235 DOI: 10.1080/10409238.2023.2290473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 02/03/2024]
Abstract
2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) have been discovered within both prokaryotes and eukaryotes in the past decade and a half, raising questions about their conserved existence in cells. In plants and mammals, wounding has been found to cause increased levels of 2',3'-cNMPs. Roles for 2',3'-cNMPs in plant immunity suggest that their regulation may be valuable for both plant hosts and microbial pathogens. In support of this hypothesis, a plethora of microbial enzymes have been found with activities related to these molecules. Studies in bacteria suggest that 2',3'-cNMPs are also produced in response to cellular stress and modulate expression of numerous genes. 2',3'-cNMP levels affect bacterial phenotypes, including biofilm formation, motility, and growth. Within E. coli and Salmonella enterica, 2',3'-cNMPs are produced by RNA degradation by RNase I, highlighting potential roles for Type 2 RNases producing 2',3'-cNMPs in a range of organisms. Development of cellular tools to modulate 2',3'-cNMP levels in bacteria has allowed for interrogation of the effects of 2',3'-cNMP concentration on bacterial transcriptomes and physiology. Pull-downs of cellular 2',3'-cNMP binding proteins have identified the ribosome and in vitro studies demonstrated that 2',3'-cNMPs decrease translation, suggesting a direct mechanism for 2',3-cNMP-dependent control of bacterial phenotypes. Future studies dissecting the cellular roles of 2',3'-cNMPs will highlight novel signaling pathways within prokaryotes and which can potentially be engineered to control bacterial physiology.
Collapse
Affiliation(s)
- Nick J. Marotta
- Graduate Program in Molecular, Cellular, and Integrative
Biosciences, Penn State University, University Park, PA, 16803, USA
| | - Emily E. Weinert
- Department of Biochemistry and Molecular Biology, Penn
State University, University Park, PA, 16803, USA
- Department of Chemistry, Penn State University, University
Park, PA, 16803, USA
| |
Collapse
|
4
|
Wevers D, Ramautar R, Clark C, Hankemeier T, Ali A. Opportunities and challenges for sample preparation and enrichment in mass spectrometry for single-cell metabolomics. Electrophoresis 2023; 44:2000-2024. [PMID: 37667867 DOI: 10.1002/elps.202300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023]
Abstract
Single-cell heterogeneity in metabolism, drug resistance and disease type poses the need for analytical techniques for single-cell analysis. As the metabolome provides the closest view of the status quo in the cell, studying the metabolome at single-cell resolution may unravel said heterogeneity. A challenge in single-cell metabolome analysis is that metabolites cannot be amplified, so one needs to deal with picolitre volumes and a wide range of analyte concentrations. Due to high sensitivity and resolution, MS is preferred in single-cell metabolomics. Large numbers of cells need to be analysed for proper statistics; this requires high-throughput analysis, and hence automation of the analytical workflow. Significant advances in (micro)sampling methods, CE and ion mobility spectrometry have been made, some of which have been applied in high-throughput analyses. Microfluidics has enabled an automation of cell picking and metabolite extraction; image recognition has enabled automated cell identification. Many techniques have been used for data analysis, varying from conventional techniques to novel combinations of advanced chemometric approaches. Steps have been set in making data more findable, accessible, interoperable and reusable, but significant opportunities for improvement remain. Herein, advances in single-cell analysis workflows and data analysis are discussed, and recommendations are made based on the experimental goal.
Collapse
Affiliation(s)
- Dirk Wevers
- Wageningen University and Research, Wageningen, The Netherlands
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Rawi Ramautar
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Charlie Clark
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Ahmed Ali
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| |
Collapse
|
5
|
Minen RI, Thirumalaikumar VP, Skirycz A. Proteinogenic dipeptides, an emerging class of small-molecule regulators. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102395. [PMID: 37311365 DOI: 10.1016/j.pbi.2023.102395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Proteinogenic dipeptides, with few known exceptions, are products of protein degradation. Dipeptide levels respond to the changes in the environment, often in a dipeptide-specific manner. What drives this specificity is currently unknown; what likely contributes is the activity of the different peptidases that cleave off the terminal dipeptide from the longer peptides. Dipeptidases that degrade dipeptides to amino acids, and the turnover rates of the "substrate" proteins/peptides. Plants can both uptake dipeptides from the soil, but dipeptides are also found in root exudates. Dipeptide transporters, members of the proton-coupled peptide transporters NTR1/PTR family, contribute to nitrogen reallocation between the sink and source tissues. Besides their role in nitrogen distribution, it becomes increasingly clear that dipeptides may also serve regulatory, dipeptide-specific functions. Dipeptides are found in protein complexes affecting the activity of their protein partners. Moreover, dipeptide supplementation leads to cellular phenotypes reflected in changes in plant growth and stress tolerance. Herein we will review the current understanding of dipeptides' metabolism, transport, and functions and discuss significant challenges and future directions for the comprehensive characterization of this fascinating but underrated group of small-molecule compounds.
Collapse
Affiliation(s)
| | | | - Aleksandra Skirycz
- Boyce Thompson Institute, 14853, Ithaca, NY, USA; Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
6
|
Rojas BE, Iglesias AA. Integrating multiple regulations on enzyme activity: the case of phospho enolpyruvate carboxykinases. AOB PLANTS 2023; 15:plad053. [PMID: 37608926 PMCID: PMC10441589 DOI: 10.1093/aobpla/plad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Data on protein post-translational modifications (PTMs) increased exponentially in the last years due to the refinement of mass spectrometry techniques and the development of databases to store and share datasets. Nevertheless, these data per se do not create comprehensive biochemical knowledge. Complementary studies on protein biochemistry are necessary to fully understand the function of these PTMs at the molecular level and beyond, for example, designing rational metabolic engineering strategies to improve crops. Phosphoenolpyruvate carboxykinases (PEPCKs) are critical enzymes for plant metabolism with diverse roles in plant development and growth. Multiple lines of evidence showed the complex regulation of PEPCKs, including PTMs. Herein, we present PEPCKs as an example of the integration of combined mechanisms modulating enzyme activity and metabolic pathways. PEPCK studies strongly advanced after the production of the recombinant enzyme and the establishment of standardized biochemical assays. Finally, we discuss emerging open questions for future research and the challenges in integrating all available data into functional biochemical models.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
7
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023; 160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China.
| | - Shuang Qi
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
8
|
Schlossarek D, Zhang Y, Sokolowska EM, Fernie AR, Luzarowski M, Skirycz A. Don't let go: co-fractionation mass spectrometry for untargeted mapping of protein-metabolite interactomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:904-914. [PMID: 36575913 DOI: 10.1111/tpj.16084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The chemical complexity of metabolomes goes hand in hand with their functional diversity. Small molecules have many essential roles, many of which are executed by binding and modulating the function of a protein partner. The complex and dynamic protein-metabolite interaction (PMI) network underlies most if not all biological processes, but remains under-characterized. Herein, we highlight how co-fractionation mass spectrometry (CF-MS), a well-established approach to map protein assemblies, can be used for proteome and metabolome identification of the PMIs. We will review recent CF-MS studies, discuss the main advantages and limitations, summarize the available CF-MS guidelines, and outline future challenges and opportunities.
Collapse
Affiliation(s)
- Dennis Schlossarek
- Depeartment One, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Youjun Zhang
- Depeartment One, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Ewelina M Sokolowska
- Depeartment One, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Alisdair R Fernie
- Depeartment One, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Marcin Luzarowski
- Center for Molecular Biology Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Aleksandra Skirycz
- Depeartment One, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Boyce Thompson Institute, Ithaca, NY, 14850, USA
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
9
|
Luzarowski M, Skirycz A. Parallel Analysis of Protein-Protein and Protein-Metabolite Complexes Using a Single-Step Affinity Purification. Methods Mol Biol 2023; 2554:107-122. [PMID: 36178623 DOI: 10.1007/978-1-0716-2624-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cellular protein-metabolite interactions (PMI), for decades relatively overlooked, are seeing a golden age in recent years. To facilitate simultaneous characterization of PMI and protein-protein interactions (PPI) of a given protein ("bait"), we developed a protocol that utilizes antibody-assisted affinity purification (AP) followed by liquid chromatography-mass spectrometry (LC-MS). Aside from its speed, simplicity, and adaptability to a variety of biological systems, its main strength lies in the parallel identification, in a near-physiological environment, of a given protein's protein and small-molecule partners.
Collapse
Affiliation(s)
- Marcin Luzarowski
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
10
|
Luzarowski M, Sokolowska EM, Schlossarek D, Skirycz A. PROMIS: Co-fractionation Mass Spectrometry for Analysis of Protein-Metabolite Interactions. Methods Mol Biol 2023; 2554:141-153. [PMID: 36178625 DOI: 10.1007/978-1-0716-2624-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The roles of small molecules in every aspect of life have been gaining increased recognition. Many are known to exert their effect by binding proteins-but a comprehensive overview of protein-metabolite interactions (PMIs) is missing. Recently we devised a non-targeted method for detecting PMIs using size-exclusion chromatography followed by proteomic and metabolomic analysis: PROMIS. Under test this method was able to identify known PMIs such as enzyme-cofactor complexes as well as novel ones.
Collapse
Affiliation(s)
- Marcin Luzarowski
- Zentrum für Molekulare Biologie der Universität Heidelberg, Potsdam, Germany
| | | | | | | |
Collapse
|
11
|
Figueroa NE, Hernandez-Sanchez IE, Maruri-Lopez I, Chodasiewicz M. Affinity Purification Protocol Starting with a Small Molecule as Bait. Methods Mol Biol 2023; 2554:11-19. [PMID: 36178617 DOI: 10.1007/978-1-0716-2624-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein-metabolite interactions (PMIs) are fundamental for several biological processes. Even though PMI studies have increased in recent years, our knowledge is still limited. The screening of PMIs using small molecules as bait will broaden our ability to uncover novel PMIs, setting the basis for establishing their biological relevance. Here, we describe a protocol that allows the identification of multiple protein partners for one ligand. This protocol describes a straightforward methodology that can be adapted to a wide variety of organisms.
Collapse
Affiliation(s)
- Nicolás E Figueroa
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Itzell E Hernandez-Sanchez
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Israel Maruri-Lopez
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Monika Chodasiewicz
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
12
|
Stefan T, Wu XN, Zhang Y, Fernie A, Schulze WX. Regulatory Modules of Metabolites and Protein Phosphorylation in Arabidopsis Genotypes With Altered Sucrose Allocation. FRONTIERS IN PLANT SCIENCE 2022; 13:891405. [PMID: 35665154 PMCID: PMC9161306 DOI: 10.3389/fpls.2022.891405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Multi-omics data sets are increasingly being used for the interpretation of cellular processes in response to environmental cues. Especially, the posttranslational modification of proteins by phosphorylation is an important regulatory process affecting protein activity and/or localization, which, in turn, can have effects on metabolic processes and metabolite levels. Despite this importance, relationships between protein phosphorylation status and metabolite abundance remain largely underexplored. Here, we used a phosphoproteomics-metabolomics data set collected at the end of day and night in shoots and roots of Arabidopsis to propose regulatory relationships between protein phosphorylation and accumulation or allocation of metabolites. For this purpose, we introduced a novel, robust co-expression measure suited to the structure of our data sets, and we used this measure to construct metabolite-phosphopeptide networks. These networks were compared between wild type and plants with perturbations in key processes of sugar metabolism, namely, sucrose export (sweet11/12 mutant) and starch synthesis (pgm mutant). The phosphopeptide-metabolite network turned out to be highly sensitive to perturbations in sugar metabolism. Specifically, KING1, the regulatory subunit of SnRK1, was identified as a primary candidate connecting protein phosphorylation status with metabolism. We additionally identified strong changes in the fatty acid network of the sweet11/12 mutant, potentially resulting from a combination of fatty acid signaling and metabolic overflow reactions in response to high internal sucrose concentrations. Our results further suggest novel protein-metabolite relationships as candidates for future targeted research.
Collapse
Affiliation(s)
- Thorsten Stefan
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Xu Na Wu
- College for Life Science, Yunnan University, Kunming, China
| | - Youjun Zhang
- Department of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair Fernie
- Department of Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Waltraud X. Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
13
|
Duggal Y, Kurasz JE, Fontaine BM, Marotta NJ, Chauhan SS, Karls AC, Weinert EE. Cellular Effects of 2',3'-Cyclic Nucleotide Monophosphates in Gram-Negative Bacteria. J Bacteriol 2022; 204:e0020821. [PMID: 34662237 PMCID: PMC8765455 DOI: 10.1128/jb.00208-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Organismal adaptations to environmental stimuli are governed by intracellular signaling molecules such as nucleotide second messengers. Recent studies have identified functional roles for the noncanonical 2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) in both eukaryotes and prokaryotes. In Escherichia coli, 2',3'-cNMPs are produced by RNase I-catalyzed RNA degradation, and these cyclic nucleotides modulate biofilm formation through unknown mechanisms. The present work dissects cellular processes in E. coli and Salmonella enterica serovar Typhimurium that are modulated by 2',3'-cNMPs through the development of cell-permeable 2',3'-cNMP analogs and a 2',3'-cyclic nucleotide phosphodiesterase. Utilization of these chemical and enzymatic tools, in conjunction with phenotypic and transcriptomic investigations, identified pathways regulated by 2',3'-cNMPs, including flagellar motility and biofilm formation, and by oligoribonucleotides with 3'-terminal 2',3'-cyclic phosphates, including responses to cellular stress. Furthermore, interrogation of metabolomic and organismal databases has identified 2',3'-cNMPs in numerous organisms and homologs of the E. coli metabolic proteins that are involved in key eukaryotic pathways. Thus, the present work provides key insights into the roles of these understudied facets of nucleotide metabolism and signaling in prokaryotic physiology and suggest broad roles for 2',3'-cNMPs among bacteria and eukaryotes. IMPORTANCE Bacteria adapt to environmental challenges by producing intracellular signaling molecules that control downstream pathways and alter cellular processes for survival. Nucleotide second messengers serve to transduce extracellular signals and regulate a wide array of intracellular pathways. Recently, 2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) were identified as contributing to the regulation of cellular pathways in eukaryotes and prokaryotes. In this study, we define previously unknown cell processes that are affected by fluctuating 2',3'-cNMP levels or RNA oligomers with 2',3'-cyclic phosphate termini in E. coli and Salmonella Typhimurium, providing a framework for studying novel signaling networks in prokaryotes. Furthermore, we utilize metabolomics databases to identify additional prokaryotic and eukaryotic species that generate 2',3'-cNMPs as a resource for future studies.
Collapse
Affiliation(s)
- Yashasvika Duggal
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | - Nick J. Marotta
- Molecular, Cellular and Integrative Biosciences Program, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Shikha S. Chauhan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Anna C. Karls
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Emily E. Weinert
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
14
|
Calderan-Rodrigues MJ, Luzarowski M, Monte-Bello CC, Minen RI, Zühlke BM, Nikoloski Z, Skirycz A, Caldana C. Proteogenic Dipeptides Are Characterized by Diel Fluctuations and Target of Rapamycin Complex-Signaling Dependency in the Model Plant Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:758933. [PMID: 35003157 PMCID: PMC8727597 DOI: 10.3389/fpls.2021.758933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
As autotrophic organisms, plants capture light energy to convert carbon dioxide into ATP, nicotinamide adenine dinucleotide phosphate (NADPH), and sugars, which are essential for the biosynthesis of building blocks, storage, and growth. At night, metabolism and growth can be sustained by mobilizing carbon (C) reserves. In response to changing environmental conditions, such as light-dark cycles, the small-molecule regulation of enzymatic activities is critical for reprogramming cellular metabolism. We have recently demonstrated that proteogenic dipeptides, protein degradation products, act as metabolic switches at the interface of proteostasis and central metabolism in both plants and yeast. Dipeptides accumulate in response to the environmental changes and act via direct binding and regulation of critical enzymatic activities, enabling C flux distribution. Here, we provide evidence pointing to the involvement of dipeptides in the metabolic rewiring characteristics for the day-night cycle in plants. Specifically, we measured the abundance of 13 amino acids and 179 dipeptides over short- (SD) and long-day (LD) diel cycles, each with different light intensities. Of the measured dipeptides, 38 and eight were characterized by day-night oscillation in SD and LD, respectively, reaching maximum accumulation at the end of the day and then gradually falling in the night. Not only the number of dipeptides, but also the amplitude of the oscillation was higher in SD compared with LD conditions. Notably, rhythmic dipeptides were enriched in the glucogenic amino acids that can be converted into glucose. Considering the known role of Target of Rapamycin (TOR) signaling in regulating both autophagy and metabolism, we subsequently investigated whether diurnal fluctuations of dipeptides levels are dependent on the TOR Complex (TORC). The Raptor1b mutant (raptor1b), known for the substantial reduction of TOR kinase activity, was characterized by the augmented accumulation of dipeptides, which is especially pronounced under LD conditions. We were particularly intrigued by the group of 16 dipeptides, which, based on their oscillation under SD conditions and accumulation in raptor1b, can be associated with limited C availability or photoperiod. By mining existing protein-metabolite interaction data, we delineated putative protein interactors for a representative dipeptide Pro-Gln. The obtained list included enzymes of C and amino acid metabolism, which are also linked to the TORC-mediated metabolic network. Based on the obtained results, we speculate that the diurnal accumulation of dipeptides contributes to its metabolic adaptation in response to changes in C availability. We hypothesize that dipeptides would act as alternative respiratory substrates and by directly modulating the activity of the focal enzymes.
Collapse
Affiliation(s)
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | | | - Boris M. Zühlke
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Boyce Thompson Institute, Ithaca, NY, United States
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
15
|
Schlossarek D, Luzarowski M, Sokołowska E, Górka M, Willmitzer L, Skirycz A. PROMISed: A novel web-based tool to facilitate analysis and visualization of the molecular interaction networks from co-fractionation mass spectrometry (CF-MS) experiments. Comput Struct Biotechnol J 2021; 19:5117-5125. [PMID: 34589187 PMCID: PMC8453180 DOI: 10.1016/j.csbj.2021.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Co-fractionation mass spectrometry (CF-MS)-based approaches enable cell-wide identification of protein-protein and protein-metabolite complexes present in the cellular lysate. CF-MS combines biochemical separation of molecular complexes with an untargeted mass-spectrometry-based proteomics and/or metabolomics analysis of the obtained fractions, and is used to delineate putative interactors. CF-MS data are a treasure trove for biological discovery. To facilitate analysis and visualization of original or publically available CF-MS datasets, we designed PROMISed, a user-friendly tool available online via https://myshiny.mpimp-golm.mpg.de/PDP1/ or as a repository via https://github.com/DennisSchlossarek/PROMISed. Specifically, starting with raw fractionation profiles, PROMISed (i) contains activities for data pre-processing and normalization, (ii) deconvolutes complex fractionation profiles into single, distinct peaks, (iii) identifies co-eluting protein-protein or protein-metabolite pairs using user-defined correlation methods, and (iv) performs co-fractionation network analysis. Given multiple CF-MS datasets, for instance representing different environmental condition, PROMISed allows to select for proteins and metabolites that differ in their elution profile, which may indicate change in the interaction status. But it also enables the identification of protein-protein and protein-metabolite pairs that co-elute together across multiple datasets. PROMISed enables users to (i) easily adjust parameters at each step of the analysis, (ii) download partial and final results, and (iii) select among different data-visualization options. PROMISed renders CF-MS data accessible to a broad scientific audience, allowing users with no computational or statistical background to look for novel protein-protein and protein-metabolite complexes for further experimental validation.
Collapse
Affiliation(s)
- Dennis Schlossarek
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ewelina Sokołowska
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Michał Górka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Lothar Willmitzer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.,Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, United States
| |
Collapse
|
16
|
Moreno JC, Rojas BE, Vicente R, Gorka M, Matz T, Chodasiewicz M, Peralta‐Ariza JS, Zhang Y, Alseekh S, Childs D, Luzarowski M, Nikoloski Z, Zarivach R, Walther D, Hartman MD, Figueroa CM, Iglesias AA, Fernie AR, Skirycz A. Tyr-Asp inhibition of glyceraldehyde 3-phosphate dehydrogenase affects plant redox metabolism. EMBO J 2021; 40:e106800. [PMID: 34156108 PMCID: PMC8327957 DOI: 10.15252/embj.2020106800] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/13/2021] [Indexed: 12/28/2022] Open
Abstract
How organisms integrate metabolism with the external environment is a central question in biology. Here, we describe a novel regulatory small molecule, a proteogenic dipeptide Tyr-Asp, which improves plant tolerance to oxidative stress by directly interfering with glucose metabolism. Specifically, Tyr-Asp inhibits the activity of a key glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPC), and redirects glucose toward pentose phosphate pathway (PPP) and NADPH production. In line with the metabolic data, Tyr-Asp supplementation improved the growth performance of both Arabidopsis and tobacco seedlings subjected to oxidative stress conditions. Moreover, inhibition of Arabidopsis phosphoenolpyruvate carboxykinase (PEPCK) activity by a group of branched-chain amino acid-containing dipeptides, but not by Tyr-Asp, points to a multisite regulation of glycolytic/gluconeogenic pathway by dipeptides. In summary, our results open the intriguing possibility that proteogenic dipeptides act as evolutionarily conserved small-molecule regulators at the nexus of stress, protein degradation, and metabolism.
Collapse
Affiliation(s)
- Juan C Moreno
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Bruno E Rojas
- Instituto de Agrobiotecnología del LitoralUNLCONICET, FBCBSanta FeArgentina
| | - Rubén Vicente
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Michal Gorka
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Timon Matz
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- BioinformaticsInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | | | | | - Youjun Zhang
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Center of Plant Systems Biology and Biotechnology (CPSBB)PlovdivBulgaria
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Center of Plant Systems Biology and Biotechnology (CPSBB)PlovdivBulgaria
| | - Dorothee Childs
- European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
| | | | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- BioinformaticsInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
- Center of Plant Systems Biology and Biotechnology (CPSBB)PlovdivBulgaria
| | - Raz Zarivach
- Faculty of Natural SciencesThe Ben Gurion University of the NegevBeer ShevaIsrael
| | - Dirk Walther
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Matías D Hartman
- Instituto de Agrobiotecnología del LitoralUNLCONICET, FBCBSanta FeArgentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del LitoralUNLCONICET, FBCBSanta FeArgentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del LitoralUNLCONICET, FBCBSanta FeArgentina
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Center of Plant Systems Biology and Biotechnology (CPSBB)PlovdivBulgaria
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Boyce Thompson InstituteIthacaUSA
| |
Collapse
|
17
|
Smythers AL, Hicks LM. Mapping the plant proteome: tools for surveying coordinating pathways. Emerg Top Life Sci 2021; 5:203-220. [PMID: 33620075 PMCID: PMC8166341 DOI: 10.1042/etls20200270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Plants rapidly respond to environmental fluctuations through coordinated, multi-scalar regulation, enabling complex reactions despite their inherently sessile nature. In particular, protein post-translational signaling and protein-protein interactions combine to manipulate cellular responses and regulate plant homeostasis with precise temporal and spatial control. Understanding these proteomic networks are essential to addressing ongoing global crises, including those of food security, rising global temperatures, and the need for renewable materials and fuels. Technological advances in mass spectrometry-based proteomics are enabling investigations of unprecedented depth, and are increasingly being optimized for and applied to plant systems. This review highlights recent advances in plant proteomics, with an emphasis on spatially and temporally resolved analysis of post-translational modifications and protein interactions. It also details the necessity for generation of a comprehensive plant cell atlas while highlighting recent accomplishments within the field.
Collapse
Affiliation(s)
- Amanda L Smythers
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| |
Collapse
|
18
|
Luzarowski M, Vicente R, Kiselev A, Wagner M, Schlossarek D, Erban A, de Souza LP, Childs D, Wojciechowska I, Luzarowska U, Górka M, Sokołowska EM, Kosmacz M, Moreno JC, Brzezińska A, Vegesna B, Kopka J, Fernie AR, Willmitzer L, Ewald JC, Skirycz A. Global mapping of protein-metabolite interactions in Saccharomyces cerevisiae reveals that Ser-Leu dipeptide regulates phosphoglycerate kinase activity. Commun Biol 2021; 4:181. [PMID: 33568709 PMCID: PMC7876005 DOI: 10.1038/s42003-021-01684-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
Protein-metabolite interactions are of crucial importance for all cellular processes but remain understudied. Here, we applied a biochemical approach named PROMIS, to address the complexity of the protein-small molecule interactome in the model yeast Saccharomyces cerevisiae. By doing so, we provide a unique dataset, which can be queried for interactions between 74 small molecules and 3982 proteins using a user-friendly interface available at https://promis.mpimp-golm.mpg.de/yeastpmi/ . By interpolating PROMIS with the list of predicted protein-metabolite interactions, we provided experimental validation for 225 binding events. Remarkably, of the 74 small molecules co-eluting with proteins, 36 were proteogenic dipeptides. Targeted analysis of a representative dipeptide, Ser-Leu, revealed numerous protein interactors comprising chaperones, proteasomal subunits, and metabolic enzymes. We could further demonstrate that Ser-Leu binding increases activity of a glycolytic enzyme phosphoglycerate kinase (Pgk1). Consistent with the binding analysis, Ser-Leu supplementation leads to the acute metabolic changes and delays timing of a diauxic shift. Supported by the dipeptide accumulation analysis our work attests to the role of Ser-Leu as a metabolic regulator at the interface of protein degradation and central metabolism.
Collapse
Affiliation(s)
- Marcin Luzarowski
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Rubén Vicente
- grid.418390.70000 0004 0491 976XDepartment of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Andrei Kiselev
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.503344.50000 0004 0445 6769Laboratoire de Recherche en Sciences Végétales (LRSV), UPS/CNRS, UMR, Castanet Tolosan, France
| | - Mateusz Wagner
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.8505.80000 0001 1010 5103University of Wrocław, Faculty of Biotechnology, Laboratory of Medical Biology, Wrocław, Poland
| | - Dennis Schlossarek
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Alexander Erban
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Leonardo Perez de Souza
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Dorothee Childs
- grid.4709.a0000 0004 0495 846XDepartment of Genome Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Izabela Wojciechowska
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Urszula Luzarowska
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michał Górka
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Ewelina M. Sokołowska
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Monika Kosmacz
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.45672.320000 0001 1926 5090Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Juan C. Moreno
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.45672.320000 0001 1926 5090Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Aleksandra Brzezińska
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Bhavana Vegesna
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Alisdair R. Fernie
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Lothar Willmitzer
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Jennifer C. Ewald
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Cell Biology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Aleksandra Skirycz
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.5386.8000000041936877XBoyce Thompson Institute, Ithaca, NY USA
| |
Collapse
|
19
|
Winck FV, Monteiro LDFR, Souza GM. Introduction: Advances in Plant Omics and Systems Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:1-9. [DOI: 10.1007/978-3-030-80352-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Li S, Shui W. Systematic mapping of protein–metabolite interactions with mass spectrometry-based techniques. Curr Opin Biotechnol 2020; 64:24-31. [DOI: 10.1016/j.copbio.2019.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022]
|
21
|
Kosmacz M, Sokołowska EM, Bouzaa S, Skirycz A. Towards a functional understanding of the plant metabolome. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:47-51. [PMID: 32224339 DOI: 10.1016/j.pbi.2020.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/22/2020] [Accepted: 02/14/2020] [Indexed: 05/24/2023]
Abstract
Plants are true organic chemists-the chemical diversity of plant metabolomes goes hand in hand with functional diversity. New, often unexpected roles are being reported for both evolutionarily conserved and well-characterised central metabolites such as amino acids, nucleotides, and sugars, and for specialized/secondary metabolites such as carotenoids, glucosinolates, and terpenoids. Our review aims to highlight recent studies reporting novel roles of metabolites and to emphasize the importance of cell-wide identification of metabolite-protein complexes for the comprehensive, functional understanding of the plant metabolome.
Collapse
Affiliation(s)
- Monika Kosmacz
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ewelina Maria Sokołowska
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Saad Bouzaa
- Laboratory of Genetic Resources and Biotechnology, Higher National Agronomic School (ENSA), Algiers, Algeria
| | - Aleksandra Skirycz
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
22
|
Thirumalaikumar VP, Wagner M, Balazadeh S, Skirycz A. Autophagy is responsible for the accumulation of proteogenic dipeptides in response to heat stress in Arabidopsis thaliana. FEBS J 2020; 288:281-292. [PMID: 32301545 DOI: 10.1111/febs.15336] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/22/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Proteogenic dipeptides are intermediates of proteolysis as well as an emerging class of small-molecule regulators with diverse and often dipeptide-specific functions. Herein, prompted by differential accumulation of dipeptides in a high-density Arabidopsis thaliana time-course stress experiment, we decided to pursue an identity of the proteolytic pathway responsible for the buildup of dipeptides under heat conditions. By querying dipeptide accumulation versus available transcript data, autophagy emerged as a top hit. To examine whether autophagy indeed contributes to the accumulation of dipeptides measured in response to heat stress, we characterized the loss-of-function mutants of crucial autophagy proteins to test whether interfering with autophagy would affect dipeptide accumulation in response to the heat treatment. This was indeed the case. This work implicates the involvement of autophagy in the accumulation of proteogenic dipeptides in response to heat stress in Arabidopsis.
Collapse
Affiliation(s)
| | - Mateusz Wagner
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.,University of Wroclaw, Poland
| | - Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.,University of Leiden, The Netherlands
| | | |
Collapse
|
23
|
Sokolowska EM, Schlossarek D, Luzarowski M, Skirycz A. PROMIS: Global Analysis of PROtein-Metabolite Interactions. ACTA ACUST UNITED AC 2020; 4:e20101. [PMID: 31750999 DOI: 10.1002/cppb.20101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Small molecules are not only intermediates of metabolism, but also play important roles in signaling and in controlling cellular metabolism, growth, and development. Although a few systematic studies have been conducted, the true extent of protein-small molecule interactions in biological systems remains unknown. PROtein-metabolite interactions using size separation (PROMIS) is a method for studying protein-small molecule interactions in a non-targeted, proteome- and metabolome-wide manner. This approach uses size-exclusion chromatography followed by proteomics and metabolomics liquid chromatography-mass spectrometry analysis of the collected fractions. Assuming that small molecules bound to proteins would co-fractionate together, we found numerous small molecules co-eluting with proteins, strongly suggesting the formation of stable complexes. Using PROMIS, we identified known small molecule-protein complexes, such as between enzymes and cofactors, and also found novel interactions. © 2019 The Authors. Basic Protocol 1: Preparation of native cell lysate from plant material Support Protocol: Bradford assay to determine protein concentration Basic Protocol 2: Separation of molecular complexes using size-exclusion chromatography Basic Protocol 3: Simultaneous extraction of proteins and metabolites using single-step extraction protocol Basic Protocol 4: Metabolomics analysis Basic Protocol 5: Proteomics analysis.
Collapse
Affiliation(s)
| | | | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | |
Collapse
|
24
|
Luzarowski M, Skirycz A. Emerging strategies for the identification of protein-metabolite interactions. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4605-4618. [PMID: 31087097 PMCID: PMC6760282 DOI: 10.1093/jxb/erz228] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/10/2019] [Indexed: 05/31/2023]
Abstract
Interactions between biological molecules enable life. The significance of a cell-wide understanding of molecular complexes is thus obvious. In comparison to protein-protein interactions, protein-metabolite interactions remain under-studied. However, this has been gradually changing due to technological progress. Here, we focus on the interactions between ligands and receptors, the triggers of signalling events. While the number of small molecules with proven or proposed signalling roles is rapidly growing, most of their protein receptors remain unknown. Conversely, there are numerous signalling proteins with predicted ligand-binding domains for which the identities of the metabolite counterparts remain elusive. Here, we discuss the current biochemical strategies for identifying protein-metabolite interactions and how they can be used to characterize known metabolite regulators and identify novel ones.
Collapse
Affiliation(s)
- Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | |
Collapse
|
25
|
Kosmacz M, Gorka M, Schmidt S, Luzarowski M, Moreno JC, Szlachetko J, Leniak E, Sokolowska EM, Sofroni K, Schnittger A, Skirycz A. Protein and metabolite composition of Arabidopsis stress granules. THE NEW PHYTOLOGIST 2019; 222:1420-1433. [PMID: 30664249 DOI: 10.1111/nph.15690] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/11/2019] [Indexed: 05/06/2023]
Abstract
Stress granules (SGs) are evolutionary conserved aggregates of proteins and untranslated mRNAs formed in response to stress. Despite their importance for stress adaptation, no complete proteome composition has been reported for plant SGs. In this study, we addressed the existing gap. Importantly, we also provide evidence for metabolite sequestration within the SGs. To isolate SGs we used Arabidopsis seedlings expressing green fluorescent protein (GFP) fusion of the SGs marker protein, Rbp47b, and an experimental protocol combining differential centrifugation with affinity purification (AP). SGs isolates were analysed using mass spectrometry-based proteomics and metabolomics. A quarter of the identified proteins constituted known or predicted SG components. Intriguingly, the remaining proteins were enriched in key enzymes and regulators, such as cyclin-dependent kinase A (CDKA), that mediate plant responses to stress. In addition to proteins, nucleotides, amino acids and phospholipids also accumulated in SGs. Taken together, our results indicated the presence of a preexisting SG protein interaction network; an evolutionary conservation of the proteins involved in SG assembly and dynamics; an important role for SGs in moderation of stress responses by selective storage of proteins and metabolites.
Collapse
Affiliation(s)
- Monika Kosmacz
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Michał Gorka
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Stephan Schmidt
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Juan C Moreno
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Jagoda Szlachetko
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Ewa Leniak
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | | | - Kostika Sofroni
- Department of Developmental Biology, University of Hamburg, 22069, Hamburg, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, 22069, Hamburg, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| |
Collapse
|
26
|
Luzarowski M, Wojciechowska I, Skirycz A. 2 in 1: One-step Affinity Purification for the Parallel Analysis of Protein-Protein and Protein-Metabolite Complexes. J Vis Exp 2018. [PMID: 30124652 PMCID: PMC6126660 DOI: 10.3791/57720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cellular processes are regulated by interactions between biological molecules such as proteins, metabolites, and nucleic acids. While the investigation of protein-protein interactions (PPI) is no novelty, experimental approaches aiming to characterize endogenous protein-metabolite interactions (PMI) constitute a rather recent development. Herein, we present a protocol that allows simultaneous characterization of the PPI and PMI of a protein of choice, referred to as bait. Our protocol was optimized for Arabidopsis cell cultures and combines affinity purification (AP) with mass spectrometry (MS)-based protein and metabolite detection. In short, transgenic Arabidopsis lines, expressing bait protein fused to an affinity tag, are first lysed to obtain a native cellular extract. Anti-tag antibodies are used to pull down protein and metabolite partners of the bait protein. The affinity-purified complexes are extracted using a one-step methyl tert-butyl ether (MTBE)/methanol/water method. Whilst metabolites separate into either the polar or the hydrophobic phase, proteins can be found in the pellet. Both metabolites and proteins are then analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS or UPLC-MS/MS). Empty-vector (EV) control lines are used to exclude false positives. The major advantage of our protocol is that it enables identification of protein and metabolite partners of a target protein in parallel in near-physiological conditions (cellular lysate). The presented method is straightforward, fast, and can be easily adapted to biological systems other than plant cell cultures.
Collapse
|
27
|
Alseekh S, Fernie AR. Metabolomics 20 years on: what have we learned and what hurdles remain? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:933-942. [PMID: 29734513 DOI: 10.1111/tpj.13950] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 05/11/2023]
Abstract
The term metabolome was coined in 1998, by analogy to genome, transcriptome and proteome. The first research papers using the terms metabolomics, metabonomics, metabolic profiling or metabolite profiling were published shortly thereafter. In this short review we reflect on the major achievements brought about by the use of these approaches, and document the knowledge and technology gaps that are currently constraining its further development. Finally, we detail why we think that the time is ripe to refocus our efforts on the understanding of metabolic function.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Centre of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
- Centre of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| |
Collapse
|
28
|
Veyel D, Sokolowska EM, Moreno JC, Kierszniowska S, Cichon J, Wojciechowska I, Luzarowski M, Kosmacz M, Szlachetko J, Gorka M, Méret M, Graf A, Meyer EH, Willmitzer L, Skirycz A. PROMIS, global analysis of PROtein-metabolite interactions using size separation in Arabidopsis thaliana. J Biol Chem 2018; 293:12440-12453. [PMID: 29853640 PMCID: PMC6093232 DOI: 10.1074/jbc.ra118.003351] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/25/2018] [Indexed: 12/19/2022] Open
Abstract
Small molecules not only represent cellular building blocks and metabolic intermediates, but also regulatory ligands and signaling molecules that interact with proteins. Although these interactions affect cellular metabolism, growth, and development, they have been largely understudied. Herein, we describe a method, which we named PROtein–Metabolite Interactions using Size separation (PROMIS), that allows simultaneous, global analysis of endogenous protein–small molecule and of protein–protein complexes. To this end, a cell-free native lysate from Arabidopsis thaliana cell cultures was fractionated by size-exclusion chromatography, followed by quantitative metabolomic and proteomic analyses. Proteins and small molecules showing similar elution behavior, across protein-containing fractions, constituted putative interactors. Applying PROMIS to an A. thaliana extract, we ascertained known protein–protein (PPIs) and protein–metabolite (PMIs) interactions and reproduced binding between small-molecule protease inhibitors and their respective proteases. More importantly, we present examples of two experimental strategies that exploit the PROMIS dataset to identify novel PMIs. By looking for similar elution behavior of metabolites and enzymes belonging to the same biochemical pathways, we identified putative feedback and feed-forward regulations in pantothenate biosynthesis and the methionine salvage cycle, respectively. By combining PROMIS with an orthogonal affinity purification approach, we identified an interaction between the dipeptide Tyr–Asp and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase. In summary, we present proof of concept for a powerful experimental tool that enables system-wide analysis of PMIs and PPIs across all biological systems. The dataset obtained here comprises nearly 140 metabolites and 5000 proteins, which can be mined for putative interactors.
Collapse
Affiliation(s)
- Daniel Veyel
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Ewelina M Sokolowska
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Juan C Moreno
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | | | - Justyna Cichon
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Izabela Wojciechowska
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Marcin Luzarowski
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Monika Kosmacz
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Jagoda Szlachetko
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Michal Gorka
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | | | - Alexander Graf
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Etienne H Meyer
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Lothar Willmitzer
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| | - Aleksandra Skirycz
- From the Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
| |
Collapse
|
29
|
Kosmacz M, Luzarowski M, Kerber O, Leniak E, Gutiérrez-Beltrán E, Moreno JC, Gorka M, Szlachetko J, Veyel D, Graf A, Skirycz A. Interaction of 2',3'-cAMP with Rbp47b Plays a Role in Stress Granule Formation. PLANT PHYSIOLOGY 2018; 177:411-421. [PMID: 29618637 PMCID: PMC5933139 DOI: 10.1104/pp.18.00285] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/26/2018] [Indexed: 05/14/2023]
Abstract
2',3'-cAMP is an intriguing small molecule that is conserved among different kingdoms. 2',3'-cAMP is presumably produced during RNA degradation, with increased cellular levels observed especially under stress conditions. Previously, we observed the presence of 2',3'-cAMP in Arabidopsis (Arabidopsis thaliana) protein complexes isolated from native lysate, suggesting that 2',3'-cAMP has potential protein partners in plants. Here, affinity purification experiments revealed that 2',3'-cAMP associates with the stress granule (SG) proteome. SGs are aggregates composed of protein and mRNA, which enable cells to selectively store mRNA for use in response to stress such as heat whereby translation initiation is impaired. Using size-exclusion chromatography and affinity purification analyses, we identified Rbp47b, the key component of SGs, as a potential interacting partner of 2',3'-cAMP. Furthermore, SG formation was promoted in 2',3'-cAMP-treated Arabidopsis seedlings, and interactions between 2',3'-cAMP and RNA-binding domains of Rbp47b, RRM2 and RRM3, were confirmed in vitro using microscale thermophoresis. Taken together, these results (1) describe novel small-molecule regulation of SG formation, (2) provide evidence for the biological role of 2',3'-cAMP, and (3) demonstrate an original biochemical pipeline for the identification of protein-metabolite interactors.
Collapse
Affiliation(s)
- Monika Kosmacz
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Olga Kerber
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Ewa Leniak
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Emilio Gutiérrez-Beltrán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
| | - Juan Camilo Moreno
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Michał Gorka
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Jagoda Szlachetko
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Daniel Veyel
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Alexander Graf
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| |
Collapse
|
30
|
Diether M, Sauer U. Towards detecting regulatory protein–metabolite interactions. Curr Opin Microbiol 2017; 39:16-23. [DOI: 10.1016/j.mib.2017.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 01/20/2023]
|
31
|
Guo H, Peng H, Emili A. Mass spectrometry methods to study protein-metabolite interactions. Expert Opin Drug Discov 2017; 12:1271-1280. [DOI: 10.1080/17460441.2017.1378178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hongbo Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|