1
|
Baldassarre G, L de la Serna I, Vallette FM. Death-ision: the link between cellular resilience and cancer resistance to treatments. Mol Cancer 2025; 24:144. [PMID: 40375296 PMCID: PMC12080166 DOI: 10.1186/s12943-025-02339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/22/2025] [Indexed: 05/18/2025] Open
Abstract
One of the key challenges in defeating advanced tumors is the ability of cancer cells to evade the selective pressure imposed by chemotherapy, targeted therapies, immunotherapy and cellular therapies. Both genetic and epigenetic alterations contribute to the development of resistance, allowing cancer cells to survive initially effective treatments. In this narration, we explore how genetic and epigenetic regulatory mechanisms influence the state of tumor cells and their responsiveness to different therapeutic strategies. We further propose that an altered balance between cell growth and cell death is a fundamental driver of drug resistance. Cell death programs exist in various forms, shaped by cell type, triggering factors, and microenvironmental conditions. These processes are governed by temporal and spatial constraints and appear to be more heterogeneous than previously understood. To capture the intricate interplay between death-inducing signals and survival mechanisms, we introduce the concept of Death-ision. This framework highlights the dynamic nature of cell death regulation, determining whether specific cancer cell clones evade or succumb to therapy. Building on this understanding offers promising strategies to counteract resistant clones and enhance therapeutic efficacy. For instance, combining DNMT inhibitors with immune checkpoint blockade may counteract YAP1-driven resistance or the use of transcriptional CDK inhibitors could prevent or overcome chemotherapy resistance. Death-ision aims to provide a deeper understanding of the diversity and evolution of cell death programs, not only at diagnosis but also throughout disease progression and treatment adaptation.
Collapse
Affiliation(s)
- Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, 33081, Italy.
| | - Ivana L de la Serna
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| | - François M Vallette
- Centre de Recherche en Cancérologie et Immunologie Intégrées Nantes Angers (CRCI2 NA), INSERM UMR1307/CNRS UMR 6075/Nantes Université/Univ. Angers. Nantes, 44007, Nantes, France.
- Institut de Cancérologie de L'Ouest (ICO), 44085, Saint-Herblain, France.
| |
Collapse
|
2
|
Park HJ, Hilbe C, Nowak MA, Kim BJ, Jeong HC. Vacancies in growing habitats promote the evolution of cooperation. J Theor Biol 2023; 575:111629. [PMID: 37802182 DOI: 10.1016/j.jtbi.2023.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
We study evolutionary game dynamics in a growing habitat with vacancies. Fitness is determined by the global effect of the environment and a local prisoner's dilemma among neighbors. We study population growth on a one-dimensional lattice and analyze how the environment affects evolutionary competition. As the environment becomes harsh, an absorbing phase transition from growing populations to extinction occurs. The transition point depends on which strategies are present in the population. In particular, we find a 'cooperative window' in parameter space, where only cooperators can survive. A mutant defector in a cooperative community might briefly proliferate, but over time naturally occurring vacancies separate cooperators from defectors, thereby driving defectors to extinction. Our model reveals that vacancies provide a strong boost for cooperation by spatial selection.
Collapse
Affiliation(s)
- Hye Jin Park
- Department of Physics, Inha University, Incheon, 22212, Republic of Korea.
| | - Christian Hilbe
- Max Planck Research Group 'Dynamics of Social Behavior', Max Planck Institute for Evolutionary Biology, Plön, 24306, Germany
| | - Martin A Nowak
- Department of Mathematics, Harvard University, Cambridge, MA, 02138, United States; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, United States
| | - Beom Jun Kim
- Department of Physics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeong-Chai Jeong
- Department of Physics and Astronomy, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
3
|
Leeks A, Bono LM, Ampolini EA, Souza LS, Höfler T, Mattson CL, Dye AE, Díaz-Muñoz SL. Open questions in the social lives of viruses. J Evol Biol 2023; 36:1551-1567. [PMID: 37975507 PMCID: PMC11281779 DOI: 10.1111/jeb.14203] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 11/19/2023]
Abstract
Social interactions among viruses occur whenever multiple viral genomes infect the same cells, hosts, or populations of hosts. Viral social interactions range from cooperation to conflict, occur throughout the viral world, and affect every stage of the viral lifecycle. The ubiquity of these social interactions means that they can determine the population dynamics, evolutionary trajectory, and clinical progression of viral infections. At the same time, social interactions in viruses raise new questions for evolutionary theory, providing opportunities to test and extend existing frameworks within social evolution. Many opportunities exist at this interface: Insights into the evolution of viral social interactions have immediate implications for our understanding of the fundamental biology and clinical manifestation of viral diseases. However, these opportunities are currently limited because evolutionary biologists only rarely study social evolution in viruses. Here, we bridge this gap by (1) summarizing the ways in which viruses can interact socially, including consequences for social evolution and evolvability; (2) outlining some open questions raised by viruses that could challenge concepts within social evolution theory; and (3) providing some illustrative examples, data sources, and conceptual questions, for studying the natural history of social viruses.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, USA
| | - Lisa M. Bono
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Elizabeth A. Ampolini
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lucas S. Souza
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Thomas Höfler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Courtney L. Mattson
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, USA
| | - Anna E. Dye
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Samuel L. Díaz-Muñoz
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, USA
- Genome Center, University of California Davis, Davis, California, USA
| |
Collapse
|
4
|
Scarinci G, Sourjik V. Impact of direct physical association and motility on fitness of a synthetic interkingdom microbial community. THE ISME JOURNAL 2023; 17:371-381. [PMID: 36566339 PMCID: PMC9938286 DOI: 10.1038/s41396-022-01352-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Mutualistic exchange of metabolites can play an important role in microbial communities. Under natural environmental conditions, such exchange may be compromised by the dispersal of metabolites and by the presence of non-cooperating microorganisms. Spatial proximity between members during sessile growth on solid surfaces has been shown to promote stabilization of cross-feeding communities against these challenges. Nonetheless, many natural cross-feeding communities are not sessile but rather pelagic and exist in turbulent aquatic environments, where partner proximity is often achieved via direct cell-cell adhesion, and cooperation occurs between physically associated cells. Partner association in aquatic environments could be further enhanced by motility of individual planktonic microorganisms. In this work, we establish a model bipartite cross-feeding community between bacteria and yeast auxotrophs to investigate the impact of direct adhesion between prokaryotic and eukaryotic partners and of bacterial motility in a stirred mutualistic co-culture. We demonstrate that adhesion can provide fitness benefit to the bacterial partner, likely by enabling local metabolite exchange within co-aggregates, and that it counteracts invasion of the community by a non-cooperating cheater strain. In a turbulent environment and at low cell densities, fitness of the bacterial partner and its competitiveness against a non-cooperating strain are further increased by motility that likely facilitates partner encounters and adhesion. These results suggest that, despite their potential fitness costs, direct adhesion between partners and its enhancement by motility may play key roles as stabilization factors for metabolic communities in turbulent aquatic environments.
Collapse
Affiliation(s)
- Giovanni Scarinci
- grid.419554.80000 0004 0491 8361Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
5
|
Schaal KA, Yu YTN, Vasse M, Velicer GJ. Allopatric divergence of cooperators confers cheating resistance and limits effects of a defector mutation. BMC Ecol Evol 2022; 22:141. [PMID: 36510120 PMCID: PMC9746145 DOI: 10.1186/s12862-022-02094-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Social defectors may meet diverse cooperators. Genotype-by-genotype interactions may constrain the ranges of cooperators upon which particular defectors can cheat, limiting cheater spread. Upon starvation, the soil bacterium Myxococcus xanthus cooperatively develops into spore-bearing fruiting bodies, using a complex regulatory network and several intercellular signals. Some strains (cheaters) are unable to sporulate effectively in pure culture due to mutations that reduce signal production but can exploit and outcompete cooperators within mixed groups. RESULTS In this study, interactions between a cheater disrupted at the signaling gene csgA and allopatrically diversified cooperators reveal a very small cheating range. Expectedly, the cheater failed to cheat on all natural-isolate cooperators owing to non-cheater-specific antagonisms. Surprisingly, some lab-evolved cooperators had already exited the csgA mutant's cheating range after accumulating fewer than 20 mutations and without experiencing cheating during evolution. Cooperators might also diversify in the potential for a mutation to reduce expression of a cooperative trait or generate a cheating phenotype. A new csgA mutation constructed in several highly diverged cooperators generated diverse sporulation phenotypes, ranging from a complete defect to no defect, indicating that genetic backgrounds can limit the set of genomes in which a mutation creates a defector. CONCLUSIONS Our results demonstrate that natural populations may feature geographic mosaics of cooperators that have diversified in their susceptibility to particular cheaters, limiting defectors' cheating ranges and preventing them from spreading. This diversification may also lead to variation in the phenotypes generated by any given cooperation-gene mutation, further decreasing the chance of a cheater emerging which threatens the persistence of cooperation in the system.
Collapse
Affiliation(s)
- Kaitlin A. Schaal
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| | - Yuen-Tsu Nicco Yu
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| | - Marie Vasse
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland ,grid.121334.60000 0001 2097 0141Institute MIVEGEC (UMR 5290 CNRS, IRD, UM), 34394 Montpellier, France
| | - Gregory J. Velicer
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| |
Collapse
|
6
|
Mall A, Kasarlawar S, Saini S. Limited Pairwise Synergistic and Antagonistic Interactions Impart Stability to Microbial Communities. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.648997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the central goals of ecology is to explain and predict coexistence of species. In this context, microbial communities provide a model system where community structure can be studied in environmental niches and in laboratory conditions. A community of microbial population is stabilized by interactions between participating species. However, the nature of these stabilizing interactions has remained largely unknown. Theory and experiments have suggested that communities are stabilized by antagonistic interactions between member species, and destabilized by synergistic interactions. However, experiments have also revealed that a large fraction of all the interactions between species in a community are synergistic in nature. To understand the relative significance of the two types of interactions (synergistic vs. antagonistic) between species, we perform simulations of microbial communities with a small number of participating species using two frameworks—a replicator equation and a Lotka-Volterra framework. Our results demonstrate that synergistic interactions between species play a critical role in maintaining diversity in cultures. These interactions are critical for the ability of the communities to survive perturbations and maintain diversity. We follow up the simulations with quantification of the extent to which synergistic and antagonistic interactions are present in a bacterial community present in a soil sample. Overall, our results show that community stability is largely achieved with the help of synergistic interactions between participating species. However, we perform experiments to demonstrate that antagonistic interactions, in specific circumstances, can also contribute toward community stability.
Collapse
|
7
|
Shibasaki S, Mitri S. Controlling evolutionary dynamics to optimize microbial bioremediation. Evol Appl 2020; 13:2460-2471. [PMID: 33005234 PMCID: PMC7513707 DOI: 10.1111/eva.13050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022] Open
Abstract
Some microbes have a fascinating ability to degrade compounds that are toxic for humans in a process called bioremediation. Although these traits help microbes survive the toxins, carrying them can be costly if the benefit of detoxification is shared by all surrounding microbes, whether they detoxify or not. Detoxification can thereby be seen as a public goods game, where nondegrading mutants can sweep through the population and collapse bioremediation. Here, we constructed an evolutionary game theoretical model to optimize bioremediation in a chemostat initially containing "cooperating" (detoxifying) microbes. We consider two types of mutants: "cheaters" that do not detoxify, and mutants that become resistant to the toxin through private mechanisms that do not benefit others. By manipulating the concentration and flow rate of a toxin into the chemostat, we identified conditions where cooperators can exclude cheaters that differ in their private resistance. However, eventually, cheaters are bound to invade. To overcome this inevitable outcome and maximize detoxification efficiency, cooperators can be periodically reinoculated into the population. Our study investigates the outcome of an evolutionary game combining both public and private goods and demonstrates how environmental parameters can be used to control evolutionary dynamics in practical applications.
Collapse
Affiliation(s)
- Shota Shibasaki
- Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
| | - Sara Mitri
- Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
8
|
Gitschlag BL, Tate AT, Patel MR. Nutrient status shapes selfish mitochondrial genome dynamics across different levels of selection. eLife 2020; 9:56686. [PMID: 32959778 PMCID: PMC7508553 DOI: 10.7554/elife.56686] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
Cooperation and cheating are widespread evolutionary strategies. While cheating confers an advantage to individual entities within a group, competition between groups favors cooperation. Selfish or cheater mitochondrial DNA (mtDNA) proliferates within hosts while being selected against at the level of host fitness. How does environment shape cheater dynamics across different selection levels? Focusing on food availability, we address this question using heteroplasmic Caenorhabditis elegans. We find that the proliferation of selfish mtDNA within hosts depends on nutrient status stimulating mtDNA biogenesis in the developing germline. Interestingly, mtDNA biogenesis is not sufficient for this proliferation, which also requires the stress-response transcription factor FoxO/DAF-16. At the level of host fitness, FoxO/DAF-16 also prevents food scarcity from accelerating the selection against selfish mtDNA. This suggests that the ability to cope with nutrient stress can promote host tolerance of cheaters. Our study delineates environmental effects on selfish mtDNA dynamics at different levels of selection.
Collapse
Affiliation(s)
- Bryan L Gitschlag
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States.,Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, United States
| |
Collapse
|
9
|
Panja AS, Nag A, Bandopadhyay B, Maiti S. Protein Stability Determination (PSD): A Tool for Proteomics Analysis. Curr Bioinform 2018. [DOI: 10.2174/1574893613666180315121614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Protein Stability Determination (PSD) is a sequence-based bioinformatics tool which was developed by utilizing a large input of datasets of protein sequences in FASTA format. The PSD can be used to analyze the meta-proteomics data which will help to predict and design thermozyme and mesozyme for academic and industrial purposes. The PSD also can be utilized to analyze the protein sequence and to predict whether it will be stable in thermophilic or in the mesophilic environment. </P><P> Method and Results: This tool which is supported by any operating system is designed in Java and it provides a user-friendly graphical interface. It is a simple programme and can predict the thermostability nature of proteins with >90% accuracy. The PSD can also predict the nature of constituent amino acids i.e. acidic or basic and polar or nonpolar etc.Conclusion:PSD is highly capable to determine the thermostability status of a protein of hypothetical or unknown peptides as well as meta-proteomics data from any established database. The utilities of the PSD driven analyses include predictions on the functional assignment to a protein. The PSD also helps in designing peptides having flexible combinations of amino acids for functional stability. PSD is freely available at https://sourceforge.net/projects/protein-sequence-determination.
Collapse
Affiliation(s)
- Anindya Sundar Panja
- Post Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore-721102, West Bengal, India
| | - Akash Nag
- Department of Computer science, University of Burdwan, India
| | - Bidyut Bandopadhyay
- Post Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore-721102, West Bengal, India
| | - Smarajit Maiti
- Post Graduate Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore-721102, West Bengal, India
| |
Collapse
|
10
|
Abstract
We present a proof of principle for the phenomenon of the tragedy of the commons that is at the center of many theories on the evolution of cooperation. Whereas the tragedy is commonly set in a game theoretical context, and attributed to an underlying Prisoner’s Dilemma, we take an alternative approach based on basic mechanistic principles of species growth that does not rely on the specification of payoffs which may be difficult to determine in practice. We establish the tragedy in the context of a general chemostat model with two species, the cooperator and the cheater. Both species have the same growth rate function and yield constant, but the cooperator allocates a portion of the nutrient uptake towards the production of a public good -the “Commons” in the Tragedy- which is needed to digest the externally supplied nutrient. The cheater on the other hand does not produce this enzyme, and allocates all nutrient uptake towards its own growth. We prove that when the cheater is present initially, both the cooperator and the cheater will eventually go extinct, hereby confirming the occurrence of the tragedy. We also show that without the cheater, the cooperator can survive indefinitely, provided that at least a low level of public good or processed nutrient is available initially. Our results provide a predictive framework for the analysis of cooperator-cheater dynamics in a powerful model system of experimental evolution.
Collapse
|
11
|
Zerfaß C, Chen J, Soyer OS. Engineering microbial communities using thermodynamic principles and electrical interfaces. Curr Opin Biotechnol 2017; 50:121-127. [PMID: 29268107 DOI: 10.1016/j.copbio.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 01/21/2023]
Abstract
Microbial communities present the next research frontier. We argue here that understanding and engineering microbial communities requires a holistic view that considers not only species-species, but also species-environment interactions, and feedbacks between ecological and evolutionary dynamics (eco-evo feedbacks). Due this multi-level nature of interactions, we predict that approaches aimed soley at altering specific species populations in a community (through strain enrichment or inhibition), would only have a transient impact, and species-environment and eco-evo feedbacks would eventually drive the microbial community to its original state. We propose a higher-level engineering approach that is based on thermodynamics of microbial growth, and that considers specifically microbial redox biochemistry. Within this approach, the emphasis is on enforcing specific environmental conditions onto the community. These are expected to generate higher-level thermodynamic bounds onto the system, which the community structure and function can then adapt to. We believe that the resulting end-state can be ecologically and evolutionarily stable, mimicking the natural states of complex communities. Toward designing the exact nature of the environmental enforcement, thermodynamics and redox biochemistry can act as coarse-grained principles, while the use of electrodes-as electron providing or accepting redox agents-can provide implementation with spatiotemporal control.
Collapse
Affiliation(s)
- Christian Zerfaß
- Warwick Integrative Synthetic Biology Center (WISB), University of Warwick, United Kingdom; School of Life Sciences, University of Warwick, United Kingdom
| | - Jing Chen
- School of Life Sciences, University of Warwick, United Kingdom
| | - Orkun S Soyer
- Warwick Integrative Synthetic Biology Center (WISB), University of Warwick, United Kingdom; School of Life Sciences, University of Warwick, United Kingdom.
| |
Collapse
|
12
|
Cavaliere M, Feng S, Soyer OS, Jiménez JI. Cooperation in microbial communities and their biotechnological applications. Environ Microbiol 2017; 19:2949-2963. [PMID: 28447371 PMCID: PMC5575505 DOI: 10.1111/1462-2920.13767] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Abstract
Microbial communities are increasingly utilized in biotechnology. Efficiency and productivity in many of these applications depends on the presence of cooperative interactions between members of the community. Two key processes underlying these interactions are the production of public goods and metabolic cross-feeding, which can be understood in the general framework of ecological and evolutionary (eco-evo) dynamics. In this review, we illustrate the relevance of cooperative interactions in microbial biotechnological processes, discuss their mechanistic origins and analyse their evolutionary resilience. Cooperative behaviours can be damaged by the emergence of 'cheating' cells that benefit from the cooperative interactions but do not contribute to them. Despite this, cooperative interactions can be stabilized by spatial segregation, by the presence of feedbacks between the evolutionary dynamics and the ecology of the community, by the role of regulatory systems coupled to the environmental conditions and by the action of horizontal gene transfer. Cooperative interactions enrich microbial communities with a higher degree of robustness against environmental stress and can facilitate the evolution of more complex traits. Therefore, the evolutionary resilience of microbial communities and their ability to constraint detrimental mutants should be considered to design robust biotechnological applications.
Collapse
Affiliation(s)
- Matteo Cavaliere
- School of Informatics, BBSRC/EPSRC/MRC Synthetic Biology Research CentreUniversity of EdinburghEdinburghEH8 9ABUK
| | - Song Feng
- Center for Nonlinear StudiesTheoretical Division (T‐6), Los Alamos National LaboratoryLos AlamosNM 87545USA
| | - Orkun S. Soyer
- School of Life Sciences, BBSRC/EPSRC Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
| | - José I. Jiménez
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordGU2 7XHUK
| |
Collapse
|