1
|
Hsin KT, Lee H, Huang YC, Lin GJ, Lin PY, Lin YCJ, Chen PY. Lignocellulose degradation in bacteria and fungi: cellulosomes and industrial relevance. Front Microbiol 2025; 16:1583746. [PMID: 40351319 PMCID: PMC12063362 DOI: 10.3389/fmicb.2025.1583746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
Lignocellulose biomass is one of the most abundant resources for sustainable biofuels. However, scaling up the biomass-to-biofuels conversion process for widespread usage is still pending. One of the main bottlenecks is the high cost of enzymes used in key process of biomass degradation. Current research efforts are therefore targeted at creative solutions to improve the feasibility of lignocellulosic-degrading enzymes. One way is to engineer multi-enzyme complexes that mimic the bacterial cellulosomal system, known to increase degradation efficiency up to 50-fold when compared to freely-secreted enzymes. However, these designer cellulosomes are instable and less efficient than wild type cellulosomes. In this review, we aim to extensively analyze the current knowledge on the lignocellulosic-degrading enzymes through three aspects. We start by reviewing and comparing sets of enzymes in bacterial and fungal lignocellulose degradation. Next, we focus on the characteristics of cellulosomes in both systems and their feasibility to be engineered. Finally, we highlight three key strategies to enhance enzymatic lignocellulose degradation efficiency: discovering novel lignocellulolytic species and enzymes, bioengineering enzymes for improved thermostability, and structurally optimizing designer cellulosomes. We anticipate these insights to act as resources for the biomass community looking to elevate the usage of lignocellulose as biofuel.
Collapse
Affiliation(s)
- Kuan-Ting Hsin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung City, Taiwan
| | - HueyTyng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chun Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, Taiwan
- Bioinformatics Program, Institute of Statistical Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Guan-Jun Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Pei-Yu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ying-Chung Jimmy Lin
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Ahmed S, Islam MS, Antu UB, Islam MM, Rajput VD, Mahiddin NA, Paul JR, Ismail Z, Ibrahim KA, Idris AM. Nanocellulose: A novel pathway to sustainable agriculture, environmental protection, and circular bioeconomy. Int J Biol Macromol 2025; 285:137979. [PMID: 39592042 DOI: 10.1016/j.ijbiomac.2024.137979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Nanocellulose, obtained from natural cellulose, has attracted considerable interest for its distinctive properties and wide-ranging potential applications. Studies suggest that nanocellulose improves the thermal, mechanical, and barrier properties of conventional cellulose. This review investigates the production, properties, approach, and application of nanocellulose from various sources in agriculture. The main role play of cellulose-nanocomposite is discussed as a seed coating agent to improve seed dispersal, germination, protection against fungi and insects, plant growth promoter, adsorption of targeted pollutants, providing water and nutrient retention, and other advantages. As a nobility, we included all mechanical, chemical, and static culture approaches to the production procedure of nanocellulose and its application as a nanocarrier in soil, including the unique properties of nanocellulose, such as its high surface area, inherent hydrophilicity, and ease of surface modification. Here, methods such as melt compounding, solution casting, and in situ polymerization were evaluated to incorporate nanoparticles into cellulose materials and produce nanocellulose and cellulose-nanocomposites with improved strength, stability, water resistance, and reduced gas permeability. The commercialization faces challenges such as high production costs, scalability issues, and the need for more research on environmental impacts and plant interactions. Despite these hurdles, this field is promising, with ongoing advancements likely to yield new and improved agricultural materials. This review thoroughly examines the innovative application of nanocellulose in slow and controlled-release fertilizers and pesticides, to transform nutrient management, boost crop productivity, and minimize the environmental impact.
Collapse
Affiliation(s)
- Sujat Ahmed
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Md Saiful Islam
- Department of Soil Science, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh; East Coast Environmental Research Institute (ESERI), Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia.
| | - Uttam Biswas Antu
- Department of Soil Science, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Moshiul Islam
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
| | - Nor Aida Mahiddin
- East Coast Environmental Research Institute (ESERI), Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia.
| | - Joyti Rani Paul
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Zulhilmi Ismail
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia; Department of Water & Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia.
| | - Khalid A Ibrahim
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Center for Environment and Tourism Studies and Research, King Khalid University, Abha, Saudi Arabia.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
3
|
Hu L, Li X, Li C, Wang L, Han L, Ni W, Zhou P, Hu S. Characterization of a novel multifunctional glycoside hydrolase family in the metagenome-assembled genomes of horse gut. Gene 2024; 927:148758. [PMID: 38977109 DOI: 10.1016/j.gene.2024.148758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/29/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
The gut microbiota is a treasure trove of carbohydrate-active enzymes (CAZymes). To explore novel and efficient CAZymes, we analyzed the 4,142 metagenome-assembled genomes (MAGs) of the horse gut microbiota and found the MAG117.bin13 genome (Bacteroides fragilis) contains the highest number of polysaccharide utilisation loci sites (PULs), indicating its high capability for carbohydrate degradation. Bioinformatics analysis indicate that the PULs region of the MAG117.bin13 genome encodes many hypothetical proteins, which are important sources for exploring novel CAZymes. Interestingly, we discovered a hypothetical protein (595 amino acids). This protein exhibits potential CAZymes activity and has a lower similarity to CAZymes, we named it BfLac2275. We purified the protein using prokaryotic expression technology and studied its enzymatic function. The hydrolysis experiment of the polysaccharide substrate showed that the BfLac2275 protein has the ability to degrade α-lactose (156.94 U/mg), maltose (92.59 U/mg), raffinose (86.81 U/mg), and hyaluronic acid (5.71 U/mg). The enzyme activity is optimal at pH 5.0 and 30 ℃, indicating that the hypothetical protein BfLac2275 is a novel and multifunctional CAZymes in the glycoside hydrolases (GHs). These properties indicate that BfLac2275 has broad application prospects in many fields such as plant polysaccharide decomposition, food industry, animal feed additives and enzyme preparations. This study not only serves as a reference for exploring novel CAZymes encoded by gut microbiota but also provides an example for further studying the functional annotation of hypothetical genes in metagenomic assembly genomes.
Collapse
Affiliation(s)
- Lingling Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
| | - Lin Han
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China.
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
4
|
J Ashwini John, Selvarajan E. Genomic analysis of lignocellulolytic enzyme producing novel Streptomyces sp.MS2A for the bioethanol applications. Int J Biol Macromol 2023; 250:126138. [PMID: 37558017 DOI: 10.1016/j.ijbiomac.2023.126138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/22/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
The conversion of lignocellulosic waste to energy offers a cost-effective biofuel. The current study discusses the utilization of cellulose in rice husks by lichen-associated Streptomyces sp. MS2A via carbohydrate metabolism. Out of 39 actinobacteria, one actinobacterial strain MS2A, showed CMCase, FPase, and cellobiohydrolase activity. The whole genome analysis of Streptomyces sp. MS2A showed maximum similarity with Streptomyces sp. CCM_MD2014. The genome analysis confirmed the presence of cellulose-degrading genes along with xylan-degrading genes that code for GH3, GH6, GH9, GH11, GH43, GH51, and 15 other GH families with glycosyl transferase, carbohydrate-binding modules, and energy metabolism groups. Protein family analysis corroborates the enzyme family. Among the 19,402 genes of Streptomyces sp. MS2A, approximately 70 GH family codes for lignocellulose degradation enzymes. The structure of cellulase was modeled and validated. Scanning electron microscopy and gas chromatography-mass spectrometry (GCMS) was performed to analyze the lignocellulosic degradation of rice husk and the end product bioethanol.
Collapse
Affiliation(s)
- J Ashwini John
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India..
| | - Ethiraj Selvarajan
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India..
| |
Collapse
|
5
|
Kumari S, Leon Magdaleno JS, Grewal RK, Narsing Rao MP, Rajjak Shaikh A, Cavallo L, Chawla M, Kumar M. High potential for biomass-degrading CAZymes revealed by pine forest soil metagenomics. J Biomol Struct Dyn 2023; 42:11483-11494. [PMID: 37768075 DOI: 10.1080/07391102.2023.2262600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
The undisturbed environment in Netarhat, with its high levels of accumulated lignocellulosic biomass, presents an opportunity to identify microbes for biomass digestion. This study focuses on the bioprospecting of native soil microbes from the Netarhat forest in Jharkhand, India, with the potential for lignocellulosic substrate digestion. These biocatalysts could help overcome the bottleneck of biomass saccharification and reduce the overall cost of biofuel production, replacing harmful fossil fuels. The study used metagenomic analysis of pine forest soil via whole genome shotgun sequencing, revealing that most of the reads matched with the bacterial species, very low percentage of reads (0.1%) belongs to fungal species, with 13% of unclassified reads. Actinobacteria were found to be predominant among the bacterial species. MetaErg annotation identified 11,830 protein family genes and 2 metabolic marker genes in the soil samples. Based on the Carbohydrate Active EnZyme (CAZy) database, 3,996 carbohydrate enzyme families were identified, with family Glycosyl hydrolase (GH) dominating with 1,704 genes. Most observed GH families in the study were GH0, 3, 5, 6. 9, 12. 13, 15, 16, 39, 43, 57, and 97. Modelling analysis of a representative GH 43 gene suggested a strong affinity for cellulose than xylan. This study highlights the lignocellulosic digestion potential of the native microfauna of the lesser-known pine forest of Netarhat.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sonam Kumari
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Jorge S Leon Magdaleno
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ravneet Kaur Grewal
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca, Chile
| | - Abdul Rajjak Shaikh
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohit Chawla
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manoj Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| |
Collapse
|
6
|
Santos-Pereira C, Sousa J, Costa ÂMA, Santos AO, Rito T, Soares P, Franco-Duarte R, Silvério SC, Rodrigues LR. Functional and sequence-based metagenomics to uncover carbohydrate-degrading enzymes from composting samples. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12627-9. [PMID: 37417976 PMCID: PMC10390414 DOI: 10.1007/s00253-023-12627-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023]
Abstract
The renewable, abundant , and low-cost nature of lignocellulosic biomass can play an important role in the sustainable production of bioenergy and several added-value bioproducts, thus providing alternative solutions to counteract the global energetic and industrial demands. The efficient conversion of lignocellulosic biomass greatly relies on the catalytic activity of carbohydrate-active enzymes (CAZymes). Finding novel and robust biocatalysts, capable of being active under harsh industrial conditions, is thus imperative to achieve an economically feasible process. In this study, thermophilic compost samples from three Portuguese companies were collected, and their metagenomic DNA was extracted and sequenced through shotgun sequencing. A novel multi-step bioinformatic pipeline was developed to find CAZymes and characterize the taxonomic and functional profiles of the microbial communities, using both reads and metagenome-assembled genomes (MAGs) as input. The samples' microbiome was dominated by bacteria, where the classes Gammaproteobacteria, Alphaproteobacteria, and Balneolia stood out for their higher abundance, indicating that the degradation of compost biomass is mainly driven by bacterial enzymatic activity. Furthermore, the functional studies revealed that our samples are a rich reservoir of glycoside hydrolases (GH), particularly of GH5 and GH9 cellulases, and GH3 oligosaccharide-degrading enzymes. We further constructed metagenomic fosmid libraries with the compost DNA and demonstrated that a great number of clones exhibited β-glucosidase activity. The comparison of our samples with others from the literature showed that, independently of the composition and process conditions, composting is an excellent source of lignocellulose-degrading enzymes. To the best of our knowledge, this is the first comparative study on the CAZyme abundance and taxonomic/functional profiles of Portuguese compost samples. KEY POINTS: • Sequence- and function-based metagenomics were used to find CAZymes in compost samples. • Thermophilic composts proved to be rich in bacterial GH3, GH5, and GH9 enzymes. • Compost-derived fosmid libraries are enriched in clones with β-glucosidase activity.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Joana Sousa
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Ângela M A Costa
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Andréia O Santos
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Teresa Rito
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- IB-S-Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Pedro Soares
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- IB-S-Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- IB-S-Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sara C Silvério
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal.
| | - Lígia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| |
Collapse
|
7
|
Ariaeenejad S, Motamedi E, Kavousi K, Ghasemitabesh R, Goudarzi R, Salekdeh GH, Zolfaghari B, Roy S. Enhancing the ethanol production by exploiting a novel metagenomic-derived bifunctional xylanase/β-glucosidase enzyme with improved β-glucosidase activity by a nanocellulose carrier. Front Microbiol 2023; 13:1056364. [PMID: 36687660 PMCID: PMC9845577 DOI: 10.3389/fmicb.2022.1056364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
Some enzymes can catalyze more than one chemical conversion for which they are physiologically specialized. This secondary function, which is called underground, promiscuous, metabolism, or cross activity, is recognized as a valuable feature and has received much attention for developing new catalytic functions in industrial applications. In this study, a novel bifunctional xylanase/β-glucosidase metagenomic-derived enzyme, PersiBGLXyn1, with underground β-glucosidase activity was mined by in-silico screening. Then, the corresponding gene was cloned, expressed and purified. The PersiBGLXyn1 improved the degradation efficiency of organic solvent pretreated coffee residue waste (CRW), and subsequently the production of bioethanol during a separate enzymatic hydrolysis and fermentation (SHF) process. After characterization, the enzyme was immobilized on a nanocellulose (NC) carrier generated from sugar beet pulp (SBP), which remarkably improved the underground activity of the enzyme up to four-fold at 80°C and up to two-fold at pH 4.0 compared to the free one. The immobilized PersiBGLXyn1 demonstrated 12 to 13-fold rise in half-life at 70 and 80°C for its underground activity. The amount of reducing sugar produced from enzymatic saccharification of the CRW was also enhanced from 12.97 g/l to 19.69 g/l by immobilization of the enzyme. Bioethanol production was 29.31 g/l for free enzyme after 72 h fermentation, while the immobilized PersiBGLXyn1 showed 51.47 g/l production titre. Overall, this study presented a cost-effective in-silico metagenomic approach to identify novel bifunctional xylanase/β-glucosidase enzyme with underground β-glucosidase activity. It also demonstrated the improved efficacy of the underground activities of the bifunctional enzyme as a promising alternative for fermentable sugars production and subsequent value-added products.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran,*Correspondence: Shohreh Ariaeenejad, ;
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Rezvaneh Ghasemitabesh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Razieh Goudarzi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia,Ghasem Hosseini Salekdeh,
| | - Behrouz Zolfaghari
- Department of Integrated Art and Sciences, Faculty of Education, Waseda University, Tokyo, Japan
| | - Swapnoneel Roy
- School of Computing, University of North Florida, Jacksonville, FL, United States
| |
Collapse
|
8
|
Jeilu O, Simachew A, Alexandersson E, Johansson E, Gessesse A. Discovery of novel carbohydrate degrading enzymes from soda lakes through functional metagenomics. Front Microbiol 2022; 13:1059061. [PMID: 36569080 PMCID: PMC9768486 DOI: 10.3389/fmicb.2022.1059061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Extremophiles provide a one-of-a-kind source of enzymes with properties that allow them to endure the rigorous industrial conversion of lignocellulose biomass into fermentable sugars. However, the fact that most of these organisms fail to grow under typical culture conditions limits the accessibility to these enzymes. In this study, we employed a functional metagenomics approach to identify carbohydrate-degrading enzymes from Ethiopian soda lakes, which are extreme environments harboring a high microbial diversity. Out of 21,000 clones screened for the five carbohydrate hydrolyzing enzymes, 408 clones were found positive. Cellulase and amylase, gave high hit ratio of 1:75 and 1:280, respectively. A total of 378 genes involved in the degradation of complex carbohydrates were identified by combining high-throughput sequencing of 22 selected clones and bioinformatics analysis using a customized workflow. Around 41% of the annotated genes belonged to the Glycoside Hydrolases (GH). Multiple GHs were identified, indicating the potential to discover novel CAZymes useful for the enzymatic degradation of lignocellulose biomass from the Ethiopian soda Lakes. More than 73% of the annotated GH genes were linked to bacterial origins, with Halomonas as the most likely source. Biochemical characterization of the three enzymes from the selected clones (amylase, cellulase, and pectinase) showed that they are active in elevated temperatures, high pH, and high salt concentrations. These properties strongly indicate that the evaluated enzymes have the potential to be used for applications in various industrial processes, particularly in biorefinery for lignocellulose biomass conversion.
Collapse
Affiliation(s)
- Oliyad Jeilu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden,*Correspondence: Oliyad Jeilu,
| | - Addis Simachew
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Erik Alexandersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Amare Gessesse
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
9
|
Chouyia FE, Ventorino V, Pepe O. Diversity, mechanisms and beneficial features of phosphate-solubilizing Streptomyces in sustainable agriculture: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:1035358. [PMID: 36561447 PMCID: PMC9763937 DOI: 10.3389/fpls.2022.1035358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Currently, the use of phosphate (P) biofertilizers among many bioformulations has attracted a large amount of interest for sustainable agriculture. By acting as growth promoters, members of the Streptomyces genus can positively interact with plants. Several studies have shown the great potential of this bacterial group in supplementing P in a soluble, plant-available form by several mechanisms. Furthermore, some P-solubilizing Streptomyces (PSS) species are known as plant growth-promoting rhizobacteria that are able to promote plant growth through other means, such as increasing the availability of soil nutrients and producing a wide range of antibiotics, phytohormones, bioactive compounds, and secondary metabolites other than antimicrobial compounds. Therefore, the use of PSS with multiple plant growth-promoting activities as an alternative strategy appears to limit the negative impacts of chemical fertilizers in agricultural practices on environmental and human health, and the potential effects of these PSS on enhancing plant fitness and crop yields have been explored. However, compared with studies on the use of other gram-positive bacteria, studies on the use of Streptomyces as P solubilizers are still lacking, and their results are unclear. Although PSS have been reported as potential bioinoculants in both greenhouse and field experiments, no PSS-based biofertilizers have been commercialized to date. In this regard, this review provides an overview mainly of the P solubilization activity of Streptomyces species, including their use as P biofertilizers in competitive agronomic practices and the mechanisms through which they release P by solubilization/mineralization, for both increasing P use efficiency in the soil and plant growth. This review further highlights and discusses the beneficial association of PSS with plants in detail with the latest developments and research to expand the knowledge concerning the use of PSS as P biofertilizers for field applications by exploiting their numerous advantages in improving crop production to meet global food demands.
Collapse
Affiliation(s)
- Fatima Ezzahra Chouyia
- Department of Biology, Faculty of Sciences and Techniques, Hassan II University, Casablanca, Morocco
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Besaury L, Fromentin J, Detain J, Rodrigues CM, Harakat D, Rémond C. Transcriptomic analysis of lignocellulose degradation by Streptomyces coelicolor A3(2) and elicitation of secondary metabolites production. FEMS Microbiol Lett 2022; 369:6776015. [PMID: 36302146 DOI: 10.1093/femsle/fnac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/23/2022] [Accepted: 10/25/2022] [Indexed: 12/13/2022] Open
Abstract
Streptomyces coelicolor A3(2) is considered as the model strain among the Streptomyces and has the capacity to produce several natural molecules. Our hypothesis was that cultivation of the strain onto a complex carbon source such as wheat bran (WB) would induce the production of various secondary metabolites due to the presence of complex polysaccharides. A multiapproach has been performed in order to investigate: (1) whether that strain could degrade lignocellulose; (2) which enzymatic and metabolic pathways secondary were over-expressed when grown on WB. The transcriptomic approach showed the expression of several CAZymes significantly expressed when grown on WB such as endoglucanases (encoding for GH74, GH5_8, and GH12) and xylanases (GH11 and CE4 encoding for respectively endo-1,4-beta-xylanase and an acetyl-xylan esterase). Enzymatic activities showed an expression of xylanase (115.3 ± 32.2 mUI/ml) and laccase-peroxidase (101.5 ± 10.9 mUI/ml) during WB degradation by S. coelicolor A3(2). Metabolomics showed that the production of secondary metabolites differed between growth on either glucose or WB as carbon source, which may be correlated to the complexity of carbon compounds within WB, which are similar to the ones encountered in soils and should represent more the in situ carbon conditions which Streptomyces might face off. This opens opportunities for the bioproduction of molecules of interest from WB.
Collapse
Affiliation(s)
- Ludovic Besaury
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, chaire AFERE, 51097 Reims, France
| | - Jean Fromentin
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, chaire AFERE, 51097 Reims, France
| | - Julian Detain
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, chaire AFERE, 51097 Reims, France
| | | | - Dominique Harakat
- Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| | - Caroline Rémond
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, chaire AFERE, 51097 Reims, France
| |
Collapse
|
11
|
Abstract
Streptomycetes are highly metabolically gifted bacteria with the abilities to produce bioproducts that have profound economic and societal importance. These bioproducts are produced by metabolic pathways including those for the biosynthesis of secondary metabolites and catabolism of plant biomass constituents. Advancements in genome sequencing technologies have revealed a wealth of untapped metabolic potential from Streptomyces genomes. Here, we report the largest Streptomyces pangenome generated by using 205 complete genomes. Metabolic potentials of the pangenome and individual genomes were analyzed, revealing degrees of conservation of individual metabolic pathways and strains potentially suitable for metabolic engineering. Of them, Streptomyces bingchenggensis was identified as a potent degrader of plant biomass. Polyketide, non-ribosomal peptide, and gamma-butyrolactone biosynthetic enzymes are primarily strain specific while ectoine and some terpene biosynthetic pathways are highly conserved. A large number of transcription factors associated with secondary metabolism are strain-specific while those controlling basic biological processes are highly conserved. Although the majority of genes involved in morphological development are highly conserved, there are strain-specific varieties which may contribute to fine tuning the timing of cellular differentiation. Overall, these results provide insights into the metabolic potential, regulation and physiology of streptomycetes, which will facilitate further exploitation of these important bacteria.
Collapse
|
12
|
Shen Q, Tang J, Sun H, Yao X, Wu Y, Wang X, Ye S. Straw waste promotes microbial functional diversity and lignocellulose degradation during the aerobic process of pig manure in an ectopic fermentation system via metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155637. [PMID: 35513151 DOI: 10.1016/j.scitotenv.2022.155637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
This study compares the physicochemical properties, lignocellulose degradation, microbial community composition, and carbohydrate-active enzymes (CAZymes) in ectopic fermentation systems (EFS) of pig manure mixed with either conventional padding (C) or straw waste (A). The degradation rates of cellulose, hemicellulose, and lignin were found to be significantly higher in A (27.72%, 22.72%, and 18.80%, respectively) than in C (21.05%, 16.17%, and 11.69%, respectively) owing to the activities of lignocellulolytic enzymes. Metagenomics revealed that straw addition had a stronger effect on the bacterial community succession than fungi. The abundances of Sphingobacterium, Pseudomonas, and CAZymes were higher in A than in C, as well as the auxiliary activity enzymes, which are crucial for lignocellulose degradation. Redundancy analysis indicates a positive correlation between lignocellulose degradation and Sphingobacterium, Pseudomonas, Bacillus, and Actinobacteria contents. A structural equation model was applied to further verify that the increased microbial functional diversity was the primary driver of lignocellulosic degradation, which could be effectively regulated by the enhanced temperature with straw addition. Replacing traditional padding with straw can thus accelerate lignocellulosic degradation, promote microbial functional diversity, and improve the EFS efficiency.
Collapse
Affiliation(s)
- Qi Shen
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Jiangwu Tang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China.
| | - Hong Sun
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Xiaohong Yao
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Yifei Wu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Xin Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Shihao Ye
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
13
|
Comparative analysis of genome-based CAZyme cassette in Antarctic Microbacterium sp. PAMC28756 with 31 other Microbacterium species. Genes Genomics 2022; 44:733-746. [PMID: 35486322 DOI: 10.1007/s13258-022-01254-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The genus Microbacterium belongs to the family Microbacteriaceae and phylum Actinobacteria. A detailed study on the complete genome and systematic comparative analysis of carbohydrate-active enzyme (CAZyme) among the Microbacterium species would add knowledge on metabolic and environmental adaptation. Here we present the comparative genomic analysis of CAZyme using the complete genome of Antarctic Microbacterium sp. PAMC28756 with other complete genomes of 31 Microbacterium species available. OBJECTIVE The genomic and CAZyme comparison of Microbacterium species and to rule out the specific features of CAZyme for the environmental and metabolic adaptation. METHODS Bacterial source were collected from NCBI database, CAZyme annotation of Microbacterium species was analyzed using dbCAN2 Meta server. Cluster of orthologous groups (COGs) analysis was performed using the eggNOG4.5 database. Whereas, KEGG database was used to compare and obtained the functional genome annotation information in carbohydrate metabolism and glyoxylate cycle. RESULTS Out of 32 complete genomes of Microbacterium species, strain No. 7 isolated from Activated Sludge showed the largest genomic size at 4.83 Mb. The genomic size of PAMC28756 isolated from Antarctic lichen species Stereocaulons was 3.54 Mb, the G + C content was 70.4% with 3,407 predicted genes, of which 3.36% were predicted CAZyme. In addition, while comparing the Glyoxylate cycle among 32 bacteria, except 10 strains, all other, including our strain have Glyoxylate pathway. PAMC28756 contained the genes that degrade cellulose, hemicellulose, amylase, pectinase, chitins and other exo-and endo glycosidases. Utilizing these polysaccharides can provides source of energy in an extreme environment. In addition, PAMC28756 assigned the (10.15%) genes in the carbohydrate transport and metabolism functional group closely related to the CAZyme for polysaccharides degradation. CONCLUSIONS The genomic content and CAZymes distribution was varied in Microbacterium species. There was the presence of more than 10% genes in the carbohydrate transport and metabolism functional group closely related to the CAZyme for polysaccharides degradation. In addition, occurrence of glyoxylate cycle for alternative utilization of carbon sources suggest the adaptation of PAMC28756 in the harsh microenvironment.
Collapse
|
14
|
Metagenomic mining of Indian river confluence reveal functional microbial community with lignocelluloytic potential. 3 Biotech 2022; 12:132. [PMID: 35611093 DOI: 10.1007/s13205-022-03190-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/26/2022] [Indexed: 11/01/2022] Open
Abstract
Microbial carbohydrate-active enzymes (CAZyme) can be harnessed for valorization of Lignocellulosic biomass (LCB) to value-added chemicals/products. The two Indian Rivers Ganges and the Yamuna having different origins and flow, face accumulation of carbon-rich substrates due to the discharge of wastewater from adjoining paper and pulp industries, which could potentially contribute to the natural enrichment of LCB utilizing genes, especially at their confluence. We analyzed CAZyme diversity in metagenomic datasets across the sacred confluence of the Rivers Ganges and Yamuna. Functional annotation using CAZyme database identified a total of 77,815 putative genes with functional domains involved in the catalysis of carbohydrate degradation or synthesis of glycosidic bonds. The metagenomic analysis detected ~ 41% CAZymes catalyzing the hydrolysis of lignocellulosic biomass polymers- cellulose, hemicellulose, lignin, and pectin. The Beta diversity analysis suggested higher CAZyme diversity at downstream region of the river confluence, which could be useful niche for culture-based studies. Taxonomic origin for CAZymes revealed the predominance of bacteria (97%), followed by archaea (1.67%), Eukaryota (0.63%), and viruses (0.7%). Metagenome guided CAZyme diversity of the microflora spanning across the confluence of Ganges-Yamuna River, could be harnessed for biomass and bioenergy applications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03190-7.
Collapse
|
15
|
Metatranscriptome Profiling of a Specialized Microbial Consortium during the Degradation of Nixtamalized Maize Pericarp. Microbiol Spectr 2022; 10:e0231821. [PMID: 34985337 PMCID: PMC8729791 DOI: 10.1128/spectrum.02318-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lignocellulose degradation by microbial consortia is multifactorial; hence, it must be analyzed from a holistic perspective. In this study, the temporal transcriptional activity of consortium PM-06, a nixtamalized maize pericarp (NMP) degrader, was determined and related to structural and physicochemical data to give insights into the mechanism used to degrade this substrate. Transcripts were described in terms of metabolic profile, carbohydrate-active enzyme (CAZyme) annotation, and taxonomic affiliation. The PM-06 gene expression pattern was closely related to the differential rates of degradation. The environmental and physiological conditions preceding high-degradation periods were crucial for CAZyme expression. The onset of degradation preceded the period with the highest degradation rate in the whole process, and in this time, several CAZymes were upregulated. Functional analysis of expressed CAZymes indicated that PM-06 overcomes NMP recalcitrance through modular enzymes operating at the proximity of the insoluble substrate. Increments in the diversity of expressed modular CAZymes occurred in the last stages of degradation where the substrate is more recalcitrant and environmental conditions are stressing. Taxonomic affiliation of CAZyme transcripts indicated that Paenibacillus macerans was fundamental for degradation. This microorganism established synergistic relationships with Bacillus thuringiensis for the degradation of cellulose and hemicellulose and with Microbacterium, Leifsonia, and Nocardia for the saccharification of oligosaccharides. IMPORTANCE Nixtamalized maize pericarp is an abundant residue of the tortilla industry. Consortium PM-06 efficiently degraded this substrate in 192 h. In this work, the temporal transcriptional profile of PM-06 was determined. Findings indicated that differential degradation rates are important sample selection criteria since they were closely related to the expression of carbohydrate-active enzymes (CAZymes). The initial times of degradation were crucial for the consumption of nixtamalized pericarp. A transcriptional profile at the onset of degradation is reported for the first time. Diverse CAZyme genes were rapidly transcribed after inoculation to produce different enzymes that participated in the stage with the highest degradation rate in the whole process. This study provides information about the regulation of gene expression and mechanisms used by PM-06 to overcome recalcitrance. These findings are useful in the design of processes and enzyme cocktails for the degradation of this abundant substrate.
Collapse
|
16
|
Co-elicitation of lignocelluloytic enzymatic activities and metabolites production in an Aspergillus-Streptomyces co-culture during lignocellulose fractionation. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100108. [PMID: 35243445 PMCID: PMC8861581 DOI: 10.1016/j.crmicr.2022.100108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/20/2022] [Accepted: 02/05/2022] [Indexed: 11/24/2022] Open
Abstract
An easy set-up of the co-cultures from 2 different microorganisms (filamentous fungi and bacteria) from different microbial domains resulting into a greater and more diverse metabolic and lignocellulolytic content. An over expression of several key enzymatic lignocellulolytic activities is observed during the co-coculture due to elicitation. An elicitation of some specific biosynthetic cluster genes is observed due to the activation of those the complexity of the carbon compounds present in the lignocellulose. An elicitation of some specific biosynthetic cluster genes is observed only during the co-culture experiment. A specific microbial crosstalk and interaction exists at the species level between the 3 Streptomyces and the fungi leading to a specific of lignocellulolytic enzyme and secondary metabolite production.
Lignocellulose, the most abundant biomass on Earth, is a complex recalcitrant material mainly composed of three fractions: cellulose, hemicelluloses and lignins. In nature, lignocellulose is efficiently degraded for carbon recycling. Lignocellulose degradation involves numerous microorganisms and their secreted enzymes that act in synergy. Even they are efficient, the natural processes for lignocellulose degradation are slow (weeks to months). In this study, the objective was to study the synergism of some microorganisms to achieve efficient and rapid lignocellulose degradation. Wheat bran, an abundant co-product from milling industry, was selected as lignocellulosic biomass. Mono-cultures and co-cultures involving one A.niger strain fungi never sequenced before (DSM 1957) and either one of three different Streptomyces strains were tested in order to investigate the potentiality for efficient lignocellulose degradability. Comparative genomics of the strain Aspergillus niger DSM 1957 revealed that it harboured the maximum of AA, CBM, CE and GH among its closest relative strains. The different co-cultures set-up enriched the metabolic diversity and the lignocellulolytic CAZyme content. Depending on the co-cultures, an over-expression of some enzymatic activities (xylanase, glucosidase, arabinosidase) was observed in the co-cultures compared to the mono-cultures suggesting a specific microbial cross-talk depending on the microbial partner. Moreover, metabolomics for each mono and co-culture was performed and revealed an elicitation of the production of secondary metabolites and the activation of silent biosynthetic cluster genes depending on the microbial co-culture. This opens opportunities for the bioproduction of molecules of interest from wheat bran.
Collapse
|
17
|
Besaury L, Martinet L, Mühle E, Clermont D, Rémond C. Streptomyces silvae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2021; 71. [PMID: 34889725 PMCID: PMC8744254 DOI: 10.1099/ijsem.0.005147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain, named For3T, was isolated from forest soil sampled in Champenoux, France. Based on its 16S rRNA gene sequence, the strain was affiliated to the family Streptomycetaceae and, more specifically, to the genus Streptomyces. The strain had 99.93% 16S rRNA gene sequence similarity to its closest relative strains Streptomyces pratensis ATCC 33331T, Streptomyces anulatus ATCC 27416T, Streptomyces setonii NRRL ISP-5322T and Kitasatospora papulosa NRRL B-16504T. The phylogenomic tree using the genome blast distance phylogeny method showed that the closest relative strain was Streptomyces atroolivaceus NRRL ISP-5137T and that For3T represents a new branch among the Streptomyces. Genome relatedness indexes revealed that the average nucleotide identity and digital DNA-DNA hybridization values between For3T and its closest phylogenomic relative (S. atroolivaceus NRRL ISP-5137T) were 88.39 and 39.2 %, respectively. The G+C content of the genome was 71.4 mol% and its size was 7.96 Mb with 7492 protein-coding genes. Strain For3T harboured complete metabolic pathways absent in the closest relative strains such as cellulose biosynthesis, glycogen degradation I, glucosylglycerate biosynthesis I. Anteiso-C15:0, iso-C15:0, anteiso-C17:0 and MK-9(H4)/MK-9(H6) were the predominant cellular fatty acids and respiratory quinones, respectively. Phenotypic and genomic data supported the assignment of strain For3T to a novel species Streptomyces silvae sp. nov., within the genus Streptomyces, for which the type strain is For3T (=CIP 111908T=LMG 32186T).
Collapse
Affiliation(s)
- Ludovic Besaury
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, chaire AFERE, Reims, France
| | - Lucas Martinet
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, chaire AFERE, Reims, France
| | - Estelle Mühle
- CIP-Collection de l'Institut Pasteur, Institut Pasteur, Paris, France
| | | | - Caroline Rémond
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, chaire AFERE, Reims, France
| |
Collapse
|
18
|
Dimkić I, Bhardwaj V, Carpentieri-Pipolo V, Kuzmanović N, Degrassi G. The chitinolytic activity of the Curtobacterium sp. isolated from field-grown soybean and analysis of its genome sequence. PLoS One 2021; 16:e0259465. [PMID: 34731210 PMCID: PMC8565777 DOI: 10.1371/journal.pone.0259465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
Curtobacterium sp. GD1 was isolated from leaves of conventionally grown soybean in Brazil. It was noteworthy that among all bacteria previously isolated from the same origin, only Curtobacterium sp. GD1 showed a strong chitinase activity. The enzyme was secreted and its production was induced by the presence of colloidal chitin in the medium. The chitinase was partially purified and characterized: molecular weight was approximately 37 kDa and specific activity 90.8 U/mg. Furthermore, Curtobacterium sp. GD1 genome was sequenced and analyzed. Our isolate formed a phylogenetic cluster with four other Curtobacterium spp. strains, with ANIb/ANIm ≥ 98%, representing a new, still non described Curtobacterium species. The circular genome visualization and comparison of genome sequences of strains forming new cluster indicated that most regions within their genomes were highly conserved. The gene associated with chitinase production was identified and the distribution pattern of glycosyl hydrolases genes was assessed. Also, genes associated with catabolism of structural carbohydrates such as oligosaccharides, mixed polysaccharides, plant and animal polysaccharides, as well as genes or gene clusters associated with resistance to antibiotics, toxic compounds and auxin biosynthesis subsystem products were identified. The abundance of putative glycosyl hydrolases in the genome of Curtobacterium sp. GD1 suggests that it has the tools for the hydrolysis of different polysaccharides. Therefore, Curtobacterium sp. GD1 isolated from soybean might be a bioremediator, biocontrol agent, an elicitor of the plant defense responses or simply degrader.
Collapse
Affiliation(s)
- Ivica Dimkić
- Department of Biochemistry and Molecular Biology, University of Belgrade – Faculty of Biology, Belgrade, Serbia
| | - Vibha Bhardwaj
- Ras Al Khaimah Municipality Department, Director Environment Laboratories, Dubai, United Arab Emirates
| | | | - Nemanja Kuzmanović
- Federal Research Centre for Cultivated Plants (JKI), Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institut, Braunschweig, Germany
| | - Giuliano Degrassi
- Industrial Biotechnology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Buenos Aires, Argentina
| |
Collapse
|
19
|
Costa ÂMA, Santos AO, Sousa J, Rodrigues JL, Gudiña EJ, Silvério SC, Rodrigues LR. Improved method for the extraction of high-quality DNA from lignocellulosic compost samples for metagenomic studies. Appl Microbiol Biotechnol 2021; 105:8881-8893. [PMID: 34724083 DOI: 10.1007/s00253-021-11647-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
The world economy is currently moving towards more sustainable approaches. Lignocellulosic biomass has been widely used as a substitute for fossil sources since it is considered a low-cost bio-renewable resource due to its abundance and continuous production. Compost habitats presenting high content of lignocellulosic biomass are considered a promising source of robust lignocellulose-degrading enzymes. Recently, several novel biocatalysts from different environments have been identified using metagenomic techniques. A key point of the metagenomics studies is the extraction and purification of nucleic acids. Nevertheless, the isolation of high molecular weight DNA from soil-like samples, such as compost, with the required quality for metagenomic approaches remains technically challenging, mainly due to the complex composition of the samples and the presence of contaminants like humic substances. In this work, a rapid and cost-effective protocol for metagenomic DNA extraction from compost samples composed of lignocellulosic residues and containing high content of humic substances was developed. The metagenomic DNA was considered as representative of the global environment and presented high quality (> 99% of humic acids effectively removed) and sufficient quantity (10.5-13.8 µg g-1 of compost) for downstream applications, namely functional metagenomic studies. The protocol takes about 4 h of bench work, and it can be performed using standard molecular biology equipment and reagents available in the laboratory. KEY POINTS/HIGHLIGHTS: • Metagenomic DNA was successfully extracted from compost samples rich in humic acids • The improved protocol was established by optimizing the cell lysis method and buffer • Complete removal of humic acids was achieved through the use of activated charcoal • The suitability of the DNA was proven by the construction of a metagenomic library.
Collapse
Affiliation(s)
- Ângela M A Costa
- CEB - Centre of Biological Engineering, Universidade Do Minho, 4710-057, Braga, Portugal
| | - Andréia O Santos
- CEB - Centre of Biological Engineering, Universidade Do Minho, 4710-057, Braga, Portugal
| | - Joana Sousa
- CEB - Centre of Biological Engineering, Universidade Do Minho, 4710-057, Braga, Portugal
| | - Joana L Rodrigues
- CEB - Centre of Biological Engineering, Universidade Do Minho, 4710-057, Braga, Portugal
| | - Eduardo J Gudiña
- CEB - Centre of Biological Engineering, Universidade Do Minho, 4710-057, Braga, Portugal
| | - Sara C Silvério
- CEB - Centre of Biological Engineering, Universidade Do Minho, 4710-057, Braga, Portugal.
| | - Ligia R Rodrigues
- CEB - Centre of Biological Engineering, Universidade Do Minho, 4710-057, Braga, Portugal
| |
Collapse
|
20
|
Vela Gurovic MS, Díaz ML, Gallo CA, Dietrich J. Phylogenomics, CAZyome and core secondary metabolome of Streptomyces albus species. Mol Genet Genomics 2021; 296:1299-1311. [PMID: 34564766 DOI: 10.1007/s00438-021-01823-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022]
Abstract
A phylogenomic study conducted with different bioinformatic tools such as TYGS, REALPHY and AAI comparisons revealed a high rate of misidentified Streptomyces albus genomes in GenBank. Only 9 of the 18 annotated genomes available in the public database were correctly identified as S. albus species. The pangenome of the nine in silico confirmed S. albus genomes was almost closed. Lignocellulosic agroresidues were a common niche among strains of the S. albus clade while carbohydrate active enzymes (CAZymes) were highly conserved. Relevant enzymes for cellulose degradation such as beta glucosidases belonging to the GH1 family, a GH6 cellulase and a monooxygenase AA10-CBM2 were encoded by all S. albus genomes. Among them, one GH1 glycosidase would be regulated by CebR. However, this regulatory mechanism was not confirmed for other genes related to cellulose degradation. Based on AntiSMASH predictions, the core secondary metabolome of S. albus encompassed a total of 23 biosynthetic gene clusters (BGCs), where 4 were related to common metabolites within Streptomyces genus. Species specific BGCs included those related to pseudouridimycin and xantholipin. Additionally, four BGCs encoded putative derivatives of ibomycin, the lasso peptide SSV-2086, the lanthipeptide SapB and the terpene isorenieratene. Known metabolites could not be assigned to ten BGCs and three clusters did not match with any previously described BGC. The core genome of S. albus retrieved from nine closely related genomes revealed a high potential for the discovery of novel bioactive metabolites and underexplored regulatory genomic elements related to lignocellulose deconstruction.
Collapse
Affiliation(s)
- María Soledad Vela Gurovic
- CERZOS UNS-CONICET CCT-Bahía Blanca, Camino La Carrindanga Km7, B8000FWB, Bahía Blanca, Argentina. .,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000, Bahía Blanca, Argentina.
| | - Marina Lucía Díaz
- CERZOS UNS-CONICET CCT-Bahía Blanca, Camino La Carrindanga Km7, B8000FWB, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Cristian Andres Gallo
- CERZOS UNS-CONICET CCT-Bahía Blanca, Camino La Carrindanga Km7, B8000FWB, Bahía Blanca, Argentina
| | - Julián Dietrich
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000, Bahía Blanca, Argentina
| |
Collapse
|
21
|
Braga LPP, Pereira RV, Martins LF, Moura LMS, Sanchez FB, Patané JSL, da Silva AM, Setubal JC. Genome-resolved metagenome and metatranscriptome analyses of thermophilic composting reveal key bacterial players and their metabolic interactions. BMC Genomics 2021; 22:652. [PMID: 34507539 PMCID: PMC8434746 DOI: 10.1186/s12864-021-07957-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Composting is an important technique for environment-friendly degradation of organic material, and is a microbe-driven process. Previous metagenomic studies of composting have presented a general description of the taxonomic and functional diversity of its microbial populations, but they have lacked more specific information on the key organisms that are active during the process. RESULTS Here we present and analyze 60 mostly high-quality metagenome-assembled genomes (MAGs) recovered from time-series samples of two thermophilic composting cells, of which 47 are potentially new bacterial species; 24 of those did not have any hits in two public MAG datasets at the 95% average nucleotide identity level. Analyses of gene content and expressed functions based on metatranscriptome data for one of the cells grouped the MAGs in three clusters along the 99-day composting process. By applying metabolic modeling methods, we were able to predict metabolic dependencies between MAGs. These models indicate the importance of coadjuvant bacteria that do not carry out lignocellulose degradation but may contribute to the management of reactive oxygen species and with enzymes that increase bioenergetic efficiency in composting, such as hydrogenases and N2O reductase. Strong metabolic dependencies predicted between MAGs revealed key interactions relying on exchange of H+, NH3, O2 and CO2, as well as glucose, glutamate, succinate, fumarate and others, highlighting the importance of functional stratification and syntrophic interactions during biomass conversion. Our model includes 22 out of 49 MAGs recovered from one composting cell data. Based on this model we highlight that Rhodothermus marinus, Thermobispora bispora and a novel Gammaproteobacterium are dominant players in chemolithotrophic metabolism and cross-feeding interactions. CONCLUSIONS The results obtained expand our knowledge of the taxonomic and functional diversity of composting bacteria and provide a model of their dynamic metabolic interactions.
Collapse
Affiliation(s)
- Lucas Palma Perez Braga
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Layla Farage Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Livia Maria Silva Moura
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São Paulo, São Paulo, Brazil
| | - Fabio Beltrame Sanchez
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Bioinformática, Universidade de São Paulo, São Paulo, Brazil
| | | | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
22
|
Metagenome-assembled genome of a Chitinophaga sp. and its potential in plant biomass degradation, as well of affiliated Pandoraea and Labrys species. World J Microbiol Biotechnol 2021; 37:162. [PMID: 34448059 DOI: 10.1007/s11274-021-03128-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022]
Abstract
The prospection of new degrading enzymes of the plant cell wall has been the subject of many studies and is fundamental for industries, due to the great biotechnological importance of achieving a more efficient depolymerization conversion from plant polysaccharides to fermentable sugars, which are useful not only for biofuel production but also for various bioproducts. Thus, we explored the shotgun metagenome data of a bacterial community (CB10) isolated from sugarcane bagasse and recovered three metagenome-assembled genomes (MAGs). The genomic distance analyses, along with phylogenetic analysis, revealed the presence of a putative novel Chitinophaga species, a Pandoraea nosoerga, and Labrys sp. isolate. The isolation process for each one of these bacterial lineages from the community was carried out in order to relate them with the MAGs. The recovered draft genomes have reasonable completeness (72.67-100%) and contamination (0.26-2.66%) considering the respective marker lineage for Chitinophaga (Bacteroidetes), Pandoraea (Burkholderiales), and Labrys (Rhizobiales). The in-vitro assay detected cellulolytic activity (endoglucanases) only for the isolate Chitinophaga, and its genome analysis revealed 319 CAZymes, of which 115 are classified as plant cell wall degrading enzymes, which can act in fractions of hemicellulose and pectin. Our study highlights the potential of this Chitinophaga isolate provides several plant-polysaccharide-degrading enzymes.
Collapse
|
23
|
Tikariha H, Pavagadhi S, Mayalagu S, Poh MCH, Swarup S. Hybrid Genome Assembly for Predicting Functional Potential of a Novel Streptomyces Strain as Plant Biomass Valorisation Agent. Indian J Microbiol 2021; 61:283-290. [PMID: 34294994 DOI: 10.1007/s12088-021-00935-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/27/2021] [Indexed: 11/27/2022] Open
Abstract
Environmental bioremediation relies heavily on the realized potential of efficient bioremediation agents or microbial strains of interest. Identifying suitable microbial agents for plant biomass waste valorization requires (i) high-quality genome assemblies to predict the full metabolic and functional potential, (ii) accurate mapping of lignocellulose metabolizing enzymes. However, fragmented nature of the sequenced genomes often limits the prediction ability due to breaks occurring in coding sequences. To address these challenges and as part of our ongoing agri-culturomics efforts, we have performed a hybrid genome assembly using Illumina and Nanopore reads with modified assembly protocol, for a novel Streptomyces strain isolated from the rhizosphere niche of green leafy vegetables grown in a commercial urban farm. High-quality genome was assembled with the size of 8.6 Mb in just two contigs with N50 of 8,542,030 and coverage of 383X. This facilitated identification and complete arrangement of approximately 248 CAZymes and 38 biosynthetic gene clusters in the genome. Multiple gene clusters consisting of cellulases and hemicellulases associated with substrate recognition domain were identified in the genome. Genes for lignin, chitin, and even some aromatic compounds degradation were found in the Streptomyces sp. genome which makes it a promising candidate for lignocellulosic waste valorization. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-021-00935-5.
Collapse
Affiliation(s)
- Hitesh Tikariha
- NUS Environmental Research Institute, National University of Singapore, Singapore, 117411 Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 117456 Singapore
| | - Shruti Pavagadhi
- NUS Environmental Research Institute, National University of Singapore, Singapore, 117411 Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 117456 Singapore
| | - Sevugan Mayalagu
- NUS Environmental Research Institute, National University of Singapore, Singapore, 117411 Singapore
| | - Miko Chin Hong Poh
- NUS Environmental Research Institute, National University of Singapore, Singapore, 117411 Singapore
| | - Sanjay Swarup
- NUS Environmental Research Institute, National University of Singapore, Singapore, 117411 Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 117456 Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117558 Singapore
| |
Collapse
|
24
|
Pabbathi NPP, Velidandi A, Tavarna T, Gupta S, Raj RS, Gandam PK, Baadhe RR. Role of metagenomics in prospecting novel endoglucanases, accentuating functional metagenomics approach in second-generation biofuel production: a review. BIOMASS CONVERSION AND BIOREFINERY 2021; 13:1371-1398. [PMID: 33437563 PMCID: PMC7790359 DOI: 10.1007/s13399-020-01186-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/30/2020] [Accepted: 12/01/2020] [Indexed: 05/02/2023]
Abstract
As the fossil fuel reserves are depleting rapidly, there is a need for alternate fuels to meet the day to day mounting energy demands. As fossil fuel started depleting, a quest for alternate forms of fuel was initiated and biofuel is one of its promising outcomes. First-generation biofuels are made from edible sources like vegetable oils, starch, and sugars. Second-generation biofuels (SGB) are derived from lignocellulosic crops and the third-generation involves algae for biofuel production. Technical challenges in the production of SGB are hampering its commercialization. Advanced molecular technologies like metagenomics can help in the discovery of novel lignocellulosic biomass-degrading enzymes for commercialization and industrial production of SGB. This review discusses the metagenomic outcomes to enlighten the importance of unexplored habitats for novel cellulolytic gene mining. It also emphasizes the potential of different metagenomic approaches to explore the uncultivable cellulose-degrading microbiome as well as cellulolytic enzymes associated with them. This review also includes effective pre-treatment technology and consolidated bioprocessing for efficient biofuel production.
Collapse
Affiliation(s)
- Ninian Prem Prashanth Pabbathi
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Aditya Velidandi
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Tanvi Tavarna
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Shreyash Gupta
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Ram Sarvesh Raj
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Pradeep Kumar Gandam
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Rama Raju Baadhe
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| |
Collapse
|
25
|
Yu S, Sun J, Shi Y, Wang Q, Wu J, Liu J. Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 5:100077. [PMID: 36158608 PMCID: PMC9488076 DOI: 10.1016/j.ese.2020.100077] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 05/17/2023]
Abstract
Biomass waste comes from a wide range of sources, such as forest, agricultural, algae wastes, as well as other relevant industrial by-products. It is an important alternative energy source as well as a unique source for various bioproducts applied in many fields. For the past two decades, how to reuse, recycle and best recover various biomass wastes for high value-added bioproducts has received significant attention, which has not only come from various academia communities but also from many civil and medical industries. To summarize one of the cutting-edge technologies applied with nanocellulose biomaterials, this review focused on various preparation methods and strategies to make nanocellulose from diverse biomass wastes and their potential applications in biomedical areas and other promising new fields.
Collapse
Affiliation(s)
- Sujie Yu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, China
| | - Yifei Shi
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, China
| | - Qianqian Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, China
| | - Jian Wu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, China
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, China
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
| |
Collapse
|
26
|
Djemiel C, Goulas E, Badalato N, Chabbert B, Hawkins S, Grec S. Targeted Metagenomics of Retting in Flax: The Beginning of the Quest to Harness the Secret Powers of the Microbiota. Front Genet 2020; 11:581664. [PMID: 33193706 PMCID: PMC7652851 DOI: 10.3389/fgene.2020.581664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanical and chemical properties of natural plant fibers are determined by many different factors, both intrinsic and extrinsic to the plant, during growth but also after harvest. A better understanding of how all these factors exert their effect and how they interact is necessary to be able to optimize fiber quality for use in different industries. One important factor is the post-harvest process known as retting, representing the first step in the extraction of bast fibers from the stem of species such as flax and hemp. During this process microorganisms colonize the stem and produce hydrolytic enzymes that target cell wall polymers thereby facilitating the progressive destruction of the stem and fiber bundles. Recent advances in sequencing technology have allowed researchers to implement targeted metagenomics leading to a much better characterization of the microbial communities involved in retting, as well as an improved understanding of microbial dynamics. In this paper we review how our current knowledge of the microbiology of retting has been improved by targeted metagenomics and discuss how related '-omics' approaches might be used to fully characterize the functional capability of the retting microbiome.
Collapse
Affiliation(s)
- Christophe Djemiel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Estelle Goulas
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Nelly Badalato
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Brigitte Chabbert
- Université de Reims Champagne Ardenne, INRAE, UMR FARE A 614, Reims, France
| | - Simon Hawkins
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Grec
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
27
|
Ma C, Lo PK, Xu J, Li M, Jiang Z, Li G, Zhu Q, Li X, Leong SY, Li Q. Molecular mechanisms underlying lignocellulose degradation and antibiotic resistance genes removal revealed via metagenomics analysis during different agricultural wastes composting. BIORESOURCE TECHNOLOGY 2020; 314:123731. [PMID: 32615447 DOI: 10.1016/j.biortech.2020.123731] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 05/15/2023]
Abstract
In this study, the differences on the physico-chemical parameters, lignocellulose degradation, dynamic succession of microbial community, gene expression of carbohydrate-active enzymes and antibiotics resistance genes were compared during composting systems of bagasse pith/pig manure (BP) and manioc waste/pig manure (MW). The results revealed that biodegradation rates of organic matter, cellulose, hemicellulose and lignin (29.14%, 17.53%,45.36% and 36.48%) in BP were higher than those (15.59%, 16.74%, 41.23% and 29.77%) in MW. In addition, the relative abundance of Bacillus, Luteimonas, Clostridium, Pseudomonas, Streptomyces and expression of genes encoding carbohydrate- active enzymes in BP were higher than those in MW based on metagenomics sequencing. During composting, antibiotics and antibiotic resistance genes were substantially reduced, but the removal efficiency was divergent in the both samples. Taken together, metagenomics analysis was a potential method for evaluating lignocellulose's biodegradation process and determining the elimination of antibiotic and antibiotic resistance genes from different composting sources of biomass.
Collapse
Affiliation(s)
- Chaofan Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Po Kim Lo
- Department of Petrochemical Engineering, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Jiaqi Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Mingqi Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhiwei Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Gen Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Qiuhui Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Xintian Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Siew Yoong Leong
- Department of Petrochemical Engineering, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia.
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
28
|
Romano I, Ventorino V, Ambrosino P, Testa A, Chouyia FE, Pepe O. Development and Application of Low-Cost and Eco-Sustainable Bio-Stimulant Containing a New Plant Growth-Promoting Strain Kosakonia pseudosacchari TL13. Front Microbiol 2020; 11:2044. [PMID: 33013749 PMCID: PMC7461993 DOI: 10.3389/fmicb.2020.02044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/03/2020] [Indexed: 01/26/2023] Open
Abstract
The use of beneficial microbes as inoculants able to improve fitness, growth and health of plants also in stress conditions is an attractive low-cost and eco-friendly alternative strategy to harmful chemical inputs. Thirteen potential plant growth-promoting bacteria were isolated from the rhizosphere of wheat plants cultivated under drought stress and nitrogen deficiency. Among these, the two isolates TL8 and TL13 showed multiple plant growth promotion activities as production of indole-3-acetic acid (IAA), siderophores, ammonia, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production, the ability to solubilize phosphate as well as exerted antimicrobial activity against plant pathogens as Botrytis spp. and Phytophthora spp. The two selected strains were identified as Kosakonia pseudosacchari by sequencing of 16S rRNA gene. They resulted also tolerant to abiotic stress and were able to efficiently colonize plant roots as observed in vitro assay under fluorescence microscope. Based on the best PGP properties, the strain K. pseudosacchari TL13 was selected to develop a new microbial based formulate. A sustainable and environmentally friendly process for inoculant production was developed using agro-industrial by-products for microbial growth. Moreover, the application of K. pseudosacchari TL13- based formulates in pot experiment improved growth performance of maize plants.
Collapse
Affiliation(s)
- Ida Romano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Patrizia Ambrosino
- Agriges S.r.l. - Nutrizione Speciale per L'Agricoltura Biologica e Integrata, San Salvatore Telesino, Italy
| | - Antonino Testa
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Fatima Ezzahra Chouyia
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Department of Biology, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Casablanca, Morocco
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
29
|
Sidar A, Albuquerque ED, Voshol GP, Ram AFJ, Vijgenboom E, Punt PJ. Carbohydrate Binding Modules: Diversity of Domain Architecture in Amylases and Cellulases From Filamentous Microorganisms. Front Bioeng Biotechnol 2020; 8:871. [PMID: 32850729 PMCID: PMC7410926 DOI: 10.3389/fbioe.2020.00871] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Enzymatic degradation of abundant renewable polysaccharides such as cellulose and starch is a field that has the attention of both the industrial and scientific community. Most of the polysaccharide degrading enzymes are classified into several glycoside hydrolase families. They are often organized in a modular manner which includes a catalytic domain connected to one or more carbohydrate-binding modules. The carbohydrate-binding modules (CBM) have been shown to increase the proximity of the enzyme to its substrate, especially for insoluble substrates. Therefore, these modules are considered to enhance enzymatic hydrolysis. These properties have played an important role in many biotechnological applications with the aim to improve the efficiency of polysaccharide degradation. The domain organization of glycoside hydrolases (GHs) equipped with one or more CBM does vary within organisms. This review comprehensively highlights the presence of CBM as ancillary modules and explores the diversity of GHs carrying one or more of these modules that actively act either on cellulose or starch. Special emphasis is given to the cellulase and amylase distribution within the filamentous microorganisms from the genera of Streptomyces and Aspergillus that are well known to have a great capacity for secreting a wide range of these polysaccharide degrading enzyme. The potential of the CBM and other ancillary domains for the design of improved polysaccharide decomposing enzymes is discussed.
Collapse
Affiliation(s)
- Andika Sidar
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands.,Department of Food Science and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Erica D Albuquerque
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands.,Sun Pharmaceutical Industries Europe BV., Hoofddorp, Netherlands
| | - Gerben P Voshol
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands.,Dutch DNA Biotech B.V., Utrecht, Netherlands
| | - Arthur F J Ram
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands
| | - Erik Vijgenboom
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands
| | - Peter J Punt
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands.,Dutch DNA Biotech B.V., Utrecht, Netherlands
| |
Collapse
|
30
|
Comparative Genomic Study of Polar Lichen-Associated Hymenobacter sp. PAMC 26554 and Hymenobacter sp. PAMC 26628 Reveals the Presence of Polysaccharide-Degrading Ability Based on Habitat. Curr Microbiol 2020; 77:2940-2952. [PMID: 32681312 DOI: 10.1007/s00284-020-02120-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
The genus Hymenobacter is classified in the family Hymenobacteraceae under the phylum Bacteroidetes. They have been isolated from diverse environments, such as air, soil, and lichen, along with extreme polar environments, including the Arctic and Antarctic regions. The polar regions have attracted intense research interest for the discovery of novel microorganisms and their functions. Analysis of the polysaccharide utilization-related carbohydrate-active enzyme among the two lichen-associated polar organisms Hymenobacter sp. PAMC 26554 and Hymenobacter sp. PAMC 26628 was performed, along with its comparison with the complete genome of the same genus available in the NCBI database. The study was conducted relying on the AZCL screening data for the two polar lichen-associated species. While comparing with eight other complete genomes, differences in polysaccharide preferences based on the isolation environment and biosample source were discovered. All the species showed almost similar percentage of cellulose synthesis and degradation genes. However, the polar lichen-associated microorganism was found to have a high percentage of hemicellulose degradation genes, and less starch and laminarin degradation. The Hymenobacter species with higher number of hemicellulose degradation genes was found to have a lower number of starch and laminarin degradation genes and vice versa, highlighting the differences in polysaccharide utilization among the species.
Collapse
|
31
|
Jakeer S, Varma M, Sharma J, Mattoo F, Gupta D, Singh J, Kumar M, Gaur NA. Metagenomic analysis of the fecal microbiome of an adult elephant reveals the diversity of CAZymes related to lignocellulosic biomass degradation. Symbiosis 2020. [DOI: 10.1007/s13199-020-00695-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Isolation, identification and characterization of soil bacteria for the production of ferulic acid through co-culture fermentation using banana stem waste. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
33
|
Complete Genome Sequence of Bacillus velezensis Strain AL7, a Biocontrol Agent for Suppression of Cotton Verticillium Wilt. Microbiol Resour Announc 2020; 9:9/8/e01595-19. [PMID: 32079637 PMCID: PMC7033274 DOI: 10.1128/mra.01595-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacillus velezensis AL7, isolated from cotton soil, had strong antagonistic activity to Verticillium dahlia Kleb. The AL7 genome consisted of one chromosome with 3,894,709 bp (46.64% G+C content). Genome annotation predicted 3,706 protein-coding genes, 86 tRNAs, and 27 rRNAs. We sequenced and annotated the complete AL7 genome to help us better understand use of this strain. Bacillus velezensis AL7, isolated from cotton soil, had strong antagonistic activity to Verticillium dahlia Kleb. The AL7 genome consisted of one chromosome with 3,894,709 bp (46.64% G+C content). Genome annotation predicted 3,706 protein-coding genes, 86 tRNAs, and 27 rRNAs. We sequenced and annotated the complete AL7 genome to help us better understand use of this strain.
Collapse
|
34
|
Romano I, Ventorino V, Pepe O. Effectiveness of Plant Beneficial Microbes: Overview of the Methodological Approaches for the Assessment of Root Colonization and Persistence. FRONTIERS IN PLANT SCIENCE 2020; 11:6. [PMID: 32076431 PMCID: PMC7006617 DOI: 10.3389/fpls.2020.00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/06/2020] [Indexed: 05/22/2023]
Abstract
Issues concerning the use of harmful chemical fertilizers and pesticides that have large negative impacts on environmental and human health have generated increasing interest in the use of beneficial microorganisms for the development of sustainable agri-food systems. A successful microbial inoculant has to colonize the root system, establish a positive interaction and persist in the environment in competition with native microorganisms living in the soil through rhizocompetence traits. Currently, several approaches based on culture-dependent, microscopic and molecular methods have been developed to follow bioinoculants in the soil and plant surface over time. Although culture-dependent methods are commonly used to estimate the persistence of bioinoculants, it is difficult to differentiate inoculated organisms from native populations based on morphological characteristics. Therefore, these methods should be used complementary to culture-independent approaches. Microscopy-based techniques (bright-field, electron and fluorescence microscopy) allow to obtain a picture of microbial colonization outside and inside plant tissues also at high resolution, but it is not possible to always distinguish living cells from dead cells by direct observation as well as distinguish bioinoculants from indigenous microbial populations living in soils. In addition, the development of metagenomic techniques, including the use of DNA probes, PCR-based methods, next-generation sequencing, whole-genome sequencing and pangenome methods, provides a complementary approach useful to understand plant-soil-microbe interactions. However, to ensure good results in microbiological analysis, the first fundamental prerequisite is correct soil sampling and sample preparation for the different methodological approaches that will be assayed. Here, we provide an overview of the advantages and limitations of the currently used methods and new methodological approaches that could be developed to assess the presence, plant colonization and soil persistence of bioinoculants in the rhizosphere. We further discuss the possibility of integrating multidisciplinary approaches to examine the variations in microbial communities after inoculation and to track the inoculated microbial strains.
Collapse
Affiliation(s)
- Ida Romano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- *Correspondence: Valeria Ventorino,
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
35
|
Terry SA, Badhan A, Wang Y, Chaves AV, McAllister TA. Fibre digestion by rumen microbiota — a review of recent metagenomic and metatranscriptomic studies. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2019-0024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plant biomass is the most abundant renewable resource on the planet, and the biopolymers of lignocellulose are the foundation of ruminant production systems. Optimizing the saccharification of lignocellulosic feeds is a crucial step in their bioconversion to ruminant protein. Plant cell walls are chemically heterogeneous structures that have evolved to provide structural support and protection to the plant. Ruminants are the most efficient digesters of lignocellulose due to a rich array of bacteria, archaea, fungi, and protozoa within the rumen and lower digestive tract. Metagenomic and metatranscriptomic studies have enhanced the current understanding of the composition, diversity, and function of the rumen microbiome. There is particular interest in identifying the carbohydrate-active enzymes responsible for the ruminal degradation of plant biomass. Understanding the roles of cellulosomes- and polysaccharide-utilising loci in ruminal fibre degradation could provide insight into strategies to enhance forage utilisation by ruminants. Despite advancements in “omics” technology, the majority of rumen microorganisms are still uncharacterised, and their ability to act synergistically is still not understood. By advancing our current knowledge of rumen fibre digestion, there may be opportunity to further improve the productive performance of ruminants fed forage diets.
Collapse
Affiliation(s)
- Stephanie A. Terry
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Ave South, Lethbridge, AB T1J 4B1, Canada
| | - Ajay Badhan
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Ave South, Lethbridge, AB T1J 4B1, Canada
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Ave South, Lethbridge, AB T1J 4B1, Canada
| | - Alexandre V. Chaves
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Ave South, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
36
|
Nakamura Y, Hirose S, Taniguchi Y, Moriya Y, Yamada T. Targeted enzyme gene re-positioning: A computational approach for discovering alternative bacterial enzymes for the synthesis of plant-specific secondary metabolites. Metab Eng Commun 2019; 9:e00102. [PMID: 31720217 PMCID: PMC6838473 DOI: 10.1016/j.mec.2019.e00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/19/2019] [Accepted: 09/08/2019] [Indexed: 12/27/2022] Open
Abstract
Plant-biosynthesised secondary metabolites are unique sources of pharmaceuticals, food additives, and flavourings, among other industrial uses. However, industrial production of these metabolites is difficult because of their structural complexity, dangerousness and unfriendliness to natural environment, so the development of new methods to synthesise them is required. In this study, we developed a novel approach to identifying alternative bacterial enzyme to produce plant-biosynthesised secondary metabolites. Based on the similarity of enzymatic reactions, we searched for candidate bacterial genes encoding enzymes that could potentially replace the enzymes in plant-specific secondary metabolism reactions that are contained in the KEGG database (enzyme re-positioning). As a result, we discovered candidate bacterial alternative enzyme genes for 447 plant-specific secondary metabolic reaction. To validate our approach, we focused on the ability of an enzyme from Streptomyces coelicolor strain A3(2) strain to convert valencene to the grapefruit metabolite nootkatone, and confirmed its enzymatic activity by gas chromatography-mass spectrometry. This enzyme re-positioning approach may offer an entirely new way of screening enzymes that cannot be achieved by most of other conventional methods, and it is applicable to various other metabolites and may enable microbial production of compounds that are currently difficult to produce industrially.
Collapse
Affiliation(s)
- Yuya Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan
| | - Shuichi Hirose
- NAGASE R&D Center, Nagase & Co., Ltd, Kobe High Tech Park 2-2-3 Murotani, Nishi- ku, Kobe, Hyogo, 651-2241, Japan
| | - Yuko Taniguchi
- NAGASE R&D Center, Nagase & Co., Ltd, Kobe High Tech Park 2-2-3 Murotani, Nishi- ku, Kobe, Hyogo, 651-2241, Japan
| | - Yuki Moriya
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Kashiwa, 277-0871, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
- Metabologenomics Inc, 246-2 Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| |
Collapse
|
37
|
Knapik K, Becerra M, González-Siso MI. Microbial diversity analysis and screening for novel xylanase enzymes from the sediment of the Lobios Hot Spring in Spain. Sci Rep 2019; 9:11195. [PMID: 31371784 PMCID: PMC6671963 DOI: 10.1038/s41598-019-47637-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/11/2019] [Indexed: 01/28/2023] Open
Abstract
Here, we describe the metagenome composition of a microbial community in a hot spring sediment as well as a sequence-based and function-based screening of the metagenome for identification of novel xylanases. The sediment was collected from the Lobios Hot Spring located in the province of Ourense (Spain). Environmental DNA was extracted and sequenced using Illumina technology, and a total of 3.6 Gbp of clean paired reads was produced. A taxonomic classification that was obtained by comparison to the NCBI protein nr database revealed a dominance of Bacteria (93%), followed by Archaea (6%). The most abundant bacterial phylum was Acidobacteria (25%), while Thaumarchaeota (5%) was the main archaeal phylum. Reads were assembled into contigs. Open reading frames (ORFs) predicted on these contigs were searched by BLAST against the CAZy database to retrieve xylanase encoding ORFs. A metagenomic fosmid library of approximately 150,000 clones was constructed to identify functional genes encoding thermostable xylanase enzymes. Function-based screening revealed a novel xylanase-encoding gene (XynA3), which was successfully expressed in E. coli BL21. The resulting protein (41 kDa), a member of glycoside hydrolase family 11 was purified and biochemically characterized. The highest activity was measured at 80 °C and pH 6.5. The protein was extremely thermostable and showed 94% remaining activity after incubation at 60 °C for 24 h and over 70% remaining activity after incubation at 70 °C for 24 h. Xylanolytic activity of the XynA3 enzyme was stimulated in the presence of β-mercaptoethanol, dithiothreitol and Fe3+ ions. HPLC analysis showed that XynA3 hydrolyzes xylan forming xylobiose with lower proportion of xylotriose and xylose. Specific activity of the enzyme was 9080 U/mg for oat arabinoxylan and 5080 U/mg for beechwood xylan, respectively, without cellulase activity.
Collapse
Affiliation(s)
- Kamila Knapik
- Universidade da Coruña, Grupo EXPRELA, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas (CICA), A Coruña, Spain
| | - Manuel Becerra
- Universidade da Coruña, Grupo EXPRELA, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas (CICA), A Coruña, Spain
| | - María-Isabel González-Siso
- Universidade da Coruña, Grupo EXPRELA, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas (CICA), A Coruña, Spain.
| |
Collapse
|
38
|
Li BC, Zhang T, Li YQ, Ding GB. Target Discovery of Novel α-L-Rhamnosidases from Human Fecal Metagenome and Application for Biotransformation of Natural Flavonoid Glycosides. Appl Biochem Biotechnol 2019; 189:1245-1261. [PMID: 31236895 DOI: 10.1007/s12010-019-03063-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
As a green and powerful tool, biocatalysis has emerged as a perfect alternative to traditional chemistry. The bottleneck during process development is discovery of novel enzymes with desired properties and independent intellectual property. Herein, we have successfully bioprospected three novel bacterial α-L-rhamnosidases from human fecal metagenome using a combinatorial strategy by high-throughput de novo sequencing combined with in silico searching for catalytic key motifs. All three novel α-L-rhamnosidases shared low sequence identities with reported (< 35%) and putative ones (< 57%) from public database. All three novel α-L-rhamnosidases were over-expressed as soluble form in Escherichia coli with high-level production. Furthermore, all three novel α-L-rhamnosidases hydrolyzed the synthetic substrate p-nitrophenyl α-L-rhamnopyranoside and natural flavonoid glycosides rutin and naringin with some excellent properties, such as high activity in acidic pH, high activity at low or high temperature, and good tolerance for alcohols and DMSO. Our findings would provide a convenient route for target discovery of the promising biocatalysts from the metagenomes for biotransformation and biosynthesis.
Collapse
Affiliation(s)
- Bin-Chun Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China.
| | - Tian Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Yan-Qin Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Guo-Bin Ding
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
39
|
Comparative assessment of autochthonous bacterial and fungal communities and microbial biomarkers of polluted agricultural soils of the Terra dei Fuochi. Sci Rep 2018; 8:14281. [PMID: 30250138 PMCID: PMC6155181 DOI: 10.1038/s41598-018-32688-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023] Open
Abstract
Organic and inorganic xenobiotic compounds can affect the potential ecological function of the soil, altering its biodiversity. Therefore, the response of microbial communities to environmental pollution is a critical issue in soil ecology. Here, a high-throughput sequencing approach was used to investigate the indigenous bacterial and fungal community structure as well as the impact of pollutants on their diversity and richness in contaminated and noncontaminated soils of a National Interest Priority Site of Campania Region (Italy) called "Terra dei Fuochi". The microbial populations shifted in the polluted soils via their mechanism of adaptation to contamination, establishing a new balance among prokaryotic and eukaryotic populations. Statistical analyses showed that the indigenous microbial communities were most strongly affected by contamination rather than by site of origin. Overabundant taxa and Actinobacteria were identified as sensitive biomarkers for assessing soil pollution and could provide general information on the health of the environment. This study has important implications for microbial ecology in contaminated environments, increasing our knowledge of the capacity of natural ecosystems to develop microbiota adapted to polluted soil in sites with high agricultural potential and providing a possible approach for modeling pollution indicators for bioremediation purposes.
Collapse
|
40
|
Liang X, Whitham JM, Holwerda EK, Shao X, Tian L, Wu YW, Lombard V, Henrissat B, Klingeman DM, Yang ZK, Podar M, Richard TL, Elkins JG, Brown SD, Lynd LR. Development and characterization of stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass at decreasing residence times. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:243. [PMID: 30202438 PMCID: PMC6126044 DOI: 10.1186/s13068-018-1238-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Anaerobic fermentation of lignocellulose occurs in both natural and managed environments, and is an essential part of the carbon cycle as well as a promising route to sustainable production of fuels and chemicals. Lignocellulose solubilization by mixed microbiomes is important in these contexts. RESULTS Here, we report the development of stable switchgrass-fermenting enrichment cultures maintained at various residence times and moderately high (55 °C) temperatures. Anaerobic microbiomes derived from a digester inoculum were incubated at 55 °C and fed semi-continuously with medium containing 30 g/L mid-season harvested switchgrass to achieve residence times (RT) of 20, 10, 5, and 3.3 days. Stable, time-invariant cellulolytic methanogenic cultures with minimal accumulation of organic acids were achieved for all RTs. Fractional carbohydrate solubilization was 0.711, 0.654, 0.581 and 0.538 at RT = 20, 10, 5 and 3.3 days, respectively, and glucan solubilization was proportional to xylan solubilization at all RTs. The rate of solubilization was described well by the equation r = k(C - C0fr), where C represents the concentration of unutilized carbohydrate, C0 is the concentration of carbohydrate (cellulose and hemicellulose) entering the bioreactor and fr is the extrapolated fraction of entering carbohydrate that is recalcitrant at infinite residence time. The 3.3 day RT is among the shortest RT reported for stable thermophilic, methanogenic digestion of a lignocellulosic feedstock. 16S rDNA phylotyping and metagenomic analyses were conducted to characterize the effect of RT on community dynamics and to infer functional roles in the switchgrass to biogas conversion to the various microbial taxa. Firmicutes were the dominant phylum, increasing in relative abundance from 54 to 96% as RT decreased. A Clostridium clariflavum strain with genetic markers for xylose metabolism was the most abundant lignocellulose-solubilizing bacterium. A Thermotogae (Defluviitoga tunisiensis) was the most abundant bacterium in switchgrass digesters at RT = 20 days but decreased in abundance at lower RTs as did multiple Chloroflexi. Synergistetes and Euryarchaeota were present at roughly constant levels over the range of RTs examined. CONCLUSIONS A system was developed in which stable methanogenic steady-states were readily obtained with a particulate biomass feedstock, mid-season switchgrass, at laboratory (1 L) scale. Characterization of the extent and rate of carbohydrate solubilization in combination with 16S rDNA and metagenomic sequencing provides a multi-dimensional view of performance, species composition, glycoside hydrolases, and metabolic function with varying residence time. These results provide a point of reference and guidance for future studies and organism development efforts involving defined cultures.
Collapse
Affiliation(s)
- Xiaoyu Liang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
| | - Jason M. Whitham
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Evert K. Holwerda
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
| | - Xiongjun Shao
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
| | - Liang Tian
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 106 Taiwan
| | - Vincent Lombard
- CNRS, UMR 7257, Aix-Marseille University, 13288 Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
| | - Bernard Henrissat
- CNRS, UMR 7257, Aix-Marseille University, 13288 Marseille, France
- INRA, USC 1408 AFMB, 13288 Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dawn M. Klingeman
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Zamin K. Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Tom L. Richard
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, State College, PA 16802 USA
| | - James G. Elkins
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
| | - Steven D. Brown
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 USA
- Present Address: LanzaTech, Inc., Skokie, IL 60077 USA
| | - Lee R. Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- BioEnergy Sciences Center, Oak Ridge, TN 37830 USA
| |
Collapse
|
41
|
Takenaka M, Lee JM, Kahar P, Ogino C, Kondo A. Efficient and Supplementary Enzyme Cocktail from Actinobacteria and Plant Biomass Induction. Biotechnol J 2018; 14:e1700744. [PMID: 29981210 DOI: 10.1002/biot.201700744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/28/2018] [Indexed: 11/08/2022]
Abstract
Actinobacteria plays a key role in the cycling of organic matter in soils. They secret biomass-degrading enzymes that allow it to produce the unique metabolites that originate in plant biomass. Although past studies have focused on these unique metabolites, a large-scale screening of Actinobacteria is yet to be reported to focus on their biomass-degrading ability. In the present study, a rapid and simple method is constructed for a large-scale screening, and the novel resources that form the plant biomass-degrading enzyme cocktail are identified from 850 isolates of Actinobacteria. As a result, Nonomuraea fastidiosa secretes a biomass degrading enzyme cocktail with the highest enzyme titer, although cellulase activities are lower than a commercially available enzyme. So the rich accessory enzymes are suggested to contribute to the high enzyme titer for a pretreated bagasse with a synergistic effect. Additionally, an optimized cultivation method of biomass induction caused to produce the improved enzyme cocktail indicated strong enzyme titers and a strong synergistic effect. Therefore, the novel enzyme cocktails are selected via the optimized method for large-scale screening, and then the enzyme cocktail can be improved via the optimized production with biomass-induction.
Collapse
Affiliation(s)
- Musashi Takenaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| | - Jae M Lee
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| | - Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| |
Collapse
|
42
|
Coronado-Ruiz C, Avendaño R, Escudero-Leyva E, Conejo-Barboza G, Chaverri P, Chavarría M. Two new cellulolytic fungal species isolated from a 19 th-century art collection. Sci Rep 2018; 8:7492. [PMID: 29748544 PMCID: PMC5945893 DOI: 10.1038/s41598-018-24934-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/12/2018] [Indexed: 11/08/2022] Open
Abstract
The archive of the Universidad de Costa Rica maintains a nineteenth-century French collection of drawings and lithographs in which the biodeterioration by fungi is rampant. Because of nutritional conditions in which these fungi grew, we suspected that they possessed an ability to degrade cellulose. In this work our goal was to isolate and identify the fungal species responsible for the biodegradation of a nineteenth-century art collection and determine their cellulolytic activity. Fungi were isolated using potato-dextrose-agar (PDA) and water-agar with carboxymethyl cellulose (CMC). The identification of the fungi was assessed through DNA sequencing (nrDNA ITS and α-actin regions) complemented with morphological analyses. Assays for cellulolytic activity were conducted with Gram's iodine as dye. Nineteen isolates were obtained, of which seventeen were identified through DNA sequencing to species level, belonging mainly to genera Arthrinium, Aspergillus, Chaetomium, Cladosporium, Colletotrichum, Penicillium and Trichoderma. For two samples that could not be identified through their ITS and α-actin sequences, a morphological analysis was conducted; they were identified as new species, named Periconia epilithographicola sp. nov. and Coniochaeta cipronana sp. nov. Qualitative tests showed that the fungal collection presents important cellulolytic activity.
Collapse
Affiliation(s)
- Carolina Coronado-Ruiz
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San Jose, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San Jose, Costa Rica
| | - Roberto Avendaño
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San Jose, Costa Rica
| | - Efraín Escudero-Leyva
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San Jose, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, 11501-2060, San Jose, Costa Rica
| | - Geraldine Conejo-Barboza
- Escuela de Química, Universidad de Costa Rica, 11501-2060, San Jose, Costa Rica
- Instituto de Investigaciones en Arte (II Arte), 11501-2060, San Jose, Costa Rica
| | - Priscila Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San Jose, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, 11501-2060, San Jose, Costa Rica
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, Maryland, USA
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San Jose, Costa Rica.
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San Jose, Costa Rica.
- Escuela de Química, Universidad de Costa Rica, 11501-2060, San Jose, Costa Rica.
| |
Collapse
|
43
|
Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation. Extremophiles 2017; 22:1-12. [PMID: 29110088 DOI: 10.1007/s00792-017-0974-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023]
Abstract
Lignocellulosic biomass is a promising feedstock for the manufacture of biodegradable and renewable bioproducts. However, the complex lignocellulosic polymeric structure of woody tissue is difficult to access without extensive industrial pre-treatment. Enzyme processing of partly depolymerised biomass is an established technology, and there is evidence that high temperature (extremely thermophilic) lignocellulose degrading enzymes [carbohydrate active enzymes (CAZymes)] may enhance processing efficiency. However, wild-type thermophilic CAZymes will not necessarily be functionally optimal under industrial pre-treatment conditions. With recent advances in synthetic biology, it is now potentially possible to build CAZyme constructs from individual protein domains, tailored to the conditions of specific industrial processes. In this review, we identify a 'toolbox' of thermostable CAZyme domains from extremely thermophilic organisms and highlight recent advances in CAZyme engineering which will allow for the rational design of CAZymes tailored to specific aspects of lignocellulose digestion.
Collapse
|
44
|
Djemiel C, Grec S, Hawkins S. Characterization of Bacterial and Fungal Community Dynamics by High-Throughput Sequencing (HTS) Metabarcoding during Flax Dew-Retting. Front Microbiol 2017; 8:2052. [PMID: 29104570 PMCID: PMC5655573 DOI: 10.3389/fmicb.2017.02052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/06/2017] [Indexed: 11/13/2022] Open
Abstract
Flax dew-retting is a key step in the industrial extraction of fibers from flax stems and is dependent upon the production of a battery of hydrolytic enzymes produced by micro-organisms during this process. To explore the diversity and dynamics of bacterial and fungal communities involved in this process we applied a high-throughput sequencing (HTS) DNA metabarcoding approach (16S rRNA/ITS region, Illumina Miseq) on plant and soil samples obtained over a period of 7 weeks in July and August 2014. Twenty-three bacterial and six fungal phyla were identified in soil samples and 11 bacterial and four fungal phyla in plant samples. Dominant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes (bacteria) and Ascomycota, Basidiomycota, and Zygomycota (fungi) all of which have been previously associated with flax dew-retting except for Bacteroidetes and Basidiomycota that were identified for the first time. Rare phyla also identified for the first time in this process included Acidobacteria, CKC4, Chlorobi, Fibrobacteres, Gemmatimonadetes, Nitrospirae and TM6 (bacteria), and Chytridiomycota (fungi). No differences in microbial communities and colonization dynamics were observed between early and standard flax harvests. In contrast, the common agricultural practice of swath turning affects both bacterial and fungal community membership and structure in straw samples and may contribute to a more uniform retting. Prediction of community function using PICRUSt indicated the presence of a large collection of potential bacterial enzymes capable of hydrolyzing backbones and side-chains of cell wall polysaccharides. Assignment of functional guild (functional group) using FUNGuild software highlighted a change from parasitic to saprophytic trophic modes in fungi during retting. This work provides the first exhaustive description of the microbial communities involved in flax dew-retting and will provide a valuable benchmark in future studies aiming to evaluate the effects of other parameters (e.g., year-to year and site variability etc.) on this complex process.
Collapse
Affiliation(s)
- Christophe Djemiel
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Grec
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Simon Hawkins
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
45
|
Elucidating biochemical features and biological roles of Streptomyces proteins recognizing crystalline chitin- and cellulose-types and their soluble derivatives. Carbohydr Res 2017; 448:220-226. [PMID: 28712648 DOI: 10.1016/j.carres.2017.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022]
Abstract
Pioneering biochemical, immunological, physiological and microscopic studies in combination with gene cloning allowed uncovering previously unknown genes encoding proteins of streptomycetes to target crystalline chitin and cellulose as well as their soluble degradation-compounds via binding protein dependent transporters. Complementary analyses provoked an understanding of novel regulators governing transcription of selected genes. These discoveries induced detecting close and distant homologues of former orphan proteins encoded by genes from different bacteria. Grounded on structure-function-relationships, several researchers identified a few of these proteins as novel members of the growing family for lytic polysaccharides monooxygenases. Exemplary, the ecological significance of the characterized proteins including their role to promote interactions among organisms is outlined and discussed.
Collapse
|