1
|
Zheng Y, Chen X, Huang Y, Lin X, Lin J, Mo Y, Gan L, Wei S, Wang Z, Song X, Tu Z. DDX27: An RNA helicase regulating cancer progression and therapeutic prospects. Int J Biol Macromol 2025; 313:144388. [PMID: 40394785 DOI: 10.1016/j.ijbiomac.2025.144388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/07/2025] [Accepted: 05/18/2025] [Indexed: 05/22/2025]
Abstract
DDX27, a member of the DEAD-box RNA helicase family, plays a crucial role in RNA metabolism, inflammation, and cancer progression. Elevated expression of DDX27 has been observed in multiple cancers, including oral squamous cell carcinoma (OSCC), breast cancer (BC), colorectal cancer (CRC), gastric cancer (GC), and hepatocellular carcinoma (HCC), where it is associated with poor prognosis, tumor growth, metastasis, and chemoresistance. DDX27 regulates the NF-κB signaling pathway, which is central to inflammation and tumor progression, and influences key cellular processes such as cell cycle regulation, apoptosis, migration, and stemness. Additionally, DDX27 promotes epithelial-mesenchymal transition (EMT), further contributing to metastasis. Its interactions with non-coding RNAs and various signaling pathways complicate treatment responses, making DDX27 a promising therapeutic target. This review explores the role of DDX27 as both a biomarker and therapeutic target, with potential strategies including small molecule inhibitors, RNA interference, and combination therapies with existing treatments such as NF-κB inhibitors or chemotherapy. Targeting DDX27 may help overcome resistance, reduce metastasis, and improve cancer treatment outcomes. Further research into its molecular mechanisms and interactions will be crucial for developing effective therapies, particularly for cancers with high metastatic potential.
Collapse
Affiliation(s)
- Yuantong Zheng
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Xinyi Chen
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Yunfei Huang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Xuanli Lin
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Jiaxin Lin
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Yuting Mo
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Lu Gan
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Shuhua Wei
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Zhen Wang
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Xiaojuan Song
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China
| | - Zhengchao Tu
- College of Pharmacy, Jinan University, Guangzhou 510006, Guangdong, PR China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
2
|
Gao M. Me31B: a key repressor in germline regulation and beyond. Biosci Rep 2024; 44:BSR20231769. [PMID: 38606619 PMCID: PMC11065648 DOI: 10.1042/bsr20231769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024] Open
Abstract
Maternally Expressed at 31B (Me31B), an evolutionarily conserved ATP-dependent RNA helicase, plays an important role in the development of the germline across diverse animal species. Its cellular functionality has been posited as a translational repressor, participating in various RNA metabolism pathways to intricately regulate the spatiotemporal expression of RNAs. Despite its evident significance, the precise role and mechanistic underpinnings of Me31B remain insufficiently understood. This article endeavors to comprehensively review historic and recent research on Me31B, distill the major findings, discern generalizable patterns in Me31B's functions across different research contexts, and provide insights into its fundamental role and mechanism of action. The primary focus of this article centers on elucidating the role of Drosophila Me31B within the germline, while concurrently delving into pertinent research on its orthologs within other species and cellular systems.
Collapse
Affiliation(s)
- Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, U.S.A
| |
Collapse
|
3
|
Wiley MM, Khatri B, Joachims ML, Tessneer KL, Stolarczyk AM, Rasmussen A, Anaya JM, Aqrawi LA, Bae SC, Baecklund E, Björk A, Brun JG, Bucher SM, Dand N, Eloranta ML, Engelke F, Forsblad-d’Elia H, Fugmann C, Glenn SB, Gong C, Gottenberg JE, Hammenfors D, Imgenberg-Kreuz J, Jensen JL, Johnsen SJA, Jonsson MV, Kelly JA, Khanam S, Kim K, Kvarnström M, Mandl T, Martín J, Morris DL, Nocturne G, Norheim KB, Olsson P, Palm Ø, Pers JO, Rhodus NL, Sjöwall C, Skarstein K, Taylor KE, Tombleson P, Thorlacius GE, Venuturupalli S, Vital EM, Wallace DJ, Grundahl KM, Radfar L, Brennan MT, James JA, Scofield RH, Gaffney PM, Criswell LA, Jonsson R, Appel S, Eriksson P, Bowman SJ, Omdal R, Rönnblom L, Warner BM, Rischmueller M, Witte T, Farris AD, Mariette X, Shiboski CH, Wahren-Herlenius M, Alarcón-Riquelme ME, Ng WF, Sivils KL, Guthridge JM, Adrianto I, Vyse TJ, Tsao BP, Nordmark G, Lessard CJ. Variants in the DDX6-CXCR5 autoimmune disease risk locus influence the regulatory network in immune cells and salivary gland. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561076. [PMID: 39071447 PMCID: PMC11275775 DOI: 10.1101/2023.10.05.561076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Fine mapping and bioinformatic analysis of the DDX6-CXCR5 genetic risk association in Sjögren's Disease (SjD) and Systemic Lupus Erythematosus (SLE) identified five common SNPs with functional evidence in immune cell types: rs4938573, rs57494551, rs4938572, rs4936443, rs7117261. Functional interrogation of nuclear protein binding affinity, enhancer/promoter regulatory activity, and chromatin-chromatin interactions in immune, salivary gland epithelial, and kidney epithelial cells revealed cell type-specific allelic effects for all five SNPs that expanded regulation beyond effects on DDX6 and CXCR5 expression. Mapping the local chromatin regulatory network revealed several additional genes of interest, including lnc-PHLDB1-1. Collectively, functional characterization implicated the risk alleles of these SNPs as modulators of promoter and/or enhancer activities that regulate cell type-specific expression of DDX6, CXCR5, and lnc-PHLDB1-1, among others. Further, these findings emphasize the importance of exploring the functional significance of SNPs in the context of complex chromatin architecture in disease-relevant cell types and tissues.
Collapse
Affiliation(s)
- Mandi M. Wiley
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Bhuwan Khatri
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Michelle L. Joachims
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | - Kandice L. Tessneer
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Anna M. Stolarczyk
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Astrid Rasmussen
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | | | - Lara A. Aqrawi
- Department of Health Sciences, Kristiania University College, Oslo, Norway
- University of Oslo, Norway
| | | | | | | | - Johan G. Brun
- University of Bergen, Bergen, Norway
- Haukeland University Hospital, Bergen, Norway
| | | | - Nick Dand
- King’s College London, London, United Kingdom
| | | | | | | | | | - Stuart B. Glenn
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Chen Gong
- King’s College London, London, United Kingdom
| | | | | | | | | | | | | | - Jennifer A. Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Sharmily Khanam
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | | | | | | | - Javier Martín
- Instituto de Biomedicina y Parasitología López-Neyra, Granada, Spain
| | | | - Gaetane Nocturne
- Université Paris-Saclay, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital Bicêtre, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kiely M. Grundahl
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | - Lida Radfar
- University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, USA
| | | | - Judith A. James
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - R. Hal Scofield
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- US Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Patrick M. Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lindsey A. Criswell
- University of California San Francisco, San Francisco, California, USA
- National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | - Simon J. Bowman
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Roald Omdal
- University of Bergen, Bergen, Norway
- Stavanger University Hospital, Stavanger, Norway
| | | | - Blake M. Warner
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | | | | | - A. Darise Farris
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xavier Mariette
- Université Paris-Saclay, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital Bicêtre, Paris, France
| | | | | | | | - Marta E. Alarcón-Riquelme
- Karolinska Institutet, Solna, Sweden
- Genyo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Spain
| | | | - Wan-Fai Ng
- NIHR Newcastle Biomedical Research Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Kathy L. Sivils
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | - Joel M. Guthridge
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Indra Adrianto
- Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Betty P. Tsao
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Christopher J. Lessard
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
4
|
Kara E, McCambridge A, Proffer M, Dilts C, Pumnea B, Eshak J, Smith KA, Fielder I, Doyle DA, Ortega BM, Mukatash Y, Malik N, Mohammed AR, Govani D, Niepielko MG, Gao M. Mutational analysis of the functional motifs of the DEAD-box RNA helicase Me31B/DDX6 in Drosophila germline development. FEBS Lett 2023; 597:1848-1867. [PMID: 37235728 PMCID: PMC10389067 DOI: 10.1002/1873-3468.14668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Me31B/DDX6 is a DEAD-box family RNA helicase playing roles in post-transcriptional RNA regulation in different cell types and species. Despite the known motifs/domains of Me31B, the in vivo functions of the motifs remain unclear. Here, we used the Drosophila germline as a model and used CRISPR to mutate the key Me31B motifs/domains: helicase domain, N-terminal domain, C-terminal domain and FDF-binding motif. Then, we performed screening characterization on the mutants and report the effects of the mutations on the Drosophila germline, on processes such as fertility, oogenesis, embryo patterning, germline mRNA regulation and Me31B protein expression. The study indicates that the Me31B motifs contribute different functions to the protein and are needed for proper germline development, providing insights into the in vivo working mechanism of the helicase.
Collapse
Affiliation(s)
- Evan Kara
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | | | - Megan Proffer
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Carol Dilts
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Brooke Pumnea
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - John Eshak
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Korey A. Smith
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Isaac Fielder
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Dominique A. Doyle
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Bianca M. Ortega
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Yousif Mukatash
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Noor Malik
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | | | - Deep Govani
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Matthew G. Niepielko
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
- Biology Department, Kean University, Union, NJ, USA
| | - Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, USA
| |
Collapse
|
5
|
Corzo-López A, Leyva-Leyva M, Castillo-Viveros V, Fernández-Gallardo M, Muñoz-Herrera D, Sandoval A, González-Ramírez R, Felix R. Molecular mechanisms of nuclear transport of the neuronal voltage-gated Ca 2+ channel β 3 auxiliary subunit. Neuroscience 2023:S0306-4522(23)00181-1. [PMID: 37169165 DOI: 10.1016/j.neuroscience.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Previous studies have shown that in addition to its role within the voltage-gated calcium channel complex in the plasma membrane, the neuronal CaVβ subunit can translocate to the cell nucleus. However, little is known regarding the role this protein could play in the nucleus, nor the molecular mechanism used by CaVβ to enter this cell compartment. This report shows evidence that CaVβ3 has nuclear localization signals (NLS) that are not functional, suggesting that the protein does not use a classical nuclear import pathway. Instead, its entry into the nucleus could be associated with another protein that would function as a carrier, using a mechanism known as a piggyback. Mass spectrometry assays and bioinformatic analysis allowed the identification of proteins that could be participating in the entry of CaVβ3 into the nucleus. Likewise, through proximity ligation assays (PLA), it was found that members of the heterogeneous nuclear ribonucleoproteins (hnRNPs) and B56δ, a regulatory subunit of the protein phosphatase 2A (PP2A), could function as proteins that regulate this piggyback mechanism. On the other hand, bioinformatics and site-directed mutagenesis assays allowed the identification of a functional nuclear export signal (NES) that controls the exit of CaVβ3 from the nucleus, which would allow the completion of the nuclear transport cycle of the protein. These results reveal a novel mechanism for the nuclear transport cycle of the neuronal CaVβ3 subunit.
Collapse
Affiliation(s)
- Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Valeria Castillo-Viveros
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico; Department of Developmental Genetics and Molecular Physiology, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Mexico
| | | | - David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
| |
Collapse
|
6
|
The Terminal Extensions of Dbp7 Influence Growth and 60S Ribosomal Subunit Biogenesis in Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:ijms24043460. [PMID: 36834876 PMCID: PMC9960301 DOI: 10.3390/ijms24043460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Ribosome synthesis is a complex process that involves a large set of protein trans-acting factors, among them DEx(D/H)-box helicases. These are enzymes that carry out remodelling activities onto RNAs by hydrolysing ATP. The nucleolar DEGD-box protein Dbp7 is required for the biogenesis of large 60S ribosomal subunits. Recently, we have shown that Dbp7 is an RNA helicase that regulates the dynamic base-pairing between the snR190 small nucleolar RNA and the precursors of the ribosomal RNA within early pre-60S ribosomal particles. As the rest of DEx(D/H)-box proteins, Dbp7 has a modular organization formed by a helicase core region, which contains conserved motifs, and variable, non-conserved N- and C-terminal extensions. The role of these extensions remains unknown. Herein, we show that the N-terminal domain of Dbp7 is necessary for efficient nuclear import of the protein. Indeed, a basic bipartite nuclear localization signal (NLS) could be identified in its N-terminal domain. Removal of this putative NLS impairs, but does not abolish, Dbp7 nuclear import. Both N- and C-terminal domains are required for normal growth and 60S ribosomal subunit synthesis. Furthermore, we have studied the role of these domains in the association of Dbp7 with pre-ribosomal particles. Altogether, our results show that the N- and C-terminal domains of Dbp7 are important for the optimal function of this protein during ribosome biogenesis.
Collapse
|
7
|
Shih CY, Chen YC, Lin HY, Chu CY. RNA Helicase DDX6 Regulates A-to-I Editing and Neuronal Differentiation in Human Cells. Int J Mol Sci 2023; 24:ijms24043197. [PMID: 36834609 PMCID: PMC9965400 DOI: 10.3390/ijms24043197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The DEAD-box proteins, one family of RNA-binding proteins (RBPs), participate in post-transcriptional regulation of gene expression with multiple aspects. Among them, DDX6 is an essential component of the cytoplasmic RNA processing body (P-body) and is involved in translational repression, miRNA-meditated gene silencing, and RNA decay. In addition to the cytoplasmic function, DDX6 is also present in the nucleus, but the nuclear function remains unknown. To decipher the potential role of DDX6 in the nucleus, we performed mass spectrometry analysis of immunoprecipitated DDX6 from a HeLa nuclear extract. We found that adenosine deaminases that act on RNA 1 (ADAR1) interact with DDX6 in the nucleus. Utilizing our newly developed dual-fluorescence reporter assay, we elucidated the DDX6 function as negative regulators in cellular ADAR1p110 and ADAR2. In addition, depletion of DDX6 and ADARs results in the opposite effect on facilitation of RA-induced differentiation of neuronal lineage cells. Our data suggest the impact of DDX6 in regulation of the cellular RNA editing level, thus contributing to differentiation in the neuronal cell model.
Collapse
Affiliation(s)
- Chia-Yu Shih
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Chi Chen
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Heng-Yi Lin
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Ying Chu
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Center for Systems Biology, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-33669876
| |
Collapse
|
8
|
Jamieson-Lucy AH, Kobayashi M, James Aykit Y, Elkouby YM, Escobar-Aguirre M, Vejnar CE, Giraldez AJ, Mullins MC. A proteomics approach identifies novel resident zebrafish Balbiani body proteins Cirbpa and Cirbpb. Dev Biol 2022; 484:1-11. [PMID: 35065906 PMCID: PMC8967276 DOI: 10.1016/j.ydbio.2022.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/17/2023]
Abstract
The Balbiani body (Bb) is the first marker of polarity in vertebrate oocytes. The Bb is a conserved structure found in diverse animals including insects, fish, amphibians, and mammals. During early zebrafish oogenesis, the Bb assembles as a transient aggregate of mRNA, proteins, and membrane-bound organelles at the presumptive vegetal side of the oocyte. As the early oocyte develops, the Bb appears to grow slowly, until at the end of stage I of oogenesis it disassembles and deposits its cargo of localized mRNAs and proteins. In fish and frogs, this cargo includes the germ plasm as well as gene products required to specify dorsal tissues of the future embryo. We demonstrate that the Bb is a stable, solid structure that forms a size exclusion barrier similar to other biological hydrogels. Despite its central role in oocyte polarity, little is known about the mechanism behind the Bb's action. Analysis of the few known protein components of the Bb is insufficient to explain how the Bb assembles, translocates, and disassembles. We isolated Bbs from zebrafish oocytes and performed mass spectrometry to define the Bb proteome. We successfully identified 77 proteins associated with the Bb sample, including known Bb proteins and novel RNA-binding proteins. In particular, we identified Cirbpa and Cirbpb, which have both an RNA-binding domain and a predicted self-aggregation domain. In stage I oocytes, Cirbpa and Cirbpb localize to the Bb rather than the nucleus (as in somatic cells), indicating that they may have a specialized function in the germ line. Both the RNA-binding domain and the self-aggregation domain are sufficient to localize to the Bb, suggesting that Cirbpa and Cirbpb interact with more than just their mRNA targets within the Bb. We propose that Cirbp proteins crosslink mRNA cargo and proteinaceous components of the Bb as it grows. Beyond Cirbpa and Cirbpb, our proteomics dataset presents many candidates for further study, making it a valuable resource for building a comprehensive mechanism for Bb function at a protein level.
Collapse
Affiliation(s)
- Allison H Jamieson-Lucy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Y James Aykit
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yaniv M Elkouby
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Matias Escobar-Aguirre
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
10
|
Connecting the "dots": RNP granule network in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119058. [PMID: 33989700 DOI: 10.1016/j.bbamcr.2021.119058] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022]
Abstract
All cells contain ribonucleoprotein (RNP) granules - large membraneless structures composed of RNA and proteins. Recent breakthroughs in RNP granule research have brought a new appreciation of their crucial role in organising virtually all cellular processes. Cells widely exploit the flexible, dynamic nature of RNP granules to adapt to a variety of functional states and the ever-changing environment. Constant exchange of molecules between the different RNP granules connects them into a network. This network controls basal cellular activities and is remodelled to enable efficient stress response. Alterations in RNP granule structure and regulation have been found to lead to fatal human diseases. The interconnectedness of RNP granules suggests that the RNP granule network as a whole becomes affected in disease states such as a representative neurodegenerative disease amyotrophic lateral sclerosis (ALS). In this review, we summarize available evidence on the communication between different RNP granules and on the RNP granule network disruption as a primary ALS pathomechanism.
Collapse
|
11
|
Sulkowska A, Auber A, Sikorski PJ, Silhavy DN, Auth M, Sitkiewicz E, Jean V, Merret RM, Bousquet-Antonelli CC, Kufel J. RNA Helicases from the DEA(D/H)-Box Family Contribute to Plant NMD Efficiency. PLANT & CELL PHYSIOLOGY 2020; 61:144-157. [PMID: 31560399 DOI: 10.1093/pcp/pcz186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs comprising a premature translation termination codon. The adenosine triphosphate (ATP)-dependent RNA helicase up-frameshift 1 (UPF1) is a major NMD factor in all studied organisms; however, the complexity of this mechanism has not been fully characterized in plants. To identify plant NMD factors, we analyzed UPF1-interacting proteins using tandem affinity purification coupled to mass spectrometry. Canonical members of the NMD pathway were found along with numerous NMD candidate factors, including conserved DEA(D/H)-box RNA helicase homologs of human DDX3, DDX5 and DDX6, translation initiation factors, ribosomal proteins and transport factors. Our functional studies revealed that depletion of DDX3 helicases enhances the accumulation of NMD target reporter mRNAs but does not result in increased protein levels. In contrast, silencing of DDX6 group leads to decreased accumulation of the NMD substrate. The inhibitory effect of DDX6-like helicases on NMD was confirmed by transient overexpression of RH12 helicase. These results indicate that DDX3 and DDX6 helicases in plants have a direct and opposing contribution to NMD and act as functional NMD factors.
Collapse
Affiliation(s)
- Aleksandra Sulkowska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andor Auber
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Pawel J Sikorski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Dï Niel Silhavy
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Mariann Auth
- Agricultural Biotechnology Institute, Szent-Gy�rgyi 4, H-2100 G�d�llő, Hungary
| | - Ewa Sitkiewicz
- Proteomics Laboratory, Biophysics Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Viviane Jean
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Rï My Merret
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Cï Cile Bousquet-Antonelli
- UMR5096 LGDP, Universit� de Perpignan Via Domitia, UMR5096 LGDP58, Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CNRS, UMR5096 LGDP, Perpignan Cedex, France
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
12
|
Wang Y, Shen W, Liang XH, Crooke ST. Phosphorothioate Antisense Oligonucleotides Bind P-Body Proteins and Mediate P-Body Assembly. Nucleic Acid Ther 2019; 29:343-358. [PMID: 31429620 DOI: 10.1089/nat.2019.0806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antisense oligonucleotides (ASOs) regulate gene expression by binding to complementary target RNA, and ASOs can be designed to take advantage of a growing array of post RNA binding molecular mechanisms. Intracellular trafficking of ASOs influences their efficacy. We have identified a number of membrane-less structures in the nucleus, nucleolus, and cytoplasm where phosphorothioate-modified ASOs (PS-ASOs) accumulate and have shown that PS-ASOs can induce the formation of new nuclear structures such as PS-bodies and paraspeckle-like structures. In this study, we report that PS-ASOs can localize to cytoplasmic processing bodies (P-bodies) and increase the number of P-bodies in cells. The antisense activity of PS-ASOs was not affected by the absence of essential P-body assembly proteins DDX6 and LSm14A. Moreover, the effects of PS-ASOs on P-body assembly were independent of their antisense activities. The phosphorothioate modification stabilizes the association between ASOs and cellular proteins and is essential for the P-body localization of ASOs. Since PS-ASOs bind to major P-body components, PS-ASOs may serve as scaffolds for P-body formation. Taken together, these results indicate that interactions of PS-ASO with proteins, rather than antisense activities, are essential for the dynamic interplay between PS-ASOs and P-bodies.
Collapse
Affiliation(s)
- Ying Wang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California
| | - Wen Shen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California
| |
Collapse
|
13
|
Harries LW. RNA Biology Provides New Therapeutic Targets for Human Disease. Front Genet 2019; 10:205. [PMID: 30906315 PMCID: PMC6418379 DOI: 10.3389/fgene.2019.00205] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
RNA is the messenger molecule that conveys information from the genome and allows the production of biomolecules required for life in a responsive and regulated way. Most genes are able to produce multiple mRNA products in response to different internal or external environmental signals, in different tissues and organs, and at specific times in development or later life. This fine tuning of gene expression is dependent on the coordinated effects of a large and intricate set of regulatory machinery, which together orchestrate the genomic output at each locus and ensure that each gene is expressed at the right amount, at the right time and in the correct location. This complexity of control, and the requirement for both sequence elements and the entities that bind them, results in multiple points at which errors may occur. Errors of RNA biology are common and found in association with both rare, single gene disorders, but also more common, chronic diseases. Fortunately, complexity also brings opportunity. The existence of many regulatory steps also offers multiple levels of potential therapeutic intervention which can be exploited. In this review, I will outline the specific points at which coding RNAs may be regulated, indicate potential means of intervention at each stage, and outline with examples some of the progress that has been made in this area. Finally, I will outline some of the remaining challenges with the delivery of RNA-based therapeutics but indicate why there are reasons for optimism.
Collapse
Affiliation(s)
- Lorna W. Harries
- RNA-Mediated Mechanisms of Disease, College of Medicine and Health, The Institute of Biomedical and Clinical Science, Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
14
|
Kosyna FK, Depping R. Controlling the Gatekeeper: Therapeutic Targeting of Nuclear Transport. Cells 2018; 7:cells7110221. [PMID: 30469340 PMCID: PMC6262578 DOI: 10.3390/cells7110221] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 12/11/2022] Open
Abstract
Nuclear transport receptors of the karyopherin superfamily of proteins transport macromolecules from one compartment to the other and are critical for both cell physiology and pathophysiology. The nuclear transport machinery is tightly regulated and essential to a number of key cellular processes since the spatiotemporally expression of many proteins and the nuclear transporters themselves is crucial for cellular activities. Dysregulation of the nuclear transport machinery results in localization shifts of specific cargo proteins and associates with the pathogenesis of disease states such as cancer, inflammation, viral illness and neurodegenerative diseases. Therefore, inhibition of the nuclear transport system has future potential for therapeutic intervention and could contribute to the elucidation of disease mechanisms. In this review, we recapitulate clue findings in the pathophysiological significance of nuclear transport processes and describe the development of nuclear transport inhibitors. Finally, clinical implications and results of the first clinical trials are discussed for the most promising nuclear transport inhibitors.
Collapse
Affiliation(s)
- Friederike K Kosyna
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| | - Reinhard Depping
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| |
Collapse
|
15
|
Kami D, Kitani T, Nakamura A, Wakui N, Mizutani R, Ohue M, Kametani F, Akimitsu N, Gojo S. The DEAD-box RNA-binding protein DDX6 regulates parental RNA decay for cellular reprogramming to pluripotency. PLoS One 2018; 13:e0203708. [PMID: 30273347 PMCID: PMC6166933 DOI: 10.1371/journal.pone.0203708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022] Open
Abstract
Cellular transitions and differentiation processes require mRNAs supporting the new phenotype but also the clearance of existing mRNAs for the parental phenotype. Cellular reprogramming from fibroblasts to induced pluripotent stem cells (iPSCs) occurs at the early stage of mesenchymal epithelial transition (MET) and involves drastic morphological changes. We examined the molecular mechanism for MET, focusing on RNA metabolism. DDX6, an RNA helicase, was indispensable for iPSC formation, in addition to RO60 and RNY1, a non-coding RNA, which form complexes involved in intracellular nucleotide sensing. RO60/RNY1/DDX6 complexes formed prior to processing body formation, which is central to RNA metabolism. The abrogation of DDX6 expression inhibited iPSC generation, which was mediated by RNA decay targeting parental mRNAs supporting mesenchymal phenotypes, along with microRNAs, such as miR-302b-3p. These results show that parental mRNA clearance is a prerequisite for cellular reprogramming and that DDX6 plays a central role in this process.
Collapse
Affiliation(s)
- Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoya Kitani
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akihiro Nakamura
- Department of Pediatric Cardiology and Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoki Wakui
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Tokyo, Japan
| | - Rena Mizutani
- Radioisotope Center, The University of Tokyo, Tokyo, Japan
| | - Masahito Ohue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Tokyo, Japan
| | - Fuyuki Kametani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- * E-mail:
| |
Collapse
|
16
|
Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC, Shi H, Cui X, Su R, Klungland A, Jia G, Chen J, He C. Differential m 6A, m 6A m, and m 1A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm. Mol Cell 2018; 71:973-985.e5. [PMID: 30197295 PMCID: PMC6151148 DOI: 10.1016/j.molcel.2018.08.011] [Citation(s) in RCA: 572] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/03/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
FTO, the first RNA demethylase discovered, mediates the demethylation of internal N6-methyladenosine (m6A) and N6, 2-O-dimethyladenosine (m6Am) at the +1 position from the 5' cap in mRNA. Here we demonstrate that the cellular distribution of FTO is distinct among different cell lines, affecting the access of FTO to different RNA substrates. We find that FTO binds multiple RNA species, including mRNA, snRNA, and tRNA, and can demethylate internal m6A and cap m6Am in mRNA, internal m6A in U6 RNA, internal and cap m6Am in snRNAs, and N1-methyladenosine (m1A) in tRNA. FTO-mediated demethylation has a greater effect on the transcript levels of mRNAs possessing internal m6A than the ones with cap m6Am in the tested cells. We also show that FTO can directly repress translation by catalyzing m1A tRNA demethylation. Collectively, FTO-mediated RNA demethylation occurs to m6A and m6Am in mRNA and snRNA as well as m1A in tRNA.
Collapse
Affiliation(s)
- Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Fange Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Zhike Lu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, 18 Shilongshan Road, Hangzhou 310064, China
| | - Qili Fei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Yuxi Ai
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - P Cody He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Hailing Shi
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Xiaolong Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Norway Institute of Basic Medical Sciences, University of Oslo, PO Box 1018 Blindern, 0315 Oslo, Norway
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57 Street, Chicago, IL 60637, USA.
| |
Collapse
|
17
|
Muñoz EE, Hart KJ, Walker MP, Kennedy MF, Shipley MM, Lindner SE. ALBA4 modulates its stage-specific interactions and specific mRNA fates during Plasmodium yoelii growth and transmission. Mol Microbiol 2017; 106:266-284. [PMID: 28787542 DOI: 10.1111/mmi.13762] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
Transmission of the malaria parasite occurs in an unpredictable moment, when a mosquito takes a blood meal. Plasmodium has therefore evolved strategies to prepare for transmission, including translationally repressing and protecting mRNAs needed to establish the infection. However, mechanisms underlying these critical controls are not well understood, including whether Plasmodium changes its translationally repressive complexes and mRNA targets in different stages. Efforts to understand this have been stymied by severe technical limitations due to substantial mosquito contamination of samples. Here using P. yoelii, for the first time we provide a proteomic comparison of a protein complex across asexual blood, sexual and sporozoite stages, along with a transcriptomic comparison of the mRNAs that are affected in these stages. We find that the Apicomplexan-specific ALBA4 RNA-binding protein acts to regulate development of the parasite's transmission stages, and that ALBA4 associates with both stage-specific and stage-independent partners to produce opposing mRNA fates. These efforts expand our understanding and ability to interrogate both sexual and sporozoite transmission stages and the molecular preparations they evolved to perpetuate their infectious cycle.
Collapse
Affiliation(s)
- Elyse E Muñoz
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Kevin J Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Michael P Walker
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Mark F Kennedy
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Mackenzie M Shipley
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
18
|
DEAD-box helicase 6 (DDX6) is a new negative regulator for milk synthesis and proliferation of bovine mammary epithelial cells. In Vitro Cell Dev Biol Anim 2017; 54:52-60. [DOI: 10.1007/s11626-017-0195-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022]
|