1
|
Byun JH, Lebeau PF, Trink J, Uppal N, Lanktree MB, Krepinsky JC, Austin RC. Endoplasmic reticulum stress as a driver and therapeutic target for kidney disease. Nat Rev Nephrol 2025; 21:299-313. [PMID: 39988577 DOI: 10.1038/s41581-025-00938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
The endoplasmic reticulum (ER) has crucial roles in metabolically active cells, including protein translation, protein folding and quality control, lipid biosynthesis, and calcium homeostasis. Adverse metabolic conditions or pathogenic genetic variants that cause misfolding and accumulation of proteins within the ER of kidney cells initiate an injurious process known as ER stress that contributes to kidney disease and its cardiovascular complications. Initiation of ER stress activates the unfolded protein response (UPR), a cellular defence mechanism that functions to restore ER homeostasis. However, severe or chronic ER stress rewires the UPR to activate deleterious pathways that exacerbate inflammation, apoptosis and fibrosis, resulting in kidney injury. This insidious crosstalk between ER stress, UPR activation, oxidative stress and inflammation forms a vicious cycle that drives kidney disease and vascular damage. Furthermore, genetic variants that disrupt protein-folding mechanisms trigger ER stress, as evidenced in autosomal-dominant tubulointerstitial kidney disease and Fabry disease. Emerging therapeutic strategies that enhance protein-folding capacity and reduce the burden of ER stress have shown promising results in kidney diseases. Thus, integrating knowledge of how genetic variants cause protein misfolding and ER stress into clinical practice will enhance treatment strategies and potentially improve outcomes for various kidney diseases and their vascular complications.
Collapse
Affiliation(s)
- Jae Hyun Byun
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Paul F Lebeau
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Jackie Trink
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Nikhil Uppal
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Matthew B Lanktree
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada.
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Nanamatsu A, de Araújo L, LaFavers KA, El-Achkar TM. Advances in uromodulin biology and potential clinical applications. Nat Rev Nephrol 2024; 20:806-821. [PMID: 39160319 PMCID: PMC11568936 DOI: 10.1038/s41581-024-00881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Uromodulin (also known as Tamm-Horsfall protein) is a kidney-specific glycoprotein secreted bidirectionally into urine and into the circulation, and it is the most abundant protein in normal urine. Although the discovery of uromodulin predates modern medicine, its significance in health and disease has been rather enigmatic. Research studies have gradually revealed that uromodulin exists in multiple forms and has important roles in urinary and systemic homeostasis. Most uromodulin in urine is polymerized into highly organized filaments, whereas non-polymeric uromodulin is detected both in urine and in the circulation, and can have distinct roles. The interactions of uromodulin with the immune system, which were initially reported to be a key role of this protein, are now better understood. Moreover, the discovery that uromodulin is associated with a spectrum of kidney diseases, including acute kidney injury, chronic kidney disease and autosomal-dominant tubulointerstitial kidney disease, has further accelerated investigations into the role of this protein. These discoveries have prompted new questions and ushered in a new era in uromodulin research. Here, we delineate the latest discoveries in uromodulin biology and its emerging roles in modulating kidney and systemic diseases, and consider future directions, including its potential clinical applications.
Collapse
Affiliation(s)
- Azuma Nanamatsu
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Larissa de Araújo
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kaice A LaFavers
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tarek M El-Achkar
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Packer M, Ferreira JP, Butler J, Filippatos G, Januzzi JL, González Maldonado S, Panova-Noeva M, Pocock SJ, Prochaska JH, Saadati M, Sattar N, Sumin M, Anker SD, Zannad F. Reaffirmation of Mechanistic Proteomic Signatures Accompanying SGLT2 Inhibition in Patients With Heart Failure: A Validation Cohort of the EMPEROR Program. J Am Coll Cardiol 2024; 84:1979-1994. [PMID: 39217550 DOI: 10.1016/j.jacc.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors exert a distinctive pattern of direct biological effects on the heart and kidney under experimental conditions, but the meaningfulness of these signatures for patients with heart failure has not been fully defined. OBJECTIVES We performed the first mechanistic validation study of large-scale proteomics in a double-blind randomized trial of any treatment in patients with heart failure. METHODS In a discovery cohort from the EMPEROR (Empagliflozin Outcome Trial in Patients With Chronic Heart Failure and Reduced Ejection Fraction) program, we studied the effect of randomized treatment with placebo or empagliflozin on 1,283 circulating proteins in 1,134 patients with heart failure with a reduced or preserved ejection fraction. In a validation cohort, we expanded the number to 2,155 assessed proteins, which were measured in 1,120 EMPEROR participants who had not been studied previously. RESULTS In the validation cohort, 25 proteins were the most differentially enriched by empagliflozin (ie, ≥15% between-group difference and false discovery rate <1% at 12 weeks with known effects on the heart or kidney): 1) 13 proteins promote autophagy and other cellular quality-control functions (IGFBP1, OTUB1, DNAJB1, DNAJC9, RBP2, IST1, HSPA8, H-FABP, FABP6, ATPIFI, TfR1, EPO, IGBP1); 2) 12 proteins enhance mitochondrial health and ATP production (UMtCK, TBCA, L-FABP, H-FABP, FABP5, FABP6, RBP2, IST1, HSPA8, ATPIFI, TfR1, EPO); 3) 7 proteins augment cellular iron mobilization or erythropoiesis (TfR1, EPO, IGBP1, ERMAP, UROD, ATPIF1, SNCA); 4) 3 proteins influence renal tubular sodium handling; and 5) 9 proteins have restorative effects in the heart or kidneys, with many proteins exerting effects in >1 domain. These biological signatures replicated those observed in our discovery cohort. When the threshold for a meaningful between-group difference was lowered to ≥10%, there were 58 additional differentially enriched proteins with actions on the heart and kidney, but the biological signatures remained the same. CONCLUSIONS The replication of mechanistic signatures across discovery and validation cohorts closely aligns with the experimental effects of SGLT2 inhibitors. Thus, the actions of SGLT2 inhibitors-to promote autophagy, restore mitochondrial health and production of ATP, promote iron mobilization and erythropoiesis, influence renal tubular ion reabsorption, and normalize cardiac and renal structure and function-are likely to be relevant to patients with heart failure. (EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Preserved Ejection Fraction [EMPEROR-Preserved], NCT03057951; EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Reduced Ejection Fraction [EMPEROR-Reduced], NCT03057977).
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas, USA; Imperial College London, London, United Kingdom.
| | - João Pedro Ferreira
- UnIC@RISE, Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal; Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, USA; University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens School of Medicine, Athens University Hospital Attikon, Athens, Greece
| | - James L Januzzi
- National and Kapodistrian University of Athens School of Medicine, Athens University Hospital Attikon, Athens, Greece; Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, Massachusetts, USA
| | | | - Marina Panova-Noeva
- Boehringer Ingelheim Pharma GmbH & Co KG, Ingelheim, Germany; Center for Thrombosis and Haemostasis, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stuart J Pocock
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jürgen H Prochaska
- Boehringer Ingelheim International GmbH, Ingelheim, Germany; Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maral Saadati
- Elderbrook Solutions GmbH, on behalf of Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mikhail Sumin
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité, Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Faiez Zannad
- Centre d'Investigations Cliniques Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France; F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| |
Collapse
|
4
|
Bidooki SH, Navarro MA, Fernandes SCM, Osada J. Thioredoxin Domain Containing 5 (TXNDC5): Friend or Foe? Curr Issues Mol Biol 2024; 46:3134-3163. [PMID: 38666927 PMCID: PMC11049379 DOI: 10.3390/cimb46040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
This review focuses on the thioredoxin domain containing 5 (TXNDC5), also known as endoplasmic reticulum protein 46 (ERp46), a member of the protein disulfide isomerase (PDI) family with a dual role in multiple diseases. TXNDC5 is highly expressed in endothelial cells, fibroblasts, pancreatic β-cells, liver cells, and hypoxic tissues, such as cancer endothelial cells and atherosclerotic plaques. TXNDC5 plays a crucial role in regulating cell proliferation, apoptosis, migration, and antioxidative stress. Its potential significance in cancer warrants further investigation, given the altered and highly adaptable metabolism of tumor cells. It has been reported that both high and low levels of TXNDC5 expression are associated with multiple diseases, such as arthritis, cancer, diabetes, brain diseases, and infections, as well as worse prognoses. TXNDC5 has been attributed to both oncogenic and tumor-suppressive features. It has been concluded that in cancer, TXNDC5 acts as a foe and responds to metabolic and cellular stress signals to promote the survival of tumor cells against apoptosis. Conversely, in normal cells, TXNDC5 acts as a friend to safeguard cells against oxidative and endoplasmic reticulum stress. Therefore, TXNDC5 could serve as a viable biomarker or even a potential pharmacological target.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Susana C. M. Fernandes
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Jesus Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
5
|
Li J, Hou F, Lv N, Zhao R, Zhang L, Yue C, Nie M, Chen L. From Rare Disorders of Kidney Tubules to Acute Renal Injury: Progress and Prospective. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:153-166. [PMID: 38751796 PMCID: PMC11095595 DOI: 10.1159/000536423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/15/2023] [Indexed: 05/18/2024]
Abstract
Background Acute kidney injury (AKI) is a severe condition marked by rapid renal function deterioration and elevated mortality, with traditional biomarkers lacking sensitivity and specificity. Rare tubulointerstitial diseases encompass a spectrum of disorders, primarily including monogenic diseases, immune-related conditions, and drug-induced tubulointerstitial diseases. The clinical manifestations vary from electrolyte and acid-base imbalances to kidney function insufficiency, which is associated with AKI in up to 20% of cases. Evidence indicated that rare tubulointerstitial diseases might provide new conceptual insights and perspectives for novel biomarkers and potential therapeutic strategies for AKI. Summary Autosomal dominant tubulointerstitial kidney disease (ADTKD) and Fanconi syndrome (FS) are rare tubulointerstitial diseases. In ADTKD, UMOD and REN are closely related to AKI by affecting oxidative stress and tubuloglomerular feedback, which provide potential new biomarkers for AKI. Both rare tubulointerstitial diseases and AKI share etiologies and treatment responses. From the mechanism standpoint, rare tubulointerstitial diseases and AKI involve tubular transporter injury, initially manifesting as tubular dysfunction in tubulointerstitial disorder and progressing to AKI because of the programmed cell death with apoptosis, pyroptosis, or necroptosis of proximal tubule cells. Additionally, mitochondrial dysfunction has been identified as a common mechanism in both tubulointerstitial diseases and AKI induced by drugs, pSS, or monoclonal diseases. In the end, both AKI and FS patients and animal models responded well to the therapy of the primary diseases. Key Messages In this review, we describe an overview of ADTKD and FS to identify their associations with AKI. Mitochondrial dysfunction contributes to rare tubulointerstitial diseases and AKI, which might provide a potential therapeutic target.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fangxing Hou
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ning Lv
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ruohuan Zhao
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lei Zhang
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Cai Yue
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Min Nie
- Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Limeng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Hoogstraten CA, Hoenderop JG, de Baaij JHF. Mitochondrial Dysfunction in Kidney Tubulopathies. Annu Rev Physiol 2024; 86:379-403. [PMID: 38012047 DOI: 10.1146/annurev-physiol-042222-025000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Mitochondria play a key role in kidney physiology and pathology. They produce ATP to fuel energy-demanding water and solute reabsorption processes along the nephron. Moreover, mitochondria contribute to cellular health by the regulation of autophagy, (oxidative) stress responses, and apoptosis. Mitochondrial abundance is particularly high in cortical segments, including proximal and distal convoluted tubules. Dysfunction of the mitochondria has been described for tubulopathies such as Fanconi, Gitelman, and Bartter-like syndromes and renal tubular acidosis. In addition, mitochondrial cytopathies often affect renal (tubular) tissues, such as in Kearns-Sayre and Leigh syndromes. Nevertheless, the mechanisms by which mitochondrial dysfunction results in renal tubular diseases are only scarcely being explored. This review provides an overview of mitochondrial dysfunction in the development and progression of kidney tubulopathies. Furthermore, it emphasizes the need for further mechanistic investigations to identify links between mitochondrial function and renal electrolyte reabsorption.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Joost G Hoenderop
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Jeroen H F de Baaij
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
7
|
Takata T, Isomoto H. The Versatile Role of Uromodulin in Renal Homeostasis and Its Relevance in Chronic Kidney Disease. Intern Med 2024; 63:17-23. [PMID: 36642527 PMCID: PMC10824655 DOI: 10.2169/internalmedicine.1342-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023] Open
Abstract
Uromodulin, also known as the Tamm-Horsfall protein, is predominantly expressed in epithelial cells of the kidney. It is secreted mainly in the urine, although small amounts are also found in serum. Uromodulin plays an important role in maintaining renal homeostasis, particularly in salt/water transport mechanisms and is associated with salt-sensitive hypertension. It also regulates urinary tract infections, kidney stones, and the immune response in the kidneys or extrarenal organs. Uromodulin has been shown to be associated with the renal function, age, nephron volume, and metabolic abnormalities and has been proposed as a novel biomarker for the tubular function or injury. These findings suggest that uromodulin is a key molecule underlying the mechanisms or therapeutic approaches of chronic kidney disease, particularly nephrosclerosis and diabetic nephropathy, which are causes of end-stage renal disease. This review focuses on the current understanding of the role of uromodulin from a biological, physiological, and pathological standpoint.
Collapse
Affiliation(s)
- Tomoaki Takata
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Japan
| |
Collapse
|
8
|
Leggatt GP, Seaby EG, Veighey K, Gast C, Gilbert RD, Ennis S. A Role for Genetic Modifiers in Tubulointerstitial Kidney Diseases. Genes (Basel) 2023; 14:1582. [PMID: 37628633 PMCID: PMC10454709 DOI: 10.3390/genes14081582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
With the increased availability of genomic sequencing technologies, the molecular bases for kidney diseases such as nephronophthisis and mitochondrially inherited and autosomal-dominant tubulointerstitial kidney diseases (ADTKD) has become increasingly apparent. These tubulointerstitial kidney diseases (TKD) are monogenic diseases of the tubulointerstitium and result in interstitial fibrosis and tubular atrophy (IF/TA). However, monogenic inheritance alone does not adequately explain the highly variable onset of kidney failure and extra-renal manifestations. Phenotypes vary considerably between individuals harbouring the same pathogenic variant in the same putative monogenic gene, even within families sharing common environmental factors. While the extreme end of the disease spectrum may have dramatic syndromic manifestations typically diagnosed in childhood, many patients present a more subtle phenotype with little to differentiate them from many other common forms of non-proteinuric chronic kidney disease (CKD). This review summarises the expanding repertoire of genes underpinning TKD and their known phenotypic manifestations. Furthermore, we collate the growing evidence for a role of modifier genes and discuss the extent to which these data bridge the historical gap between apparently rare monogenic TKD and polygenic non-proteinuric CKD (excluding polycystic kidney disease).
Collapse
Affiliation(s)
- Gary P. Leggatt
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Eleanor G. Seaby
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| | - Kristin Veighey
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Christine Gast
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
| | - Rodney D. Gilbert
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Department of Paediatric Nephrology, Southampton Children’s Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Sarah Ennis
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| |
Collapse
|
9
|
Ren C, Sun Z, Chen Y, Chen J, Wang S, Liu Q, Wang P, Cheng X, Zhang Z, Wang Q. Identification of Biomarkers Affecting Cryopreservation Recovery Ratio in Ram Spermatozoa Using Tandem Mass Tags (TMT)-Based Quantitative Proteomics Approach. Animals (Basel) 2023; 13:2368. [PMID: 37508145 PMCID: PMC10376853 DOI: 10.3390/ani13142368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Sperm proteins play vital roles in improving sperm freezing resilience in domestic animals. However, it remains poorly defined which proteins regulate the freezing resilience of spermatozoa in rams (Ovis aries). Here, we compared the proteome of ram sperm with a high cryopreservation recovery ratio (HCR) with that of ram sperm with a low cryopreservation recovery ratio (LCR) using a tandem mass tag-based quantitative proteomics approach. Bioinformatic analysis was performed to evaluate differentially expressed proteins (DEPs). A total of 2464 proteins were identified, and 184 DEPs were screened. Seventy-two proteins were higher in the LCR group. One hundred and twelve proteins were more abundant in the HCR group, and they were mainly involved in the regulation of oxidative phosphorylation and thermogenesis pathways. Proteins in high abundance in the HCR group included the S100A family, such as S100A8, S100A9, S100A14, and S100A16, effectively controlling for CA2+ and maintaining flagella structure; HYOU1 and PRDX1, which participate in antioxidant protection and anti-apoptosis to prevent cell death; and HSP90B1, which maintains cell activity and immune response. Our results could help illuminate the molecular mechanisms underlying cryopreservation of ram semen and expand the potential direction of cryopreservation of high-quality semen.
Collapse
Affiliation(s)
- Chunhuan Ren
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Zhipeng Sun
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Yale Chen
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Jiahong Chen
- New Rural Develop Research Institute, Anhui Agricultural University, Hefei 230036, China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China
| | - Shijia Wang
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Qingqing Liu
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Penghui Wang
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China
| | - Qiangjun Wang
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| |
Collapse
|
10
|
Endoplasmic Reticulum Stress in Renal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24054914. [PMID: 36902344 PMCID: PMC10003093 DOI: 10.3390/ijms24054914] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
The endoplasmic reticulum is an organelle exerting crucial functions in protein production, metabolism homeostasis and cell signaling. Endoplasmic reticulum stress occurs when cells are damaged and the capacity of this organelle to perform its normal functions is reduced. Subsequently, specific signaling cascades, together forming the so-called unfolded protein response, are activated and deeply impact cell fate. In normal renal cells, these molecular pathways strive to either resolve cell injury or activate cell death, depending on the extent of cell damage. Therefore, the activation of the endoplasmic reticulum stress pathway was suggested as an interesting therapeutic strategy for pathologies such as cancer. However, renal cancer cells are known to hijack these stress mechanisms and exploit them to their advantage in order to promote their survival through rewiring of their metabolism, activation of oxidative stress responses, autophagy, inhibition of apoptosis and senescence. Recent data strongly suggest that a certain threshold of endoplasmic reticulum stress activation needs to be attained in cancer cells in order to shift endoplasmic reticulum stress responses from a pro-survival to a pro-apoptotic outcome. Several endoplasmic reticulum stress pharmacological modulators of interest for therapeutic purposes are already available, but only a handful were tested in the case of renal carcinoma, and their effects in an in vivo setting remain poorly known. This review discusses the relevance of endoplasmic reticulum stress activation or suppression in renal cancer cell progression and the therapeutic potential of targeting this cellular process for this cancer.
Collapse
|
11
|
Wang X, Li H, Chang X. The role and mechanism of TXNDC5 in diseases. Eur J Med Res 2022; 27:145. [PMID: 35934705 PMCID: PMC9358121 DOI: 10.1186/s40001-022-00770-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/20/2022] [Indexed: 01/20/2023] Open
Abstract
Thioredoxin domain-containing protein 5 (TXNDC5) is a member of the protein disulfide isomerase (PDI) family. It can promote the formation and rearrangement of disulfide bonds, ensuring proper protein folding. TXNDC5 has three Trx-like domains, which can act independently to introduce disulfide bonds rapidly and disorderly. TXNDC5 is abnormally expressed in various diseases, such as cancer, rheumatoid arthritis (RA), etc. It can protect cells from oxidative stress, promote cell proliferation, inhibit apoptosis and promote the progression of disease. Aberrant expression of TXNDC5 in different diseases suggests its role in disease diagnosis. In addition, targeting TXNDC5 in the treatment of diseases has shown promising application prospects. This article reviews the structure and function of TXNDC5 as well as its role and mechanism in cancer, RA and other diseases.
Collapse
Affiliation(s)
- Xueling Wang
- Medical Research Center of The Affiliated Hospital of Qingdao University, No 1677 Wutaishan Road, Huangdao District, Qingdao, China
| | - Haoran Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, No 16 Jiangsu Road, Qingdao, China
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, No 1677 Wutaishan Road, Huangdao District, Qingdao, China.
| |
Collapse
|
12
|
Econimo L, Schaeffer C, Zeni L, Cortinovis R, Alberici F, Rampoldi L, Scolari F, Izzi C. Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD): an emerging cause of genetic chronic kidney disease. Kidney Int Rep 2022; 7:2332-2344. [DOI: 10.1016/j.ekir.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022] Open
|
13
|
Mabillard H, Sayer JA, Olinger E. Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease. Nephrol Dial Transplant 2021; 38:271-282. [PMID: 34519781 PMCID: PMC9923703 DOI: 10.1093/ndt/gfab268] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 12/23/2022] Open
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a clinical entity defined by interstitial fibrosis with tubular damage, bland urinalysis and progressive kidney disease. Mutations in UMOD and MUC1 are the most common causes of ADTKD but other rarer (REN, SEC61A1), atypical (DNAJB11) or heterogeneous (HNF1B) subtypes have been described. Raised awareness, as well as the implementation of next-generation sequencing approaches, have led to a sharp increase in reported cases. ADTKD is now believed to be one of the most common monogenic forms of kidney disease and overall it probably accounts for ∼5% of all monogenic causes of chronic kidney disease. Through international efforts and systematic analyses of patient cohorts, critical insights into clinical and genetic spectra of ADTKD, genotype-phenotype correlations as well as innovative diagnostic approaches have been amassed during recent years. In addition, intense research efforts are addressed towards deciphering and rescuing the cellular pathways activated in ADTKD. A better understanding of these diseases and of possible commonalities with more common causes of kidney disease may be relevant to understand and target mechanisms leading to fibrotic kidney disease in general. Here we highlight recent advances in our understanding of the different subtypes of ADTKD with an emphasis on the molecular underpinnings and its clinical presentations.
Collapse
Affiliation(s)
- Holly Mabillard
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John A Sayer
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Eric Olinger
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Correspondence to: Eric Olinger; E-mail:
| |
Collapse
|
14
|
Abstract
Uromodulin, a protein exclusively produced by the kidney, is the most abundant urinary protein in physiological conditions. Already described several decades ago, uromodulin has gained the spotlight in recent years, since the discovery that mutations in its encoding gene UMOD cause a renal Mendelian disease (autosomal dominant tubulointerstitial kidney disease) and that common polymorphisms are associated with multifactorial disorders, such as chronic kidney disease, hypertension, and cardiovascular diseases. Moreover, variations in uromodulin levels in urine and/or blood reflect kidney functioning mass and are of prognostic value for renal function, cardiovascular events, and overall mortality. The clinical relevance of uromodulin reflects its multifunctional nature, playing a role in renal ion transport and immunomodulation, in protection against urinary tract infections and renal stones, and possibly as a systemic antioxidant. Here, we discuss the multifaceted roles of this protein in kidney physiology and its translational relevance.
Collapse
Affiliation(s)
- Céline Schaeffer
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy;
| | - Olivier Devuyst
- Mechanisms of Inherited Kidney Disorders Group, University of Zurich, CH-8057 Zurich, Switzerland
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy;
| |
Collapse
|
15
|
Karthikkeyan G, Najar MA, Pervaje R, Pervaje SK, Modi PK, Prasad TSK. Identification of Molecular Network Associated with Neuroprotective Effects of Yashtimadhu ( Glycyrrhiza glabra L.) by Quantitative Proteomics of Rotenone-Induced Parkinson's Disease Model. ACS OMEGA 2020; 5:26611-26625. [PMID: 33110989 PMCID: PMC7581237 DOI: 10.1021/acsomega.0c03420] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 05/04/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder, whose treatment with modern therapeutics leads to a plethora of side effects with prolonged usage. Therefore, the management of PD with complementary and alternative medicine is often pursued. In the Ayurveda system of alternative medicine, Yashtimadhu choorna, a Medhya Rasayana (nootropic), prepared from the dried roots of Glycyrrhiza glabra L. (licorice), is prescribed for the management of PD with a favorable outcome. We pursued to understand the neuroprotective effects of Yashtimadhu choorna against a rotenone-induced cellular model of PD using differentiated IMR-32 cells. Cotreatment with Yashtimadhu choorna extract rescued rotenone-induced apoptosis and hyperphosphorylation of ERK-1/2. Quantitative proteomic analysis of six peptide fractions from independent biological replicates acquired 1,561,169 mass spectra, which when searched resulted in 565,008 peptide-spectrum matches mapping to 30,554 unique peptides that belonged to 4864 human proteins. Proteins commonly identified in biological replicates and >4 PSMs were considered for further analysis, leading to a refined set of 3720 proteins. Rotenone treatment differentially altered 144 proteins (fold ≥1.25 or ≤0.8), involved in mitochondrial, endoplasmic reticulum, and autophagy functions. Cotreatment with Yashtimadhu choorna extract rescued 84 proteins from the effect of rotenone and an additional regulation of 4 proteins. Network analysis highlighted the interaction of proteins and pathways regulated by them, which can be targeted for neuroprotection. Validation of proteomics data highlighted that Yashtimadhu confers neuroprotection by preventing mitochondrial oxidative stress and apoptosis. This discovery will pave the way for understanding the molecular action of Ayurveda drugs and developing novel therapeutics for PD.
Collapse
Affiliation(s)
- Gayathree Karthikkeyan
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Mohd. Altaf Najar
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | | | | | - Prashant Kumar Modi
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | | |
Collapse
|
16
|
Qin C, Wu XL, Gu J, Du D, Guo Y. Mitochondrial Dysfunction Secondary to Endoplasmic Reticulum Stress in Acute Myocardial Ischemic Injury in Rats. Med Sci Monit 2020; 26:e923124. [PMID: 32439834 PMCID: PMC7261002 DOI: 10.12659/msm.923124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background The relationship between endoplasmic reticulum and mitochondria during acute myocardial ischemic injury is still unclear. Our study aimed to define the dynamics of endoplasmic reticulum stress and mitochondrial dysfunction during acute ischemic injury. Material/Methods A rat model of acute myocardial infarction and hypoxic cardiomyocytes were used in this study. Groups were set at 0 hours, 1 hour, 2 hours, 4 hours, and 6 hours after ischemic injury for both in vivo and in vitro studies. ATF6 and GRP-78 were examined to indicate endoplasmic reticulum stress. Cellular ATP and cytosolic levels of mitochondrial DNA and cytochrome c were detected to evaluate mitochondrial dysfunction. Caspase-3 was used for apoptosis analysis. Result Our results showed that both mRNA and protein levels of ATF6 and GRP-78 were elevated from 1 hour after ischemic injury in vivo and in vitro (P<0.05). However, ATP levels were increased at 2 hours after ischemic injury and significantly decreased from 4 hours after ischemic injury in vivo, while ATP level of cultured cardiomyocytes decreased remarkably from 2 hours after ischemic injury (P<0.05). Cytosolic mitochondrial DNA levels began to increase from 2 hours after ischemic injury (P<0.05). Cytosolic levels of cytochrome c increased from 4 hours after ischemic injury. Additionally, both mRNA and protein expressions of caspase-3 started to significantly elevate at 6 hours after ischemic injury (P<0.05). Conclusions The present study suggested that mitochondrial dysfunction was secondary to endoplasmic reticulum stress, which provides a novel experimental foundation for further exploration of the detailed mechanism after ischemic injury, especially the interaction between endoplasmic reticulum and mitochondria.
Collapse
Affiliation(s)
- Chaoyi Qin
- Department of Cardiovascular Surgery, West China Hospital, Chengdu, Sichuan, China (mainland)
| | - Xue-Lin Wu
- Anesthesia and Operating Center of West China Hospital/Nursing School of West China School of Medicine, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Chengdu, Sichuan, China (mainland)
| | - Dan Du
- West China - Washington Mitochondria and Metabolism Center, West China Hospital, Chengdu, Sichuan, China (mainland)
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Uromodulin (UMOD), also known as Tamm-Horsfall protein, is the most abundant protein in human urine. UMOD has multiple functions such as protection against urinary tract infections and nephrolithiasis. This review outlines recent progress made in UMOD's role in renal physiology, tubular transport, and mineral metabolism. RECENT FINDINGS UMOD is mostly secreted in the thick ascending limb (TAL) and to a lesser degree in the distal convoluted tubule (DCT). UMOD secretion is regulated by the calcium-sensing receptor. UMOD upregulates ion channels [e.g., renal outer medullary potassium channel, transient receptor potential cation channel subfamily V member 5, and transient receptor potential melastatin 6 (TRPM6)] and cotransporters [e.g., Na,K,2Cl cotransporter (NKCC2) and sodium-chloride cotransporter (NCC)] in the TAL and DCT. Higher serum UMOD concentrations have been associated with higher renal function and preserved renal reserve. Higher serum UMOD has also been linked to a lower risk of cardiovascular disease and diabetes mellitus. SUMMARY With better serum UMOD detection assays the extent of different functions for UMOD is still expanding. Urinary UMOD regulates different tubular ion channels and cotransporters. Variations of urinary UMOD secretion can so contribute to common disorders such as hypertension or nephrolithiasis.
Collapse
|
18
|
Functional changes of the liver in the absence of growth hormone (GH) action - Proteomic and metabolomic insights from a GH receptor deficient pig model. Mol Metab 2020; 36:100978. [PMID: 32277923 PMCID: PMC7184181 DOI: 10.1016/j.molmet.2020.100978] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The liver is a central target organ of growth hormone (GH), which stimulates the synthesis of insulin-like growth factor 1 (IGF1) and affects multiple biochemical pathways. A systematic multi-omics analysis of GH effects in the liver has not been performed. GH receptor (GHR) deficiency is a unique model for studying the consequences of lacking GH action. In this study, we used molecular profiling techniques to capture a broad spectrum of these effects in the liver of a clinically relevant large animal model for Laron syndrome. METHODS We performed holistic proteome and targeted metabolome analyses of liver samples from 6-month-old GHR-deficient (GHR-KO) pigs and GHR-expressing controls (four males, four females per group). RESULTS GHR deficiency resulted in an increased abundance of enzymes involved in amino acid degradation, in the urea cycle, and in the tricarboxylic acid cycle. A decreased ratio of long-chain acylcarnitines to free carnitine suggested reduced activity of carnitine palmitoyltransferase 1A and thus reduced mitochondrial import of fatty acids for beta-oxidation. Increased levels of short-chain acylcarnitines in the liver and in the circulation of GHR-KO pigs may result from impaired beta-oxidation of short-chain fatty acids or from increased degradation of specific amino acids. The concentration of mono-unsaturated glycerophosphocholines was significantly increased in the liver of GHR-KO pigs without morphological signs of steatosis, although the abundances of several proteins functionally linked to non-alcoholic fatty liver disease (fetuin B, retinol binding protein 4, several mitochondrial proteins) were increased. Moreover, GHR-deficient liver samples revealed distinct changes in the methionine and glutathione metabolic pathways, in particular, a significantly increased level of glycine N-methyltransferase and increased levels of total and free glutathione. Several proteins revealed a sex-related abundance difference in the control group but not in the GHR-KO group. CONCLUSIONS Our integrated proteomics/targeted metabolomics study of GHR-deficient and control liver samples from a clinically relevant large animal model identified a spectrum of biological pathways that are significantly altered in the absence of GH action. Moreover, new insights into the role of GH in the sex-related specification of liver functions were provided.
Collapse
|
19
|
Shao A, Chan SC, Igarashi P. Role of transcription factor hepatocyte nuclear factor-1β in polycystic kidney disease. Cell Signal 2020; 71:109568. [PMID: 32068086 DOI: 10.1016/j.cellsig.2020.109568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Hepatocyte nuclear factor-1β (HNF-1β) is a DNA-binding transcription factor that is essential for normal kidney development. Mutations of HNF1B in humans produce cystic kidney diseases, including renal cysts and diabetes, multicystic dysplastic kidneys, glomerulocystic kidney disease, and autosomal dominant tubulointerstitial kidney disease. Expression of HNF1B is reduced in cystic kidneys from humans with ADPKD, and HNF1B has been identified as a modifier gene in PKD. Genome-wide analysis of chromatin binding has revealed that HNF-1β directly regulates the expression of known PKD genes, such as PKHD1 and PKD2, as well as genes involved in PKD pathogenesis, including cAMP-dependent signaling, renal fibrosis, and Wnt signaling. In addition, a role of HNF-1β in regulating the expression of noncoding RNAs (microRNAs and long noncoding RNAs) has been identified. These findings indicate that HNF-1β regulates a transcriptional and post-transcriptional network that plays a central role in renal cystogenesis.
Collapse
Affiliation(s)
- Annie Shao
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Siu Chiu Chan
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Peter Igarashi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
20
|
Wilson R, Gundamaraju R, Vemuri R, Angelucci C, Geraghty D, Gueven N, Eri RD. Identification of Key Pro-Survival Proteins in Isolated Colonic Goblet Cells of Winnie, a Murine Model of Spontaneous Colitis. Inflamm Bowel Dis 2020; 26:80-92. [PMID: 31504521 DOI: 10.1093/ibd/izz179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Accumulating evidence suggests that the goblet cell-derived mucin-2 (Muc2) is a major component of the immune system and that perturbations in Muc2 lead to an ulcerative colitis-like phenotype. The animal model Winnie carries a missense mutation in Muc2 that causes Muc2 misfolding, accumulation in goblet cells, and ER stress. Excessive ER stress is a hallmark of many diseases, including ulcerative colitis, cancer, diabetes and Parkinson's disease. However, rather than committing to cell death, which is the typical outcome of unresolved ER stress, Winnie goblet cells are characterized by hyperproliferation, suggesting additional regulation of this cellular stress response. METHODS To elucidate the molecular mechanisms underlying ulcerative colitis in the Winnie model, we isolated goblet cells from Winnie and wild-type mice and used label-free quantitative proteomics and bioinformatics to understand the functional consequences of Muc2 misfolding and accumulation. RESULTS A large number of changes were identified that highlight a dramatic reprogramming of energy production, including enhanced utilization of butyrate, a key energy source of colonic cells. A major finding was the marked upregulation of the coiled-coil-helix-coiled-coil-helix domain proteins Chchd2, Chchd3, and Chchd6. In particular, we identified and confirmed the upregulation and nuclear translocation of Chchd2, a protein known to inhibit oxidative stress induced apoptosis. CONCLUSIONS This study is the first to apply proteome-level analysis to the preclinical Winnie model of ulcerative colitis. Identification of proteins and pathways affected in isolated Winnie goblet cells provides evidence for novel adaptive mechanisms underlying cell survival under conditions of chronic ER stress.
Collapse
Affiliation(s)
- Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS, Australia
| | - Rohit Gundamaraju
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Ravichandra Vemuri
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Constanza Angelucci
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Dominic Geraghty
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Nuri Gueven
- Pharmacy, School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS, Australia
| | - Rajaraman D Eri
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
21
|
Sharma A, Smith HJ, Yao P, Mair WB. Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep 2019; 20:e48395. [PMID: 31667999 PMCID: PMC6893295 DOI: 10.15252/embr.201948395] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/24/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are organized in the cell in the form of a dynamic, interconnected network. Mitochondrial dynamics, regulated by mitochondrial fission, fusion, and trafficking, ensure restructuring of this complex reticulum in response to nutrient availability, molecular signals, and cellular stress. Aberrant mitochondrial structures have long been observed in aging and age-related diseases indicating that mitochondrial dynamics are compromised as cells age. However, the specific mechanisms by which aging affects mitochondrial dynamics and whether these changes are causally or casually associated with cellular and organismal aging is not clear. Here, we review recent studies that show specifically how mitochondrial fission, fusion, and trafficking are altered with age. We discuss factors that change with age to directly or indirectly influence mitochondrial dynamics while examining causal roles for altered mitochondrial dynamics in healthy aging and underlying functional outputs that might affect longevity. Lastly, we propose that altered mitochondrial dynamics might not just be a passive consequence of aging but might constitute an adaptive mechanism to mitigate age-dependent cellular impairments and might be targeted to increase longevity and promote healthy aging.
Collapse
Affiliation(s)
- Arpit Sharma
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Hannah J Smith
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Pallas Yao
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - William B Mair
- Department of Genetics and Complex DiseasesHarvard T.H. Chan School of Public HealthBostonMAUSA
| |
Collapse
|
22
|
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a recently defined entity that includes rare kidney diseases characterized by tubular damage and interstitial fibrosis in the absence of glomerular lesions, with inescapable progression to end-stage renal disease. These diseases have long been neglected and under-recognized, in part due to confusing and inconsistent terminology. The introduction of a gene-based, unifying terminology led to the identification of an increasing number of cases, with recent data suggesting that ADTKD is one of the more common monogenic kidney diseases after autosomal dominant polycystic kidney disease, accounting for ~5% of monogenic disorders causing chronic kidney disease. ADTKD is caused by mutations in at least five different genes, including UMOD, MUC1, REN, HNF1B and, more rarely, SEC61A1. These genes encode various proteins with renal and extra-renal functions. The mundane clinical characteristics and lack of appreciation of family history often result in a failure to diagnose ADTKD. This Primer highlights the different types of ADTKD and discusses the distinct genetic and clinical features as well as the underlying mechanisms.
Collapse
|
23
|
Schaeffer C, Izzi C, Vettori A, Pasqualetto E, Cittaro D, Lazarevic D, Caridi G, Gnutti B, Mazza C, Jovine L, Scolari F, Rampoldi L. Autosomal Dominant Tubulointerstitial Kidney Disease with Adult Onset due to a Novel Renin Mutation Mapping in the Mature Protein. Sci Rep 2019; 9:11601. [PMID: 31406136 PMCID: PMC6691008 DOI: 10.1038/s41598-019-48014-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/22/2019] [Indexed: 01/10/2023] Open
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a genetically heterogeneous renal disorder leading to progressive loss of renal function. ADTKD-REN is due to rare mutations in renin, all localized in the protein leader peptide and affecting its co-translational insertion in the endoplasmic reticulum (ER). Through exome sequencing in an adult-onset ADTKD family we identified a new renin variant, p.L381P, mapping in the mature protein. To assess its pathogenicity, we combined genetic data, computational and predictive analysis and functional studies. The L381P substitution affects an evolutionary conserved residue, co-segregates with renal disease, is not found in population databases and is predicted to be deleterious by in silico tools and by structural modelling. Expression of the L381P variant leads to its ER retention and induction of the Unfolded Protein Response in cell models and to defective pronephros development in zebrafish. Our work shows that REN mutations outside of renin leader peptide can cause ADTKD and delineates an adult form of ADTKD-REN, a condition which has usually its onset in childhood. This has implications for the molecular diagnosis and the estimated prevalence of the disease and points at ER homeostasis as a common pathway affected in ADTKD-REN, and possibly more generally in ADTKD.
Collapse
Affiliation(s)
- Céline Schaeffer
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Izzi
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and Montichiari Hospital, Brescia, Italy.,Prenatal Diagnosis Unit, Department of Obstetrics and Gynecology, ASST Spedali Civili, Brescia, Italy
| | - Andrea Vettori
- Department of Biology, University of Padova, Padova, Italy.,Department of Biotechnology, University of Verona, Verona, Italy
| | - Elena Pasqualetto
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Cittaro
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Caridi
- Laboratory of Molecular Nephrology, Istituto Giannina Gaslini IRCCS, Genoa, Italy
| | - Barbara Gnutti
- Laboratory of Medical Genetics, Department of Pathology, ASST Spedali Civili, Brescia, Italy
| | - Cinzia Mazza
- Laboratory of Medical Genetics, Department of Pathology, ASST Spedali Civili, Brescia, Italy
| | - Luca Jovine
- Department of Biosciences and Nutrition & Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Francesco Scolari
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and Montichiari Hospital, Brescia, Italy
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
24
|
Bjornstad P, Wiromrat P, Johnson RJ, Sippl R, Cherney DZI, Wong R, Rewers MJ, Snell-Bergeon JK. Serum Uromodulin Predicts Less Coronary Artery Calcification and Diabetic Kidney Disease Over 12 Years in Adults With Type 1 Diabetes: The CACTI Study. Diabetes Care 2019; 42:297-302. [PMID: 30482755 PMCID: PMC6341281 DOI: 10.2337/dc18-1527] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/23/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Novel biomarkers are needed to better predict coronary artery calcification (CAC), a marker of subclinical atherosclerosis, and diabetic kidney disease (DKD) in type 1 diabetes. We evaluated the associations between serum uromodulin (SUMOD [a biomarker associated with anti-inflammatory and renal protective properties]), CAC progression, and DKD development over 12 years. RESEARCH DESIGN AND METHODS Participants (n = 527, 53% females) in the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study were examined during 2002-2004, at a mean age of 39.6 ± 9.0 years and a median duration of diabetes of 24.8 years. Urine albumin-to-creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR) determined by the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) creatinine equation were measured at baseline and after a mean follow-up period of 12.1 ± 1.5 years. Elevated albumin excretion was defined as ACR ≥30 mg/g, rapid GFR decline (>3 mL/min/1.73 m2/year), and impaired GFR as eGFR <60 mL/min/1.73 m2. SUMOD was measured on stored baseline plasma samples (Meso Scale Discovery). CAC was measured using electron beam computed tomography. CAC progression was defined as a change in the square root-transformed CAC volume of ≥2.5. RESULTS Higher baseline SUMOD level conferred lower odds of CAC progression (odds ratio 0.68; 95% CI 0.48-0.97), incident elevated albumin excretion (0.37; 0.16-0.86), rapid GFR decline (0.56; 0.35-0.91), and impaired GFR (0.44; 0.24-0.83) per 1 SD increase in SUMOD (68.44 ng/mL) after adjustment for baseline age, sex, systolic blood pressure, LDL cholesterol, and albuminuria/GFR. The addition of SUMOD to models with traditional risk factors also significantly improved the prediction performance for CAC progression and incident DKD. CONCLUSIONS Higher baseline SUMOD level predicted lower odds of both CAC progression and incident DKD over 12 years in adults with type 1 diabetes.
Collapse
Affiliation(s)
- Petter Bjornstad
- Section of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO .,Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO
| | - Pattara Wiromrat
- Section of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO
| | - Richard J Johnson
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Rachel Sippl
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, and Department of Physiology, University of Toronto, Ontario, Canada
| | - Randy Wong
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO
| | - Marian J Rewers
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO
| | | |
Collapse
|
25
|
Reindl J, Gröne HJ, Wolf G, Busch M. Uromodulin-related autosomal-dominant tubulointerstitial kidney disease-pathogenetic insights based on a case. Clin Kidney J 2018; 12:172-179. [PMID: 30976393 PMCID: PMC6452205 DOI: 10.1093/ckj/sfy094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 02/05/2023] Open
Abstract
Uromodulin-related autosomal-dominant tubulointerstitial kidney disease (ADTKD-UMOD) is a rare monogenic disorder that is characterized by tubulointerstitial fibrosis and progression of kidney function loss, and may progress to end-stage renal disease. It is usually accompanied by hyperuricaemia and gout. Mutations in the uromodulin gene (UMOD) resulting in malfunctioning of UMOD are known to be the cause of ADTKD-UMOD, which is assumed to be an endoplasmatic reticulum (ER) storage disease. As a case vignette, we report a 29-year-old female with a suspicious family history of chronic kidney disease presenting with progressive loss of renal function, hyperuricaemia and frequent urinary tract infections. Urinary tract infections and pyelonephritides may represent a clinical feature of uromodulin malfunction as it plays a protective role against urinary tract infections despite only sporadic data on this topic. ADTKD-UMOD was diagnosed after genetic testing revealing a missense mutation in the UMOD gene. Light microscopy showed excessive tubular interstitial fibrosis and tubular atrophy together with signs of glomerular sclerosis. Electron microscopic findings could identify electron dense storage deposits in the ER of tubular epithelial cells of the thick ascending loop. Immunohistological staining with KDEL (lysine, aspartic acid, glutamic acid, leucine) showed positivity in the tubular cells, which likely represents ER expansion upon accumulation of misfolded UMOD which could trigger the unfolded protein response and ER stress. This review highlights pathophysiological mechanisms that are subject to ADTKD-UMOD.
Collapse
Affiliation(s)
- Johanna Reindl
- Department of Internal Medicine III, University Hospital Jena, Friedrich-Schiller-University, Jena, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, Friedrich-Schiller-University, Jena, Germany
| | - Martin Busch
- Department of Internal Medicine III, University Hospital Jena, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
26
|
Affiliation(s)
- Daniel P Gale
- Division of Medicine, Department of Nephrology, University College London, London, UK
| | - Robert Kleta
- Division of Medicine, Department of Nephrology, University College London, London, UK
| |
Collapse
|
27
|
Chan SC, Zhang Y, Shao A, Avdulov S, Herrera J, Aboudehen K, Pontoglio M, Igarashi P. Mechanism of Fibrosis in HNF1B-Related Autosomal Dominant Tubulointerstitial Kidney Disease. J Am Soc Nephrol 2018; 29:2493-2509. [PMID: 30097458 DOI: 10.1681/asn.2018040437] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/12/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Mutation of HNF1B, the gene encoding transcription factor HNF-1β, is one cause of autosomal dominant tubulointerstitial kidney disease, a syndrome characterized by tubular cysts, renal fibrosis, and progressive decline in renal function. HNF-1β has also been implicated in epithelial-mesenchymal transition (EMT) pathways, and sustained EMT is associated with tissue fibrosis. The mechanism whereby mutated HNF1B leads to tubulointerstitial fibrosis is not known. METHODS To explore the mechanism of fibrosis, we created HNF-1β-deficient mIMCD3 renal epithelial cells, used RNA-sequencing analysis to reveal differentially expressed genes in wild-type and HNF-1β-deficient mIMCD3 cells, and performed cell lineage analysis in HNF-1β mutant mice. RESULTS The HNF-1β-deficient cells exhibited properties characteristic of mesenchymal cells such as fibroblasts, including spindle-shaped morphology, loss of contact inhibition, and increased cell migration. These cells also showed upregulation of fibrosis and EMT pathways, including upregulation of Twist2, Snail1, Snail2, and Zeb2, which are key EMT transcription factors. Mechanistically, HNF-1β directly represses Twist2, and ablation of Twist2 partially rescued the fibroblastic phenotype of HNF-1β mutant cells. Kidneys from HNF-1β mutant mice showed increased expression of Twist2 and its downstream target Snai2. Cell lineage analysis indicated that HNF-1β mutant epithelial cells do not transdifferentiate into kidney myofibroblasts. Rather, HNF-1β mutant epithelial cells secrete high levels of TGF-β ligands that activate downstream Smad transcription factors in renal interstitial cells. CONCLUSIONS Ablation of HNF-1β in renal epithelial cells leads to the activation of a Twist2-dependent transcriptional network that induces EMT and aberrant TGF-β signaling, resulting in renal fibrosis through a cell-nonautonomous mechanism.
Collapse
Affiliation(s)
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota; and
| | | | | | | | | | - Marco Pontoglio
- Department of Development, Reproduction and Cancer, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016/Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris-Descartes, Paris, France
| | | |
Collapse
|
28
|
Knaup KX, Hackenbeck T, Popp B, Stoeckert J, Wenzel A, Büttner-Herold M, Pfister F, Schueler M, Seven D, May AM, Halbritter J, Gröne HJ, Reis A, Beck BB, Amann K, Ekici AB, Wiesener MS. Biallelic Expression of Mucin-1 in Autosomal Dominant Tubulointerstitial Kidney Disease: Implications for Nongenetic Disease Recognition. J Am Soc Nephrol 2018; 29:2298-2309. [PMID: 30049680 DOI: 10.1681/asn.2018030245] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Providing the correct diagnosis for patients with tubulointerstitial kidney disease and secondary degenerative disorders, such as hypertension, remains a challenge. The autosomal dominant tubulointerstitial kidney disease (ADTKD) subtype caused by MUC1 mutations (ADTKD-MUC1) is particularly difficult to diagnose, because the mutational hotspot is a complex repeat domain, inaccessible with routine sequencing techniques. Here, we further evaluated SNaPshot minisequencing as a technique for diagnosing ADTKD-MUC1 and assessed immunodetection of the disease-associated mucin 1 frameshift protein (MUC1-fs) as a nongenetic technique. METHODS We re-evaluated detection of MUC1 mutations by targeted repeat enrichment and SNaPshot minisequencing by haplotype reconstruction via microsatellite analysis in three independent ADTKD-MUC1 families. Additionally, we generated rabbit polyclonal antibodies against MUC1-fs and evaluated immunodetection of wild-type and mutated allele products in human kidney biopsy specimens. RESULTS The detection of MUC1 mutations by SNaPshot minisequencing was robust. Immunostaining with our MUC1-fs antibodies and an MUC1 antibody showed that both proteins are readily detectable in human ADTKD-MUC1 kidneys, with mucin 1 localized to the apical membrane and MUC1-fs abundantly distributed throughout the cytoplasm. Notably, immunohistochemical analysis of MUC1-fs expression in clinical kidney samples facilitated reliable prediction of the disease status of individual patients. CONCLUSIONS Diagnosing ADTKD-MUC1 by molecular genetics is possible, but it is technically demanding and labor intensive. However, immunohistochemistry on kidney biopsy specimens is feasible for nongenetic diagnosis of ADTKD-MUC1 and therefore, a valid method to select families for further diagnostics. Our data are compatible with the hypothesis that specific molecular effects of MUC1-fs underlie the pathogenesis of this disease.
Collapse
Affiliation(s)
- Karl X Knaup
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Hackenbeck
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernt Popp
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johanna Stoeckert
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Wenzel
- Institute of Human Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Frederick Pfister
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Schueler
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Didem Seven
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Cerrahpaşa Medical Faculty, Department of Medical Biology, Istanbul University, Istanbul, Turkey
| | - Annette M May
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Halbritter
- Division of Nephrology, Department of Internal Medicine, University of Leipzig, Leipzig, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, Deutsches Krebsforschungszentrum Heidelberg, Heidelberg, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bodo B Beck
- Institute of Human Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael S Wiesener
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Apoptosis-Associated Speck-Like Protein Containing a CARD Deletion Ameliorates Unilateral Ureteral Obstruction Induced Renal Fibrosis and Endoplasmic Reticulum Stress in Mice. Mediators Inflamm 2018; 2018:6909035. [PMID: 30057487 PMCID: PMC6051069 DOI: 10.1155/2018/6909035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/09/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation might be one of the essential underlying mechanisms of renal fibrosis, which is considered a key pathological feature of end-stage renal disease and is closely associated with proteinuria and decreased renal function. Apoptosis-associated speck-like protein containing a CARD (ASC), identified as the central structure of inflammasome, is involved in the progression of interstitial fibrosis; however, its signal transduction pathways remain unclear. In the present study, we performed unilateral ureter obstruction (UUO) in both wild-type and ASC deletion mice to determine the contribution of ASC to renal fibrosis. Compared with control groups, UUO significantly induced renal fibrosis and collagen deposition, as evidenced by photomicrographs. ASC deletion attenuated renal injury, reduced cell infiltration and the release of inflammatory cytokines, protected against apoptosis, and downregulated the PRKR-like endoplasmic reticulum kinase (PERK) pathway of endoplasmic reticulum (ER) stress. Our data identify a novel role of ASC in the regulation of renal fibrosis and ER stress after UUO, strongly indicating that ASC could serve as an attractive target in the treatment of chronic kidney disease.
Collapse
|
30
|
Szelechowski M, Amoedo N, Obre E, Léger C, Allard L, Bonneu M, Claverol S, Lacombe D, Oliet S, Chevallier S, Le Masson G, Rossignol R. Metabolic Reprogramming in Amyotrophic Lateral Sclerosis. Sci Rep 2018; 8:3953. [PMID: 29500423 PMCID: PMC5834494 DOI: 10.1038/s41598-018-22318-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction in the spinal cord is a hallmark of amyotrophic lateral sclerosis (ALS), but the neurometabolic alterations during early stages of the disease remain unknown. Here, we investigated the bioenergetic and proteomic changes in ALS mouse motor neurons and patients' skin fibroblasts. We first observed that SODG93A mice presymptomatic motor neurons display alterations in the coupling efficiency of oxidative phosphorylation, along with fragmentation of the mitochondrial network. The proteome of presymptomatic ALS mice motor neurons also revealed a peculiar metabolic signature with upregulation of most energy-transducing enzymes, including the fatty acid oxidation (FAO) and the ketogenic components HADHA and ACAT2, respectively. Accordingly, FAO inhibition altered cell viability specifically in ALS mice motor neurons, while uncoupling protein 2 (UCP2) inhibition recovered cellular ATP levels and mitochondrial network morphology. These findings suggest a novel hypothesis of ALS bioenergetics linking FAO and UCP2. Lastly, we provide a unique set of data comparing the molecular alterations found in human ALS patients' skin fibroblasts and SODG93A mouse motor neurons, revealing conserved changes in protein translation, folding and assembly, tRNA aminoacylation and cell adhesion processes.
Collapse
Affiliation(s)
- M Szelechowski
- INSERM U1215, Neurocentre Magendie, 33077, Bordeaux, cedex, France
- Bordeaux University, 33000, Bordeaux, France
| | - N Amoedo
- Bordeaux University, 33000, Bordeaux, France
- INSERM U1211, MRGM, 33000, Bordeaux, France
| | - E Obre
- CELLOMET, Center of Functional Genomics (CGFB), 146 Rue Léo Saignat, 33000, Bordeaux, France
| | - C Léger
- INSERM U1215, Neurocentre Magendie, 33077, Bordeaux, cedex, France
- Bordeaux University, 33000, Bordeaux, France
| | - L Allard
- INSERM U1215, Neurocentre Magendie, 33077, Bordeaux, cedex, France
- Bordeaux University, 33000, Bordeaux, France
| | - M Bonneu
- Bordeaux University, 33000, Bordeaux, France
- Center of Functional Genomics (CGFB), Proteomic Facility, Bordeaux University, 33000, Bordeaux, France
| | - S Claverol
- Bordeaux University, 33000, Bordeaux, France
- Center of Functional Genomics (CGFB), Proteomic Facility, Bordeaux University, 33000, Bordeaux, France
| | - D Lacombe
- Bordeaux University, 33000, Bordeaux, France
- INSERM U1211, MRGM, 33000, Bordeaux, France
| | - S Oliet
- INSERM U1215, Neurocentre Magendie, 33077, Bordeaux, cedex, France
- Bordeaux University, 33000, Bordeaux, France
| | - S Chevallier
- INSERM U1215, Neurocentre Magendie, 33077, Bordeaux, cedex, France
- Bordeaux University, 33000, Bordeaux, France
| | - G Le Masson
- INSERM U1215, Neurocentre Magendie, 33077, Bordeaux, cedex, France.
- Bordeaux University, 33000, Bordeaux, France.
| | - R Rossignol
- Bordeaux University, 33000, Bordeaux, France.
- INSERM U1211, MRGM, 33000, Bordeaux, France.
| |
Collapse
|
31
|
Kropski JA, Blackwell TS. Endoplasmic reticulum stress in the pathogenesis of fibrotic disease. J Clin Invest 2018; 128:64-73. [PMID: 29293089 DOI: 10.1172/jci93560] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells contain an elegant protein quality control system that is crucial in maintaining cellular homeostasis; however, dysfunction of this system results in endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). Severe or prolonged ER stress is associated with the development of degenerative and fibrotic disorders in multiple organs, as evidenced by the identification of disease-causing mutations in epithelial-restricted genes that lead to protein misfolding or mistrafficking in familial fibrotic diseases. Emerging evidence implicates ER stress and UPR signaling in a variety of profibrotic mechanisms in individual cell types. In epithelial cells, ER stress can induce apoptosis, inflammatory signaling, and epithelial-mesenchymal transition. In other cell types, ER stress is linked to myofibroblast activation, macrophage polarization, and T cell differentiation. ER stress-targeted therapies have begun to emerge using approaches that range from global enhancement of chaperone function to selective targeting of activated ER stress sensors and other downstream mediators. As the complex regulatory mechanisms of this system are further clarified, there are opportunities to develop new disease-modifying therapeutic strategies in a wide range of chronic fibrotic diseases.
Collapse
Affiliation(s)
- Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
32
|
Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol 2017; 13:681-696. [DOI: 10.1038/nrneph.2017.129] [Citation(s) in RCA: 392] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Devuyst O, Olinger E, Rampoldi L. Uromodulin: from physiology to rare and complex kidney disorders. Nat Rev Nephrol 2017; 13:525-544. [PMID: 28781372 DOI: 10.1038/nrneph.2017.101] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Uromodulin (also known as Tamm-Horsfall protein) is exclusively produced in the kidney and is the most abundant protein in normal urine. The function of uromodulin remains elusive, but the available data suggest that this protein might regulate salt transport, protect against urinary tract infection and kidney stones, and have roles in kidney injury and innate immunity. Interest in uromodulin was boosted by genetic studies that reported involvement of the UMOD gene, which encodes uromodulin, in a spectrum of rare and common kidney diseases. Rare mutations in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), which leads to chronic kidney disease (CKD). Moreover, genome-wide association studies have identified common variants in UMOD that are strongly associated with risk of CKD and also with hypertension and kidney stones in the general population. These findings have opened up a new field of kidney research. In this Review we summarize biochemical, physiological, genetic and pathological insights into the roles of uromodulin; the mechanisms by which UMOD mutations cause ADTKD, and the association of common UMOD variants with complex disorders.
Collapse
Affiliation(s)
- Olivier Devuyst
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Eric Olinger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Luca Rampoldi
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
34
|
Early involvement of cellular stress and inflammatory signals in the pathogenesis of tubulointerstitial kidney disease due to UMOD mutations. Sci Rep 2017; 7:7383. [PMID: 28785050 PMCID: PMC5547146 DOI: 10.1038/s41598-017-07804-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/03/2017] [Indexed: 01/22/2023] Open
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD) is an inherited disorder that causes progressive kidney damage and renal failure. Mutations in the UMOD gene, encoding uromodulin, lead to ADTKD-UMOD related. Uromodulin is a GPI-anchored protein exclusively produced by epithelial cells of the thick ascending limb of Henle's loop. It is released in the tubular lumen after proteolytic cleavage and represents the most abundant protein in human urine in physiological condition. We previously generated and characterized a transgenic mouse model expressing mutant uromodulin (Tg UmodC147W) that recapitulates the main features of ATDKD-UMOD. While several studies clearly demonstrated that mutated uromodulin accumulates in endoplasmic reticulum, the mechanisms that lead to renal damage are not fully understood. In our work, we used kidney transcriptional profiling to identify early events of pathogenesis in the kidneys of Tg UmodC147W mice. Our results demonstrate up-regulation of inflammation and fibrosis and down-regulation of lipid metabolism in young Tg UmodC147W mice, before any functional or histological evidence of kidney damage. We also show that pro-inflammatory signals precede fibrosis onset and are already present in the first week after birth. Early induction of inflammation is likely relevant for ADTKD-UMOD pathogenesis and related pathways can be envisaged as possible novel targets for therapeutic intervention.
Collapse
|
35
|
Blutke A, Renner S, Flenkenthaler F, Backman M, Haesner S, Kemter E, Ländström E, Braun-Reichhart C, Albl B, Streckel E, Rathkolb B, Prehn C, Palladini A, Grzybek M, Krebs S, Bauersachs S, Bähr A, Brühschwein A, Deeg CA, De Monte E, Dmochewitz M, Eberle C, Emrich D, Fux R, Groth F, Gumbert S, Heitmann A, Hinrichs A, Keßler B, Kurome M, Leipig-Rudolph M, Matiasek K, Öztürk H, Otzdorff C, Reichenbach M, Reichenbach HD, Rieger A, Rieseberg B, Rosati M, Saucedo MN, Schleicher A, Schneider MR, Simmet K, Steinmetz J, Übel N, Zehetmaier P, Jung A, Adamski J, Coskun Ü, Hrabě de Angelis M, Simmet C, Ritzmann M, Meyer-Lindenberg A, Blum H, Arnold GJ, Fröhlich T, Wanke R, Wolf E. The Munich MIDY Pig Biobank - A unique resource for studying organ crosstalk in diabetes. Mol Metab 2017; 6:931-940. [PMID: 28752056 PMCID: PMC5518720 DOI: 10.1016/j.molmet.2017.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The prevalence of diabetes mellitus and associated complications is steadily increasing. As a resource for studying systemic consequences of chronic insulin insufficiency and hyperglycemia, we established a comprehensive biobank of long-term diabetic INSC94Y transgenic pigs, a model of mutant INS gene-induced diabetes of youth (MIDY), and of wild-type (WT) littermates. METHODS Female MIDY pigs (n = 4) were maintained with suboptimal insulin treatment for 2 years, together with female WT littermates (n = 5). Plasma insulin, C-peptide and glucagon levels were regularly determined using specific immunoassays. In addition, clinical chemical, targeted metabolomics, and lipidomics analyses were performed. At age 2 years, all pigs were euthanized, necropsied, and a broad spectrum of tissues was taken by systematic uniform random sampling procedures. Total beta cell volume was determined by stereological methods. A pilot proteome analysis of pancreas, liver, and kidney cortex was performed by label free proteomics. RESULTS MIDY pigs had elevated fasting plasma glucose and fructosamine concentrations, C-peptide levels that decreased with age and were undetectable at 2 years, and an 82% reduced total beta cell volume compared to WT. Plasma glucagon and beta hydroxybutyrate levels of MIDY pigs were chronically elevated, reflecting hallmarks of poorly controlled diabetes in humans. In total, ∼1900 samples of different body fluids (blood, serum, plasma, urine, cerebrospinal fluid, and synovial fluid) as well as ∼17,000 samples from ∼50 different tissues and organs were preserved to facilitate a plethora of morphological and molecular analyses. Principal component analyses of plasma targeted metabolomics and lipidomics data and of proteome profiles from pancreas, liver, and kidney cortex clearly separated MIDY and WT samples. CONCLUSIONS The broad spectrum of well-defined biosamples in the Munich MIDY Pig Biobank that will be available to the scientific community provides a unique resource for systematic studies of organ crosstalk in diabetes in a multi-organ, multi-omics dimension.
Collapse
Key Words
- Biobank
- CE, cholesterol ester
- CPT1, carnitine O-palmitoyltransferase 1
- ER, endoplasmic reticulum
- FFA, free fatty acids
- Hyperglycemia
- Insulin insufficiency
- MIDY
- MIDY, mutant INS gene-induced diabetes of youth
- Metabolomics
- PC, phosphatidylcholine
- PCA, principal component analysis
- Pig model
- Proteomics
- Random systematic sampling
- SM, sphingomyelin
- Stereology
- TAG, triacylglycerol
- Transcriptomics
- WT, wild-type
Collapse
Affiliation(s)
- Andreas Blutke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Mattias Backman
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Serena Haesner
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Erik Ländström
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Christina Braun-Reichhart
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Barbara Albl
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Elisabeth Streckel
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Birgit Rathkolb
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; German Mouse Clinic (GMC), Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Cornelia Prehn
- Genome Analysis Center (GAC), Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Alessandra Palladini
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Michal Grzybek
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Stefan Bauersachs
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Universitätsstr. 2, CH-8092 Zurich, Switzerland
| | - Andrea Bähr
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Andreas Brühschwein
- Clinic for Small Animal Surgery and Reproduction, Center for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Cornelia A Deeg
- Experimental Ophthalmology, Philipps University of Marburg, Baldingerstr., D-35033 Marburg, Germany; Chair for Animal Physiology, Department of Veterinary Sciences, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Erica De Monte
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Michaela Dmochewitz
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Caroline Eberle
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Daniela Emrich
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Robert Fux
- Institute for Infectious Diseases and Zoonosis, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Frauke Groth
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Sophie Gumbert
- Clinic for Swine at the Centre of Clinical Veterinary Medicine, LMU Munich, Sonnenstr. 16, D-85764 Oberschleißheim, Germany
| | - Antonia Heitmann
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Arne Hinrichs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Barbara Keßler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Miriam Leipig-Rudolph
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Kaspar Matiasek
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany; Munich Center of NeuroSciences - Brain & Mind, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Hazal Öztürk
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Christiane Otzdorff
- Clinic for Small Animal Surgery and Reproduction, Center for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Myriam Reichenbach
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Horst Dieter Reichenbach
- Bavarian State Research Center for Agriculture - Institute for Animal Breeding, Prof.-Dürrwaechter-Platz 1, D-85586 Grub-Poing, Germany
| | - Alexandra Rieger
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Birte Rieseberg
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Marco Rosati
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Manuel Nicolas Saucedo
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Anna Schleicher
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Marlon R Schneider
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Kilian Simmet
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Judith Steinmetz
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Nicole Übel
- Clinic for Swine at the Centre of Clinical Veterinary Medicine, LMU Munich, Sonnenstr. 16, D-85764 Oberschleißheim, Germany
| | - Patrizia Zehetmaier
- Chair for Animal Physiology, Department of Veterinary Sciences, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Andreas Jung
- Institute of Pathology, LMU Munich, Thalkirchner Str. 36, D-80337 Munich, Germany
| | - Jerzy Adamski
- Genome Analysis Center (GAC), Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Ünal Coskun
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Martin Hrabě de Angelis
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; German Mouse Clinic (GMC), Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | | | - Mathias Ritzmann
- Clinic for Swine at the Centre of Clinical Veterinary Medicine, LMU Munich, Sonnenstr. 16, D-85764 Oberschleißheim, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Center for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany.
| |
Collapse
|
36
|
Schaeffer C, Merella S, Pasqualetto E, Lazarevic D, Rampoldi L. Mutant uromodulin expression leads to altered homeostasis of the endoplasmic reticulum and activates the unfolded protein response. PLoS One 2017; 12:e0175970. [PMID: 28437467 PMCID: PMC5402980 DOI: 10.1371/journal.pone.0175970] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022] Open
Abstract
Uromodulin is the most abundant urinary protein in physiological conditions. It is exclusively produced by renal epithelial cells lining the thick ascending limb of Henle's loop (TAL) and it plays key roles in kidney function and disease. Mutations in UMOD, the gene encoding uromodulin, cause autosomal dominant tubulointerstitial kidney disease uromodulin-related (ADTKD-UMOD), characterised by hyperuricemia, gout and progressive loss of renal function. While the primary effect of UMOD mutations, retention in the endoplasmic reticulum (ER), is well established, its downstream effects are still largely unknown. To gain insight into ADTKD-UMOD pathogenesis, we performed transcriptional profiling and biochemical characterisation of cellular models (immortalised mouse TAL cells) of robust expression of wild type or mutant GFP-tagged uromodulin. In this model mutant uromodulin accumulation in the ER does not impact on cell viability and proliferation. Transcriptional profiling identified 109 genes that are differentially expressed in mutant cells relative to wild type ones. Up-regulated genes include several ER resident chaperones and protein disulphide isomerases. Consistently, pathway enrichment analysis indicates that mutant uromodulin expression affects ER function and protein homeostasis. Interestingly, mutant uromodulin expression induces the Unfolded Protein Response (UPR), and specifically the IRE1 branch, as shown by an increased splicing of XBP1. Consistent with UPR induction, we show increased interaction of mutant uromodulin with ER chaperones Bip, calnexin and PDI. Using metabolic labelling, we also demonstrate that while autophagy plays no role, mutant protein is partially degraded by the proteasome through ER-associated degradation. Our work demonstrates that ER stress could play a central role in ADTKD-UMOD pathogenesis. This sets the bases for future work to develop novel therapeutic strategies through modulation of ER homeostasis and associated protein degradation pathways.
Collapse
Affiliation(s)
- Céline Schaeffer
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Merella
- Center of Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Pasqualetto
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center of Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|