1
|
Alva O, Leroy A, Heiske M, Pereda-Loth V, Tisseyre L, Boland A, Deleuze JF, Rocha J, Schlebusch C, Fortes-Lima C, Stoneking M, Radimilahy C, Rakotoarisoa JA, Letellier T, Pierron D. The loss of biodiversity in Madagascar is contemporaneous with major demographic events. Curr Biol 2022; 32:4997-5007.e5. [PMID: 36334586 DOI: 10.1016/j.cub.2022.09.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/13/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Only 400 km off the coast of East Africa, the island of Madagascar is one of the last large land masses to have been colonized by humans. While many questions surround the human occupation of Madagascar, recent studies raise the question of human impact on endemic biodiversity and landscape transformation. Previous genetic and linguistic analyses have shown that the Malagasy population has emerged from an admixture that happened during the last millennium, between Bantu-speaking African populations and Austronesian-speaking Asian populations. By studying the sharing of chromosome segments between individuals (IBD determination), local ancestry information, and simulated genetic data, we inferred that the Malagasy ancestral Asian population was isolated for more than 1,000 years with an effective size of just a few hundred individuals. This isolation ended around 1,000 years before present (BP) by admixture with a small African population. Around the admixture time, there was a rapid demographic expansion due to intrinsic population growth of the newly admixed population, which coincides with extensive changes in Madagascar's landscape and the extinction of all endemic large-bodied vertebrates. Therefore, our approach can provide new insights into past human demography and associated impacts on ecosystems.
Collapse
Affiliation(s)
- Omar Alva
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Anaïs Leroy
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Margit Heiske
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Veronica Pereda-Loth
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Lenka Tisseyre
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Anne Boland
- Commissariat à l'Energie Atomique, Institut Génomique, Centre National de Génotypage, 91000 Evry, France
| | - Jean-François Deleuze
- Commissariat à l'Energie Atomique, Institut Génomique, Centre National de Génotypage, 91000 Evry, France
| | - Jorge Rocha
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Carina Schlebusch
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Cesar Fortes-Lima
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18C, 75236 Uppsala, Sweden
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany; Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Chantal Radimilahy
- Musée d'Art et d'Archéologie, University of Antananarivo, Antananarivo, Madagascar
| | | | - Thierry Letellier
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France
| | - Denis Pierron
- Équipe de Médecine Evolutive, EVOLSAN faculté de chirurgie dentaire, Université Toulouse III, Toulouse, France.
| |
Collapse
|
2
|
Iasi LNM, Ringbauer H, Peter BM. An Extended Admixture Pulse Model Reveals the Limitations to Human-Neandertal Introgression Dating. Mol Biol Evol 2021; 38:5156-5174. [PMID: 34254144 PMCID: PMC8557420 DOI: 10.1093/molbev/msab210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neandertal DNA makes up 2-3% of the genomes of all non-African individuals. The patterns of Neandertal ancestry in modern humans have been used to estimate that this is the result of gene flow that occurred during the expansion of modern humans into Eurasia, but the precise dates of this event remain largely unknown. Here, we introduce an extended admixture pulse model that allows joint estimation of the timing and duration of gene flow. This model leads to simple expressions for both the admixture segment distribution and the decay curve of ancestry linkage disequilibrium, and we show that these two statistics are closely related. In simulations, we find that estimates of the mean time of admixture are largely robust to details in gene flow models, but that the duration of the gene flow can only be recovered if gene flow is very recent and the exact recombination map is known. These results imply that gene flow from Neandertals into modern humans could have happened over hundreds of generations. Ancient genomes from the time around the admixture event are thus likely required to resolve the question when, where, and for how long humans and Neandertals interacted.
Collapse
Affiliation(s)
- Leonardo N M Iasi
- Department of Evloutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin M Peter
- Department of Evloutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
3
|
Zhang R, Liu C, Yuan K, Ni X, Pan Y, Xu S. AdmixSim 2: a forward-time simulator for modeling complex population admixture. BMC Bioinformatics 2021; 22:506. [PMID: 34663213 PMCID: PMC8522168 DOI: 10.1186/s12859-021-04415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Computer simulations have been widely applied in population genetics and evolutionary studies. A great deal of effort has been made over the past two decades in developing simulation tools. However, there are not many simulation tools suitable for studying population admixture. RESULTS We here developed a forward-time simulator, AdmixSim 2, an individual-based tool that can flexibly and efficiently simulate population genomics data under complex evolutionary scenarios. Unlike its previous version, AdmixSim 2 is based on the extended Wright-Fisher model, and it implements many common evolutionary parameters to involve gene flow, natural selection, recombination, and mutation, which allow users to freely design and simulate any complex scenario involving population admixture. AdmixSim 2 can be used to simulate data of dioecious or monoecious populations, autosomes, or sex chromosomes. To our best knowledge, there are no similar tools available for the purpose of simulation of complex population admixture. Using empirical or previously simulated genomic data as input, AdmixSim 2 provides phased haplotype data for the convenience of further admixture-related analyses such as local ancestry inference, association studies, and other applications. We here evaluate the performance of AdmixSim 2 based on simulated data and validated functions via comparative analysis of simulated data and empirical data of African American, Mexican, and Uyghur populations. CONCLUSIONS AdmixSim 2 is a flexible simulation tool expected to facilitate the study of complex population admixture in various situations.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chang Liu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Kai Yuan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xumin Ni
- Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Yuwen Pan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuhua Xu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. .,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Human Phenome Institute, Fudan University, Shanghai, 201203, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Janzen T, Diaz F. Individual‐based simulations of genome evolution with ancestry: The
GenomeAdmixR
R package. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thijs Janzen
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
- Carl von Ossietzky University Oldenburg Germany
| | - Fernando Diaz
- Department of Entomology University of Arizona Tucson AZ USA
| |
Collapse
|
5
|
Genetic Ancestry Inference and Its Application for the Genetic Mapping of Human Diseases. Int J Mol Sci 2021; 22:ijms22136962. [PMID: 34203440 PMCID: PMC8269095 DOI: 10.3390/ijms22136962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Admixed populations arise when two or more ancestral populations interbreed. As a result of this admixture, the genome of admixed populations is defined by tracts of variable size inherited from these parental groups and has particular genetic features that provide valuable information about their demographic history. Diverse methods can be used to derive the ancestry apportionment of admixed individuals, and such inferences can be leveraged for the discovery of genetic loci associated with diseases and traits, therefore having important biomedical implications. In this review article, we summarize the most common methods of global and local genetic ancestry estimation and discuss the use of admixture mapping studies in human diseases.
Collapse
|
6
|
Leitwein M, Duranton M, Rougemont Q, Gagnaire PA, Bernatchez L. Using Haplotype Information for Conservation Genomics. Trends Ecol Evol 2020; 35:245-258. [DOI: 10.1016/j.tree.2019.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
|
7
|
Leitwein M, Gagnaire PA, Desmarais E, Berrebi P, Guinand B. Genomic consequences of a recent three-way admixture in supplemented wild brown trout populations revealed by local ancestry tracts. Mol Ecol 2018; 27:3466-3483. [PMID: 30054960 DOI: 10.1111/mec.14816] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/11/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
Understanding the evolutionary consequences of human-mediated introductions of domesticated strains into the wild and their subsequent admixture with natural populations is of major concern in conservation biology. However, the genomic impacts of stocking from distinct sources (locally derived vs. divergent) on the genetic integrity of wild populations remain poorly understood. We designed an approach based on estimating local ancestry along individual chromosomes to provide a detailed picture of genomic admixture in supplemented populations. We used this approach to document admixture consequences in the brown trout Salmo trutta, for which decades of stocking practices have profoundly impacted the genetic make-up of wild populations. In southern France, small local Mediterranean populations have been subject to successive introductions of domestic strains derived from the Atlantic and Mediterranean lineages. To address the impact of stocking, we evaluate the extent of admixture from both domestic strains within populations, using 75,684 mapped SNPs obtained from double-digested restriction site-associated DNA sequencing. Then, the chromosomal ancestry profiles of admixed individuals reveal a wider diversity of hybrid and introgressed genotypes than estimated using classical methods for inferring ancestry and hybrid pedigrees. In addition, the length distribution of introgressed tracts retained different timings of introgression between the two domestic strains. We finally reveal opposite consequences of admixture on the level of polymorphism of the recipient populations between domestic strains. Our study illustrates the potential of using the information contained in the genomic mosaic of ancestry tracts in combination with classical methods based on allele frequencies for analysing multiple-way admixture with population genomic data.
Collapse
Affiliation(s)
- Maeva Leitwein
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | | | - Erick Desmarais
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - Patrick Berrebi
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - Bruno Guinand
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France.,Département Biologie-Ecologie, Université de Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
8
|
|