1
|
Garg D, Mayekar HV, Paikra S, Mishra M, Rajpurohit S. Wing spot in a tropical and a temperate drosophilid: C = C enrichment and conserved thermal response. BMC Ecol Evol 2025; 25:13. [PMID: 39849363 PMCID: PMC11755964 DOI: 10.1186/s12862-024-02333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/27/2024] [Indexed: 01/25/2025] Open
Abstract
Wings are primarily used in flight but also play a role in mating behaviour in many insects. Drosophila species exhibit a variety of pigmentation patterns on their wings. In some sexually dimorphic Drosophilids, a pigmented spot pattern is found at the top-right edge of the male wings. Our understanding of wing spot thermal plasticity in sexually dimorphic species is limited with wing spots being primarily associated with sexual selection. Here, we investigated the wing pigmentation response of two species with wing spots: D. biarmipes and D. suzukii species to thermal variation. We exposed freshly hatched larvae of both the species to three different growth temperatures and checked for wing pigmentation in adult males. Our results indicate wing pigmentation is a plastic trait in the species studied and that wing pigmentation is negatively correlated with higher temperature. In both species, wings were darker at lower temperature compared to higher temperature. Further, D. suzukii exhibits darker wing pigmentation compared to D. biarmipes. Variation in wing pigmentation in both D. suzukii and D. biarmipes could reflect habitat level differences; indicating a strong G*E interaction. Raman spectral analysis indicated a shift in chemical profiles of pigmented vs. non-pigmented areas of the wing. The wing spot was found enriched with carbon-carbon double-bond compared to the non-pigmented wing area. We report that C = C formation in spotted area is thermally controlled and conserved in two members of the suzukii subgroup i.e. D. biarmipes and D. suzukii. Our study indicated a conserved mechanism of the spot formation in two Drosophila species coming from contrasting distribution ranges.
Collapse
Affiliation(s)
- Divita Garg
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Road, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Harshad Vijay Mayekar
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Road, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Sanjeev Paikra
- Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Monalisa Mishra
- Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Subhash Rajpurohit
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Road, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
2
|
Narbey R, Mouchel-Vielh E, Gibert JM. The H3K79me3 methyl-transferase Grappa is involved in the establishment and thermal plasticity of abdominal pigmentation in Drosophila melanogaster females. Sci Rep 2024; 14:9547. [PMID: 38664546 PMCID: PMC11045721 DOI: 10.1038/s41598-024-60184-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Temperature sensitivity of abdominal pigmentation in Drosophila melanogaster females allows to investigate the mechanisms underlying phenotypic plasticity. Thermal plasticity of pigmentation is due to modulation of tan and yellow expression, encoding pigmentation enzymes. Furthermore, modulation of tan expression by temperature is correlated to the variation of the active histone mark H3K4me3 on its promoter. Here, we test the role of the DotCom complex, which methylates H3K79, another active mark, in establishment and plasticity of pigmentation. We show that several components of the DotCom complex are involved in the establishment of abdominal pigmentation. In particular, Grappa, the catalytic unit of this complex, plays opposite roles on pigmentation at distinct developmental stages. Indeed, its down-regulation from larval L2 to L3 stages increases female adult pigmentation, whereas its down-regulation during the second half of the pupal stage decreases adult pigmentation. These opposite effects are correlated to the regulation of distinct pigmentation genes by Grappa: yellow repression for the early role and tan activation for the late one. Lastly, reaction norms measuring pigmentation along temperature in mutants for subunits of the DotCom complex reveal that this complex is not only involved in the establishment of female abdominal pigmentation but also in its plasticity.
Collapse
Affiliation(s)
- Raphaël Narbey
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France
| | - Emmanuèle Mouchel-Vielh
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France.
| | - Jean-Michel Gibert
- Laboratoire de Biologie du Développement, UMR 7622, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 9 Quai St-Bernard, 75005, Paris, France.
| |
Collapse
|
3
|
Lafuente E, Duneau D, Beldade P. Genetic basis of variation in thermal developmental plasticity for Drosophila melanogaster body pigmentation. Mol Ecol 2024; 33:e17294. [PMID: 38366327 DOI: 10.1111/mec.17294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Seasonal differences in insect pigmentation are attributed to the influence of ambient temperature on pigmentation development. This thermal plasticity is adaptive and heritable, and thereby capable of evolving. However, the specific genes contributing to the variation in plasticity that can drive its evolution remain largely unknown. To address this, we analysed pigmentation and pigmentation plasticity in Drosophila melanogaster. We measured two components of pigmentation in the thorax and abdomen: overall darkness and the proportion of length covered by darker pattern elements (a trident in the thorax and bands in the abdomen) in females from two developmental temperatures (17 or 28°C) and 191 genotypes. Using a GWAS approach to identify the genetic basis of variation in pigmentation and its response to temperature, we identified numerous dispersed QTLs, including some mapping to melanogenesis genes (yellow, ebony, and tan). Remarkably, we observed limited overlap between QTLs for variation within specific temperatures and those influencing thermal plasticity, as well as minimal overlap between plasticity QTLs across pigmentation components and across body parts. For most traits, consistent with selection favouring the retention of plasticity, we found that lower plasticity alleles were often at lower frequencies. The functional analysis of selected candidate QTLs and pigmentation genes largely confirmed their contributions to variation in pigmentation and/or pigmentation plasticity. Overall, our study reveals the existence and underlying basis of extensive and trait-specific genetic variation for pigmentation and pigmentation plasticity, offering a rich reservoir of raw material for natural selection to shape the evolution of these traits independently.
Collapse
Affiliation(s)
- E Lafuente
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - D Duneau
- UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - P Beldade
- cE3c (Center for Ecology, Evolution and Environmental Changes) & CHANGE (Global Change and Sustainability Institute), FCUL, Lisboa, Portugal
| |
Collapse
|
4
|
Cheng Y, Wang P, Zeng Y, An W, Wang T, Xiao Y. Characterization of five pigmentation genes as transgenic markers in Spodoptera frugiperda (Lepidoptera: Noctuidae). Int J Biol Macromol 2023:124981. [PMID: 37236572 DOI: 10.1016/j.ijbiomac.2023.124981] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The fall armyworm, Spodoptera frugiperda (J. E. Smith), has become one of the most damaging pests worldwide since its invasion of Africa, Asia and Oceania from 2016, threatening plants in 76 families including important crops. Genetics-based methods have proved to be an efficient way to control pests, especially invasive species, but many difficulties must be overcome to develop a transgenic insect strain, especially for a non-model species. Here we thus sought to identify a visible marker that would facilitate the distinction between genetically modified (GM) and non-transgenic insects, thereby simplifying mutation identification and facilitating the broader application of genome editing tools in non-model insects. Five genes (sfyellow-y, sfebony, sflaccase2, sfscarlet, and sfok) that are orthologs of well-studied genes in pigment metabolism were knocked out using the CRISPR/Cas9 system to identify candidate gene markers. Two genes, Sfebony and Sfscarlet, were identified responsible for body and compound eye coloration, respectively, in S. frugiperda, and could be potential visual markers for genetics-based pest management strategies.
Collapse
Affiliation(s)
- Ying Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies(Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Peng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies(Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuxiao Zeng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies(Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenwen An
- School of Life Science and Technology, Jining Normal University, Jining, China
| | - Tao Wang
- School of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies(Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
5
|
Raja KKB, Shittu MO, Nouhan PME, Steenwinkel TE, Bachman EA, Kokate PP, McQueeney A, Mundell EA, Armentrout AA, Nugent A, Werner T. The regulation of a pigmentation gene in the formation of complex color patterns in Drosophila abdomens. PLoS One 2022; 17:e0279061. [PMID: 36534652 PMCID: PMC9762589 DOI: 10.1371/journal.pone.0279061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Changes in the control of developmental gene expression patterns have been implicated in the evolution of animal morphology. However, the genetic mechanisms underlying complex morphological traits remain largely unknown. Here we investigated the molecular mechanisms that induce the pigmentation gene yellow in a complex color pattern on the abdomen of Drosophila guttifera. We show that at least five developmental genes may collectively activate one cis-regulatory module of yellow in distinct spot rows and a dark shade to assemble the complete abdominal pigment pattern of Drosophila guttifera. One of these genes, wingless, may play a conserved role in the early phase of spot pattern development in several species of the quinaria group. Our findings shed light on the evolution of complex animal color patterns through modular changes of gene expression patterns.
Collapse
Affiliation(s)
- Komal K. B. Raja
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mujeeb O. Shittu
- Department of Biotechnical and Clinical Laboratory Science, Jacobs School of Medicine and Biomedical Science, University at Buffalo, The State University of New York (SUNY), New York, United States of America
| | - Peter M. E. Nouhan
- McCourt School of Public Policy, Georgetown University, Washington, D.C., United States of America
| | - Tessa E. Steenwinkel
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Evan A. Bachman
- Michigan State University, College of Human Medicine, East Lansing, Michigan, United States of America
| | - Prajakta P. Kokate
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Alexander McQueeney
- School of Medicine, Eberhard Karls University of Tübingen, Geschwister-Scholl-Platz, Tübingen, Germany
| | - Elizabeth A. Mundell
- School of Technology, Michigan Technological University, Houghton, Michigan, United States of America
| | - Alexandri A. Armentrout
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Amber Nugent
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, United States of America
- * E-mail:
| |
Collapse
|
6
|
Mateus ARA, Beldade P. Developmental Plasticity in Butterfly Eyespot Mutants: Variation in Thermal Reaction Norms Across Genotypes and Pigmentation Traits. INSECTS 2022; 13:1000. [PMID: 36354827 PMCID: PMC9699518 DOI: 10.3390/insects13111000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Developmental plasticity refers to the property by which a genotype corresponds to distinct phenotypes depending on the environmental conditions experienced during development. This dependence of phenotype expression on environment is graphically represented by reaction norms, which can differ between traits and between genotypes. Even though genetic variation for reaction norms provides the basis for the evolution of plasticity, we know little about the genes that contribute to that variation. This includes understanding to what extent those are the same genes that contribute to inter-individual variation in a fixed environment. Here, we quantified thermal plasticity in butterfly lines that differ in pigmentation phenotype to test the hypothesis that alleles affecting pigmentation also affect plasticity therein. We characterized thermal reaction norms for eyespot color rings of distinct Bicyclus anynana genetic backgrounds, corresponding to allelic variants affecting eyespot size and color composition. Our results reveal genetic variation for the slope and curvature of reaction norms, with differences between eyespots and between eyespot color rings, as well as between sexes. Our report of prevalent temperature-dependent and compartment-specific allelic effects underscores the complexity of genotype-by-environment interactions and their consequence for the evolution of developmental plasticity.
Collapse
Affiliation(s)
| | - Patrícia Beldade
- Instituto Gulbenkian de Ciência (IGC), 2780-156 Oeiras, Portugal
- CNRS—UMR 5174, Evolution et Diversité Biologique (EDB), Université Paul Sabatier (UPS), 31077 Toulouse, France
- Center for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculty of Sciences, University of Lisbon (FCUL), 1749-016 Lisbon, Portugal
| |
Collapse
|
7
|
Dion WA, Steenwinkel TE, Werner T. From Aedes to Zeugodacus: a review of dipteran body coloration studies regarding evolutionary developmental biology, pest control, and species discovery. Curr Opin Genet Dev 2021; 69:35-41. [PMID: 33578125 PMCID: PMC8349939 DOI: 10.1016/j.gde.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Over the past two decades, evo-devo (evolution of development) studies have elucidated genetic mechanisms underlying novel dipteran body color patterns. Here we review the most recent developments, which show some departure from the model organism Drosophila melanogaster, leading the field into the investigation of more complex color patterns. We also discuss how the robust application of transgenic techniques has facilitated the study of many non-model pest species. Furthermore, we see that subtle pigmentation differences guide the discovery and description of new dipterans. Therefore, we argue that the existence of new field guides and the prevalence of pigmentation studies in non-model flies will enable scientists to adopt uninvestigated species into the lab, allowing them to study novel morphologies.
Collapse
Affiliation(s)
- William A Dion
- Integrative Systems Biology Graduate Program, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15213, United States; Aging Institute of UPMC, University of Pittsburgh School of Medicine, Bridgeside Point 1, 100 Technology Drive, Pittsburgh, PA, 15219, United States
| | - Tessa E Steenwinkel
- Department of Biological Sciences, Michigan Technological University, 740 Dow Building, Houghton, MI, 49931, United States
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, 740 Dow Building, Houghton, MI, 49931, United States.
| |
Collapse
|
8
|
Lafuente E, Alves F, King JG, Peralta CM, Beldade P. Many ways to make darker flies: Intra- and interspecific variation in Drosophila body pigmentation components. Ecol Evol 2021; 11:8136-8155. [PMID: 34188876 PMCID: PMC8216949 DOI: 10.1002/ece3.7646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Body pigmentation is an evolutionarily diversified and ecologically relevant trait with substantial variation within and between species, and important roles in animal survival and reproduction. Insect pigmentation, in particular, provides some of the most compelling examples of adaptive evolution, including its ecological significance and genetic bases. Pigmentation includes multiple aspects of color and color pattern that may vary more or less independently, and can be under different selective pressures. We decompose Drosophila thorax and abdominal pigmentation, a valuable eco-evo-devo model, into distinct measurable traits related to color and color pattern. We investigate intra- and interspecific variation for those traits and assess its different sources. For each body part, we measured overall darkness, as well as four other pigmentation properties distinguishing between background color and color of the darker pattern elements that decorate each body part. By focusing on two standard D. melanogaster laboratory populations, we show that pigmentation components vary and covary in distinct manners depending on sex, genetic background, and temperature during development. Studying three natural populations of D. melanogaster along a latitudinal cline and five other Drosophila species, we then show that evolution of lighter or darker bodies can be achieved by changing distinct component traits. Our results paint a much more complex picture of body pigmentation variation than previous studies could uncover, including patterns of sexual dimorphism, thermal plasticity, and interspecific diversity. These findings underscore the value of detailed quantitative phenotyping and analysis of different sources of variation for a better understanding of phenotypic variation and diversification, and the ecological pressures and genetic mechanisms underlying them.
Collapse
Affiliation(s)
- Elvira Lafuente
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Swiss Federal Institute of Aquatic Science and TechnologyDepartment of Aquatic EcologyDübendorfSwitzerland
| | | | - Jessica G. King
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Carolina M. Peralta
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Patrícia Beldade
- Instituto Gulbenkian de CiênciaOeirasPortugal
- CE3C: Centre for Ecology, Evolution, and Environmental Changes, Faculty of SciencesUniversity of LisbonLisbonPortugal
| |
Collapse
|
9
|
Dion WA, Shittu MO, Steenwinkel TE, Raja KKB, Kokate PP, Werner T. The modular expression patterns of three pigmentation genes prefigure unique abdominal morphologies seen among three Drosophila species. Gene Expr Patterns 2020; 38:119132. [PMID: 32828854 PMCID: PMC7725850 DOI: 10.1016/j.gep.2020.119132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
To understand how novel animal body colorations emerged, one needs to ask how the development of color patterns differs among closely related species. Here we examine three species of fruit flies - Drosophila guttifera (D. guttifera), D. palustris, and D. subpalustris - displaying a varying number of abdominal spot rows. Through in situ hybridization experiments, we examine the mRNA expression patterns for the pigmentation genes Dopa decarboxylase (Ddc), tan (t), and yellow (y) during pupal development. Our results show that Ddc, t, and y are co-expressed in modular, identical patterns, each foreshadowing the adult abdominal spots in D. guttifera, D. palustris, and D. subpalustris. We suggest that differences in the expression patterns of these three genes partially underlie the morphological diversity of the quinaria species group.
Collapse
Affiliation(s)
- William A Dion
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Mujeeb O Shittu
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Tessa E Steenwinkel
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Komal K B Raja
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Prajakta P Kokate
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
10
|
Clusella-Trullas S, Nielsen M. The evolution of insect body coloration under changing climates. CURRENT OPINION IN INSECT SCIENCE 2020; 41:25-32. [PMID: 32629405 DOI: 10.1016/j.cois.2020.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Insects have been influential models in research on color variation, its evolutionary drivers and the mechanistic basis of such variation. More recently, several studies have indicated that insect color is responding to rapid climate change. However, it remains challenging to ascertain drivers of color variation among populations and species, and across space and time, as multiple biotic and abiotic factors can interact and mediate color change. Here, we describe some of the challenges and recent advances made in this field. First, we outline the main alternative hypotheses that exist for insect color variation in relation to climatic factors. Second, we review the existing evidence for contemporary adaptive evolution of insect color in response to climate change and then discuss factors that can promote or hinder the evolution of color in response to climate change. Finally, we propose future directions and highlight gaps in this research field. Pigments and structures producing insect color can vary concurrently or independently, and may evolve at different rates, with poorly understood effects on gene frequencies and fitness. Disentangling multiple competing hypotheses explaining insect coloration should be key to assign color variation as an evolutionary response to climate change.
Collapse
Affiliation(s)
- Susana Clusella-Trullas
- Centre for Invasion Biology, Dept. of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.
| | - Matthew Nielsen
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Abstract
Insects represent 85% of the animals. They have adapted to many environments and play a major role in ecosystems. Many insect species exhibit phenotypic plasticity. We here report on the mechanisms involved in phenotypic plasticity of different insects (aphids, migratory locust, map butterfly, honeybee) and also on the nutritional size plasticity in Drosophila and the plasticity of the wing eye-spots of the butterfly Bicyclus anynana. We also describe in more detail our work concerning the thermal plasticity of pigmentation in Drosophila. We have shown that the expression of the tan, yellow and Ddc genes, encoding enzymes of the melanin synthesis pathway, is modulated by temperature and that it is a consequence, at least in part, of the temperature-sensitive expression of the bab locus genes that repress them.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement (IBPS-LBD), 75005 Paris, France
| |
Collapse
|
12
|
Koshikawa S. Evolution of wing pigmentation in Drosophila: Diversity, physiological regulation, and cis-regulatory evolution. Dev Growth Differ 2020; 62:269-278. [PMID: 32171022 PMCID: PMC7384037 DOI: 10.1111/dgd.12661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
Fruit flies (Drosophila and its close relatives, or “drosophilids”) are a group that includes an important model organism, Drosophila melanogaster, and also very diverse species distributed worldwide. Many of these species have black or brown pigmentation patterns on their wings, and have been used as material for evo‐devo research. Pigmentation patterns are thought to have evolved rapidly compared with body plans or body shapes; hence they are advantageous model systems for studying evolutionary gains of traits and parallel evolution. Various groups of drosophilids, including genus Idiomyia (Hawaiian Drosophila), have a variety of pigmentations, ranging from simple black pigmentations around crossveins to a single antero‐distal spot and a more complex mottled pattern. Pigmentation patterns are sometimes obviously used for sexual displays; however, in some cases they may have other functions. The process of wing formation in Drosophila, the general mechanism of pigmentation formation, and the transport of substances necessary for pigmentation, including melanin precursors, through wing veins are summarized here. Lastly, the evolution of the expression of genes regulating pigmentation patterns, the role of cis‐regulatory regions, and the conditions required for the evolutionary emergence of pigmentation patterns are discussed. Future prospects for research on the evolution of wing pigmentation pattern formation in drosophilids are presented, particularly from the point of view of how they compare with other studies of the evolution of new traits.
Collapse
Affiliation(s)
- Shigeyuki Koshikawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan.,Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Lafuente E, Beldade P. Genomics of Developmental Plasticity in Animals. Front Genet 2019; 10:720. [PMID: 31481970 PMCID: PMC6709652 DOI: 10.3389/fgene.2019.00720] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Developmental plasticity refers to the property by which the same genotype produces distinct phenotypes depending on the environmental conditions under which development takes place. By allowing organisms to produce phenotypes adjusted to the conditions that adults will experience, developmental plasticity can provide the means to cope with environmental heterogeneity. Developmental plasticity can be adaptive and its evolution can be shaped by natural selection. It has also been suggested that developmental plasticity can facilitate adaptation and promote diversification. Here, we summarize current knowledge on the evolution of plasticity and on the impact of plasticity on adaptive evolution, and we identify recent advances and important open questions about the genomics of developmental plasticity in animals. We give special attention to studies using transcriptomics to identify genes whose expression changes across developmental environments and studies using genetic mapping to identify loci that contribute to variation in plasticity and can fuel its evolution.
Collapse
Affiliation(s)
| | - Patrícia Beldade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- CNRS-UMR5174, Université Paul Sabatier, Toulouse, France
- Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
14
|
van Bergen E, Beldade P. Seasonal plasticity in anti-predatory strategies: Matching of color and color preference for effective crypsis. Evol Lett 2019; 3:313-320. [PMID: 31171986 PMCID: PMC6546441 DOI: 10.1002/evl3.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Effective anti-predatory strategies typically require matching appearance and behavior in prey, and there are many compelling examples of behavioral repertoires that enhance the effectiveness of morphological defenses. When protective adult morphology is induced by developmental environmental conditions predictive of future predation risk, adult behavior should be adjusted accordingly to maximize predator avoidance. While behavior is typically strongly affected by the adult environment, developmental plasticity in adult behavior-mediated by the same pre-adult environmental cues that affect morphology-could ensure an effective match between anti-predatory morphology and behavior. The coordination of environmentally induced responses may be especially important in populations exposed to predictable environmental fluctuations (e.g., seasonality). Here, we studied early and late life environmental effects on a suite of traits expected to work together for effective crypsis. We focused on wing color and background color preference in Bicyclus anynana, a model of developmental plasticity that relies on crypsis as a seasonal strategy for predator avoidance. Using a full-factorial design, we disentangled effects of developmental and adult ambient temperature on both appearance and behavior. We showed that developmental conditions affect both adult color and color preference, with temperatures that simulate natural dry season conditions leading to browner butterflies with a perching preference for brown backgrounds. This effect was stronger in females, especially when butterflies were tested at lower ambient temperatures. In contrast to the expectation that motionlessness enhances crypsis, we found no support for our hypothesis that the browner dry-season butterflies would be less active. We argue that the integration of developmental plasticity for morphological and behavioral traits might improve the effectiveness of seasonal anti-predatory strategies.
Collapse
Affiliation(s)
- Erik van Bergen
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Current address: Research Centre for Ecological Change, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Patrícia Beldade
- Instituto Gulbenkian de CiênciaOeirasPortugal
- UMR5174 ‐ CNRS, Evolution et Diversité BiologiqueUniversité Paul SabatierToulouseFrance
| |
Collapse
|
15
|
De Castro S, Peronnet F, Gilles JF, Mouchel-Vielh E, Gibert JM. bric à brac (bab), a central player in the gene regulatory network that mediates thermal plasticity of pigmentation in Drosophila melanogaster. PLoS Genet 2018; 14:e1007573. [PMID: 30067846 PMCID: PMC6089454 DOI: 10.1371/journal.pgen.1007573] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 08/13/2018] [Accepted: 07/19/2018] [Indexed: 01/28/2023] Open
Abstract
Drosophila body pigmentation has emerged as a major Evo-Devo model. Using two Drosophila melanogaster lines, Dark and Pale, selected from a natural population, we analyse here the interaction between genetic variation and environmental factors to produce this complex trait. Indeed, pigmentation varies with genotype in natural populations and is sensitive to temperature during development. We demonstrate that the bric à brac (bab) genes, that are differentially expressed between the two lines and whose expression levels vary with temperature, participate in the pigmentation difference between the Dark and Pale lines. The two lines differ in a bab regulatory sequence, the dimorphic element (called here bDE). Both bDE alleles are temperature-sensitive, but the activity of the bDE allele from the Dark line is lower than that of the bDE allele from the Pale line. Our results suggest that this difference could partly be due to differential regulation by AbdB. bab has been previously reported to be a repressor of abdominal pigmentation. We show here that one of its targets in this process is the pigmentation gene tan (t), regulated via the tan abdominal enhancer (t_MSE). Furthermore, t expression is strongly modulated by temperature in the two lines. Thus, temperature sensitivity of t expression is at least partly a consequence of bab thermal transcriptional plasticity. We therefore propose that a gene regulatory network integrating both genetic variation and temperature sensitivity modulates female abdominal pigmentation. Interestingly, both bDE and t_MSE were previously shown to have been recurrently involved in abdominal pigmentation evolution in drosophilids. We propose that the environmental sensitivity of these enhancers has turned them into evolutionary hotspots. Complex traits such as size or disease susceptibility are typically modulated by both genetic variation and environmental conditions. Model organisms such as fruit flies (Drosophila) are particularly appropriate to analyse the interactions between genetic variation and environmental factors during the development of complex phenotypes. Natural populations carry high genetic variation and can be grown in controlled conditions in the laboratory. Here, we use Drosophila melanogaster female abdominal pigmentation, which is both genetically variable and modulated by the environment (temperature) to dissect this kind of interaction. We show that the pigmentation difference between two inbred fly lines is caused by genetic variation in an enhancer of the bab locus, which encodes two transcription factors controlling abdominal pigmentation. Indeed, this enhancer drives differential expression between the two lines. Interestingly, this enhancer is sensitive to temperature in both lines. We show that the effect of bab on pigmentation is mediated by the pigmentation gene tan (t) that is repressed by bab. Thus, the previously reported temperature-sensitive expression of t is a direct consequence of bab transcriptional plasticity.
Collapse
Affiliation(s)
- Sandra De Castro
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team “Epigenetic control of developmental homeostasis and plasticity”, Paris, France
| | - Frédérique Peronnet
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team “Epigenetic control of developmental homeostasis and plasticity”, Paris, France
| | - Jean-François Gilles
- Sorbonne Université, CNRS, Core facility, Institut de Biologie Paris Seine (IBPS), Paris, France
| | - Emmanuèle Mouchel-Vielh
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team “Epigenetic control of developmental homeostasis and plasticity”, Paris, France
- * E-mail: (EM-V); (J-MG)
| | - Jean-Michel Gibert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement -Institut de Biologie Paris Seine (LBD-IBPS), Team “Epigenetic control of developmental homeostasis and plasticity”, Paris, France
- * E-mail: (EM-V); (J-MG)
| |
Collapse
|
16
|
Endler L, Gibert J, Nolte V, Schlötterer C. Pleiotropic effects of regulatory variation in tan result in correlation of two pigmentation traits in Drosophila melanogaster. Mol Ecol 2018; 27:3207-3218. [PMID: 29957826 PMCID: PMC6120501 DOI: 10.1111/mec.14781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/24/2018] [Accepted: 06/25/2018] [Indexed: 01/10/2023]
Abstract
Traits with a common genetic basis frequently display correlated phenotypic responses to selection or environmental conditions. In Drosophila melanogaster, pigmentation of the abdomen and a trident-shaped region on the thorax are genetically correlated. Here, we used a pooled replicated genomewide association approach (Pool-GWAS) to identify the genetic basis of variation in thoracic trident pigmentation in two Drosophila melanogaster populations. We confirmed the previously reported large effect of ebony and the association of the cosmopolitan inversion In(3R)Payne. For the first time, we identified tan as another major locus contributing to variation in trident pigmentation. Intriguingly, the regulatory variants of tan that were most strongly associated with female abdominal pigmentation also showed a strong association with trident pigmentation. We validated this common genetic basis in transgenic assays and found qualitatively similar effects on trident and abdominal pigmentation. Further work is required to determine whether this genetic correlation is favoured by natural selection or reflects a neutral by-product of a shared regulatory architecture.
Collapse
Affiliation(s)
- Lukas Endler
- Institute of PopulationsgenetikVetmeduni WienWienAustria
| | - Jean‐Michel Gibert
- CNRSBiologie du Développement Paris Seine‐Institut de Biologie Paris Seine (LBD‐IBPS)Sorbonne UniversitéParisFrance
| | - Viola Nolte
- Institute of PopulationsgenetikVetmeduni WienWienAustria
| | | |
Collapse
|
17
|
Hinaux H, Bachem K, Battistara M, Rossi M, Xin Y, Jaenichen R, Le Poul Y, Arnoult L, Kobler JM, Grunwald Kadow IC, Rodermund L, Prud'homme B, Gompel N. Revisiting the developmental and cellular role of the pigmentation gene yellow in Drosophila using a tagged allele. Dev Biol 2018; 438:111-123. [PMID: 29634916 DOI: 10.1016/j.ydbio.2018.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
Abstract
Pigmentation is a diverse and ecologically relevant trait in insects. Pigment formation has been studied extensively at the genetic and biochemical levels. The temporality of pigment formation during animal development, however, is more elusive. Here, we examine this temporality, focusing on yellow, a gene involved in the formation of black melanin. We generated a protein-tagged yellow allele in the fruit fly Drosophila melanogaster, which allowed us to precisely describe Yellow expression pattern at the tissue and cellular levels throughout development. We found Yellow expressed in the pupal epidermis in patterns prefiguring black pigmentation. We also found Yellow expressed in a few central neurons from the second larval instar to adult stages, including a subset of neurons adjacent to the clock neurons marked by the gene Pdf. We then specifically examined the dynamics of Yellow expression domain and subcellular localization in relationship to pigment formation. In particular, we showed how a late step of re-internalization is regulated by the large low-density lipoprotein receptor-related protein Megalin. Finally we suggest a new function for Yellow in the establishment of sharp pigmentation pattern boundaries, whereby this protein may assume a structural role, anchoring pigment deposits or pigmentation enzymes in the cuticle.
Collapse
Affiliation(s)
- Hélène Hinaux
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Katharina Bachem
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Margherita Battistara
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Matteo Rossi
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Yaqun Xin
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Rita Jaenichen
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Yann Le Poul
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Laurent Arnoult
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Johanna M Kobler
- Technical University of Munich, School of Life Sciences, ZIEL - Institute for Food And Health, Liesel-Beckmann-Str. 4, 85354 Freising, Germany; Chemosensory Coding, Max-Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
| | - Ilona C Grunwald Kadow
- Technical University of Munich, School of Life Sciences, ZIEL - Institute for Food And Health, Liesel-Beckmann-Str. 4, 85354 Freising, Germany
| | - Lisa Rodermund
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Benjamin Prud'homme
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Nicolas Gompel
- Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
18
|
Pigmentation pattern and developmental constraints: flight muscle attachment sites delimit the thoracic trident of Drosophila melanogaster. Sci Rep 2018; 8:5328. [PMID: 29593305 PMCID: PMC5871777 DOI: 10.1038/s41598-018-23741-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 11/08/2022] Open
Abstract
In their seminal paper published in 1979, Gould and Lewontin argued that some traits arise as by-products of the development of other structures and not for direct utility in themselves. We show here that this applies to the trident, a pigmentation pattern observed on the thorax of Drosophila melanogaster. Using reporter constructs, we show that the expression domain of several genes encoding pigmentation enzymes follows the trident shape. This domain is complementary to the expression pattern of stripe (sr), which encodes an essential transcription factor specifying flight muscle attachment sites. We demonstrate that sr limits the expression of these pigmentation enzyme genes to the trident by repressing them in its own expression domain, i.e. at the flight muscle attachment sites. We give evidence that repression of not only yellow but also other pigmentation genes, notably tan, is involved in the trident shape. The flight muscle attachment sites and sr expression patterns are remarkably conserved in dipterans reflecting the essential role of sr. Our data suggest that the trident is a by-product of flight muscle attachment site patterning that arose when sr was co-opted for the regulation of pigmentation enzyme coding genes.
Collapse
|
19
|
Gibert JM. The flexible stem hypothesis: evidence from genetic data. Dev Genes Evol 2017; 227:297-307. [PMID: 28780641 DOI: 10.1007/s00427-017-0589-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/20/2017] [Indexed: 11/29/2022]
Abstract
Phenotypic plasticity, the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions, is widely observed in the wild. It is believed to facilitate evolution and, under the "flexible stem hypothesis", it is thought that an ancestral plastic species can be at the origin of sister lineages with divergent phenotypes fixed by genetic assimilation of alternative morphs. We review here the genetic mechanisms underlying such phenomenon. We show several examples in which the same gene shows transcriptional plasticity in response to environmental factors and divergence of expression within or between species. Thus, the same gene is involved both in the plasticity of a trait and in the evolution of that trait. In a few cases, it can be traced down to cis-regulatory variation in this gene and, in one case, in the very same regulatory sequence whose activity is modulated by the environment. These data are compatible with the "flexible stem hypothesis" and also suggest that the evolution of the plasticity of a trait and the evolution of the trait are not completely uncoupled as they often involve the same locus. Furthermore, the "flexible stem hypothesis" implies that it is possible to canalize initially plastic phenotypes. Several studies have shown that it was possible through modification of chromatin regulation or hormonal signalling/response. Further studies of phenotypic plasticity in an evolutionary framework are needed to see how much the findings described in this review can be generalized.
Collapse
Affiliation(s)
- Jean-Michel Gibert
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Biologie du Développement Paris Seine, Institut de Biologie Paris Seine (LBD-IBPS), 75005, Paris, France.
| |
Collapse
|