1
|
Wang H, Wang D, Shao B, Li J, Li Z, Chase MW, Li J, Feng Y, Wen Y, Qin S, Chen B, Wu Z, Jin X. Unequally Abundant Chromosomes and Unusual Collections of Transferred Sequences Characterize Mitochondrial Genomes of Gastrodia (Orchidaceae), One of the Largest Mycoheterotrophic Plant Genera. Mol Biol Evol 2025; 42:msaf082. [PMID: 40189939 PMCID: PMC12022611 DOI: 10.1093/molbev/msaf082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
The mystery of genomic alternations in heterotrophic plants is among the most intriguing in evolutionary biology. Compared to plastid genomes (plastomes) with parallel size reduction and gene loss, mitochondrial genome (mitogenome) variation in heterotrophic plants remains underexplored in many aspects. To further unravel the evolutionary outcomes of heterotrophy, we present a comparative mitogenomic study with 13 de novo assemblies of Gastrodia (Orchidaceae), one of the largest fully mycoheterotrophic plant genera, and its relatives. Analyzed Gastrodia mitogenomes range from 0.56 to 2.1 Mb, each consisting of numerous, unequally abundant chromosomes or contigs. Size variation might have evolved through chromosome rearrangements followed by stochastic loss of "dispensable" chromosomes, with deletion-biased mutations. The discovery of a hyper-abundant (∼15 times intragenomic average) chromosome in two assemblies represents the hitherto most extreme copy number variation in any mitogenomes, with similar architectures discovered in two metazoan lineages. Transferred sequence contents highlight asymmetric evolutionary consequences of heterotrophy: despite drastically reduced intracellular plastome transfers convergent across heterotrophic plants, their rarity of horizontally acquired sequences sharply contrasts parasitic plants, where massive transfers from their hosts prevail. Rates of sequence evolution are markedly elevated but not explained by copy number variation, extending prior findings of accelerated molecular evolution from parasitic to heterotrophic plants. Putative evolutionary scenarios for these mitogenomic convergence and divergence fit well with the common (e.g. plastome contraction) and specific (e.g. host identity) aspects of the two heterotrophic types. These idiosyncratic mycoheterotrophs expand known architectural variability of plant mitogenomes and provide mechanistic insights into their content and size variation.
Collapse
Affiliation(s)
- Hanchen Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Deyi Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Bingyi Shao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingrui Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhanghai Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Mark W Chase
- Department of Environment and Agriculture, Curtin University, Bentley, Australia
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Jianwu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla County, Yunnan, China
| | - Yanlei Feng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yingying Wen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shiyu Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Binghua Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaohua Jin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Zhu W, Zhang D, Xu W, Gan Y, Huang J, Liu Y, Tan Y, Song Y, Xin P. Comparative genomics and phylogenetic analysis of mitochondrial genomes of Neocinnamomum. BMC PLANT BIOLOGY 2025; 25:289. [PMID: 40045193 PMCID: PMC11883965 DOI: 10.1186/s12870-025-06238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Neocinnamomum plants are considered a promising feedstock for biodiesel in China, due to the richness in long-chain fatty acids (LCFAs) found in their seeds. However, the mitochondrial genome (mitogenome) of this genus has not yet been systematically described, and the exploration of species relationships within this genus using mitogenome sequences is also an uncharted territory. This has hindered our understanding of mitogenome diversity and the evolutionary relationships within Neocinnamomum. RESULTS In this study, a total of 24 individuals representing seven distinct taxa from the genus Neocinnamomum were subjected to Illumina sequencing, and the species N. delavayi was sequenced using Oxford Nanopore sequencing technology. We successfully assembled the mitogenome of N. delavayi, which is 778,066 bp in size and exhibits a single circular structure. The analysis identified 659 dispersed repeats, 211 simple sequence repeats (SSRs), and 30 tandem repeats within the mitogenome. Additionally, 37 homologous fragments, totaling 9929 bp, were found between the mitogenome and the plastid genome (plastome). The codons of 41 protein-coding genes (PCGs) had a preference for ending in A/T, and the codon usage bias of the majority of these genes was influenced by natural selection pressures. Comparative genomic analysis revealed low collinearity and significant gene rearrangements between species. Phylogenetic analysis resulted in the classification of Neocinnamomum into six distinct clades, contradicting previous findings which based on complete plastomes and nuclear ribosomal cistron (nrDNA). In the PCGs of 24 individuals, 86 mutation events were identified, which included three indels and 83 SNPs. Notably, the ccmC gene underwent positive selection in pairwise comparisons of three species pairs. Furthermore, 748 RNA editing sites were predicted within the PCGs of the N. delavayi mitogenome. CONCLUSIONS This study enriches our knowledge of the mitogenomes in the family Lauraceae, and provides valuable data and a foundation for genomic evolution research, genetic resource conservation, and molecular breeding in Neocinnamomum.
Collapse
Affiliation(s)
- Wen Zhu
- Engineering Technology Research Center of National Forestry and Grassland Administration on Southwest Landscape Architecture, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Di Zhang
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Wenbin Xu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Yi Gan
- College of Advanced Agricultural Science Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jiepeng Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Yanyu Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Yunhong Tan
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, 541004, China.
| | - Peiyao Xin
- Engineering Technology Research Center of National Forestry and Grassland Administration on Southwest Landscape Architecture, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| |
Collapse
|
3
|
Chen R, Rao R, Wang C, Zhu D, Yuan F, Yue L. Features and evolutionary adaptations of the mitochondrial genome of Garuga forrestii W. W. Sm. FRONTIERS IN PLANT SCIENCE 2025; 15:1509669. [PMID: 39902196 PMCID: PMC11788303 DOI: 10.3389/fpls.2024.1509669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/18/2024] [Indexed: 02/05/2025]
Abstract
Introduction Garuga forrestii W. W. Sm. is a tree species of the Burseraceae family, endemic to China, found in hot/warm-dry valleys. This species plays a crucial role in maintaining biodiversity in these ecosystems. Methods We performed de novo assembly of the Garuga forrestii mitochondrial genome using PMAT (v.1.5.4), resulting in a typical circular molecule of 606,853 bp. The genome consists of 31 tRNA genes, 3 rRNA genes, 35 protein-coding genes, and 1 pseudogene. The study also investigates RNA editing sites and evolutionary patterns. Results The mitochondrial genome exhibits a low proportion of repetitive sequences (3.30%), suggesting a highly conserved structure. A high copy number of the trnM-CAT gene (4 copies) is noted, which may contribute to genomic rearrangement and adaptive evolution. Among the 476 RNA editing sites, hydrophilic-hydrophobic and hydrophobic-hydrophobic editing events are most common, accounting for 77.10%. Negative selection predominates among most genes (Ka/Ks < 1), while a few genes (e.g., matR, nad3, rps1, rps12, and rps4) show signs of positive selection (Ka/Ks > 1), potentially conferring evolutionary advantages. Additionally, a significant A/T bias is observed at the third codon position. Phylogenomic analysis supports the APG IV classification, with no evidence of horizontal gene transfer. Discussion This mitochondrial genome offers valuable insights into the adaptive mechanisms and evolutionary processes of Garuga forrestii. It enhances our understanding of the species' biogeography in tropical Southeast Asia and Southwest China, providing key information on the evolutionary history of this genus.
Collapse
Affiliation(s)
- Rong Chen
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, China
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, China
- National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming, China
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, China
| | - Rui Rao
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, China
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, China
- National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming, China
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, China
| | - Chun Wang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, China
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, China
- National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming, China
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, China
| | - Dongbo Zhu
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, China
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, China
- National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming, China
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, China
| | - Fen Yuan
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, China
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, China
- National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming, China
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, China
| | - Liangliang Yue
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, China
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, China
- National Wetland Ecosystem Fixed Research Station of Yunnan Dianchi, Southwest Forestry University, Kunming, China
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming, China
| |
Collapse
|
4
|
Gomaa F, Rogers DR, Utter DR, Powers C, Huang IT, Beaudoin DJ, Zhang Y, Cavanaugh C, Edgcomb VP, Bernhard JM. Array of metabolic pathways in a kleptoplastidic foraminiferan protist supports chemoautotrophy in dark, euxinic seafloor sediments. THE ISME JOURNAL 2025; 19:wrae248. [PMID: 39673188 PMCID: PMC11736642 DOI: 10.1093/ismejo/wrae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/09/2024] [Accepted: 12/13/2024] [Indexed: 12/16/2024]
Abstract
Investigations of the metabolic capabilities of anaerobic protists advances our understanding of the evolution of eukaryotic life on Earth and for uncovering analogous extraterrestrial complex microbial life. Certain species of foraminiferan protists live in environments analogous to early Earth conditions when eukaryotes evolved, including sulfidic, anoxic and hypoxic sediment porewaters. Foraminifera are known to form symbioses as well as to harbor organelles from other eukaryotes (chloroplasts), possibly bolstering the host's independence from oxygen. The full extent of foraminiferal physiological capabilities is not fully understood. To date, evidence for foraminiferal anaerobiosis was gleaned from specimens first subjected to stresses associated with removal from in situ conditions. Here, we report comprehensive gene expression analysis of benthic foraminiferal populations preserved in situ on the euxinic (anoxic and sulfidic) bathyal seafloor, thus avoiding environmental alterations associated with sample recovery, including pressure reduction, sunlight exposure, warming, and oxygenation. Metatranscriptomics, metagenome-assembled genomes, and measurements of substrate uptake were used to study the kleptoplastidic foraminifer Nonionella stella inhabiting sulfur-oxidizing bacterial mats of the Santa Barbara Basin, off California. We show N. stella energy generation under dark euxinia is unusual because it orchestrates complex metabolic pathways for ATP production and carbon fixation through the Calvin cycle. These pathways include extended glycolysis, anaerobic fermentation, sulfide oxidation, and the presence of a membrane-bound inorganic pyrophosphatase, an enzyme that hydrolyzes inorganic pyrophosphate to actively pump protons across the mitochondrial membrane.
Collapse
Affiliation(s)
- Fatma Gomaa
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States
| | - Daniel R Rogers
- Chemistry Department, Stonehill College, Easton, MA 02357 United States
| | - Daniel R Utter
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, United States
| | - Christopher Powers
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - I-Ting Huang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States
| | - David J Beaudoin
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Colleen Cavanaugh
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Joan M Bernhard
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| |
Collapse
|
5
|
Zhang C, Rasool A, Qi H, Zou X, Wang Y, Wang Y, Wang Y, Liu Y, Yu Y. Comprehensive analysis of the first complete mitogenome and plastome of a traditional Chinese medicine Viola diffusa. BMC Genomics 2024; 25:1162. [PMID: 39623304 PMCID: PMC11610153 DOI: 10.1186/s12864-024-11086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Viola diffusa is used in the formulation of various Traditional Chinese Medicines (TCMs), including antiviral, antimicrobial, antitussive, and anti-inflammatory drugs, due to its richness in flavonoids and triterpenoids. The biosynthesis of these compounds is largely mediated by cytochrome P450 enzymes, which are primarily located in the membranes of mitochondria and the endoplasmic reticulum. RESULTS This study presents the complete assembly of the mitogenome and plastome of Viola diffusa. The circular mitogenome spans 474,721 bp with a GC content of 44.17% and encodes 36 unique protein-coding genes, 21 tRNA, and 3 rRNA. Except for the RSCU values of 1 observed for the start codon (AUG) and tryptophan (UGG), the mitochondrial protein-coding genes exhibited a codon usage bias, with most estimates deviating from 1, similar to patterns observed in closely related species. Analysis of repetitive sequences in the mitogenome demonstrated potential homologous recombination mediated by these repeats. Sequence transfer analysis revealed 24 homologous sequences shared between the mitogenome and plastome, including nine full-length genes. Collinearity was observed among Viola diffusa species within the other members of Malpighiales order, indicated by the presence of homologous fragments. The length and arrangement of collinear blocks varied, and the mitogenome exhibited a high frequency of gene rearrangement. CONCLUSIONS We present the first complete assembly of the mitogenome and plastome of Viola diffusa, highlighting its implications for pharmacological, evolutionary, and taxonomic studies. Our research underscores the multifaceted importance of comprehensive mitogenome analysis.
Collapse
Affiliation(s)
- Chenshuo Zhang
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan, People's Republic of China
| | - Aamir Rasool
- Institute of Biochemistry, University of Balochistan, Quetta, 87300, Pakistan
| | - Huilong Qi
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan, People's Republic of China
| | - Xu Zou
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan, People's Republic of China
| | - Yimeng Wang
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan, People's Republic of China
| | - Yahui Wang
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan, People's Republic of China
| | - Yang Wang
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan, People's Republic of China.
| | - Yan Liu
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan, People's Republic of China.
| | - Yuan Yu
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan, People's Republic of China.
| |
Collapse
|
6
|
Štorchová H, Krüger M. Methods for assembling complex mitochondrial genomes in land plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5169-5174. [PMID: 38302086 DOI: 10.1093/jxb/erae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The large size and complex structural rearrangements inherent in the mitochondrial genomes of land plants pose challenges for their sequencing. Originally, the assembly of these genomes required the cloning of mitochondrial DNA fragments followed by Sanger sequencing. Subsequently, the advent of next-generation sequencing significantly expedited the process. This review highlights examples of plant mitochondrial genome assembly employing various technologies, including 454 sequencing, Illumina short sequencing reads, and Pacific Biosciences or Oxford Nanopore Technology long sequencing reads. The combination of short and long reads in hybrid assembly has proven to be the most efficient approach for achieving reliable assemblies of land plant mitochondrial genomes.
Collapse
Affiliation(s)
- Helena Štorchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 313, CZ-16502 Prague, Czech Republic
| | - Manuela Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 313, CZ-16502 Prague, Czech Republic
| |
Collapse
|
7
|
Nhat Nam N, Pham Anh Thi N, Do HDK. New Insights into the Diversity of Mitochondrial Plastid DNA. Genome Biol Evol 2024; 16:evae184. [PMID: 39231033 PMCID: PMC11373515 DOI: 10.1093/gbe/evae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2024] [Indexed: 09/06/2024] Open
Abstract
The mitochondrial plastid DNAs (MTPTs) in seed plants were reported more than 40 years ago and exhibited a high diversity regarding gene content, quantity, and size. However, the mechanism that resulted in the current diversity of MTPTs in angiosperms has not been fully discovered. In this study, we sequenced and characterized the complete organelle genomes of Limonia acidissima L., a monotypic species of Rutaceae. The newly generated and previously published organelle genomes of 42 species were used to explore the diversity of MTPTs regarding quantity, gene content, size, and coverage of chloroplast genome (cpDNA) regions. The results showed that the number of MTPTs ranged from three to 74, of which the lengths were from 100 to 53,731 bp. The highest coverage of MTPTs was found in the inverted repeat region, whereas the small single repeat region had the lowest coverage. Based on the previous data and current results, we propose a scenario for the diversity of MTPTs in angiosperms. In the first stage, the whole cpDNA might migrate to the mitogenome. Then, different genomic events, such as duplication, deletion, substitution, and inversion, have occurred continuously and independently and resulted in extremely variable profiles of mitogenomes among angiosperms. Our hypothesis provides a new and possibly reliable scenario for explaining the present circumstances of MTPTs in angiosperms. However, more genomic data should be mined, and more studies should be conducted to clarify this natural phenomenon in plants.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, Vietnam
| | - Nguyen Pham Anh Thi
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Hoang Dang Khoa Do
- Functional Genomics Research Center, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Wu CS, Wang RJ, Chaw SM. Integration of large and diverse angiosperm DNA fragments into Asian Gnetum mitogenomes. BMC Biol 2024; 22:140. [PMID: 38915079 PMCID: PMC11197197 DOI: 10.1186/s12915-024-01924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT) events have rarely been reported in gymnosperms. Gnetum is a gymnosperm genus comprising 25‒35 species sympatric with angiosperms in West African, South American, and Southeast Asian rainforests. Only a single acquisition of an angiosperm mitochondrial intron has been documented to date in Asian Gnetum mitogenomes. We wanted to develop a more comprehensive understanding of frequency and fragment length distribution of such events as well as their evolutionary history in this genus. RESULTS We sequenced and assembled mitogenomes from five Asian Gnetum species. These genomes vary remarkably in size and foreign DNA content. We identified 15 mitochondrion-derived and five plastid-derived (MTPT) foreign genes. Our phylogenetic analyses strongly indicate that these foreign genes were transferred from diverse eudicots-mostly from the Rubiaceae genus Coptosapelta and ten genera of Malpighiales. This indicates that Asian Gnetum has experienced multiple independent HGT events. Patterns of sequence evolution strongly suggest DNA-mediated transfer between mitochondria as the primary mechanism giving rise to these HGT events. Most Asian Gnetum species are lianas and often entwined with sympatric angiosperms. We therefore propose that close apposition of Gnetum and angiosperm stems presents opportunities for interspecific cell-to-cell contact through friction and wounding, leading to HGT. CONCLUSIONS Our study reveals that multiple HGT events have resulted in massive amounts of angiosperm mitochondrial DNA integrated into Asian Gnetum mitogenomes. Gnetum and its neighboring angiosperms are often entwined with each other, possibly accounting for frequent HGT between these two phylogenetically remote lineages.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Rui-Jiang Wang
- South China Botanical Garden, Chinese Academy of Science, Guangzhou, China
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
9
|
Thureborn O, Wikström N, Razafimandimbison SG, Rydin C. Plastid phylogenomics and cytonuclear discordance in Rubioideae, Rubiaceae. PLoS One 2024; 19:e0302365. [PMID: 38768140 PMCID: PMC11104678 DOI: 10.1371/journal.pone.0302365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
In this study of evolutionary relationships in the subfamily Rubioideae (Rubiaceae), we take advantage of the off-target proportion of reads generated via previous target capture sequencing projects based on nuclear genomic data to build a plastome phylogeny and investigate cytonuclear discordance. The assembly of off-target reads resulted in a comprehensive plastome dataset and robust inference of phylogenetic relationships, where most intratribal and intertribal relationships are resolved with strong support. While the phylogenetic results were mostly in agreement with previous studies based on plastome data, novel relationships in the plastid perspective were also detected. For example, our analyses of plastome data provide strong support for the SCOUT clade and its sister relationship to the remaining members of the subfamily, which differs from previous results based on plastid data but agrees with recent results based on nuclear genomic data. However, several instances of highly supported cytonuclear discordance were identified across the Rubioideae phylogeny. Coalescent simulation analysis indicates that while ILS could, by itself, explain the majority of the discordant relationships, plastome introgression may be the better explanation in some cases. Our study further indicates that plastomes across the Rubioideae are, with few exceptions, highly conserved and mainly conform to the structure, gene content, and gene order present in the majority of the flowering plants.
Collapse
Affiliation(s)
- Olle Thureborn
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Niklas Wikström
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Bergius Foundation, The Royal Academy of Sciences, Stockholm, Sweden
| | | | - Catarina Rydin
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Bergius Foundation, The Royal Academy of Sciences, Stockholm, Sweden
| |
Collapse
|
10
|
Tang P, Ni Y, Li J, Lu Q, Liu C, Guo J. The Complete Mitochondrial Genome of Paeonia lactiflora Pall. (Saxifragales: Paeoniaceae): Evidence of Gene Transfer from Chloroplast to Mitochondrial Genome. Genes (Basel) 2024; 15:239. [PMID: 38397228 PMCID: PMC10888214 DOI: 10.3390/genes15020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Paeonia lactiflora (P. lactiflora), a perennial plant renowned for its medicinal roots, provides a unique case for studying the phylogenetic relationships of species based on organelle genomes, as well as the transference of DNA across organelle genomes. In order to investigate this matter, we sequenced and characterized the mitochondrial genome (mitogenome) of P. lactiflora. Similar to the chloroplast genome (cpgenome), the mitogenome of P. lactiflora extends across 181,688 base pairs (bp). Its unique quadripartite structure results from a pair of extensive inverted repeats, each measuring 25,680 bp in length. The annotated mitogenome includes 27 protein-coding genes, 37 tRNAs, 8 rRNAs, and two pseudogenes (rpl5, rpl16). Phylogenetic analysis was performed to identify phylogenetic trees consistent with Paeonia species phylogeny in the APG Ⅳ system. Moreover, a total of 12 MTPT events were identified and 32 RNA editing sites were detected during mitogenome analysis of P. lactiflora. Our research successfully compiled and annotated the mitogenome of P. lactiflora. The study provides valuable insights regarding the taxonomic classification and molecular evolution within the Paeoniaceae family.
Collapse
Affiliation(s)
- Pan Tang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Yang Ni
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Jingling Li
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Qianqi Lu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Chang Liu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
11
|
Zhao Z, Li Y, Zhai JW, Liu ZJ, Li MH. Organelle Genomes of Epipogium roseum Provide Insight into the Evolution of Mycoheterotrophic Orchids. Int J Mol Sci 2024; 25:1578. [PMID: 38338856 PMCID: PMC10855806 DOI: 10.3390/ijms25031578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Epipogium roseum, commonly known as one of the ghost orchids due to its rarity and almost transparent color, is a non-photosynthetic and fully mycoheterotrophic plant. Given its special nutritional strategies and evolutionary significance, the mitogenome was first characterized, and three plastomes sampled from Asia were assembled. The plastomes were found to be the smallest among Orchidaceae, with lengths ranging from 18,339 to 19,047 bp, and exhibited high sequence variety. For the mitogenome, a total of 414,552 bp in length, comprising 26 circular chromosomes, were identified. A total of 54 genes, including 38 protein-coding genes, 13 tRNA genes, and 3 rRNA genes, were annotated. Multiple repeat sequences spanning a length of 203,423 bp (45.47%) were discovered. Intriguingly, six plastid regions via intracellular gene transfer and four plastid regions via horizontal gene transfer to the mitogenome were observed. The phylogenomics, incorporating 90 plastomes and 56 mitogenomes, consistently revealed the sister relationship of Epipogium and Gastrodia, with a bootstrap percentage of 100%. These findings shed light on the organelle evolution of Orchidaceae and non-photosynthetic plants.
Collapse
Affiliation(s)
| | | | | | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (Y.L.); (J.-W.Z.)
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (Y.L.); (J.-W.Z.)
| |
Collapse
|
12
|
Thureborn O, Wikström N, Razafimandimbison SG, Rydin C. Phylogenomics and topological conflicts in the tribe Anthospermeae (Rubiaceae). Ecol Evol 2024; 14:e10868. [PMID: 38274863 PMCID: PMC10809029 DOI: 10.1002/ece3.10868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024] Open
Abstract
Genome skimming (shallow whole-genome sequencing) offers time- and cost-efficient production of large amounts of DNA data that can be used to address unsolved evolutionary questions. Here we address phylogenetic relationships and topological incongruence in the tribe Anthospermeae (Rubiaceae), using phylogenomic data from the mitochondrion, the nuclear ribosomal cistron, and the plastome. All three genomic compartments resolve relationships in the Anthospermeae; the tribe is monophyletic and consists of three major subclades. Carpacoce Sond. is sister to the remaining clade, which comprises an African subclade and a Pacific subclade. Most results, from all three genomic compartments, are statistically well supported; however, not fully consistent. Intergenomic topological incongruence is most notable in the Pacific subclade but present also in the African subclade. Hybridization and introgression followed by organelle capture may explain these conflicts but other processes, such as incomplete lineage sorting (ILS), can yield similar patterns and cannot be ruled out based on the results. Whereas the null hypothesis of congruence among all sequenced loci in the individual genomes could not be rejected for nuclear and mitochondrial data, it was rejected for plastid data. Phylogenetic analyses of three subsets of plastid loci identified using the hierarchical likelihood ratio test demonstrated statistically supported intragenomic topological incongruence. Given that plastid genes are thought to be fully linked, this result is surprising and may suggest modeling or sampling error. However, biological processes such as biparental inheritance and inter-plastome recombination have been reported and may be responsible for the observed intragenomic incongruence. Mitochondrial insertions into the plastome are rarely documented in angiosperms. Our results indicate that a mitochondrial insertion event in the plastid trnS GGA - rps4 IGS region occurred in the common ancestor of the Pacific clade of Anthospermeae. Exclusion/inclusion of this locus in phylogenetic analyses had a strong impact on topological results in the Pacific clade.
Collapse
Affiliation(s)
- Olle Thureborn
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | - Niklas Wikström
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- The Bergius FoundationThe Royal Academy of SciencesStockholmSweden
| | | | - Catarina Rydin
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- The Bergius FoundationThe Royal Academy of SciencesStockholmSweden
| |
Collapse
|
13
|
Sanchez-Puerta MV, Ceriotti LF, Gatica-Soria LM, Roulet ME, Garcia LE, Sato HA. Invited Review Beyond parasitic convergence: unravelling the evolution of the organellar genomes in holoparasites. ANNALS OF BOTANY 2023; 132:909-928. [PMID: 37503831 PMCID: PMC10808021 DOI: 10.1093/aob/mcad108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND The molecular evolution of organellar genomes in angiosperms has been studied extensively, with some lineages, such as parasitic ones, displaying unique characteristics. Parasitism has emerged 12 times independently in angiosperm evolution. Holoparasitism is the most severe form of parasitism, and is found in ~10 % of parasitic angiosperms. Although a few holoparasitic species have been examined at the molecular level, most reports involve plastomes instead of mitogenomes. Parasitic plants establish vascular connections with their hosts through haustoria to obtain water and nutrients, which facilitates the exchange of genetic information, making them more susceptible to horizontal gene transfer (HGT). HGT is more prevalent in the mitochondria than in the chloroplast or nuclear compartments. SCOPE This review summarizes current knowledge on the plastid and mitochondrial genomes of holoparasitic angiosperms, compares the genomic features across the different lineages, and discusses their convergent evolutionary trajectories and distinctive features. We focused on Balanophoraceae (Santalales), which exhibits extraordinary traits in both their organelles. CONCLUSIONS Apart from morphological similarities, plastid genomes of holoparasitic plants also display other convergent features, such as rampant gene loss, biased nucleotide composition and accelerated evolutionary rates. In addition, the plastomes of Balanophoraceae have extremely low GC and gene content, and two unexpected changes in the genetic code. Limited data on the mitochondrial genomes of holoparasitic plants preclude thorough comparisons. Nonetheless, no obvious genomic features distinguish them from the mitochondria of free-living angiosperms, except for a higher incidence of HGT. HGT appears to be predominant in holoparasitic angiosperms with a long-lasting endophytic stage. Among the Balanophoraceae, mitochondrial genomes exhibit disparate evolutionary paths with notable levels of heteroplasmy in Rhopalocnemis and unprecedented levels of HGT in Lophophytum. Despite their differences, these Balanophoraceae share a multichromosomal mitogenome, a feature also found in a few free-living angiosperms.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Leonardo M Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
| | - Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Hector A Sato
- Facultad de Ciencias Agrarias, Cátedra de Botánica General–Herbario JUA, Alberdi 47, Universidad Nacional de Jujuy, 4600 Jujuy, Argentina
| |
Collapse
|
14
|
Contreras-Díaz R, Carevic FS, van den Brink L. Comparative analysis of the complete mitogenome of Geoffroea decorticans: a native tree surviving in the Atacama Desert. Front Genet 2023; 14:1226052. [PMID: 37636265 PMCID: PMC10448962 DOI: 10.3389/fgene.2023.1226052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Chañar (Geoffroea decorticans (Gill., ex Hook. & Arn.) Burkart) has been highly significant for indigenous people in the Atacama Desert for over 3,000 years. Through evolutionary processes, the G. decorticans mitogenome likely underwent changes facilitating its adaptation to the extreme conditions of the Atacama Desert. Here, we compare the mitochondrial genome of G. decorticans with those of other Papilionoideae family species. The complete mitogenome of G. decorticans was sequenced and assembled, making it the first in the genus Geoffroea. The mitogenome contained 383,963 base pairs, consisting of 33 protein coding genes, 21 transfer RNA genes, and 3 ribosomal RNA genes. The Chañar mitogenome is relatively compact, and has two intact genes (sdh4 and nad1) which were not observed in most other species. Additionally, Chañar possessed the highest amount of mitochondrial DNA of plastid origin among angiosperm species. The phylogenetic analysis of the mitogenomes of Chañar and 12 other taxa displayed a high level of consistency in taxonomic classification, when compared to those of the plastid genome. Atp8 was subjected to positive selection, while the ccmFc and rps1 were subjected to neutral selection. This study provides valuable information regarding its ability to survive the extreme environmental conditions of the Atacama Desert.
Collapse
Affiliation(s)
- Roberto Contreras-Díaz
- Núcleo Milenio de Ecología Histórica Aplicada para los Bosques Áridos (AFOREST), CRIDESAT, Universidad de Atacama, Copiapó, Chile
| | - Felipe S. Carevic
- Laboratorio de Ecología Vegetal, Facultad de Recursos Naturales Renovables, Núcleo Milenio de Ecología Histórica Aplicada para los Bosques Áridos (AFOREST), Universidad Arturo Prat, Iquique, Chile
| | - Liesbeth van den Brink
- Institute of Evolution and Ecology, Plant Ecology Group, Universität Tübingen, Tübingen, Germany
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, ECOBIOSIS, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
15
|
Lee HJ, Lee Y, Lee SC, Kim CK, Kang JN, Kwon SJ, Kang SH. Comparative analysis of mitochondrial genomes of Schisandra repanda and Kadsura japonica. FRONTIERS IN PLANT SCIENCE 2023; 14:1183406. [PMID: 37469771 PMCID: PMC10352487 DOI: 10.3389/fpls.2023.1183406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023]
Abstract
The family Schisandraceae is a basal angiosperm plant group distributed in East and Southeast Asia and includes many medicinal plant species such as Schisandra chinensis. In this study, mitochondrial genomes (mitogenomes) of two species, Schisandra repanda and Kadsura japonica, in the family were characterized through de novo assembly using sequencing data obtained with Oxford Nanopore and Illumina sequencing technologies. The mitogenomes of S. repanda were assembled into one circular contig (571,107 bp) and four linear contigs (10,898-607,430 bp), with a total of 60 genes: 38 protein-coding genes (PCGs), 19 tRNA genes, and 3 rRNA genes. The mitogenomes of K. japonica were assembled into five circular contigs (211,474-973,503 bp) and three linear contigs (8,010-72,712 bp), with a total of 66 genes: 44 PCGs, 19 tRNA genes, and 3 rRNA genes. The mitogenomes of the two species had complex structural features with high repeat numbers and chloroplast-derived sequences, as observed in other plant mitogenomes. Phylogenetic analysis based on PCGs revealed the taxonomical relationships of S. repanda and K. japonica with other species from Schisandraceae. Finally, molecular markers were developed to distinguish between S. repanda, K. japonica, and S. chinensis on the basis of InDel polymorphisms present in the mitogenomes. The mitogenomes of S. repanda and K. japonica will be valuable resources for molecular and taxonomic studies of plant species that belong to the family Schisandraceae.
Collapse
Affiliation(s)
- Hyo Ju Lee
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Ji-Nam Kang
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| |
Collapse
|
16
|
Zhou S, Zhi X, Yu R, Liu Y, Zhou R. Factors contributing to mitogenome size variation and a recurrent intracellular DNA transfer in Melastoma. BMC Genomics 2023; 24:370. [PMID: 37393222 DOI: 10.1186/s12864-023-09488-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Mitogenome sizes of seed plants vary substantially even among closely related species, which are often related to horizontal or intracellular DNA transfer (HDT or IDT) events. However, the mechanisms of this size variation have not been well characterized. RESULTS Here we assembled and characterized the mitogenomes of three species of Melastoma, a tropical shrub genus experiencing rapid speciation. The mitogenomes of M. candidum (Mc), M. sanguineum (Ms) and M. dodecandrum (Md) were assembled to a circular mapping chromosome of 391,595 bp, 395,542 bp and 412,026 bp, respectively. While the mitogenomes of Mc and Ms showed good collinearity except for a large inversion of ~ 150 kb, there were many rearrangements in the mitogenomes between Md and either Mc or Ms. Most non-alignable sequences (> 80%) between Mc and Ms are from gain or loss of mitochondrial sequences. Whereas, between Md and either Mc or Ms, non-alignable sequences in Md are mainly chloroplast derived sequences (> 30%) and from putative horizontal DNA transfers (> 30%), and those in both Mc and Ms are from gain or loss of mitochondrial sequences (> 80%). We also identified a recurrent IDT event in another congeneric species, M. penicillatum, which has not been fixed as it is only found in one of the three examined populations. CONCLUSIONS By characterizing mitochondrial genome sequences of Melastoma, our study not only helps understand mitogenome size evolution in closely related species, but also cautions different evolutionary histories of mitochondrial regions due to potential recurrent IDT events in some populations or species.
Collapse
Affiliation(s)
- Shuaixi Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xueke Zhi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Runxian Yu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
17
|
Pouchon C, Boluda CG. REFMAKER: make your own reference to target nuclear loci in low coverage genome skimming libraries. Phylogenomic application in Sapotaceae. Mol Phylogenet Evol 2023:107826. [PMID: 37257798 DOI: 10.1016/j.ympev.2023.107826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Genome skimming approach is widely used in plant systematics to infer phylogenies mostly from organelle genomes. However, organelles represent only 10% of the produced libraries, and the low coverage associated with these libraries (< 3X) prevents the capture of nuclear sequences, which are not always available in non-model organisms or limited to the ribosomal regions. We developed REFMAKER, a user-friendly pipeline, to create specific sets of nuclear loci that can next be extracted directly from the genome skimming libraries. For this, a catalogue is built from the meta-assembly of each library contigs and cleaned by selecting the nuclear regions and removing duplicates from clustering steps. Libraries are next mapped onto this catalogue and consensus sequences are generated to produce a ready-to-use phylogenetic matrix following different filtering parameters aiming at removing putative errors and paralogous sequences. REFMAKER allowed us to infer a well resolved phylogeny in Capurodendron (Sapotaceae) on 67 nuclear loci from low-coverage libraries (<1X). The resulting phylogeny is concomitant with one previously inferred on 638 nuclear genes from target enrichment libraries. While it remains preliminary because of this low sequencing depth, REFMAKER therefore opens perspectives in phylogenomics by allowing nuclear phylogeny reconstructions with genome skimming datasets.
Collapse
Affiliation(s)
- Charles Pouchon
- Conservatoire et Jardin botaniques de la Ville de Genève, Chemin de l'Impératrice 1, 1292 Chambésy, Geneva, Switzerland; PhyloLab, Department of Plant Sciences, Université de Genève, Chemin de l'Impératrice 1, 1292 Chambésy, Geneva, Switzerland.
| | - Carlos G Boluda
- Conservatoire et Jardin botaniques de la Ville de Genève, Chemin de l'Impératrice 1, 1292 Chambésy, Geneva, Switzerland; PhyloLab, Department of Plant Sciences, Université de Genève, Chemin de l'Impératrice 1, 1292 Chambésy, Geneva, Switzerland
| |
Collapse
|
18
|
Xu M, Gu Z, Huang J, Guo B, Jiang L, Xu K, Ye Y, Li J. The Complete Mitochondrial Genome of Mytilisepta virgata (Mollusca: Bivalvia), Novel Gene Rearrangements, and the Phylogenetic Relationships of Mytilidae. Genes (Basel) 2023; 14:910. [PMID: 37107667 PMCID: PMC10137486 DOI: 10.3390/genes14040910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The circular mitochondrial genome of Mytilisepta virgata spans 14,713 bp, which contains 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22 transfer RNA genes. Analysis of the 13 PCGs reveals that the mitochondrial gene arrangement of Mytilisepta is relatively conserved at the genus level. The location of the atp8 gene in Mytilisepta keenae differs from that of other species. However, compared with the putative molluscan ancestral gene order, M. virgata exhibits a high level of rearrangement. We constructed phylogenetic trees based on concatenated 12 PCGs from Mytilidae. As a result, we found that M. virgata is in the same clade as other Mytilisepta spp. The result of estimated divergence times revealed that M. virgata and M. keenae diverged around the early Paleogene period, although the oldest Mytilisepta fossil was from the late or upper Eocene period. Our results provide robust statistical evidence for a sister-group relationship within Mytilida. The findings not only confirm previous results, but also provide valuable insights into the evolutionary history of Mytilidae.
Collapse
Affiliation(s)
- Minhui Xu
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhongqi Gu
- Shengsi Marine Science and Technology Institute, Shengsi, Zhoushan 202450, China
| | - Ji Huang
- Shengsi Marine Science and Technology Institute, Shengsi, Zhoushan 202450, China
| | - Baoying Guo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lihua Jiang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of China, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
19
|
Multichromosomal Mitochondrial Genome of Paphiopedilum micranthum: Compact and Fragmented Genome, and Rampant Intracellular Gene Transfer. Int J Mol Sci 2023; 24:ijms24043976. [PMID: 36835385 PMCID: PMC9966765 DOI: 10.3390/ijms24043976] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Orchidaceae is one of the largest families of angiosperms. Considering the large number of species in this family and its symbiotic relationship with fungi, Orchidaceae provide an ideal model to study the evolution of plant mitogenomes. However, to date, there is only one draft mitochondrial genome of this family available. Here, we present a fully assembled and annotated sequence of the mitochondrial genome (mitogenome) of Paphiopedilum micranthum, a species with high economic and ornamental value. The mitogenome of P. micranthum was 447,368 bp in length and comprised 26 circular subgenomes ranging in size from 5973 bp to 32,281 bp. The genome encoded for 39 mitochondrial-origin, protein-coding genes; 16 tRNAs (three of plastome origin); three rRNAs; and 16 ORFs, while rpl10 and sdh3 were lost from the mitogenome. Moreover, interorganellar DNA transfer was identified in 14 of the 26 chromosomes. These plastid-derived DNA fragments represented 28.32% (46,273 bp) of the P. micranthum plastome, including 12 intact plastome origin genes. Remarkably, the mitogenome of P. micranthum and Gastrodia elata shared 18% (about 81 kb) of their mitochondrial DNA sequences. Additionally, we found a positive correlation between repeat length and recombination frequency. The mitogenome of P. micranthum had more compact and fragmented chromosomes compared to other species with multichromosomal structures. We suggest that repeat-mediated homologous recombination enables the dynamic structure of mitochondrial genomes in Orchidaceae.
Collapse
|
20
|
Kersten B, Rellstab C, Schroeder H, Brodbeck S, Fladung M, Krutovsky KV, Gugerli F. The mitochondrial genome sequence of Abies alba Mill. reveals a high structural and combinatorial variation. BMC Genomics 2022; 23:776. [PMID: 36443651 PMCID: PMC9703787 DOI: 10.1186/s12864-022-08993-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/05/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Plant mitogenomes vary widely in size and genomic architecture. Although hundreds of plant mitogenomes of angiosperm species have already been sequence-characterized, only a few mitogenomes are available from gymnosperms. Silver fir (Abies alba) is an economically important gymnosperm species that is widely distributed in Europe and occupies a large range of environmental conditions. Reference sequences of the nuclear and chloroplast genome of A. alba are available, however, the mitogenome has not yet been assembled and studied. RESULTS Here, we used paired-end Illumina short reads generated from a single haploid megagametophyte in combination with PacBio long reads from high molecular weight DNA of needles to assemble the first mitogenome sequence of A. alba. Assembly and scaffolding resulted in 11 mitogenome scaffolds, with the largest scaffold being 0.25 Mbp long. Two of the scaffolds displayed a potential circular structure supported by PCR. The total size of the A. alba mitogenome was estimated at 1.43 Mbp, similar to the size (1.33 Mbp) of a draft assembly of the Abies firma mitogenome. In total, 53 distinct genes of known function were annotated in the A. alba mitogenome, comprising 41 protein-coding genes, nine tRNA, and three rRNA genes. The proportion of highly repetitive elements (REs) was 0.168. The mitogenome seems to have a complex and dynamic structure featured by high combinatorial variation, which was specifically confirmed by PCR for the contig with the highest mapping coverage. Comparative analysis of all sequenced mitogenomes of gymnosperms revealed a moderate, but significant positive correlation between mitogenome size and proportion of REs. CONCLUSIONS The A. alba mitogenome provides a basis for new comparative studies and will allow to answer important structural, phylogenetic and other evolutionary questions. Future long-read sequencing with higher coverage of the A. alba mitogenome will be the key to further resolve its physical structure. The observed positive correlation between mitogenome size and proportion of REs will be further validated once available mitogenomes of gymnosperms would become more numerous. To test whether a higher proportion of REs in a mitogenome leads to an increased recombination and higher structural complexity and variability is a prospective avenue for future research.
Collapse
Affiliation(s)
- Birgit Kersten
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Christian Rellstab
- grid.419754.a0000 0001 2259 5533Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Hilke Schroeder
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Sabine Brodbeck
- grid.419754.a0000 0001 2259 5533Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, Sieker Landstrasse 2, 22927 Grosshansdorf, Germany
| | - Konstantin V. Krutovsky
- grid.7450.60000 0001 2364 4210Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Felix Gugerli
- grid.419754.a0000 0001 2259 5533Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
21
|
Wei L, Liu TJ, Hao G, Ge XJ, Yan HF. Comparative analyses of three complete Primula mitogenomes with insights into mitogenome size variation in Ericales. BMC Genomics 2022; 23:770. [PMID: 36424546 PMCID: PMC9686101 DOI: 10.1186/s12864-022-08983-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Although knowledge of the sizes, contents, and forms of plant mitochondrial genomes (mitogenomes) is increasing, little is known about the mechanisms underlying their structural diversity. Evolutionary information on the mitogenomes of Primula, an important ornamental taxon, is more limited than the information on their nuclear and plastid counterparts, which has hindered the comprehensive understanding of Primula mitogenomic diversity and evolution. The present study reported and compared three Primula mitogenomes and discussed the size expansion of mitogenomes in Ericales. RESULTS Mitogenome master circles were sequenced and successfully assembled for three Primula taxa and were compared with publicly available Ericales mitogenomes. The three mitogenomes contained similar gene contents and varied primarily in their structures. The Primula mitogenomes possessed relatively high nucleotide diversity among all examined plant lineages. In addition, high nucleotide diversity was found among Primula species between the Mediterranean and Himalaya-Hengduan Mountains. Most predicted RNA editing sites appeared in the second amino acid codon, increasing the hydrophobic character of the protein. An early stop in atp6 caused by RNA editing was conserved across all examined Ericales species. The interfamilial relationships within Ericales and interspecific relationships within Primula could be well resolved based on mitochondrial data. Transfer of the two longest mitochondrial plastid sequences (MTPTs) occurred before the divergence of Primula and its close relatives, and multiple independent transfers could also occur in a single MTPT sequence. Foreign sequence [MTPTs and mitochondrial nuclear DNA sequences (NUMTs)] uptake and repeats were to some extent associated with changes in Ericales mitogenome size, although none of these relationships were significant overall. CONCLUSIONS The present study revealed relatively conserved gene contents, gene clusters, RNA editing, and MTPTs but considerable structural variation in Primula mitogenomes. Relatively high nucleotide diversity was found in the Primula mitogenomes. In addition, mitogenomic genes, collinear gene clusters, and locally collinear blocks (LCBs) all showed phylogenetic signals. The evolutionary history of MTPTs in Primula was complicated, even in a single MTPT sequence. Various reasons for the size variation observed in Ericales mitogenomes were found.
Collapse
Affiliation(s)
- Lei Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tong-Jian Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Gang Hao
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
22
|
Ding H, Bi D, Zhang S, Han S, Ye Y, Yi R, Yang J, Liu B, Wu L, Zhuo R, Kan X. The Mitogenome of Sedum plumbizincicola (Crassulaceae): Insights into RNA Editing, Lateral Gene Transfer, and Phylogenetic Implications. BIOLOGY 2022; 11:1661. [PMID: 36421375 PMCID: PMC9687357 DOI: 10.3390/biology11111661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 09/08/2024]
Abstract
As the largest family within the order Saxifragales, Crassulaceae contains about 34 genera with 1400 species. Mitochondria play a critical role in cellular energy production. Since the first land plant mitogenome was reported in Arabidopsis, more than 400 mitogenomic sequences have been deposited in a public database. However, no entire mitogenome data have been available for species of Crassulaceae to date. To better understand the evolutionary history of the organelles of Crassulaceae, we sequenced and performed comprehensive analyses on the mitogenome of Sedum plumbizincicola. The master mitogenomic circle is 212,159 bp in length, including 31 protein-coding genes (PCGs), 14 tRNA genes, and 3 rRNA genes. We further identified totally 508 RNA editing sites in PCGs, and demonstrated that the second codon positions of mitochondrial genes are most prone to RNA editing events. Notably, by neutrality plot analyses, we observed that the mitochondrial RNA editing events have large effects on the driving forces of plant evolution. Additionally, 4 MTPTs and 686 NUMTs were detected in the mitochondrial and nuclear genomes of S. plumbizincicola, respectively. Additionally, we conducted further analyses on gene transfer, secondary structures of mitochondrial RNAs, and phylogenetic implications. Therefore, the findings presented here will be helpful for future investigations on plant mitogenomes.
Collapse
Affiliation(s)
- Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - De Bi
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Birong Liu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Hangzhou 311400, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
23
|
Park YS, Kang JS, Park JY, Shim H, Yang HO, Kang JH, Yang TJ. Analysis of the complete plastomes and nuclear ribosomal DNAs from Euonymus hamiltonianus and its relatives sheds light on their diversity and evolution. PLoS One 2022; 17:e0275590. [PMID: 36197898 PMCID: PMC9534445 DOI: 10.1371/journal.pone.0275590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Euonymus hamiltonianus and its relatives (Celastraceae family) are used for ornamental and medicinal purposes. However, species identification in Euonymus is difficult due to their morphological diversity. Using plastid genome (plastome) data, we attempt to reveal phylogenetic relationship among Euonymus species and develop useful markers for molecular identification. We assembled the plastome and nuclear ribosomal DNA (nrDNA) sequences from five Euonymus lines collected from South Korea: three Euonymus hamiltonianus accessions, E. europaeus, and E. japonicus. We conducted an in-depth comparative analysis using ten plastomes, including other publicly available plastome data for this genus. The genome structures, gene contents, and gene orders were similar in all Euonymus plastomes in this study. Analysis of nucleotide diversity revealed six divergence hotspots in their plastomes. We identified 339 single nucleotide polymorphisms and 293 insertion or deletions among the four E. hamiltonianus plastomes, pointing to abundant diversity even within the same species. Among 77 commonly shared genes, 9 and 33 were identified as conserved genes in the genus Euonymus and E. hamiltonianus, respectively. Phylogenetic analysis based on plastome and nrDNA sequences revealed the overall consensus and relationships between plastomes and nrDNAs. Finally, we developed six barcoding markers and successfully applied them to 31 E. hamiltonianus lines collected from South Korea. Our findings provide the molecular basis for the classification and molecular taxonomic criteria for the genus Euonymus (at least in Korea), which should aid in more objective classification within this genus. Moreover, the newly developed markers will be useful for understanding the species delimitation of E. hamiltonianus and closely related species.
Collapse
Affiliation(s)
- Young Sang Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Hyun Ok Yang
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Korea
| | | | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
24
|
Cho KS, Lee HO, Lee SC, Park HJ, Seo JH, Cho JH, Park YE, Choi JG, Yang TJ. Mitochondrial genome recombination in somatic hybrids of Solanum commersonii and S. tuberosum. Sci Rep 2022; 12:8659. [PMID: 35606486 PMCID: PMC9127095 DOI: 10.1038/s41598-022-12661-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Interspecific somatic hybridization has been performed in potato breeding experiments to increase plant resistance against biotic and abiotic stress conditions. We analyzed the mitochondrial and plastid genomes and 45S nuclear ribosomal DNA (45S rDNA) for the cultivated potato (S. tuberosum, St), wild potato (S. commersonii, Sc), and their somatic hybrid (StSc). Complex genome components and structure, such as the hybrid form of 45S rDNA in StSc, unique plastome in Sc, and recombinant mitogenome were identified. However, the mitogenome exhibited dynamic multipartite structures in both species as well as in the somatic hybrid. In St, the mitogenome is 756,058 bp and is composed of five subgenomes ranging from 297,014 to 49,171 bp. In Sc, it is 552,103 bp long and is composed of two sub-genomes of 338,427 and 213,676 bp length. StSc has 447,645 bp long mitogenome with two subgenomes of length 398,439 and 49,206 bp. The mitogenome structure exhibited dynamic recombination mediated by tandem repeats; however, it contained highly conserved genes in the three species. Among the 35 protein-coding genes of the StSc mitogenome, 21 were identical for all the three species, and 12 and 2 were unique in Sc and St, respectively. The recombinant mitogenome might be derived from homologous recombination between both species during somatic hybrid development.
Collapse
Affiliation(s)
- Kwang-Soo Cho
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424, Republic of Korea.
| | - Hyun-Oh Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,Phyzen Genomics Institute, Baekgoong Plaza 1, Bundang-gu, Seongnam, 13558, Republic of Korea
| | - Sang-Choon Lee
- Phyzen Genomics Institute, Baekgoong Plaza 1, Bundang-gu, Seongnam, 13558, Republic of Korea
| | - Hyun-Jin Park
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Jin-Hee Seo
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Ji-Hong Cho
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Young-Eun Park
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Jang-Gyu Choi
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
25
|
Szandar K, Krawczyk K, Myszczyński K, Ślipiko M, Sawicki J, Szczecińska M. Breaking the limits - multichromosomal structure of an early eudicot Pulsatilla patens mitogenome reveals extensive RNA-editing, longest repeats and chloroplast derived regions among sequenced land plant mitogenomes. BMC PLANT BIOLOGY 2022; 22:109. [PMID: 35264098 PMCID: PMC8905907 DOI: 10.1186/s12870-022-03492-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The mitogenomes of vascular plants are one of the most structurally diverse molecules. In the present study we characterize mitogenomes of a rare and endangered species Pulsatilla patens. We investigated the gene content and its RNA editing potential, repeats distribution and plastid derived sequences. RESULTS The mitogenome structure of early divergent eudicot, endangered Pulsatilla patens does not support the master chromosome hypothesis, revealing the presence of three linear chromosomes of total length 986 613 bp. The molecules are shaped by the presence of extremely long, exceeding 87 kbp repeats and multiple chloroplast-derived regions including nearly complete inverted repeat. Since the plastid IR content of Ranunculales is very characteristic, the incorporation into mitogenome could be explained rather by intracellular transfer than mitochondrial HGT. The mitogenome contains almost a complete set of genes known from other vascular plants with exception of rps10 and sdh3, the latter being present but pseudogenized. Analysis of long ORFs enabled the identification of genes which are rarely present in plant mitogenomes, including RNA and DNA polymerases, albeit their presence even at species level is variable. Mitochondrial transcripts of P. patens were edited with a high frequency, which exceeded the level known in other analyzed angiosperms, despite the strict qualification criteria of counting the editing events and taking into analysis generally less frequently edited leaf transcriptome. The total number of edited sites was 902 and nad4 was identified as the most heavily edited gene with 65 C to U changes. Non-canonical, reverse U to C editing was not detected. Comparative analysis of mitochondrial genes of three Pulsatilla species revealed a level of variation comparable to chloroplast CDS dataset and much higher infrageneric differentiation than in other known angiosperm genera. The variation found in CDS of mitochondrial genes is comparable to values found among Pulsatilla plastomes. Despite the complicated mitogenome structure, 14 single copy regions of 329 kbp, not splitted by repeats or plastid-derived sequences (MTPT), revealed the potential for phylogenetic, phylogeographic and population genetics studies by revealing intra- and interspecific collinearity. CONCLUSIONS This study provides valuable new information about mitochondrial genome of early divergent eudicots, Pulsatilla patens, revealed multi-chromosomal structure and shed new light on mitogenomics of early eudicots.
Collapse
Affiliation(s)
- Kamil Szandar
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727, Olsztyn, Poland.
| | - Katarzyna Krawczyk
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727, Olsztyn, Poland.
| | - Kamil Myszczyński
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| | - Monika Ślipiko
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727, Olsztyn, Poland.
| | - Jakub Sawicki
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727, Olsztyn, Poland.
| | - Monika Szczecińska
- Department of Ecology and Environmental Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10- 727, Olsztyn, Poland.
| |
Collapse
|
26
|
Lin Y, Li P, Zhang Y, Akhter D, Pan R, Fu Z, Huang M, Li X, Feng Y. Unprecedented organelle genomic variations in morning glories reveal independent evolutionary scenarios of parasitic plants and the diversification of plant mitochondrial complexes. BMC Biol 2022; 20:49. [PMID: 35172831 PMCID: PMC8851834 DOI: 10.1186/s12915-022-01250-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/08/2022] [Indexed: 01/01/2023] Open
Abstract
Background The morning glories (Convolvulaceae) are distributed worldwide and produce economically important crops, medicinal herbs, and ornamentals. Members of this family are diverse in morphological characteristics and trophic modes, including the leafless parasitic Cuscuta (dodders). Organelle genomes were generally used for studying plant phylogeny and genomic variations. Notably, plastomes in parasitic plants always show non-canonical features, such as reduced size and accelerated rates. However, few organelle genomes of this group have been sequenced, hindering our understanding of their evolution, and dodder mitogenome in particular. Results We assembled 22 new mitogenomes and 12 new plastomes in Convolvulaceae. Alongside previously known ones, we totally analyzed organelle genomes of 23 species in the family. Our sampling includes 16 leafy autotrophic species and 7 leafless parasitic dodders, covering 8 of the 12 tribes. Both the plastid and mitochondrial genomes of these plants have encountered variations that were rarely observed in other angiosperms. All of the plastomes possessed atypical IR boundaries. Besides the gene and IR losses in dodders, some leafy species also showed gene and intron losses, duplications, structural variations, and insertions of foreign DNAs. The phylogeny reconstructed by plastid protein coding sequences confirmed the previous relationship of the tribes. However, the monophyly of ‘Merremieae’ and the sister group of Cuscuta remained uncertain. The mitogenome was significantly inflated in Cuscuta japonica, which has exceeded over 800 kb and integrated massive DNAs from other species. In other dodders, mitogenomes were maintained in small size, revealing divergent evolutionary strategies. Mutations unique to plants were detected in the mitochondrial gene ccmFc, which has broken into three fragments through gene fission and splicing shift. The unusual changes likely initially happened to the common ancestor of the family and were caused by a foreign insertion from rosids followed by double-strand breaks and imprecise DNA repairs. The coding regions of ccmFc expanded at both sides after the fission, which may have altered the protein structure. Conclusions Our family-scale analyses uncovered unusual scenarios for both organelle genomes in Convolvulaceae, especially in parasitic plants. The data provided valuable genetic resources for studying the evolution of Convolvulaceae and plant parasitism. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01250-1.
Collapse
Affiliation(s)
- Yanxiang Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Pan Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yuchan Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Delara Akhter
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet Division 3100, Sylhet, Bangladesh
| | - Ronghui Pan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Zhixi Fu
- College of Life Science, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Mingqing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Xiaobo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Yanlei Feng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China. .,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
27
|
Pouchon C, Boyer F, Roquet C, Denoeud F, Chave J, Coissac E, Alsos IG, Lavergne S. ORTHOSKIM: in silico sequence capture from genomic and transcriptomic libraries for phylogenomic and barcoding applications. Mol Ecol Resour 2022; 22:2018-2037. [PMID: 35015377 DOI: 10.1111/1755-0998.13584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
Abstract
Low-coverage whole genome shotgun sequencing (or genome skimming) has emerged as a cost-effective method for acquiring genomic data in non-model organisms. This method provides sequence information on chloroplast genome (cpDNA), mitochondrial genome (mtDNA) and nuclear ribosomal regions (rDNA), which are over-represented within cells. However, numerous bioinformatic challenges remain to accurately and rapidly obtain such data in organisms with complex genomic structures and rearrangements, in particular for mtDNA in plants or for cpDNA in some plant families. Here we introduce the pipeline ORTHOSKIM, which performs in silico capture of targeted sequences from genomic and transcriptomic libraries without assembling whole organelle genomes. ORTHOSKIM proceeds in three steps: 1) global sequence assembly, 2) mapping against reference sequences, and 3) target sequence extraction; importantly it also includes a range of quality control tests. Different modes are implemented to capture both coding and non-coding regions of cpDNA, mtDNA and rDNA sequences, along with predefined nuclear sequences (e.g. ultra-conserved elements) or collections of single-copy ortholog genes. Moreover, aligned DNA matrices are produced for phylogenetic reconstructions, by performing multiple alignments of the captured sequences. While ORTHOSKIM is suitable for any eukaryote, a case study is presented here, using 114 genome-skimming libraries and 4 RNAseq libraries obtained for two plant families, Primulaceae and Ericaceae, the latter being a well-known problematic family for cpDNA assemblies. ORTHOSKIM recovered with high success rates cpDNA, mtDNA and rDNA sequences, well suited to accurately infer evolutionary relationships within these families. ORTHOSKIM is released under a GPL-3 license and is available at: https://github.com/cpouchon/ORTHOSKIM.
Collapse
Affiliation(s)
- Charles Pouchon
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine (LECA), 38000, Grenoble, France
| | - Frédéric Boyer
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine (LECA), 38000, Grenoble, France
| | - Cristina Roquet
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine (LECA), 38000, Grenoble, France.,Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - France Denoeud
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057, Evry, France
| | - Jérome Chave
- Laboratoire Évolution et Diversité Biologique (EDB), UMR CNRS-IRD-UPS 5174, 31062, Toulouse Cedex, France
| | - Eric Coissac
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine (LECA), 38000, Grenoble, France
| | - Inger Greve Alsos
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, NO-9037, Tromsø, Norway
| | | | | | - Sébastien Lavergne
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine (LECA), 38000, Grenoble, France
| |
Collapse
|
28
|
Mitochondrial genomes of two parasitic Cuscuta species lack clear evidence of horizontal gene transfer and retain unusually fragmented ccmF C genes. BMC Genomics 2021; 22:816. [PMID: 34772334 PMCID: PMC8588681 DOI: 10.1186/s12864-021-08105-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/19/2021] [Indexed: 01/30/2023] Open
Abstract
Background The intimate association between parasitic plants and their hosts favours the exchange of genetic material, potentially leading to horizontal gene transfer (HGT) between plants. With the recent publication of several parasitic plant nuclear genomes, there has been considerable focus on such non-sexual exchange of genes. To enhance the picture on HGT events in a widely distributed parasitic genus, Cuscuta (dodders), we assembled and analyzed the organellar genomes of two recently sequenced species, C. australis and C. campestris, making this the first account of complete mitochondrial genomes (mitogenomes) for this genus. Results The mitogenomes are 265,696 and 275,898 bp in length and contain a typical set of mitochondrial genes, with 10 missing or pseudogenized genes often lost from angiosperm mitogenomes. Each mitogenome also possesses a structurally unusual ccmFC gene, which exhibits splitting of one exon and a shift to trans-splicing of its intron. Based on phylogenetic analysis of mitochondrial genes from across angiosperms and similarity-based searches, there is little to no indication of HGT into the Cuscuta mitogenomes. A few candidate regions for plastome-to-mitogenome transfer were identified, with one suggestive of possible HGT. Conclusions The lack of HGT is surprising given examples from the nuclear genomes, and may be due in part to the relatively small size of the Cuscuta mitogenomes, limiting the capacity to integrate foreign sequences. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08105-z.
Collapse
|
29
|
Tarasenko TA, Klimenko ES, Tarasenko VI, Koulintchenko MV, Dietrich A, Weber-Lotfi F, Konstantinov YM. Plant mitochondria import DNA via alternative membrane complexes involving various VDAC isoforms. Mitochondrion 2021; 60:43-58. [PMID: 34303006 DOI: 10.1016/j.mito.2021.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria possess transport mechanisms for import of RNA and DNA. Based on import into isolated Solanum tuberosum mitochondria in the presence of competitors, inhibitors or effectors, we show that DNA fragments of different size classes are taken up into plant organelles through distinct channels. Alternative channels can also be activated according to the amount of DNA substrate of a given size class. Analyses of Arabidopsis thaliana knockout lines pointed out a differential involvement of individual voltage-dependent anion channel (VDAC) isoforms in the formation of alternative channels. We propose several outer and inner membrane proteins as VDAC partners in these pathways.
Collapse
Affiliation(s)
- Tatiana A Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia
| | - Ekaterina S Klimenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia
| | - Vladislav I Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia
| | - Milana V Koulintchenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia.
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Frédérique Weber-Lotfi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Yuri M Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia; Irkutsk State University, 1 Karl Marx St, Irkutsk 664003, Russia
| |
Collapse
|
30
|
Comparative Mitogenomic Analysis Reveals Gene and Intron Dynamics in Rubiaceae and Intra-Specific Diversification in Damnacanthus indicus. Int J Mol Sci 2021; 22:ijms22137237. [PMID: 34281291 PMCID: PMC8268409 DOI: 10.3390/ijms22137237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
The dynamic evolution of mitochondrial gene and intron content has been reported across the angiosperms. However, a reference mitochondrial genome (mitogenome) is not available in Rubiaceae. The phylogenetic utility of mitogenome data at a species level is rarely assessed. Here, we assembled mitogenomes of six Damnacanthus indicus (Rubiaceae, Rubioideae) representing two varieties (var. indicus and var. microphyllus). The gene and intron content of D. indicus was compared with mitogenomes from representative angiosperm species and mitochondrial contigs from the other Rubiaceae species. Mitogenome structural rearrangement and sequence divergence in D. indicus were analyzed in six individuals. The size of the mitogenome in D. indicus varied from 417,661 to 419,435 bp. Comparing the number of intact mitochondrial protein-coding genes in other Gentianales taxa (38), D. indicus included 32 genes representing several losses. The intron analysis revealed a shift from cis to trans splicing of a nad1 intron (nad1i728) in D. indicus and it is a shared character with the other four Rubioideae taxa. Two distinct mitogenome structures (type A and B) were identified. Two-step direct repeat-mediated recombination was proposed to explain structural changes between type A and B mitogenomes. The five individuals from two varieties in D. indicus diverged well in the whole mitogenome-level comparison with one exception. Collectively, our study elucidated the mitogenome evolution in Rubiaceae along with D. indicus and showed the reliable phylogenetic utility of the whole mitogenome data at a species-level evolution.
Collapse
|
31
|
Choi KS, Park S. Complete Plastid and Mitochondrial Genomes of Aeginetia indica Reveal Intracellular Gene Transfer (IGT), Horizontal Gene Transfer (HGT), and Cytoplasmic Male Sterility (CMS). Int J Mol Sci 2021; 22:6143. [PMID: 34200260 PMCID: PMC8201098 DOI: 10.3390/ijms22116143] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022] Open
Abstract
Orobanchaceae have become a model group for studies on the evolution of parasitic flowering plants, and Aeginetia indica, a holoparasitic plant, is a member of this family. In this study, we assembled the complete chloroplast and mitochondrial genomes of A. indica. The chloroplast and mitochondrial genomes were 56,381 bp and 401,628 bp long, respectively. The chloroplast genome of A. indica shows massive plastid genes and the loss of one IR (inverted repeat). A comparison of the A. indica chloroplast genome sequence with that of a previous study demonstrated that the two chloroplast genomes encode a similar number of proteins (except atpH) but differ greatly in length. The A. indica mitochondrial genome has 53 genes, including 35 protein-coding genes (34 native mitochondrial genes and one chloroplast gene), 15 tRNA (11 native mitochondrial genes and four chloroplast genes) genes, and three rRNA genes. Evidence for intracellular gene transfer (IGT) and horizontal gene transfer (HGT) was obtained for plastid and mitochondrial genomes. ψndhB and ψcemA in the A. indica mitogenome were transferred from the plastid genome of A. indica. The atpH gene in the plastid of A. indica was transferred from another plastid angiosperm plastid and the atpI gene in mitogenome A. indica was transferred from a host plant like Miscanthus siensis. Cox2 (orf43) encodes proteins containing a membrane domain, making ORF (Open Reading Frame) the most likely candidate gene for CMS development in A. indica.
Collapse
Affiliation(s)
- Kyoung-Su Choi
- Institute of Natural Science, Yeungnam Univiersity, Gyeongsan-si 38541, Gyeongbuk-do, Korea;
- Department of Life Sciences, Yeungnam University, Gyeongsan-si 38541, Gyeongbuk-do, Korea
| | - Seonjoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan-si 38541, Gyeongbuk-do, Korea
| |
Collapse
|
32
|
Comparative analysis of nuclear, chloroplast, and mitochondrial genomes of watermelon and melon provides evidence of gene transfer. Sci Rep 2021; 11:1595. [PMID: 33452307 PMCID: PMC7811005 DOI: 10.1038/s41598-020-80149-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/17/2020] [Indexed: 11/08/2022] Open
Abstract
During plant evolution, there is genetic communication between organelle and nuclear genomes. A comparative analysis was performed on the organelle and nuclear genomes of the watermelon and melon. In the watermelon, chloroplast-derived sequences accounted for 7.6% of the total length of the mitochondrial genome. In the melon, chloroplast-derived sequences accounted for approximately 2.73% of the total mitochondrial genome. In watermelon and melon, the chloroplast-derived small-fragment sequences are either a subset of large-fragment sequences or appeared multiple times in the mitochondrial genome, indicating that these fragments may have undergone multiple independent migration integrations or emerged in the mitochondrial genome after migration, replication, and reorganization. There was no evidence of migration from the mitochondria to chloroplast genome. A sequence with a total length of about 73 kb (47%) in the watermelon chloroplast genome was homologous to a sequence of about 313 kb in the nuclear genome. About 33% of sequences in the watermelon mitochondrial genome was homologous with a 260 kb sequence in the nuclear genome. A sequence with a total length of about 38 kb (25%) in the melon chloroplast genome was homologous with 461 sequences in the nuclear genome, with a total length of about 301 kb. A 3.4 Mb sequence in the nuclear genome was homologous with a melon mitochondrial sequence. These results indicate that, during the evolution of watermelon and melon, a large amount of genetic material was exchanged between the nuclear genome and the two organelle genomes in the cytoplasm.
Collapse
|
33
|
Abstract
Size, structure, and sequence content lability of plant mitochondrial genome (mtDNA) across species has sharply limited its use in taxonomic studies. Historically, mtDNA variation has been first investigated with RFLPs, while the development of universal primers then allowed studying sequence polymorphisms within short genomic regions (<3 kb). The recent advent of NGS technologies now offers new opportunities by greatly facilitating the assembly of longer mtDNA regions, and even full mitogenomes. Phylogenetic works aiming at comparing signals from different genomic compartments (i.e., nucleus, chloroplast, and mitochondria) have been developed on a few plant lineages, and have been shown especially relevant in groups with contrasted inheritance of organelle genomes. This chapter first reviews the main characteristics of mtDNA and the application offered in taxonomic studies. It then presents tips for best sequencing protocol based on NGS data to be routinely used in mtDNA-based phylogenetic studies.
Collapse
Affiliation(s)
- Jérôme Duminil
- DIADE, University of Montpellier, IRD, Montpellier, France.
| | - Guillaume Besnard
- CNRS-UPS-IRD, UMR5174, EDB, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
34
|
Chen R, Huangfu L, Lu Y, Fang H, Xu Y, Li P, Zhou Y, Xu C, Huang J, Yang Z. Adaptive innovation of green plants by horizontal gene transfer. Biotechnol Adv 2020; 46:107671. [PMID: 33242576 DOI: 10.1016/j.biotechadv.2020.107671] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Horizontal gene transfer (HGT) refers to the movement of genetic material between distinct species by means other than sexual reproduction. HGT has contributed tremendously to the genome plasticity and adaptive evolution of prokaryotes and certain unicellular eukaryotes. The evolution of green plants from chlorophyte algae to angiosperms and from water to land represents a process of adaptation to diverse environments, which has been facilitated by acquisition of genetic material from other organisms. In this article, we review the occurrence of HGT in major lineages of green plants, including chlorophyte and charophyte green algae, bryophytes, lycophytes, ferns, and seed plants. In addition, we discuss the significance of horizontally acquired genes in the adaptive innovations of green plants and their potential applications to crop breeding and improvement.
Collapse
Affiliation(s)
- Rujia Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Liexiang Huangfu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yue Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Huimin Fang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC 28590, USA; State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
35
|
Putintseva YA, Bondar EI, Simonov EP, Sharov VV, Oreshkova NV, Kuzmin DA, Konstantinov YM, Shmakov VN, Belkov VI, Sadovsky MG, Keech O, Krutovsky KV. Siberian larch (Larix sibirica Ledeb.) mitochondrial genome assembled using both short and long nucleotide sequence reads is currently the largest known mitogenome. BMC Genomics 2020; 21:654. [PMID: 32972367 PMCID: PMC7517811 DOI: 10.1186/s12864-020-07061-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Plant mitochondrial genomes (mitogenomes) can be structurally complex while their size can vary from ~ 222 Kbp in Brassica napus to 11.3 Mbp in Silene conica. To date, in comparison with the number of plant species, only a few plant mitogenomes have been sequenced and released, particularly for conifers (the Pinaceae family). Conifers cover an ancient group of land plants that includes about 600 species, and which are of great ecological and economical value. Among them, Siberian larch (Larix sibirica Ledeb.) represents one of the keystone species in Siberian boreal forests. Yet, despite its importance for evolutionary and population studies, the mitogenome of Siberian larch has not yet been assembled and studied. RESULTS Two sources of DNA sequences were used to search for mitochondrial DNA (mtDNA) sequences: mtDNA enriched samples and nucleotide reads generated in the de novo whole genome sequencing project, respectively. The assembly of the Siberian larch mitogenome contained nine contigs, with the shortest and the largest contigs being 24,767 bp and 4,008,762 bp, respectively. The total size of the genome was estimated at 11.7 Mbp. In total, 40 protein-coding, 34 tRNA, and 3 rRNA genes and numerous repetitive elements (REs) were annotated in this mitogenome. In total, 864 C-to-U RNA editing sites were found for 38 out of 40 protein-coding genes. The immense size of this genome, currently the largest reported, can be partly explained by variable numbers of mobile genetic elements, and introns, but unlikely by plasmid-related sequences. We found few plasmid-like insertions representing only 0.11% of the entire Siberian larch mitogenome. CONCLUSIONS Our study showed that the size of the Siberian larch mitogenome is much larger than in other so far studied Gymnosperms, and in the same range as for the annual flowering plant Silene conica (11.3 Mbp). Similar to other species, the Siberian larch mitogenome contains relatively few genes, and despite its huge size, the repeated and low complexity regions cover only 14.46% of the mitogenome sequence.
Collapse
Affiliation(s)
- Yuliya A Putintseva
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
| | - Eugeniya I Bondar
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
- Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| | - Evgeniy P Simonov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Tyumen, 625003, Russia
| | - Vadim V Sharov
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
- Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
- Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, 660074, Russia
| | - Natalya V Oreshkova
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
- Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
- Laboratory of Forest Genetics and Selection, V. N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| | - Dmitry A Kuzmin
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia
- Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, 660074, Russia
| | - Yuri M Konstantinov
- Laboratory of Plant Genetic Engineering, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, 664033, Russia
| | - Vladimir N Shmakov
- Laboratory of Plant Genetic Engineering, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, 664033, Russia
| | - Vadim I Belkov
- Laboratory of Plant Genetic Engineering, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, 664033, Russia
| | - Michael G Sadovsky
- Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia
| | - Olivier Keech
- Department of Plant Physiology, UPSC, Umeå University, S-90187, Umeå, Sweden
| | - Konstantin V Krutovsky
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russia.
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research, George-August University of Göttingen, 37075, Göttingen, Germany.
- Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia.
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, USA.
| |
Collapse
|
36
|
Roulet ME, Garcia LE, Gandini CL, Sato H, Ponce G, Sanchez-Puerta MV. Multichromosomal structure and foreign tracts in the Ombrophytum subterraneum (Balanophoraceae) mitochondrial genome. PLANT MOLECULAR BIOLOGY 2020; 103:623-638. [PMID: 32440763 DOI: 10.1007/s11103-020-01014-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Horizontal gene transfer (HGT) is frequent in parasitic plant mitochondria as a result of vascular connections established in host-parasite relationships. Recent studies of the holoparasitic plant Lophophytum mirabile (Balanophoraceae) revealed the unprecedented acquisition of a large amount of mitochondrial sequences from its legume host. We focused on a close relative, the generalist holoparasite Ombrophytum subterraneum, to examine the incidence of HGT events in the mitochondrial genome (mtDNA). The mtDNA of O. subterraneum assembles into 54 circular chromosomes, only 34 of which contain the 51 full-length coding regions. Numerous foreign tracts (totaling almost 100 kb, ~ 14% of the mtDNA), including 12 intact genes, were acquired by HGT from the Asteraceae hosts. Nine chromosomes concentrate most of those regions and eight are almost entirely foreign. Native homologs of each foreign gene coexist in the mtDNA and are potentially functional. A large proportion of shorter regions were related to the Fabaceae (a total of ~ 110 kb, 15.4%), some of which were shared with L. mirabile. We also found evidence of foreign sequences donated by angiosperm lineages not reported as hosts (Apocynaceae, Euphorbiaceae, Lamiaceae, and Malvales). We propose an evolutionary hypothesis that involves ancient transfers from legume hosts in the common ancestor of Ombrophytum and Lophophytum followed by more recent transfer events in L. mirabile. Besides, the O. subterraneum mtDNA was also subjected to additional HGT events from diverse angiosperm lineages, including large and recent transfers from the Asteraceae, and also from Lamiaceae.
Collapse
Affiliation(s)
- M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
| | - Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - Carolina L Gandini
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
| | - Hector Sato
- Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Cátedra de Botánica General-Herbario JUA, Alberdi 47, 4600, San Salvador de Jujuy, Jujuy, Argentina
| | - Gabriela Ponce
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB, Chacras de Coria, Mendoza, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina.
| |
Collapse
|
37
|
Shtratnikova VY, Schelkunov MI, Penin AA, Logacheva MD. Mitochondrial genome of the nonphotosynthetic mycoheterotrophic plant Hypopitys monotropa, its structure, gene expression and RNA editing. PeerJ 2020; 8:e9309. [PMID: 32601550 PMCID: PMC7307570 DOI: 10.7717/peerj.9309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 05/17/2020] [Indexed: 01/05/2023] Open
Abstract
Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar in these two categories is still open. The plastid genomes of nonphotosynthetic plants are well characterized, and they exhibit similar patterns of reduction in the two groups. In contrast, little is known about the mitochondrial genomes of MHT plants. We report the structure of the mitochondrial genome of Hypopitys monotropa, a MHT member of Ericaceae, and the expression of its genes. In contrast to its highly reduced plastid genome, the mitochondrial genome of H. monotropa is larger than that of its photosynthetic relative Vaccinium macrocarpon, and its complete size is ~810 Kb. We observed an unusually long repeat-rich structure of the genome that suggests the existence of linear fragments. Despite this unique feature, the gene content of the H. monotropa mitogenome is typical of flowering plants. No acceleration of substitution rates is observed in mitochondrial genes, in contrast to previous observations in parasitic non-photosynthetic plants. Transcriptome sequencing revealed the trans-splicing of several genes and RNA editing in 33 of 38 genes. Notably, we did not find any traces of horizontal gene transfer from fungi, in contrast to plant parasites, which extensively integrate genetic material from their hosts.
Collapse
Affiliation(s)
- Viktoria Yu Shtratnikova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail I Schelkunov
- Skolkovo Institute of Science and Technology, Moscow, Russia.,Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Aleksey A Penin
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
38
|
Best C, Mizrahi R, Ostersetzer-Biran O. Why so Complex? The Intricacy of Genome Structure and Gene Expression, Associated with Angiosperm Mitochondria, May Relate to the Regulation of Embryo Quiescence or Dormancy-Intrinsic Blocks to Early Plant Life. PLANTS (BASEL, SWITZERLAND) 2020; 9:E598. [PMID: 32397140 PMCID: PMC7284508 DOI: 10.3390/plants9050598] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria play key roles in cellular-energy metabolism and are vital for plant-life, such as for successful germination and early-seedling establishment. Most mitochondria contain their own genetic system (mtDNA, mitogenome), with an intrinsic protein-synthesis machinery. Although the challenges of maintaining prokaryotic-type structures and functions are common to Eukarya, land plants possess some of the most complex organelle composition of all known organisms. Angiosperms mtDNAs are characteristically the largest and least gene-dense among the eukaryotes. They often contain highly-variable intergenic regions of endogenous or foreign origins and undergo frequent recombination events, which result in different mtDNA configurations, even between closely-related species. The expression of the mitogenome in angiosperms involves extensive mtRNA processing steps, including numerous editing and splicing events. Why do land-plant's mitochondria have to be so complex? The answer to this remains a matter of speculation. We propose that this complexity may have arisen throughout the terrestrialization of plants, as a means to control embryonic mitochondrial functions -a critical adaptive trait to optimize seed germination. The unique characteristics of plant mtDNA may play pivotal roles in the nuclear-regulation of organellar biogenesis and metabolism, possibly to control embryos quiescence or dormancy, essential determinants for the establishment of viable plantlets that can survive post-germination.
Collapse
Affiliation(s)
| | | | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus—Givat Ram, Jerusalem 9190401, Israel; (C.B.); (R.M.)
| |
Collapse
|
39
|
Petersen G, Anderson B, Braun HP, Meyer EH, Møller IM. Mitochondria in parasitic plants. Mitochondrion 2020; 52:173-182. [DOI: 10.1016/j.mito.2020.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/05/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
40
|
Park HS, Jayakodi M, Lee SH, Jeon JH, Lee HO, Park JY, Moon BC, Kim CK, Wing RA, Newmaster SG, Kim JY, Yang TJ. Mitochondrial plastid DNA can cause DNA barcoding paradox in plants. Sci Rep 2020; 10:6112. [PMID: 32273595 PMCID: PMC7145815 DOI: 10.1038/s41598-020-63233-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/24/2020] [Indexed: 01/18/2023] Open
Abstract
The transfer of ancestral plastid genomes into mitochondrial genomes to generate mitochondrial plastid DNA (MTPT) is known to occur in plants, but its impacts on mitochondrial genome complexity and the potential for causing a false-positive DNA barcoding paradox have been underestimated. Here, we assembled the organelle genomes of Cynanchum wilfordii and C. auriculatum, which are indigenous medicinal herbs in Korea and China, respectively. In both species, it is estimated that 35% of the ancestral plastid genomes were transferred to mitochondrial genomes over the past 10 million years and remain conserved in these genomes. Some plastid barcoding markers co-amplified the conserved MTPTs and caused a barcoding paradox, resulting in mis-authentication of botanical ingredients and/or taxonomic mis-positioning. We identified dynamic and lineage-specific MTPTs that have contributed to mitochondrial genome complexity and might cause a putative barcoding paradox across 81 plant species. We suggest that a DNA barcoding guidelines should be developed involving the use of multiple markers to help regulate economically motivated adulteration.
Collapse
Affiliation(s)
- Hyun-Seung Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Murukarthick Jayakodi
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sae Hyun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Hyeon Jeon
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Oh Lee
- Phyzen Genomics Institute, Seongnam, 13558, Korea
| | - Jee Young Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byeong Cheol Moon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Steven G Newmaster
- NHP Research Alliance, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811, Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
41
|
Warren JM, Sloan DB. Interchangeable parts: The evolutionarily dynamic tRNA population in plant mitochondria. Mitochondrion 2020; 52:144-156. [PMID: 32184120 DOI: 10.1016/j.mito.2020.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/31/2023]
Abstract
Transfer RNAs (tRNAs) remain one of the very few classes of genes still encoded in the mitochondrial genome. These key components of the protein translation system must interact with a large enzymatic network of nuclear-encoded gene products to maintain mitochondrial function. Plants have an evolutionarily dynamic mitochondrial tRNA population, including ongoing tRNA gene loss and replacement by both horizontal gene transfer from diverse sources and import of nuclear-expressed tRNAs from the cytosol. Thus, plant mitochondria represent an excellent model for understanding how anciently divergent genes can act as "interchangeable parts" during the evolution of complex molecular systems. In particular, understanding the integration of the mitochondrial translation system with elements of the corresponding machinery used in cytosolic protein synthesis is a key area for eukaryotic cellular evolution. Here, we review the increasingly detailed phylogenetic data about the evolutionary history of mitochondrial tRNA gene loss, transfer, and functional replacement that has created extreme variation in mitochondrial tRNA populations across plant species. We describe emerging tRNA-seq methods with promise for refining our understanding of the expression and subcellular localization of tRNAs. Finally, we summarize current evidence and identify open questions related to coevolutionary changes in nuclear-encoded enzymes that have accompanied turnover in mitochondrial tRNA populations.
Collapse
Affiliation(s)
- Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
42
|
Cecchin M, Marcolungo L, Rossato M, Girolomoni L, Cosentino E, Cuine S, Li‐Beisson Y, Delledonne M, Ballottari M. Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1289-1305. [PMID: 31437318 PMCID: PMC6972661 DOI: 10.1111/tpj.14508] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 05/05/2023]
Abstract
Chlorella vulgaris is a fast-growing fresh-water microalga cultivated on the industrial scale for applications ranging from food to biofuel production. To advance our understanding of its biology and to establish genetics tools for biotechnological manipulation, we sequenced the nuclear and organelle genomes of Chlorella vulgaris 211/11P by combining next generation sequencing and optical mapping of isolated DNA molecules. This hybrid approach allowed us to assemble the nuclear genome in 14 pseudo-molecules with an N50 of 2.8 Mb and 98.9% of scaffolded genome. The integration of RNA-seq data obtained at two different irradiances of growth (high light, HL versus low light, LL) enabled us to identify 10 724 nuclear genes, coding for 11 082 transcripts. Moreover, 121 and 48 genes, respectively, were found in the chloroplast and mitochondrial genome. Functional annotation and expression analysis of nuclear, chloroplast and mitochondrial genome sequences revealed particular features of Chlorella vulgaris. Evidence of horizontal gene transfers from chloroplast to mitochondrial genome was observed. Furthermore, comparative transcriptomic analyses of LL versus HL provided insights into the molecular basis for metabolic rearrangement under HL versus LL conditions leading to enhanced de novo fatty acid biosynthesis and triacylglycerol accumulation. The occurrence of a cytosolic fatty acid biosynthetic pathway could be predicted and its upregulation upon HL exposure was observed, consistent with the increased lipid amount under HL conditions. These data provide a rich genetic resource for future genome editing studies, and potential targets for biotechnological manipulation of Chlorella vulgaris or other microalgae species to improve biomass and lipid productivity.
Collapse
Affiliation(s)
- Michela Cecchin
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie 1537134Verona, Italy
| | - Luca Marcolungo
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie 1537134Verona, Italy
| | - Marzia Rossato
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie 1537134Verona, Italy
| | - Laura Girolomoni
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie 1537134Verona, Italy
| | - Emanuela Cosentino
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie 1537134Verona, Italy
| | - Stephan Cuine
- Institute of Biosciences and Biotechnologies of Aix‐Marseille, UMR7265Aix‐Marseille UniversityCEACNRSCEA CadaracheSaint‐Paul‐lez DuranceF‐13108France
| | - Yonghua Li‐Beisson
- Institute of Biosciences and Biotechnologies of Aix‐Marseille, UMR7265Aix‐Marseille UniversityCEACNRSCEA CadaracheSaint‐Paul‐lez DuranceF‐13108France
| | - Massimo Delledonne
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie 1537134Verona, Italy
| | - Matteo Ballottari
- Dipartimento di BiotecnologieUniversità di VeronaStrada Le Grazie 1537134Verona, Italy
| |
Collapse
|
43
|
Zhao N, Grover CE, Chen Z, Wendel JF, Hua J. Intergenomic gene transfer in diploid and allopolyploid Gossypium. BMC PLANT BIOLOGY 2019; 19:492. [PMID: 31718541 PMCID: PMC6852956 DOI: 10.1186/s12870-019-2041-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/20/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Intergenomic gene transfer (IGT) between nuclear and organellar genomes is a common phenomenon during plant evolution. Gossypium is a useful model to evaluate the genomic consequences of IGT for both diploid and polyploid species. Here, we explore IGT among nuclear, mitochondrial, and plastid genomes of four cotton species, including two allopolyploids and their model diploid progenitors (genome donors, G. arboreum: A2 and G. raimondii: D5). RESULTS Extensive IGT events exist for both diploid and allotetraploid cotton (Gossypium) species, with the nuclear genome being the predominant recipient of transferred DNA followed by the mitochondrial genome. The nuclear genome has integrated 100 times more foreign sequences than the mitochondrial genome has in total length. In the nucleus, the integrated length of chloroplast DNA (cpDNA) was between 1.87 times (in diploids) to nearly four times (in allopolyploids) greater than that of mitochondrial DNA (mtDNA). In the mitochondrion, the length of nuclear DNA (nuDNA) was typically three times than that of cpDNA. Gossypium mitochondrial genomes integrated three nuclear retrotransposons and eight chloroplast tRNA genes, and incorporated chloroplast DNA prior to divergence between the diploids and allopolyploid formation. For mitochondrial chloroplast-tRNA genes, there were 2-6 bp conserved microhomologies flanking their insertion sites across distantly related genera, which increased to 10 bp microhomologies for the four cotton species studied. For organellar DNA sequences, there are source hotspots, e.g., the atp6-trnW intergenic region in the mitochondrion and the inverted repeat region in the chloroplast. Organellar DNAs in the nucleus were rarely expressed, and at low levels. Surprisingly, there was asymmetry in the survivorship of ancestral insertions following allopolyploidy, with most numts (nuclear mitochondrial insertions) decaying or being lost whereas most nupts (nuclear plastidial insertions) were retained. CONCLUSIONS This study characterized and compared intracellular transfer among nuclear and organellar genomes within two cultivated allopolyploids and their ancestral diploid cotton species. A striking asymmetry in the fate of IGTs in allopolyploid cotton was discovered, with numts being preferentially lost relative to nupts. Our results connect intergenomic gene transfer with allotetraploidy and provide new insight into intracellular genome evolution.
Collapse
Affiliation(s)
- Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding /Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education / Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Zhiwen Chen
- Laboratory of Cotton Genetics, Genomics and Breeding /Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education / Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding /Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education / Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
44
|
Choi IS, Schwarz EN, Ruhlman TA, Khiyami MA, Sabir JSM, Hajarah NH, Sabir MJ, Rabah SO, Jansen RK. Fluctuations in Fabaceae mitochondrial genome size and content are both ancient and recent. BMC PLANT BIOLOGY 2019; 19:448. [PMID: 31653201 PMCID: PMC6814987 DOI: 10.1186/s12870-019-2064-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/02/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Organelle genome studies of Fabaceae, an economically and ecologically important plant family, have been biased towards the plastid genome (plastome). Thus far, less than 15 mitochondrial genome (mitogenome) sequences of Fabaceae have been published, all but four of which belong to the subfamily Papilionoideae, limiting the understanding of size variation and content across the family. To address this, four mitogenomes were sequenced and assembled from three different subfamilies (Cercidoideae, Detarioideae and Caesalpinioideae). RESULTS Phylogenetic analysis based on shared mitochondrial protein coding regions produced a fully resolved and well-supported phylogeny that was completely congruent with the plastome tree. Comparative analyses suggest that two kinds of mitogenome expansions have occurred in Fabaceae. Size expansion of four genera (Tamarindus, Libidibia, Haematoxylum, and Leucaena) in two subfamilies (Detarioideae and Caesalpinioideae) occurred in relatively deep nodes, and was mainly caused by intercellular gene transfer and/or interspecific horizontal gene transfer (HGT). The second, more recent expansion occurred in the Papilionoideae as a result of duplication of native mitochondrial sequences. Family-wide gene content analysis revealed 11 gene losses, four (rps2, 7, 11 and 13) of which occurred in the ancestor of Fabaceae. Losses of the remaining seven genes (cox2, rpl2, rpl10, rps1, rps19, sdh3, sdh4) were restricted to specific lineages or occurred independently in different clades. Introns of three genes (cox2, ccmFc and rps10) showed extensive lineage-specific length variation due to large sequence insertions and deletions. Shared DNA analysis among Fabaceae mitogenomes demonstrated a substantial decay of intergenic spacers and provided further insight into HGT between the mimosoid clade of Caesalpinioideae and the holoparasitic Lophophytum (Balanophoraceae). CONCLUSION This study represents the most exhaustive analysis of Fabaceae mitogenomes so far, and extends the understanding the dynamic variation in size and gene/intron content. The four newly sequenced mitogenomes reported here expands the phylogenetic coverage to four subfamilies. The family has experienced multiple mitogenome size fluctuations in both ancient and recent times. The causes of these size variations are distinct in different lineages. Fabaceae mitogenomes experienced extensive size fluctuation by recruitment of exogenous DNA and duplication of native mitochondrial DNA.
Collapse
Affiliation(s)
- In-Su Choi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| | - Erika N. Schwarz
- Department of Biological Sciences, St. Edward’s University, Austin, TX 78704 USA
| | - Tracey A. Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| | - Mohammad A. Khiyami
- King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442 Saudi Arabia
| | - Jamal S. M. Sabir
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Nahid H. Hajarah
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mernan J. Sabir
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Samar O. Rabah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
45
|
de Santana Lopes A, Gomes Pacheco T, Nascimento da Silva O, Magalhães Cruz L, Balsanelli E, Maltempi de Souza E, de Oliveira Pedrosa F, Rogalski M. The plastomes of Astrocaryum aculeatum G. Mey. and A. murumuru Mart. show a flip-flop recombination between two short inverted repeats. PLANTA 2019; 250:1229-1246. [PMID: 31222493 DOI: 10.1007/s00425-019-03217-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
The plastomes of Astrocaryum murumuru and A. aculeatum revealed a lineage-specific structural feature originated by flip-flop recombination, non-synonymous substitutions in conserved genes and several molecular markers. Astrocaryum murumuru Mart. and A. aculeatum G.Mey. are two palm species of Amazon forest that are economically important as source of food, oil and raw material for several applications. Genetic studies aiming to establish strategies for conservation and domestication of both species are still in the beginning given that the exploitation is mostly by extractive activity. The identification and characterization of molecular markers are essential to assess the genetic diversity of natural populations of both species. Therefore, we sequenced and characterized in detail the plastome of both species. We compared both species and identified 32 polymorphic SSR loci, 150 SNPs, 46 indels and eight hotspots of nucleotide diversity. Additionally, we reported a specific RNA editing site found in the ccsA gene, which is exclusive to A. murumuru. Moreover, the structural analysis in the plastomes of both species revealed a 4.6-kb inversion encompassing a set of genes involved in chlororespiration and plastid translation. This 4.6-kb inversion is a lineage-specific structural feature of the genus Astrocaryum originated by flip-flop recombination between two short inverted repeats. Furthermore, our phylogenetic analysis using whole plastomes of 39 Arecaceae species placed the Astrocaryum species sister to Acrocomia within the tribe Cocoseae. Finally, our data indicated substantial changes in the plastome structure and sequence of both species of the genus Astrocaryum, bringing new molecular markers, several structural and evolving features, which can be applied in several areas such as genetic, evolution, breeding, phylogeny and conservation strategies for both species.
Collapse
Affiliation(s)
- Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Odyone Nascimento da Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Leonardo Magalhães Cruz
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
46
|
Li Q, Xiang D, Wan Y, Wu Q, Wu X, Ma C, Song Y, Zhao G, Huang W. The complete mitochondrial genomes of five important medicinal Ganoderma species: Features, evolution, and phylogeny. Int J Biol Macromol 2019; 139:397-408. [DOI: 10.1016/j.ijbiomac.2019.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/10/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
|
47
|
The complete organelle genomes of Physochlaina orientalis: Insights into short sequence repeats across seed plant mitochondrial genomes. Mol Phylogenet Evol 2019; 137:274-284. [PMID: 31112782 DOI: 10.1016/j.ympev.2019.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 11/24/2022]
Abstract
Short repeats (SR) play an important role in shaping seed plant mitochondrial genomes (mtDNAs). However, their origin, distribution, and relationships across the different plant lineages remain unresolved. We focus on the angiosperm family Solanaceae that shows great variation in repeat content and extend the study to a wide diversity of seed plants. We determined the complete nucleotide sequences of the organellar genomes of the medicinal plant Physochlaina orientalis (Solanaceae), member of the tribe Hyoscyameae. To understand the evolution of the P. orientalis mtDNA we made comparisons with those of five other Solanaceae. P. orientalis mtDNA presents the largest mitogenome (∼685 kb in size) among the Solanaceae and has an unprecedented 8-copy repeat family of ∼8.2 kb in length and a great number of SR arranged in tandem-like structures. We found that the SR in the Solanaceae share a common origin, but these only expanded in members of the tribe Hyoscyameae. We discuss a mechanism that could explain SR formation and expansion in P. orientalis and Hyoscyamus niger. Finally, the great increase in plant mitochondrial data allowed us to systematically extend our repeat analysis to a total of 136 seed plants to characterize and analyze for the first time families of SR among seed plant mtDNAs.
Collapse
|
48
|
Genome-scale transfer of mitochondrial DNA from legume hosts to the holoparasite Lophophytum mirabile (Balanophoraceae). Mol Phylogenet Evol 2019; 132:243-250. [DOI: 10.1016/j.ympev.2018.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 11/23/2022]
|
49
|
Kim JI, Shin H, Škaloud P, Jung J, Yoon HS, Archibald JM, Shin W. Comparative plastid genomics of Synurophyceae: inverted repeat dynamics and gene content variation. BMC Evol Biol 2019; 19:20. [PMID: 30634905 PMCID: PMC6330437 DOI: 10.1186/s12862-018-1316-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 12/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Synurophyceae is one of most important photosynthetic stramenopile algal lineages in freshwater ecosystems. They are characterized by siliceous scales covering the cell or colony surface and possess plastids of red-algal secondary or tertiary endosymbiotic origin. Despite their ecological and evolutionary significance, the relationships amongst extant Synurophyceae are unclear, as is their relationship to most other stramenopiles. RESULTS Here we report a comparative analysis of plastid genomes sequenced from five representative synurophycean algae. Most of these plastid genomes are highly conserved with respect to genome structure and coding capacity, with the exception of gene re-arrangements and partial duplications at the boundary of the inverted repeat and single-copy regions. Several lineage-specific gene loss/gain events and intron insertions were detected (e.g., cemA, dnaB, syfB, and trnL). CONCLUSIONS Unexpectedly, the cemA gene of Synurophyceae shows a strong relationship with sequences from members of the green-algal lineage, suggesting the occurrence of a lateral gene transfer event. Using a molecular clock approach based on silica fossil record data, we infer the timing of genome re-arrangement and gene gain/loss events in the plastid genomes of Synurophyceae.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Hyunmoon Shin
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800, Prague 2, Czech Republic
| | - Jaehee Jung
- Department of General Education, Hongik University, Seoul, 04066, South Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
50
|
Kim HT, Kim KJ. Evolution of six novel ORFs in the plastome of Mankyua chejuense and phylogeny of eusporangiate ferns. Sci Rep 2018; 8:16466. [PMID: 30405200 PMCID: PMC6220310 DOI: 10.1038/s41598-018-34825-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/26/2018] [Indexed: 11/17/2022] Open
Abstract
In this paper, three plastomes of Mankyua chejuense, Helminthostachys zeylanica, and Botrychium ternatum in Ophioglossaceae were completely sequenced in order to investigate the plastome evolution and phylogeny of eusporangiate ferns. They were similar to each other in terms of length and the gene orders; however, six unknown open reading frames (ORFs) were found between rps4 and trnL-UAA genes in M. chejuense. Similar sequence regions of six ORFs of M. chejuense were found at the plastomes of Ophioglossum californicum and H. zeylanica, as well as the mitochondrial genome (mitogenome) of H. zeylanica, but not in B. ternatum. Interestingly, the translated amino acid sequences of three ORFs were more similar to the proteins of distantly related taxa such as algae and bacteria than they were to proteins in land plants. It is likely that the six ORFs region arose from endosymbiotic gene transfer (EGT) or horizontal gene transfer (HGT), but further study is needed to verify this. Phylogenetic analyses suggested that Mankyua was resolved as the earliest diverging lineage and that Ophioglossum was subsequently diverged in Ophioglossaceae. This result supports why the plastome of M. chejuense have contained the most ancestral six ORFs in the family.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Division of Life Sciences, School of Life Sciences, Korea University, Seoul, 02841, Korea
- Institute of Agricultural Science and Technology, Chungbuk National University, Chengju, 41566, Korea
| | - Ki-Joong Kim
- Division of Life Sciences, School of Life Sciences, Korea University, Seoul, 02841, Korea.
| |
Collapse
|